JPH0218150B2 - - Google Patents

Info

Publication number
JPH0218150B2
JPH0218150B2 JP57173299A JP17329982A JPH0218150B2 JP H0218150 B2 JPH0218150 B2 JP H0218150B2 JP 57173299 A JP57173299 A JP 57173299A JP 17329982 A JP17329982 A JP 17329982A JP H0218150 B2 JPH0218150 B2 JP H0218150B2
Authority
JP
Japan
Prior art keywords
coating film
volume resistivity
base material
ωcm
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57173299A
Other languages
Japanese (ja)
Other versions
JPS5966377A (en
Inventor
Keiji Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP57173299A priority Critical patent/JPS5966377A/en
Publication of JPS5966377A publication Critical patent/JPS5966377A/en
Publication of JPH0218150B2 publication Critical patent/JPH0218150B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は良好な導電性を持ち、さらに任意に着
色された塗膜を形成する方法に関するものであ
る。 従来、カーボンブラツク、グラフアイト、炭素
繊維、金属粉、金属繊維またはフレーク、金属コ
ートガラス繊維またはガラスビーズ等の導電性フ
イラーを塗料用樹脂に配合した導電性塗膜が帯電
防止用、電磁波シールド用等に使用できることは
良く知られている。しかしながら、これらの導電
性フイラーは黒色あるいは灰色に近いものであ
り、たとえ顔料を混合、分散しても灰色あるいは
灰色がかつた不鮮明な色相しか得られず、鮮明な
色相を出すべく顔料をさらに多くした場合には固
形分中の導電性フイラー濃度が相対的に減少する
結果、導電性が極端に低下するという欠点があつ
た。また、炭素繊維を使用した場合、導電性の低
いところ、つまり炭素繊維が少なく導電性が低け
れば任意に色付けも可能であるが、導電性の良い
範囲になると炭素繊維の添加量も多くなり灰色が
かつた不鮮明な着色塗膜しか得られないのが実状
であつた。 そこで本発明者は、導電性が良くかつ、任意に
着色可能な塗膜を得るべく鋭意検討した結果、炭
素繊維を含有する塗膜は表面の導電性に比較して
厚み方向の導電性が非常に良くなることを見出し
本発明に到つたものである。すなわち本発明は、
体積固有抵抗値が108Ωcm以下である基材上に、
炭素繊維、顔料および樹脂を含む塗料を用いて体
積固有抵抗値が該基材の体積固有抵抗値より10Ω
cm以上大きい塗膜を施してなる任意に着色された
導電塗膜形成方法に関する。 本発明における基材としては、金属板、金属箔
などの金属材料の他、従来公知の導電性フイラー
をプラスチツク中に練り込み分散させ体積固有抵
抗値を108Ωcm以下としたものがある。体積固有
抵抗値が108Ωcmより大きい基材を用いると、こ
の基材上に炭素繊維を含む着色塗膜を施した場合
この塗膜の体積固有抵抗値が比較的大きい範囲で
は実用上充分な導電性が得られず、逆に体積固有
抵抗値が小さい範囲では着色が充分でない。 上記導電性フイラーとしては、例えばカーボン
ブラツク、炭素繊維、グラフアイト、金属粉、金
属繊維またはフレーク、金属被覆ガラス繊維また
はガラスビーズなどがある。 上記プラスチツクスとしては、ポリエチレン、
ポリプロピレン、スチレン、ブタジエンゴム、エ
チレン一酢酸ビニル共重合体、ポリ塩化ビニル、
ポリスチレン、ABS、アクリロニトリルースチ
レン共重合体、アクリル系樹脂、ポリカーボネー
ト、ポリアミド、ポリエステル、ポリフエニレン
オキシド、ポリフエニレンサルフイド、ポリフエ
ニレンエーテルなどの熱可塑性プラスチツク、フ
エノール樹脂、ユリア、メラミン樹脂、不飽和ポ
リエステル、エポキシ樹脂、ポリウレタン樹脂な
どの熱硬化性プラスチツクスなどがある。 基材上に設ける塗膜は、体積固有抵抗値が基材
の体積固有抵抗値より10Ωcm以上、好ましくは
102Ωcm以上大きくなるように形成するものであ
つて、このような塗膜は任意の着色が可能とな
る。塗膜厚さとしては10〜200μ、好ましくは10
〜100μである。 基材上に設ける塗膜を形成するための塗料は、
炭素繊維、顔料および樹脂を必須の成分とするも
のであるが、必要に応じて可塑剤、添加剤、溶剤
等を加えることができる。 上記塗料に使用される樹脂としては、熱可塑性
アクリル樹脂、線状ポリウレタン樹脂、線状ポリ
エステル樹脂、硝化綿、酢酸酪酸セルロース、塩
素化ポリオレフイン系樹脂、塩化ビニル樹脂、酢
酸ビニル樹脂、塩化ビニル一酢酸ビニル共重合
体、常温乾燥型水溶性樹脂、常温乾燥型エマルジ
ヨン樹脂などの熱可塑性樹脂、あるいは熱硬化型
アクリル樹脂、熱硬化型アルキド樹脂、エポキシ
樹脂、フエノール樹脂、ポリアミド樹脂、2液型
ポリウレタン樹脂、不飽和ポリエステル樹脂、メ
ラミン樹脂などの熱硬化型樹脂などであり、電子
線硬化型、紫外線硬化型の樹脂も同様に使用でき
る。これらの樹脂は基材との付着性、基材の耐熱
性により1種あるいは2種以上適宜組み合せて使
用することができる。 炭素繊維としては一般的な単経5〜25μ、繊維
長3mm以下好ましくは0.7mm以下のものが良い。
長さが3mm以上になると、分散困難であり、0.7
mm以下であれば塗工性(スプレー、ロールコータ
ー等)において好ましい。0.7mm以上3mm以下の
ものはスプレー塗工は目づまり等問題があるが、
はけ塗り、こて塗り等で塗布できる。 顔料は通常塗料用としての顔料すべてが使用可
能であるが、透明性の顔料は透けて炭素繊維の黒
さが出て不鮮明となるの酸化チタンや弁柄等の隠
ぺい力のある顔料と併用すると良い。またあらか
じめ所定の樹脂に顔料を分散させた着色剤を用い
る事も出来る。 顔料の配合量としては炭素繊維に対する重量比
が20/80〜90/10の範囲になるように決められ
る。顔料の配合量は多いほど着色力の点において
好ましいことは勿論であるが、過度の使用は導電
性の不安定化を招いたり塗膜物性に支障が生ずる
ので好ましくない。 本発明の塗膜の体積固有抵抗値は基材のそれの
値より10Ωcm以上大きいものであり、着色性を考
慮すれば102Ωcm以上大きくすることが好ましい。
しかしながらあまり大きな体積固有抵抗値を有す
る塗膜は、基材がそれ自体充分な導電性を有して
いたとしても帯電防止能力を確保するのに充分な
導電性は得られず好ましくない。 本発明において基材上に塗膜を形成させる方法
としてはスプレー、はけ塗り、こて塗り、ロール
コーター、デイツピング、フローコーター等種々
のものを用いる事ができるが、あらかじめ離型紙
にロールコーター等で塗膜を作成しておき、これ
を基材に貼りつけるか転写させる方法でも良く、
また、シリコン型や金型にエアースプレー等で塗
膜を塗装しておき、これに導電フイラーを混入し
た樹脂を注入成型する方法でも良い。 本発明の導電塗膜は、塗膜それ自体では必ずし
も充分な導電性は有しておらず、導電性の良好な
基材上に形成された場合のみ、充分な導電性が生
ずるという特徴がある。例えば樹脂に炭素繊維を
配合した塗膜のみの抵抗値を表面抵抗値と厚み方
向について測定した表−1によれば、同じ膜厚の
塗膜において炭素繊維の配合量により表面抵抗値
と厚み方向の抵抗値には相異なつた傾向が認めら
れる。すなわち炭素繊維の配合量が少なくなるに
したがい、表面抵抗値は大きくなつていくが、厚
み方向の抵抗値にはほとんど影響がなく、炭素繊
維の配合量が少ない場合においては導電性に明ら
かな方向性がある。
The present invention relates to a method for forming coatings that have good electrical conductivity and are optionally colored. Conventionally, conductive coatings made by blending conductive fillers such as carbon black, graphite, carbon fiber, metal powder, metal fibers or flakes, metal-coated glass fibers or glass beads with paint resin have been used for antistatic purposes and electromagnetic shielding. It is well known that it can be used for However, these conductive fillers are black or close to gray, and even if pigments are mixed and dispersed, only gray or grayish and unclear hues can be obtained.In order to obtain a clear hue, it is necessary to add more pigment. In this case, the concentration of the conductive filler in the solid content is relatively reduced, resulting in an extremely low conductivity. Furthermore, when carbon fiber is used, it is possible to color it arbitrarily if the conductivity is low, that is, there are few carbon fibers and the conductivity is low, but if the conductivity is good, the amount of carbon fiber added increases and the color becomes gray. In reality, only a shaky and indistinct colored coating film could be obtained. Therefore, the inventor of the present invention made extensive studies to obtain a paint film that has good conductivity and can be colored arbitrarily, and found that a paint film containing carbon fibers has extremely high conductivity in the thickness direction compared to the surface conductivity. The present invention has been developed based on the discovery that this can improve That is, the present invention
On a base material whose volume resistivity value is 10 8 Ωcm or less,
Using a paint containing carbon fiber, pigment, and resin, the volume resistivity value is 10Ω lower than the volume resistivity value of the base material.
The present invention relates to a method of forming an arbitrarily colored conductive coating film by applying a coating film larger than cm. In addition to metal materials such as metal plates and metal foils, the base material used in the present invention includes plastics with a conventionally known conductive filler kneaded and dispersed to have a volume resistivity of 10 8 Ωcm or less. When using a base material with a volume resistivity value greater than 10 8 Ωcm, if a colored coating film containing carbon fiber is applied on this base material, the volume resistivity value of this coating film is relatively large, and the resistance is sufficient for practical use. In a range in which conductivity is not obtained and the volume resistivity value is small, coloration is insufficient. Examples of the conductive filler include carbon black, carbon fibers, graphite, metal powder, metal fibers or flakes, metal-coated glass fibers or glass beads. The above plastics include polyethylene,
Polypropylene, styrene, butadiene rubber, ethylene monovinyl acetate copolymer, polyvinyl chloride,
Thermoplastics such as polystyrene, ABS, acrylonitrile-styrene copolymer, acrylic resin, polycarbonate, polyamide, polyester, polyphenylene oxide, polyphenylene sulfide, polyphenylene ether, phenolic resin, urea, melamine resin, Examples include thermosetting plastics such as unsaturated polyester, epoxy resin, and polyurethane resin. The coating film provided on the base material has a volume resistivity value of 10 Ωcm or more, preferably more than the volume resistivity value of the base material.
The coating film is formed to have a diameter of 10 2 Ωcm or more, and can be colored in any desired color. The coating thickness is 10 to 200μ, preferably 10
~100μ. The paint for forming the coating film on the base material is
Carbon fibers, pigments, and resins are essential components, but plasticizers, additives, solvents, etc. can be added as necessary. The resins used in the above paint include thermoplastic acrylic resin, linear polyurethane resin, linear polyester resin, nitrified cotton, cellulose acetate butyrate, chlorinated polyolefin resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride monoacetic acid resin. Thermoplastic resins such as vinyl copolymers, water-soluble resins that dry at room temperature, emulsion resins that dry at room temperature, or thermosetting acrylic resins, thermosetting alkyd resins, epoxy resins, phenolic resins, polyamide resins, and two-component polyurethane resins. , unsaturated polyester resin, melamine resin, and other thermosetting resins, and electron beam curing and ultraviolet curing resins can also be used. These resins may be used alone or in combination of two or more depending on the adhesion to the base material and the heat resistance of the base material. The carbon fibers are generally used with a single diameter of 5 to 25 μm and a fiber length of 3 mm or less, preferably 0.7 mm or less.
If the length is 3 mm or more, it is difficult to disperse, and 0.7
mm or less is preferable in terms of coatability (spray, roll coater, etc.). Spray coating for objects between 0.7 mm and 3 mm may cause problems such as clogging, but
Can be applied by brushing, troweling, etc. All pigments normally used for paints can be used, but transparent pigments will show through and the blackness of the carbon fiber will appear and become unclear, but if used in combination with pigments with hiding power such as titanium oxide or Bengara, good. It is also possible to use a coloring agent in which a pigment is dispersed in a predetermined resin in advance. The amount of pigment blended is determined so that the weight ratio to carbon fiber is in the range of 20/80 to 90/10. It goes without saying that a larger amount of pigment is preferable in terms of coloring power, but excessive use is not preferable since it may lead to instability of the conductivity or to problems in the physical properties of the coating film. The volume resistivity value of the coating film of the present invention is 10 Ωcm or more larger than that of the base material, and preferably 10 2 Ωcm or more larger in consideration of colorability.
However, a coating film having too large a volume resistivity value is not preferable because even if the base material itself has sufficient conductivity, sufficient conductivity cannot be obtained to ensure antistatic ability. In the present invention, various methods such as spraying, brushing, troweling, roll coater, dipping, flow coater, etc. can be used to form a coating film on the substrate. You can also create a coating film and paste or transfer it to the base material.
Alternatively, a coating film may be applied to a silicon mold or metal mold by air spraying or the like, and a resin mixed with a conductive filler may be injected into the film. The conductive coating film of the present invention is characterized in that the coating film itself does not necessarily have sufficient conductivity, and sufficient conductivity occurs only when it is formed on a base material with good conductivity. . For example, according to Table 1, which measured the resistance value of a coating film made by blending carbon fiber with resin in terms of surface resistance value and thickness direction, it is found that for a coating film of the same thickness, the surface resistance value and thickness direction vary depending on the amount of carbon fiber blended. Different trends are observed in the resistance values. In other words, as the amount of carbon fiber blended decreases, the surface resistance value increases, but there is almost no effect on the resistance value in the thickness direction. There is sex.

【表】 この事実は塗膜中の炭素繊維のうち厚み方向に
分布するものが炭素繊維の配合量が少ない場合に
おける厚み方向の導電性に寄与していることを示
している。これは炭素繊維の長さが塗膜厚と同程
度から数分の1、場合によつては塗膜厚より大き
いためと考えられる。 したがつて本発明の塗膜においては電気の流れ
は塗膜の表面層に生ずるのではなく、主に塗膜と
基材の間に生ずる。 本発明によれば必要とされる導電性のレベルは
基材と塗膜自体の体積固有抵抗値を適当にコント
ロールする事により達成される。すなわち100Ω
cmの体積固有抵抗値を目的とする場合には例えば
基材を100Ωcmとし、塗膜自体を101Ωcmとすれば
良く、上層が103Ωcmでも100Ωcmの体積固有のも
のが得られる。 本発明により形成された塗膜は、静電気を防止
しなければならない床や壁用、精密機器組みたて
工場の作業台、EMIをシールドしたいコンピユ
ータや家電製品、その他導電性を必要とするとこ
ろに使用する事ができる。 目的とされる導電性のレベルは、帯電防止用と
しては体積固有抵抗値で105〜108Ωcm、高圧ケー
ブル被覆材用等の導電性材料として101〜104Ω
cm、EMIシールド用としては101Ωcm以下のもの
が必要とされる。 以下、本発明を実施例でさらに詳しく説明す
る。例中「部」、「%」は重量部、重量%を示す。 実施例 1 基材として導電性カーボンブラツク(ケツチエ
ンブラツクEC、ライオンアクゾ社製)25部、エ
チレン一酢酸ビニル共重合体75部をバンバリミキ
サーにて混練し、射出成型により黒色の成型板を
得た。この基材上に、単糸径10μ、繊維長0.1mmの
炭素繊維35部、酸化鉄顔料マピコエローLLXLO
(チタン工業(株)製)13部をヒタロイド3008(日立化
成(株)製、不揮発成分50%)100部に混合成分散さ
せたもの100部にイソシアネート系硬化剤スミジ
ユールNー75(住友バイエルタレウン(株)製、不揮
発分75%)15部を混合し、シンナーで希釈して乾
燥膜厚が30μになるようにスプレー塗装し、80℃
30分間焼付けたところベージユ色のきれいな塗装
塗膜が得られた。室温で1晩放置後、塗膜表面に
電極の一方を、基材面に他方を接触させて体積固
有抵抗値を測定したことろ5×100Ωcmであつた。
なお基材のみ、および塗膜のみの体積固有抵抗値
はそれぞれ2.5×100Ωcmおよび6×103Ωcmであ
つた。 実施例 2 基材として導電性アセチレンブラツク28部、ス
チレンーブタジエン共重体62部をバンバリーミキ
サーにて混練し、プリス成型を行なつて黒色の成
型品を得た。つぎに線状ポリウレタン樹脂(不揮
発分25%)200部、チタンホワイト15部、フタロ
シアニングリーン3部、単糸径12μ、繊維長0.3mm
の炭素繊維12部を混合、分散し、バーコーターに
て離型紙上に乾燥膜厚さ100μになるように塗布
し、室温で5分セツテイングした後100℃5分間
乾燥を行なつた塗膜を上記基材上に熱圧着し、離
型紙を剥離しきれいなグリーンの導電性ゴム板が
得られた。この着色した成型品の体積固有抵抗値
を実施例1と同様に測定したことろ、6×103Ω
cmであり静電気除去用述として使用することがで
きた。なお基材のみ、塗膜のみの体積固有抵抗値
は、それぞれ1×103Ωcm、6×106Ωcmであつ
た。 実施例3〜6および比較例1〜5 表−2に示す組成の塗料を用いて鉄板(体積固
有抵抗値10-5Ωcm)、ガラス繊維強化不飽和ポリ
エステル樹脂板(FRP)(体積固有抵抗値1012Ω
cm)、および導電性カーボンブラツク、ケツチエ
ンブラツクEC(ライオンアクゾ(株)製)13部、
ABS樹脂GR−1000(電気化学工業(株)製)87部を
バンバリーミキサーにて200℃8分混練し、2本
ロールにてシート状にしペレツト状化した後1.5
オンスインラインスクリユータイプ射出成型機に
て200℃で成型した成型板(体積固有抵抗値1×
102Ωcm)上に乾燥膜厚が40μになるように塗装し
た塗膜の実施例1と同様の方法で測定した体積固
有抵抗値を表−3に示す。
[Table] This fact indicates that among the carbon fibers in the coating film, those distributed in the thickness direction contribute to the conductivity in the thickness direction when the amount of carbon fiber blended is small. This is thought to be because the length of the carbon fibers is about the same as or a fraction of the thickness of the coating film, and in some cases is longer than the thickness of the coating film. Therefore, in the coating film of the present invention, electric current does not occur in the surface layer of the coating film, but occurs mainly between the coating film and the substrate. According to the present invention, the required level of conductivity is achieved by appropriately controlling the volume resistivity of the substrate and the coating itself. i.e. 10 0 Ω
If you are aiming for a volume resistivity of cm, for example, you can set the base material to 10 0 Ωcm and the coating film itself to 10 1 Ωcm, and even if the upper layer is 10 3 Ωcm, you can obtain a volume resistivity of 10 0 Ωcm. It will be done. The coating film formed by the present invention can be used on floors and walls where static electricity must be prevented, workbenches in precision equipment assembly factories, computers and home appliances where EMI shielding is desired, and other places where conductivity is required. I can do that. The target conductivity level is 10 5 to 10 8 Ωcm in terms of volume resistivity for antistatic materials, and 10 1 to 10 4 Ω for conductive materials such as high-voltage cable sheathing materials.
cm, 10 1 Ωcm or less is required for EMI shielding. Hereinafter, the present invention will be explained in more detail with reference to Examples. In the examples, "part" and "%" indicate parts by weight and weight %. Example 1 As a base material, 25 parts of conductive carbon black (Ketsuchen Black EC, manufactured by Lion Akzo) and 75 parts of ethylene monovinyl acetate copolymer were kneaded in a Banbury mixer, and a black molded plate was obtained by injection molding. Ta. On this base material, 35 parts of carbon fiber with a single fiber diameter of 10μ and a fiber length of 0.1mm, the iron oxide pigment Mapico Yellow LLXLO
(manufactured by Titan Kogyo Co., Ltd.) in 100 parts of Hitaloid 3008 (manufactured by Hitachi Chemical Co., Ltd., nonvolatile content 50%) and 100 parts of the isocyanate curing agent Sumidyur N-75 (Sumitomo Bayer Tale). (manufactured by Un Co., Ltd., nonvolatile content 75%) was mixed, diluted with thinner, spray-painted to a dry film thickness of 30μ, and heated at 80°C.
After baking for 30 minutes, a beautiful beige colored paint film was obtained. After standing overnight at room temperature, one electrode was brought into contact with the surface of the coating film and the other with the surface of the base material, and the volume resistivity value was measured and found to be 5×10 0 Ωcm.
The volume resistivity values of the base material alone and the coating film alone were 2.5×10 0 Ωcm and 6×10 3 Ωcm, respectively. Example 2 As a base material, 28 parts of conductive acetylene black and 62 parts of styrene-butadiene copolymer were kneaded in a Banbury mixer and pre-molded to obtain a black molded product. Next, 200 parts of linear polyurethane resin (nonvolatile content 25%), 15 parts of titanium white, 3 parts of phthalocyanine green, single yarn diameter 12 μ, fiber length 0.3 mm.
12 parts of carbon fiber were mixed and dispersed, and coated on release paper with a bar coater to a dry film thickness of 100μ, set at room temperature for 5 minutes, and then dried at 100°C for 5 minutes to form a coating film. A clean green conductive rubber plate was obtained by thermocompression bonding onto the above substrate and by peeling off the release paper. The volume resistivity value of this colored molded product was measured in the same manner as in Example 1, and was found to be 6×10 3 Ω.
cm, and could be used to remove static electricity. The volume resistivity values of only the base material and only the coating film were 1×10 3 Ωcm and 6×10 6 Ωcm, respectively. Examples 3 to 6 and Comparative Examples 1 to 5 Using paints with the compositions shown in Table 2, iron plates (volume resistivity 10 -5 Ωcm), glass fiber-reinforced unsaturated polyester resin plates (FRP) (volume resistivity 10 12 Ω
cm), and 13 parts of conductive carbon black, Ketsuen Black EC (manufactured by Lion Akzo Co., Ltd.),
87 parts of ABS resin GR-1000 (manufactured by Denki Kagaku Kogyo Co., Ltd.) was kneaded in a Banbury mixer at 200℃ for 8 minutes, formed into a sheet using two rolls, and pelletized.
Molded plate molded at 200℃ using an on-line screw type injection molding machine (volume resistivity 1×
Table 3 shows the volume resistivity values measured in the same manner as in Example 1 of the coating film coated on the surface (10 2 Ωcm) with a dry film thickness of 40 μm.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 体積固有抵抗値が108Ωcm以下である基材上
に、炭素繊維、顔料および樹脂を含む塗料を用い
て体積固有抵抗値が該基材の体積固有抵抗値より
10Ωcm以上大きい塗膜を施してなる任意に着色さ
れた導電塗膜形成方法。 2 基材が導電性フイラーを含有せしめたプラス
チツクスである特許請求の範囲第1項記載の導電
塗膜形成方法。
[Claims] 1. A paint containing carbon fiber, pigment, and resin is used on a base material having a volume resistivity of 10 8 Ωcm or less, so that the volume resistivity is less than the volume resistivity of the base material.
A method for forming an arbitrarily colored conductive coating film by applying a coating film larger than 10Ωcm. 2. The method for forming a conductive coating film according to claim 1, wherein the base material is a plastic containing a conductive filler.
JP57173299A 1982-10-04 1982-10-04 Formation of electric conductive coating film Granted JPS5966377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173299A JPS5966377A (en) 1982-10-04 1982-10-04 Formation of electric conductive coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173299A JPS5966377A (en) 1982-10-04 1982-10-04 Formation of electric conductive coating film

Publications (2)

Publication Number Publication Date
JPS5966377A JPS5966377A (en) 1984-04-14
JPH0218150B2 true JPH0218150B2 (en) 1990-04-24

Family

ID=15957866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173299A Granted JPS5966377A (en) 1982-10-04 1982-10-04 Formation of electric conductive coating film

Country Status (1)

Country Link
JP (1) JPS5966377A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144367A (en) * 1984-01-05 1985-07-30 Dainichi Seika Kogyo Kk Electrically conductive resin composition
JPH0346903Y2 (en) * 1988-10-13 1991-10-04

Also Published As

Publication number Publication date
JPS5966377A (en) 1984-04-14

Similar Documents

Publication Publication Date Title
CA1330870C (en) Exothermic conducting paste
US4087394A (en) Aqueous dispersions of perfluoroolefin polymers containing film-forming materials
EP0312688B1 (en) Exothermic conductive coating
US5071593A (en) Conductive agent for electrostatic coating of plastics and electrostatically coated plastic moldings
EP0767009B1 (en) Process for electrostatically coating non-conductive surfaces
EP0647083B1 (en) Medium temperature conductive-resistant articles and method for providing the same
US3104985A (en) Conducting polymer compositions
US4587160A (en) Electrostatically conductive premold coating
CN110591462A (en) Conductive coating and preparation method thereof
US4680139A (en) Electrostatically conductive premold coating
DE3542231A1 (en) ORGANIC POLYMERS WITH ELECTRICAL PROPERTIES
US3830656A (en) Resistor film
US6409815B1 (en) Surface-modified conductive pigment
JPH0218150B2 (en)
CA2052744C (en) Light colored conductive coating and method and composition for application thereof
US4976890A (en) Static dissipative vinyl sheet and film
JPH0340448B2 (en)
CA2001795A1 (en) Electroconductive coating material
CN110066503A (en) A kind of antistatic thermosetting plastics and preparation method thereof
JPS6337142A (en) Production of electrically conductive resin composition
JPS60181177A (en) Electrically-conductive coating compound composition, electrically-conductive plastic sheet or plate using it
US6776928B2 (en) Conductive coating composition
JPS59226416A (en) Article having conductive surface
CN104889039A (en) Powder coating applying process of non-conductor substrate
JPS58167658A (en) Electrically conductive primer composition