JPH0340448B2 - - Google Patents

Info

Publication number
JPH0340448B2
JPH0340448B2 JP57173294A JP17329482A JPH0340448B2 JP H0340448 B2 JPH0340448 B2 JP H0340448B2 JP 57173294 A JP57173294 A JP 57173294A JP 17329482 A JP17329482 A JP 17329482A JP H0340448 B2 JPH0340448 B2 JP H0340448B2
Authority
JP
Japan
Prior art keywords
parts
coating film
ωcm
volume resistivity
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57173294A
Other languages
Japanese (ja)
Other versions
JPS5962141A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57173294A priority Critical patent/JPS5962141A/en
Publication of JPS5962141A publication Critical patent/JPS5962141A/en
Publication of JPH0340448B2 publication Critical patent/JPH0340448B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は良好な導電性を持ち、さらに任意に着
色された塗膜を有する物品に関するものである。 従来、カーボンブラツク、グラフアイト、炭素
繊維またはフレーク、金属コートガラス繊維また
はガラスビーズ等の導電性フイラーを塗料用樹脂
に配合した導電性塗膜が帯電防止用、電磁波シー
ルド用等に使用できることは良く知られている。
しかしながら、これらの導電性フイラーは黒色あ
るいは灰色に近いものであり、たとえ顔料を混
合、分散しても灰色あるいは灰色がかつた不鮮明
な色相しか得られず、鮮明な色相を出すべく顔料
をさらに多くした場合には固形分中の導電性フイ
ラー濃度が相対的に減少する結果、導電性が極端
に低下するという欠点があつた。また、炭素繊維
を使用した場合、導電性の低いところ、つまり炭
素繊維が少なく導電性が低ければ任意に色付けも
可能であるが、導電性の良い範囲になると炭素繊
維の添加量も多くなり灰色がかつた不鮮明な着色
塗膜しか得られないのが実状であつた。 そこで本発明者は、導電性が良く、かつ任意に
着色可能な塗膜を得るべく鋭意検討した結果、炭
素繊維を含有する塗膜は表面の導電性に比較して
厚み方向の導電性が非常に良くなることを見出し
本発明に到つたものである。すなわち本発明は、
非導電性基材上に、体積固有抵抗値が108Ωcm以
下の導電層を有し、該導電層上に炭素繊維、顔料
および樹脂を含む体積固有抵抗値が該導電層より
10Ωcm以上大きい塗膜を有してなる任意に着色さ
れた導電表面を有する物品に関する。 本発明おいて使用される非導電性基材は、各種
プラスチツク、紙、織布、不織布、木、ガラス、
石こうボード等のそれ自体導電性を有しないもの
で、これらに非導電性のプラスチツクや塗料を被
覆したものも含まれる。 本発明にいう導電層は体積固有抵抗値が108Ω
cm以下のものであり、導電フイラーを含有する塗
膜層もしくは接着剤層、金属、金属酸化物等の蒸
着層あるいはメツキ層であつてもよい。 上記導電性フイラーとしては、例えばカーボン
ブラツク、炭素繊維、グラフアイト、金属粉、金
属繊維またはフレーク、金属被覆ガラス繊維また
はガラスビーズなどがある。 本発明の上層として用いる塗膜は体積固有抵抗
値が導電性層より10Ωcm以上大きいものであり、
塗膜厚さとしては10〜200μ好ましくは10〜100μ
である。 導電層上に設ける塗膜を形成するための塗料
は、炭素繊維、顔料および樹脂を必須の成分とす
るものであるが、必要に応じて可塑剤、添加剤、
溶剤等を加えることができる。 上記塗料に使用される樹脂としては、熱可塑性
アクリル樹脂、線状ポリウレタン樹脂、線状ポリ
エステル樹脂、硝化綿、酢酸セルロース、塩素化
ポリオレフイン系樹脂、塩化ビニル樹脂、酢酸ビ
ニル樹脂、塩化ビニル−酢酸ビニル共重合体、常
温乾燥型水溶性樹脂、常温乾燥型エマルジヨン樹
脂などの熱可塑性樹脂、あるいは熱硬化型アクリ
ル樹脂、熱硬化型アルキド樹脂、エポキシ樹脂、
フエノール樹脂、ポリアミド樹脂、2液型ポリウ
レタン樹脂、不飽和ポリエステル樹脂、メラミン
樹脂などの熱硬化型樹脂などであり、電子線硬化
型、紫外線硬化型の樹脂も同様に使用できる。こ
れらの樹脂は導電層との付着性、基材の耐熱性に
より1種あるいは2種以上適宜組み合せて使用す
ることができる。 炭素繊維としては一般的な単糸径5〜25μ、繊
維長3mm以下好ましくは0.7mm以下のものが良い。
長さが3mm以上になると、分散困難であり、0.7
mm以下であれば塗工性(スプレー、ロールコータ
ー等)において好ましい。0.7mm以上3mm以下の
ものはスプレー塗工は目づまり等問題があるが、
はけ塗り、こて塗り等で塗布できる。 顔料は通常塗料用としての顔料すべてが使用可
能であるが、透明性の顔料は透けて炭素繊維の黒
さが出て不鮮明となるので酸化チタンや弁柄等の
隠ぺい力のある顔料と併用すると良い。また、あ
らかじめ所定の樹脂に顔料を分散させた着色剤を
用いる事も出来る。 顔料の配合量としては炭素繊維に対する重量比
が20/80〜90/10の範囲になるように決められ
る。顔料の配合量は多いほど着色力の点において
好ましいことは勿論であるが、過度の使用は導電
性の不安定化を招いたり塗膜物性に支障が生ずる
ので好ましくない。 本発明の塗膜の体積固有抵抗値は導電層のそれ
の値より10Ωcm以上大きいものであり、着色性を
考慮すれば102Ωcm以上大きくすることが好まし
い。しかしながらあまりに大きな体積固有抵抗値
を有する塗膜は、導電層がそれ自体充分な導電性
を有していたとしても帯電防止能を確保するのに
充分な導電性は得られず好ましくない。 本発明において導電層上に塗膜を形成させる方
法としてはスプレー、はけ塗り、こて塗り、ロー
ルコーター、デイツピング、フローコーター等
種々のものを用いる事が出来るが、あらかじめ離
型紙にロールコーター等で塗膜を作成しておき、
これを導電層に貼りつけるか転写させる方法でも
良い。 本発明の導電塗膜は、塗膜それ自体では必ずし
も充分な導電性は有しておらず、導電層上に形成
された場合のみ、充分な導電性が生ずるという特
徴がある。例えば樹脂に炭素繊維を配合した塗膜
のみの抵抗値を表面抵抗値と厚み方向について測
定した表−1によれば、同じ膜厚の塗膜において
炭素繊維の配合量により表面抵抗値と厚み方法の
抵抗には相異なつた傾向が認められる。すなわち
炭素繊維の配合量が少なくなるにしたがい、表面
抵抗値は大きくなつていくが、厚み方向の抵抗値
にはほとんど影響がなく、炭素繊維の配合量が少
ない場合においては導電性に明らかな方向性が認
められる。
The present invention relates to articles having good electrical conductivity and optionally colored coatings. Conventionally, it has been well known that conductive coatings made by blending conductive fillers such as carbon black, graphite, carbon fibers or flakes, metal-coated glass fibers or glass beads with paint resins can be used for antistatic purposes, electromagnetic shielding, etc. Are known.
However, these conductive fillers are black or close to gray, and even if pigments are mixed and dispersed, only gray or grayish and unclear hues can be obtained.In order to obtain a clear hue, it is necessary to add more pigment. In this case, the concentration of the conductive filler in the solid content is relatively reduced, resulting in an extremely low conductivity. Furthermore, when carbon fiber is used, it is possible to color it arbitrarily if the conductivity is low, that is, there are few carbon fibers and the conductivity is low, but if the conductivity is good, the amount of carbon fiber added increases and the color becomes gray. In reality, only a shaky and indistinct colored coating film could be obtained. Therefore, the inventor of the present invention conducted extensive research to obtain a paint film that has good conductivity and can be colored arbitrarily, and found that a paint film containing carbon fibers has extremely high conductivity in the thickness direction compared to the surface conductivity. The present invention has been developed based on the discovery that this can improve That is, the present invention
A conductive layer having a volume resistivity of 10 8 Ωcm or less is provided on a non-conductive base material, and the conductive layer contains carbon fibers, pigments, and resins and has a volume resistivity lower than that of the conductive layer.
This invention relates to an article having an optionally colored conductive surface with a coating greater than or equal to 10 Ωcm. Non-conductive substrates used in the present invention include various plastics, paper, woven fabrics, non-woven fabrics, wood, glass,
It also includes materials that are not conductive per se, such as gypsum board, and those coated with non-conductive plastic or paint. The conductive layer according to the present invention has a volume resistivity of 10 8 Ω.
cm or less, and may be a coating layer or an adhesive layer containing a conductive filler, a vapor-deposited layer or a plating layer of metal, metal oxide, etc. Examples of the conductive filler include carbon black, carbon fibers, graphite, metal powder, metal fibers or flakes, metal-coated glass fibers or glass beads. The coating film used as the upper layer of the present invention has a volume resistivity value that is 10 Ωcm or more larger than that of the conductive layer,
The coating thickness is 10-200μ, preferably 10-100μ
It is. The paint for forming the coating film on the conductive layer contains carbon fiber, pigment, and resin as essential components, but if necessary, plasticizers, additives,
Solvents etc. can be added. The resins used in the above paint include thermoplastic acrylic resin, linear polyurethane resin, linear polyester resin, nitrified cotton, cellulose acetate, chlorinated polyolefin resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride-vinyl acetate. Thermoplastic resins such as copolymers, water-soluble resins that dry at room temperature, emulsion resins that dry at room temperature, thermosetting acrylic resins, thermosetting alkyd resins, epoxy resins,
These include thermosetting resins such as phenolic resin, polyamide resin, two-component polyurethane resin, unsaturated polyester resin, and melamine resin, and electron beam curing type and ultraviolet curing type resins can also be used. These resins can be used singly or in a suitable combination of two or more depending on the adhesion to the conductive layer and the heat resistance of the base material. The carbon fibers preferably have a common single yarn diameter of 5 to 25 μm and a fiber length of 3 mm or less, preferably 0.7 mm or less.
If the length is 3 mm or more, it is difficult to disperse, and 0.7
mm or less is preferable in terms of coatability (spray, roll coater, etc.). Spray coating for objects between 0.7 mm and 3 mm may cause problems such as clogging, but
Can be applied by brushing, troweling, etc. All pigments normally used for paints can be used, but transparent pigments will show through and the blackness of the carbon fiber will appear and become unclear, so if used in combination with pigments with hiding power such as titanium oxide or Bengara. good. It is also possible to use a coloring agent in which a pigment is dispersed in a predetermined resin in advance. The amount of pigment blended is determined so that the weight ratio to carbon fiber is in the range of 20/80 to 90/10. It goes without saying that a larger amount of pigment is preferable from the viewpoint of coloring power, but excessive use is not preferable since it may lead to instability of the conductivity or impair the physical properties of the coating film. The volume resistivity value of the coating film of the present invention is 10 Ωcm or more larger than that of the conductive layer, and preferably 10 2 Ωcm or more larger in consideration of colorability. However, a coating film having an excessively large volume resistivity value is not preferable because even if the conductive layer itself has sufficient conductivity, sufficient conductivity to ensure antistatic performance cannot be obtained. In the present invention, various methods such as spraying, brushing, troweling, roll coater, dipping, flow coater, etc. can be used to form a coating film on the conductive layer. Create a coating film with
A method of pasting or transferring this onto the conductive layer may also be used. The conductive coating film of the present invention is characterized in that the coating film itself does not necessarily have sufficient electrical conductivity, and sufficient electrical conductivity occurs only when it is formed on a conductive layer. For example, according to Table 1, which measured the resistance value of only a coating film made of resin mixed with carbon fiber in terms of surface resistance value and thickness direction, it is found that the surface resistance value and thickness method vary depending on the amount of carbon fiber blended in a coating film of the same thickness. Different trends in resistance are observed. In other words, as the amount of carbon fiber blended decreases, the surface resistance value increases, but there is almost no effect on the resistance value in the thickness direction, and when the amount of carbon fiber blended is small, the conductivity clearly changes gender is recognized.

【表】 この事実は塗膜中の炭素繊維のうち厚み方向に
分布するものが炭素繊維の配合量が少ない場合に
おける厚み方向の導電性に寄与していることを示
している。これは炭素繊維の長さが塗膜厚と同程
度から数分の1、場合によつては塗膜厚より大き
いためと考えられる。 したがつて本発明の塗膜においては電気の流れ
は塗膜の表面層に生ずるのではなく、主に塗膜と
導電層の間に生ずる。 本発明によれば必要とされる導電性のレベルは
導電層と上層である塗膜自体の体積固有抵抗値を
適当にコントロールする事により達成される。す
なわち100Ωcmの体積固有抵抗値を目的とする場
合には例えば導電層を100Ωcmとし、上層を101Ω
cm以上とすれば良く、上層が103Ωcmでも100Ωcm
の体積固有抵抗値のものが得られる。 本発明により形成された物品は、静電気を防止
しなければならない床や壁用、精密機器組みたて
工場の作業台、EMIをシールドしたいコンピユ
ータや家電製品、その他導電性を必要とするとこ
ろに使用する事ができる。 目的とされる導電性のレベルは、帯電防止用と
しては体積固有抵抗値で105〜108Ωcm、高圧ケー
ブル被覆材用等の導電性材料として101〜104Ω
cm、EMIシールド用としては101Ωcm以下のもの
が必要とされる。 以下、本発明を実施例でさらに詳しく説明す
る。例中「部」、「%」は重量部、重量%を示す。 実施例 1 ABS樹脂板に、下層として下記のように配合
された塗料をシンナーで希釈後、乾燥膜厚45μに
なるようにスプレー塗装した。 熱可塑性アクリル樹脂(不揮発分40%、主成
分:平均分子量約6万のポリメチルメタクリレ
ート) 100部 ブチルベンジルフタレート 10部 ニツケル粉末(平均粒子径4μ) 90部 5分間セツテイングした後、この下層上に上層
として、下記のように配合された塗料をシンナー
で希釈後、乾燥膜厚30μになるようにスプレー塗
装した。 熱可塑性アクリル樹脂(不揮発分40%、主成
分:平均分子量約6万のポリメチルメタクリレ
ート) 39部 ブチルベンジルフタレート 4部 炭素繊維(単糸径14.5μ、繊維長0.7mm) 19部 グリーンペースト(フタロシアニングリーン9
部、CAB樹脂18部、ブチルベンジルフタレー
ト3部、溶剤70部よりなるもの) 17部 ホワイトペースト(チタンホワイト37部、
CAB樹脂10部、ブチルベンジルフタレート3
部、溶剤50部よりなるもの) 21部 こうして得られた乾燥塗膜の体積固有抵抗値を
電極の一方を上層に他方を下層に接触させて測定
したところ7×10-3Ωcmであり、色相はあざやか
な若草色であつてL、a、b系による色差として
測定したところL=55.8、a=−32.46、b=8.34
であつた。この塗装された板のEMIシールド効
果は20〜50dBあり効果としては充分なものであ
つた。なお上層のみ、下層のみの体積固有抵抗値
はそれぞれ1×100Ωcm、2×10-3Ωcmであつた。 比較例 1 実施例1で下層用に配合した塗料100部にさら
にグリーンペースト65部、ホワイトペースト83
部、ニツケル粉末109部(いずれも実施例1で使
用したものと同じものを使用)を混合、分散し塗
料固形分中のニツケル含有量が64%の塗料を得
た。 この塗料をABS板にスプレー塗装し乾燥塗膜
70μの塗膜を得た。この塗膜の体積固有抵抗値を
2つの電極を塗膜の両表面に接触させて測定した
ところ1.5×10-3Ωcmであつた。また色相は灰色
に近い不鮮明なグリーンであり、L=15.6、a=
−9.85、b=1.05で実施例1の塗膜に対しΔE=
46.7であつた。 比較例 2 実施例1で上層用に配合した塗料100部にさら
に実施例1で使用した炭素繊維34部を混合、分散
し、ABS板にスプレー塗装し乾燥塗膜70μの塗膜
を得た。この塗膜の体積固有抵抗値を比較例1と
同様の方法で測定したところ1.2×10-2Ωcmであ
つたが色相は灰色がかつた不鮮明なグリーンであ
り、L=25.9、a=11.52、b=1.56で実施例1の
塗膜に対しΔE=37.1であつた。 比較例 3 実施例1で下層用に配合した塗料100部にさら
にグリーンペースト38部、ホワイトペースト50部
(いずれも実施例1で使用したものと同じものを
使用)を混合、分散しABS板にスプレー塗装し
乾燥膜厚70μの塗膜を得た。この塗膜の色相は少
しにごつたグリーンであり、L=30.6、a=−
15.64、b=3.66で実施例1の塗膜に対しΔE=
30.7であつたが比較例1と同様の方法で測定した
体積固有抵抗値は3×104Ωcmとなつてしまつた。 実施例 2 ABS樹脂板にクロムを厚さ10μに真空蒸着し、
導電化処理ABS板を得た。つぎにこのクロム蒸
着面に単糸径10μ、繊維長0.2mmの炭素繊維20部、
弁柄10部をヒタロイド3008(日立化成(株)製、不揮
発成分50%)100部を混合分散させたもの89部に
イソシアネート系硬化剤スミジユールN−75(住
友バイエルウレタン(株)製、不揮発分75%)15部を
混合し、乾燥膜厚が35μになるようにスプレー塗
装し、80℃30分間焼付けた。室温1晩放置後の塗
装板の体積固有抵抗値は1×10-3であつた。なお
塗膜のみの体積固有抵抗値は7×105Ωcmであつ
た。 実施例 3 離型紙上に上層として線状ポリウレタン樹脂
(不揮発分25%)200部、チタンホワイト15部、フ
タロシアニンブルー0.1部、シンカシヤレツド
Y0.3部、単糸径12μ、繊維長0.1mmの炭素繊維16部
を混合、分散した後、バーコーターにて塗布し指
触乾燥後、接着剤層としての下層に分子量約9万
のポリアクリル酸アルキルエステル(不揮発分30
%)100部、グラフアイト2部、上記と同じ炭素
繊維10部を混合し、塗布した後、100℃3分乾燥
後、離型紙をはがし塗膜を木の板に貼りつけた。
このものの体積固有抵抗値は8×106Ωcmであつ
た。なお単独の上層および下層の体積固有抵抗値
はそれぞれ4×109Ωcm、6×106Ωcmであつた。
また色相はきれいな薄紫色であつた。この物品
は静電気防止用の壁材として使用できた。
[Table] This fact indicates that among the carbon fibers in the coating film, those distributed in the thickness direction contribute to the conductivity in the thickness direction when the amount of carbon fiber blended is small. This is thought to be because the length of the carbon fibers is about the same as or a fraction of the thickness of the coating film, and in some cases is longer than the thickness of the coating film. Therefore, in the coating film of the present invention, the flow of electricity does not occur in the surface layer of the coating film, but occurs mainly between the coating film and the conductive layer. According to the present invention, the required level of conductivity is achieved by appropriately controlling the volume resistivity of the conductive layer and the overlying coating itself. In other words, when aiming for a volume resistivity of 10 0 Ωcm, for example, the conductive layer should be 10 0 Ωcm, and the upper layer should be 10 1 Ω.
cm or more, even if the upper layer is 10 3 Ωcm, it is 10 0 Ωcm
A volume resistivity value of is obtained. Articles formed according to the present invention can be used for floors and walls where static electricity must be prevented, workbenches in precision equipment assembly factories, computers and home appliances that need to be shielded from EMI, and other places where conductivity is required. I can do things. The target conductivity level is 10 5 to 10 8 Ωcm in terms of volume resistivity for antistatic materials, and 10 1 to 10 4 Ω for conductive materials such as high-voltage cable sheathing materials.
cm, 10 1 Ωcm or less is required for EMI shielding. Hereinafter, the present invention will be explained in more detail with reference to Examples. In the examples, "part" and "%" indicate parts by weight and weight %. Example 1 An ABS resin board was spray-painted as a lower layer with a paint formulated as shown below, after diluting it with thinner, to a dry film thickness of 45μ. Thermoplastic acrylic resin (40% non-volatile content, main component: polymethyl methacrylate with an average molecular weight of approximately 60,000) 100 parts Butylbenzyl phthalate 10 parts Nickel powder (average particle size 4μ) 90 parts After setting for 5 minutes, apply on this lower layer. For the upper layer, a paint formulated as shown below was diluted with thinner and then spray-painted to a dry film thickness of 30 μm. Thermoplastic acrylic resin (40% non-volatile content, main component: polymethyl methacrylate with average molecular weight of approximately 60,000) 39 parts butylbenzyl phthalate 4 parts carbon fiber (single fiber diameter 14.5μ, fiber length 0.7mm) 19 parts green paste (phthalocyanine) green 9
18 parts CAB resin, 3 parts butylbenzyl phthalate, 70 parts solvent) 17 parts white paste (37 parts titanium white,
10 parts CAB resin, 3 parts butylbenzyl phthalate
When the volume resistivity of the dried coating film thus obtained was measured by contacting one of the electrodes with the upper layer and the other with the lower layer, it was 7 × 10 -3 Ωcm, and the hue was The color is a bright young grass color, and when measured as a color difference between L, a, and b systems, L = 55.8, a = -32.46, b = 8.34
It was hot. The EMI shielding effect of this painted board was 20 to 50 dB, which was sufficient. The volume resistivity values of only the upper layer and only the lower layer were 1×10 0 Ωcm and 2×10 -3 Ωcm, respectively. Comparative Example 1 In addition to 100 parts of the paint mixed for the lower layer in Example 1, 65 parts of green paste and 83 parts of white paste were added.
109 parts of nickel powder (both of which were the same as those used in Example 1) were mixed and dispersed to obtain a paint having a nickel content of 64% in the solid content of the paint. Spray paint this paint onto an ABS board and dry the film.
A coating film of 70μ was obtained. The volume resistivity value of this coating film was measured by bringing two electrodes into contact with both surfaces of the coating film, and found to be 1.5×10 -3 Ωcm. In addition, the hue is an unclear green close to gray, L = 15.6, a =
-9.85, b=1.05 and ΔE= for the coating of Example 1
It was 46.7. Comparative Example 2 34 parts of the carbon fiber used in Example 1 was further mixed and dispersed in 100 parts of the paint formulated for the upper layer in Example 1, and the mixture was spray-painted on an ABS board to obtain a dry coating film of 70 μm. The volume resistivity value of this coating film was measured in the same manner as in Comparative Example 1 and found to be 1.2×10 -2 Ωcm, but the hue was an indistinct green with a hint of gray; L = 25.9, a = 11.52, b=1.56 and ΔE=37.1 for the coating film of Example 1. Comparative Example 3 100 parts of the paint mixed for the lower layer in Example 1 was further mixed with 38 parts of green paste and 50 parts of white paste (both of which were the same as those used in Example 1), dispersed, and applied to an ABS board. A coating film with a dry film thickness of 70 μm was obtained by spray painting. The hue of this paint film is a slightly rough green, L=30.6, a=-
15.64, b=3.66 and ΔE= for the coating film of Example 1
30.7, but the volume resistivity value measured in the same manner as in Comparative Example 1 was 3×10 4 Ωcm. Example 2 Chromium was vacuum-deposited on an ABS resin plate to a thickness of 10μ,
A conductive treated ABS board was obtained. Next, 20 parts of carbon fiber with a single fiber diameter of 10μ and a fiber length of 0.2mm were placed on this chromium-deposited surface.
10 parts of Bengara mixed and dispersed with 100 parts of Hitaloid 3008 (manufactured by Hitachi Chemical Co., Ltd., non-volatile content 50%) and 89 parts of an isocyanate-based curing agent Sumidyur N-75 (manufactured by Sumitomo Bayer Urethane Co., Ltd., non-volatile content) 75%) were mixed, spray-painted to a dry film thickness of 35μ, and baked at 80°C for 30 minutes. The volume resistivity value of the coated board after being left at room temperature overnight was 1 x 10 -3 . The volume resistivity value of the coating film alone was 7×10 5 Ωcm. Example 3 As an upper layer on release paper, 200 parts of linear polyurethane resin (non-volatile content 25%), 15 parts of titanium white, 0.1 part of phthalocyanine blue, and Shinkasha Red.
After mixing and dispersing 16 parts of carbon fiber with Y0.3 parts, single fiber diameter 12 μ, and fiber length 0.1 mm, apply it with a bar coater and dry to the touch. Acrylic acid alkyl ester (non-volatile content 30
%), 2 parts of graphite, and 10 parts of the same carbon fiber as above were mixed and applied, and after drying at 100°C for 3 minutes, the release paper was removed and the coating film was attached to a wooden board.
The volume resistivity value of this material was 8×10 6 Ωcm. The volume resistivity values of the upper layer and the lower layer alone were 4×10 9 Ωcm and 6×10 6 Ωcm, respectively.
Also, the hue was a beautiful light purple. This article could be used as an anti-static wall material.

Claims (1)

【特許請求の範囲】[Claims] 1 非導電性基材上に、体積固有抵抗値が108Ω
cm以下の導電層を有し、該導電層上に炭素繊維、
顔料および樹脂を含む体積固有抵抗値が該導電層
より10Ωcm以上大きい塗膜を有してなる任意に着
色された導電表面を有する物品。
1 Volume resistivity value is 10 8 Ω on a non-conductive base material
It has a conductive layer of cm or less, and carbon fiber, on the conductive layer,
An article having an arbitrarily colored conductive surface comprising a coating film containing a pigment and a resin and having a volume resistivity 10 Ωcm or more larger than that of the conductive layer.
JP57173294A 1982-10-04 1982-10-04 Article with conductive surface Granted JPS5962141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173294A JPS5962141A (en) 1982-10-04 1982-10-04 Article with conductive surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173294A JPS5962141A (en) 1982-10-04 1982-10-04 Article with conductive surface

Publications (2)

Publication Number Publication Date
JPS5962141A JPS5962141A (en) 1984-04-09
JPH0340448B2 true JPH0340448B2 (en) 1991-06-19

Family

ID=15957772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173294A Granted JPS5962141A (en) 1982-10-04 1982-10-04 Article with conductive surface

Country Status (1)

Country Link
JP (1) JPS5962141A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144367A (en) * 1984-01-05 1985-07-30 Dainichi Seika Kogyo Kk Electrically conductive resin composition
JPS615640U (en) * 1984-06-16 1986-01-14 タキロン株式会社 decorative board
JPS6119884A (en) * 1984-07-05 1986-01-28 Shin Etsu Polymer Co Ltd Antistatic flooring material
JPS61152877A (en) * 1984-12-25 1986-07-11 Toyo Linoleum Mfg Co Ltd:The Antistatic floor covering material
JPS61160489A (en) * 1984-12-30 1986-07-21 Zeon Kasei Kk Electrically conductive floor covering material
JP7404650B2 (en) * 2019-05-08 2023-12-26 Toppanホールディングス株式会社 foam decorative material

Also Published As

Publication number Publication date
JPS5962141A (en) 1984-04-09

Similar Documents

Publication Publication Date Title
US6013203A (en) Coatings for EMI/RFI shielding
US5071593A (en) Conductive agent for electrostatic coating of plastics and electrostatically coated plastic moldings
JPH0340448B2 (en)
EP0890393A3 (en) Method for forming multi-layer coating film
KR20020060252A (en) Antistatic powder coating compositions and their use
CA2052744C (en) Light colored conductive coating and method and composition for application thereof
JPH0195170A (en) Conductive paint
JPS59226416A (en) Article having conductive surface
EP0882747A3 (en) A phosphoric acid group-containing non-aqueous dispersion and a process for the application thereof
JPH10330650A (en) Antistatic coating material and destaticization using the same
CA2001795A1 (en) Electroconductive coating material
JPS60181177A (en) Electrically-conductive coating compound composition, electrically-conductive plastic sheet or plate using it
DE4335364A1 (en) Conductive paint formulation
JPH0218150B2 (en)
JP4466289B2 (en) Transparent conductive fine particle dispersion and coating liquid for forming transparent conductive film
JPH02129265A (en) Conductive resin composition
CN110066503A (en) A kind of antistatic thermosetting plastics and preparation method thereof
JPH08143793A (en) Conductive coating material and manufacture of antistatic layer
JP2645494B2 (en) Composition for paint
JPS59136167A (en) Antistatic painting method
JPS5876266A (en) Conductive primer for electrostatic coating of plastic shape
JPS62179573A (en) Antistatic paint
JPS58167658A (en) Electrically conductive primer composition
JPH05140486A (en) Metallic paint and method for coating therewith
JPS5876265A (en) Conductive primer for coating to polyolefin group resin shape