JPH03181853A - Cartridge for enzyme immunoassay and measuring method and apparatus using the same - Google Patents

Cartridge for enzyme immunoassay and measuring method and apparatus using the same

Info

Publication number
JPH03181853A
JPH03181853A JP1322886A JP32288689A JPH03181853A JP H03181853 A JPH03181853 A JP H03181853A JP 1322886 A JP1322886 A JP 1322886A JP 32288689 A JP32288689 A JP 32288689A JP H03181853 A JPH03181853 A JP H03181853A
Authority
JP
Japan
Prior art keywords
cup
dilution
tube
cartridge
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1322886A
Other languages
Japanese (ja)
Other versions
JP2731613B2 (en
Inventor
Hideaki Yamada
秀明 山田
Hitoshi Tsuruta
仁志 鶴田
Keiko Matsumoto
桂子 松本
Yukiko Akamatsu
赤松 由紀子
Takuichirou Watanabe
拓一郎 渡辺
Masuo Makino
槙野 増男
Michihiro Nakamura
通宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1322886A priority Critical patent/JP2731613B2/en
Publication of JPH03181853A publication Critical patent/JPH03181853A/en
Application granted granted Critical
Publication of JP2731613B2 publication Critical patent/JP2731613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To automatically perform enzyme immunoassay using a pH electrode by providing a cartridge wherein a dilution cup in which a pipette chip-shaped dilution fine diameter tube is received and a reaction cup are integrally arranged. CONSTITUTION:A specimen and a diluent are injected in a dilution cup 3 to prepare a specimen solution diluted in predetermined dilution magnification. Next, the leading end part of the fine diameter tube 8 for a solid phase received in a reaction cup 4 is immersed in the specimen solution in the dilution cup 3 to perform primary immunoreaction. Subsequently, a dissolving solution is injected in the reaction cup 4 to dissolve the freeze-dried enzyme labelled reagent of the reaction cup 4 and, thereafter, the leading end part of the fine diameter tube 8 after primary immunoreaction is immersed in the enzyme labelled reagent solution to perform secondary immunoreaction. Next, the fine diameter tube 8 after the secondary immunoreaction is washed. The washed fine diameter tube 8 is allowed to cover the responsive part of the pH electrode 65 provided in a measuring cell filled with a substrate solution and the pH change accompanied by the decomposition reaction of the substrate solution between the fine diameter tube 8 and the responsive part of the pH electrode 65 is measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は免疫反応(抗原−抗体反応)を利用して生体試
料(例えば血液、血清、血漿、尿、髄液など)のような
多成分系に微量含まれる特定の物質を測定するのに適し
た酵素免疫測定用カートリッジ、それを用いた測定方法
及び測定装置に関するものである。本発明は以下臨床検
査における微量生体物質の測定について説明するが、薬
学、生物学、動物学、植物学、農学、化学、検査等を取
り扱う広い分野への適用が可能である。
Detailed Description of the Invention (Industrial Application Field) The present invention utilizes immune reactions (antigen-antibody reactions) to analyze multicomponent samples such as biological samples (e.g. blood, serum, plasma, urine, spinal fluid, etc.). The present invention relates to an enzyme immunoassay cartridge suitable for measuring a trace amount of a specific substance contained in a system, a measuring method using the same, and a measuring device. The present invention will be described below regarding the measurement of trace amounts of biological substances in clinical tests, but it can be applied to a wide range of fields including pharmacy, biology, zoology, botany, agriculture, chemistry, testing, etc.

(従来の技術) 生体の生理活性に関与する物質は概して微量であり、し
かも生体に対して非常に重要な役割を演じるものが少な
くない。したがって、このような微量の生理活性物質を
定量的に測定することは医学、生化学等の生物関連分野
にとって重要であり、そのための種々の測定方法が考案
され、実用化されている。なかでも酵素を標識として用
いる酵素免疫測定法が臨床検査分野で広く利用されてい
る。
(Prior Art) Substances that are involved in the physiological activities of living organisms are generally in trace amounts, and many of them play very important roles in living organisms. Therefore, quantitatively measuring such trace amounts of physiologically active substances is important in biology-related fields such as medicine and biochemistry, and various measurement methods for this purpose have been devised and put into practical use. Among them, enzyme immunoassay using an enzyme as a label is widely used in the field of clinical testing.

かかる測定法では、まず測定対象物質である抗原(また
は抗体)と特異的に結合し得る抗体(または抗原)を固
定化した固相を試料溶液と酵素で標識された第2抗体(
または抗原)と同時、または逐次的に接触させて免疫反
応を行なわせた後、洗浄し、しかる後に該固相上に残存
している酵素標識体の活性を測定することによって試料
溶液中の抗原(または抗体)の量を測定するものである
In this measurement method, first, a solid phase on which an antibody (or antigen) that can specifically bind to the antigen (or antibody) that is the substance to be measured is immobilized is mixed with a sample solution and a second antibody (or antigen) labeled with an enzyme.
The antigen in the sample solution is determined by contacting the solid phase simultaneously or sequentially with the solid phase to cause an immune reaction, washing, and then measuring the activity of the enzyme label remaining on the solid phase. (or antibodies).

かかる測定方法の代表例として不均一法EIA、いわゆ
るEnzyme Linked 1m1uno 5or
bent As5ay(ELISA)が知られている。
A typical example of such a measurement method is a non-uniform EIA, so-called Enzyme Linked 1ml uno 5or
bent As5ay (ELISA) is known.

ELISAにおいては、試料溶液中の測定対象物質を捕
捉するために、測定対象抗原(または抗体)と特異的に
結合する抗体(または抗原)を固定した固相として試験
管、マイクロプレート等が用いられる。それに加えて測
定対象が抗原の場合、サンドイツチ法EL I SAに
おいては該抗原に結合し得る第2抗体に酵素を標識した
酵素標識第2抗体が、また競合法EL I SAにおい
ては測定対象抗原と同一の抗原に酵素を標識した酵素標
識抗原が用いられる。
In ELISA, a test tube, microplate, etc. is used as a solid phase on which an antibody (or antigen) that specifically binds to the antigen (or antibody) to be measured is immobilized to capture the substance to be measured in the sample solution. . In addition, when the target to be measured is an antigen, an enzyme-labeled second antibody, which is an enzyme-labeled second antibody capable of binding to the antigen, is used in the Sand-Germany EL ISA, and an enzyme-labeled second antibody is used as the antigen to be measured in the competitive EL ISA. An enzyme-labeled antigen is used, which is the same antigen labeled with an enzyme.

上記標識として用いられる酵素に対する基質溶液と、そ
してさらに必要ならば発色試薬を固相と接触させる。す
ると基質溶液の分解反応に伴ない基質溶液の光学的性質
が変化するので、その変化を観察する。
A substrate solution for the enzyme used as the label and, if necessary, a coloring reagent are brought into contact with the solid phase. Then, the optical properties of the substrate solution change due to the decomposition reaction of the substrate solution, and this change is observed.

基質溶液の光学的性質の変化を観察するには、従来から
いくつかの方法が知られている。そのうち機器を用いる
方法としては、吸光光度計、蛍光光度計、化学発光光度
計などで基質溶液の光学的性質の変化を測定するもので
ある(例えば、石川、回合、宮井、酵素免疫測定法、医
学書院(1982)参照)。
Several methods are conventionally known for observing changes in the optical properties of substrate solutions. Instrumental methods include those that measure changes in the optical properties of substrate solutions using spectrophotometers, fluorometers, chemiluminescence photometers, etc. (for example, Ishikawa, Kaigo, Miyai, enzyme immunoassay; (See Igakushoin (1982)).

また、他の方法として基質溶液と対照基質溶液を対比さ
せて基質溶液の色の違いを肉眼で観察して抗原(または
抗体)の存在を判定するものがある(例えば特開昭60
−1.28369号参照)。
In addition, as another method, there is a method in which the presence of an antigen (or antibody) is determined by comparing a substrate solution and a control substrate solution and observing the difference in color of the substrate solution with the naked eye (for example, in
-1.28369).

しかしながら機器を用いたこれらの光学的測定法は安定
な光源、高感度の光度計、精密な光学系増幅回路等を要
するために、高価で、大型の複雑な装置にならざるを得
なかった。また測定するに当り、特殊な技術を必要とす
るため取扱いのための専門の技術者を配置しなければな
らなかった。
However, these optical measurement methods using instruments require a stable light source, a highly sensitive photometer, a precise optical amplifier circuit, etc., and therefore have to be expensive, large, and complicated devices. Furthermore, since measurement requires special techniques, a specialist engineer must be assigned to handle the measurement.

一方肉眼で直接観察する方法は、定性的な測定方法であ
り、色の変化のバラツキや観察者の主観が入るので判定
に個人差が生じやすい。さらに、極く微量の物質の測定
の場合には色の変化が少なく判定が困難であった。
On the other hand, the method of direct observation with the naked eye is a qualitative measurement method, and because it involves variations in color change and the subjectivity of the observer, individual differences in judgment are likely to occur. Furthermore, when measuring a very small amount of a substance, there is little change in color, making it difficult to judge.

本発明者らは、かかる従来の1jll+定方法のもつ欠
点を改良し、観察者の主観による判定基準の曖昧さを除
去して、基質溶液の分解反応を客観的に、しかも高い検
出精度で測定する方法として基質溶液のpH変化をpH
電極で測定する方法を特開平1−212347号に提案
した。
The present inventors have improved the shortcomings of the conventional 1jll + constant method, removed the ambiguity of the judgment criteria based on the subjectivity of the observer, and measured the decomposition reaction of a substrate solution objectively and with high detection accuracy. One way to do this is to change the pH of the substrate solution.
A method of measuring with electrodes was proposed in JP-A No. 1-212347.

(発明が解決しようとする課題) かかる測定方法においては、通常pH11極としてpH
感応性電界効果トランジスタ(pH−FET)、固相と
してピペットチップ形状の細径管の先端部内壁、標識酵
素としてウレアーゼ、また基質として尿素が用いられる
(Problem to be Solved by the Invention) In such a measurement method, the pH is usually set to 11.
A sensitive field effect transistor (pH-FET) is used, the inner wall of the tip of a pipette tip-shaped narrow tube is used as the solid phase, urease is used as the labeling enzyme, and urea is used as the substrate.

pH電極を用いる酵素免疫測定法は、(1)pH電極が
従来の光学的測定系に比べて構造がきわめて簡単である
。(2)固相としてピペットチップ形状の細径管を用い
るので試料の希釈から洗浄までのすべての操作を分注手
段で行うことができるなどの利点があるが、上記提案で
はpH電極を利用した実験室規模の酵素免疫測定方法及
び装置を提案したにとどまり、実用的な測定方法及び装
置は未だ提案されていない。
In the enzyme immunoassay method using a pH electrode, (1) the structure of the pH electrode is extremely simple compared to a conventional optical measurement system. (2) Since a small-diameter tube in the shape of a pipette tip is used as the solid phase, there is an advantage that all operations from diluting the sample to washing can be performed with a dispensing means.However, in the above proposal, a pH electrode was used. Only a laboratory-scale enzyme immunoassay method and device have been proposed, and no practical measurement method and device have been proposed yet.

したがって本発明の目的はpH3[!極を用いて酵素免
疫測定を自動的に行う実用的な方法及び装置を提供する
ことである。
Therefore, the object of the present invention is pH3 [! It is an object of the present invention to provide a practical method and apparatus for automatically performing enzyme immunoassay using electrodes.

さらに上記測定方法及び装置を用いると各種感染症の抗
原や抗体、各種ホルモン、各種ガンマーカ、各種薬物等
多数を測定することができる。しかも一般に酵素免疫測
定法においては、固相、酵素標識体、基質、希釈用緩衝
液(以下希釈液と略記する)、洗浄用緩衝液(以下洗浄
液と略記する)等多くの試薬が用いられる。これらの試
薬のうちいくつかは測定項目毎に異なるために、従来は
これらの試薬は一つのキットとしてまとめた形態で販売
されてきた。すなわちユーザは測定項目が変わるごとに
専用のキットを取りだし、所定の手順で測定を行うこと
になる。一般的にキットのサイズは数十ないし散百検体
分であり、数十ないし数百程度の検体をまとめて1項目
測定するには適しているが、任意の測定項目を任意の順
序で測定するには不適当てあった。
Furthermore, by using the above measuring method and apparatus, it is possible to measure a large number of antigens and antibodies of various infectious diseases, various hormones, various cancer markers, various drugs, and so on. Furthermore, in general, enzyme immunoassay uses many reagents such as a solid phase, an enzyme label, a substrate, a dilution buffer (hereinafter abbreviated as diluent), and a washing buffer (hereinafter abbreviated as washing solution). Since some of these reagents differ depending on the measurement item, these reagents have conventionally been sold in the form of a kit. In other words, each time the measurement item changes, the user takes out a dedicated kit and performs the measurement according to a predetermined procedure. In general, the size of a kit is for tens to hundreds of samples, and it is suitable for measuring one item of tens to hundreds of samples at once, but it is suitable for measuring any measurement item in any order. There was an inappropriate guess.

したがって本発明の他の目的は測定項目l検体分の専用
試薬その他をカートリッジ化することにより、任意の測
定項目を任意の順序で測定することを可能とした酵素免
疫測定用カートリッジを提供することである。
Therefore, another object of the present invention is to provide a cartridge for enzyme immunoassay that makes it possible to measure any measurement item in any order by packaging special reagents and other components for one measurement item into a cartridge. be.

(課題を解決するための手段) 本発明は測定されるべき試料を収容するための試料カッ
プと、ピペットチップ形状の希釈用細径管が収容された
希釈カップ及び反応カップが一体に配列された酵素免疫
測定用のカートリッジであって、該反応カップの底部に
凍結乾燥させた酵素標識試薬が収容され、かつ少くとも
先端部内壁に測定対象物質たる抗原(または抗体)と結
合する抗体(または抗原)が固定されたピペットチップ
形状の固相用細径管が、該反応カップ内にその先端が酵
素標識試薬から離間して収容されるとともに、上記各カ
ップの上端開口がシール片で気密に閉塞されたことを特
徴とする酵素免疫測定用カートリッジである。
(Means for Solving the Problems) The present invention provides a system in which a sample cup for accommodating a sample to be measured, a dilution cup containing a pipette tip-shaped dilution tube, and a reaction cup are arranged integrally. A cartridge for enzyme immunoassay, in which a freeze-dried enzyme labeling reagent is housed in the bottom of the reaction cup, and at least an antibody (or antigen) that binds to the antigen (or antibody), which is the substance to be measured, is contained in the inner wall of the tip. ) to which a pipette tip-shaped small-diameter solid phase tube is fixed is housed in the reaction cup with its tip separated from the enzyme-labeled reagent, and the upper end opening of each cup is hermetically closed with a sealing piece. This is an enzyme immunoassay cartridge characterized by:

また本発明は上記酵素免疫測定用カートリッジを用いた
酵素免疫測定方法であって、 (1)希釈カップ内に収容されたピペットチップ形状の
希釈用細径管で試料カップ内の試料および希釈液を希釈
カップ内に注入し、該希釈カップ内で所定の倍率に希釈
された試料液体を調製する工程。
The present invention also provides an enzyme immunoassay method using the enzyme immunoassay cartridge described above, comprising: (1) diluting the sample and diluent in the sample cup with a pipette tip-shaped thin dilution tube housed in the dilution cup; A step of preparing a sample liquid that is injected into a dilution cup and diluted to a predetermined ratio in the dilution cup.

(2)反応カップ内に収容されたピペットチップ形状の
固相用細径管の先端部を希釈カップ内の試料液体中に浸
漬して1次免疫反応を行わせる工程。
(2) A step of performing a primary immune reaction by immersing the tip of a pipette tip-shaped small-diameter solid phase tube housed in a reaction cup into a sample liquid in a dilution cup.

(3)反応カップ内に溶解溶液を注入して、該反応カッ
プ内の凍結乾燥された酵素標識試薬を溶解させた後、該
溶解させた酵素標識体溶液中に1次免疫反応が終了した
固相用細径管の先端部を浸漬して2次免疫反応を行わせ
る工程。
(3) After injecting the dissolution solution into the reaction cup and dissolving the freeze-dried enzyme labeling reagent in the reaction cup, solids that have undergone the primary immune reaction are added to the dissolved enzyme label solution. A step of immersing the tip of a small-diameter phase tube to perform a secondary immune reaction.

(4)2次免疫反応が終了した固相用細径管を洗浄する
工程。
(4) A step of washing the small-diameter tube for solid phase after the completion of the secondary immune reaction.

(5)洗浄された固相用細径管を基質溶液で満たされた
測定セル内に設けられたpH電極の感応部に被せて、該
細径管とpH電極の感応部間における基質溶液の分解反
応に伴うpH変化を測定する工程。
(5) Place the washed thin tube for solid phase over the sensitive part of the pH electrode installed in the measurement cell filled with the substrate solution, and remove the substrate solution between the thin tube and the sensitive part of the pH electrode. Step of measuring pH change accompanying decomposition reaction.

からなる酵素免疫測定方法である。This is an enzyme immunoassay method consisting of:

さらに本発明は上記酵素免疫測定用カートリッジを用い
た酵素免疫測定装置であって、酵素免疫測定用カートリ
ッジを操作ステーションへ供給する手段と、 該操作ステーションに設けられた、希釈液入口と溢流液
出口を有する希釈液セルと、該希釈液セルへ希釈液を供
給するポンプを備えた希釈ステーションと、洗浄液入口
と溢流液出口を有する洗浄液セルと、該洗浄液セルへ洗
浄液を供給するポンプを備えた洗浄ステーションと、基
質溶液入口と溢流液出口を有し、かつ基質溶液の流通路
にpH電極の感応部を露出させた測定セルと、該測定セ
ルへ基質溶液を供給するポンプを備えた測定ステーショ
ンと、 該操作ステーションに供給されたカートリッジの希釈カ
ップ及び反応カップ内に収容されたピペットチップ形状
の希釈用細径管及び固相用細径管の上端開口に挿嵌され
るピペットヘッドを一端に有し、他端にチューブを介し
てシリンジが接続された分注手段と、 該ピペットヘッドを昇降させる手段と、該昇降手段を水
平方向に往復移動させる手段と、該ピペットヘッドが挿
嵌された細径管の上端を押し下げて細径管を脱離させる
手段 とを備えた酵素免疫測定装置である。
Furthermore, the present invention provides an enzyme immunoassay apparatus using the above-mentioned enzyme immunoassay cartridge, comprising means for supplying the enzyme immunoassay cartridge to an operation station, and a diluent inlet and an overflow liquid provided at the operation station. A dilution station having a diluent cell having an outlet, a dilution station having a pump for supplying diluent to the diluent cell, a cleaning fluid cell having a cleaning fluid inlet and an overflow fluid outlet, and a pump for supplying cleaning fluid to the cleaning fluid cell. A measuring cell having a substrate solution inlet and an overflow liquid outlet and exposing a sensitive part of a pH electrode to a substrate solution flow path, and a pump for supplying the substrate solution to the measuring cell. A measurement station, and a pipette head that is inserted into the upper end opening of the pipette tip-shaped dilution tube and solid phase thin tube housed in the dilution cup and reaction cup of the cartridge supplied to the operation station. a dispensing means having one end and a syringe connected to the other end via a tube; a means for raising and lowering the pipette head; a means for reciprocating the raising and lowering means in a horizontal direction; This enzyme immunoassay device is equipped with a means for pushing down the upper end of the small diameter tube to detach the small diameter tube.

(実施例) 本発明の酵素免疫測定用カートリッジの一例を図面にて
説明する。第1図はカートリッジの斜視図であり、第2
図は断面図である。該カートリッジ(1)は試料カップ
(2)、希釈カップ(3)及び反応カップ(4)で構成
され、希釈カップ(3)及び反応カップ(4)内にはそ
れぞれピペットチップ形状の希釈用細径管(7)及び固
相用細径管(8)か収容されている。またカートリッジ
の側壁(5)には測定項目を表示するバーコードラベル
(9)が貼着されている。さらに上記各カップ(2)、
(3)、(4)の上端開口にはソール片(10)が貼着
されて、各カップを気密に閉塞している。第2図に示す
ように反応カップ(4)の底部には凍結乾燥された標識
抗体(または標識抗原)(6)が収納されている。また
反応カップ内に収容された固相用細径管(8)の先端部
内壁(It)には抗体(または抗原)が固定化されてい
る。
(Example) An example of the enzyme immunoassay cartridge of the present invention will be explained with reference to the drawings. Figure 1 is a perspective view of the cartridge;
The figure is a sectional view. The cartridge (1) is composed of a sample cup (2), a dilution cup (3), and a reaction cup (4), and each of the dilution cup (3) and reaction cup (4) has a small pipette tip-shaped pipette tip for dilution. A tube (7) and a small diameter tube for solid phase (8) are accommodated. Further, a barcode label (9) for displaying measurement items is affixed to the side wall (5) of the cartridge. Furthermore, each of the above cups (2),
A sole piece (10) is attached to the upper end openings of (3) and (4) to airtightly close each cup. As shown in FIG. 2, a freeze-dried labeled antibody (or labeled antigen) (6) is stored at the bottom of the reaction cup (4). Further, an antibody (or antigen) is immobilized on the inner wall (It) of the tip end of the solid phase thin tube (8) housed in the reaction cup.

本発明のカートリッジは一体成形することが好ましく、
その材質としてはポリプロピレン、ポリスチレン、ポリ
塩化ビニル、ポリテトラフロロエチレン、ポリメチルメ
タクリレート、ポリエチレン、ポリカーボネイト、ポリ
アミド、ポリエステル等、各種のプラスチックが用いら
れろ。3つのカップの上端開口は一枚のシール片(10
)で閉塞することが望ましいので、各カップの上端開口
は同一平面とすることが好ましい。シール片(10)は
特に固相用細径管と凍結乾燥された酵素標識体を乾燥状
態に保存するためのらのであるので、アルミニウムラミ
ネートフィルムのような通気性の低い材料が用いられる
。また希釈用細径管(7)および固相用細径管(8)の
材質はガラス等を使用してもよいが通常上記のカートリ
ッジ成形用に列記した樹脂のいずれかが使用される。
The cartridge of the present invention is preferably integrally molded,
Various plastics such as polypropylene, polystyrene, polyvinyl chloride, polytetrafluoroethylene, polymethyl methacrylate, polyethylene, polycarbonate, polyamide, and polyester may be used as the material. The top openings of the three cups are sealed with one seal piece (10
), the upper end openings of each cup are preferably flush. Since the seal piece (10) is especially used to preserve the small-diameter tube for solid phase and the freeze-dried enzyme label in a dry state, a material with low air permeability such as an aluminum laminate film is used. Although glass or the like may be used as the material for the thin tube for dilution (7) and the thin tube for solid phase (8), usually any of the resins listed above for cartridge molding is used.

試料カップ(2)は試料液体をその中に仕込むためのも
のである。必要な試料液体の容積は通常200μQ以下
であるから、試料カップの内容積としては20〜500
μQが好ましい。希釈カップ(3)はその中て前記の試
料液体を所定の倍率に希釈するためのらのである。この
希釈操作には希釈カップ(3)内に収容されている希釈
用細径管(7)が用いられる。希釈操作に用いられた希
釈用細径管(7)は直ちに廃棄される。希釈用細径管(
7)をこのように使い捨てにすることにより、それを共
用にした時に生じる、いわゆるキャリーオーバーを防ぐ
ことができる。希釈カップ(3)はまたその中で固相用
細径管(8)と希釈試料液体との間の第一次免疫反応を
行うためにも使用される。希釈カップ(3)の内容積と
しては通常0.5〜2.0II(lが好ましい。反応カ
ップ(4)中には固相用細径管(8)と凍結乾燥した酵
素標識体(6)が収納されているが、固相用細径管(8
)は上記のように、まず希釈カップ(3)の中で第一次
免疫反応を行うために使用される。また、溶解溶液、例
えば共通試薬の希釈液または洗浄液を吸引して反応カッ
プに注入して反応カップ(4)中の凍結乾燥標識体(6
)を溶解するためにも使用される。その後絞細径管(8
)の先端部は溶解された標識体溶液中に浸漬されて第二
次免疫反応に供される。反応カップ(4)の内容積は希
釈カップ(3)と同様に05〜2.0m12が好ましい
。溶解前の凍結乾燥酵素標識体(6)は反応カップ(4
)の中に固相用細径管(8)と共に収容されるが、その
時標識体(6)と固相用細径管(8)は絶対に接触して
はならない。
The sample cup (2) is for charging the sample liquid into it. Since the required volume of sample liquid is usually 200 μQ or less, the internal volume of the sample cup should be 20 to 500 μQ.
μQ is preferred. The dilution cup (3) is used to dilute the sample liquid to a predetermined ratio. A thin dilution tube (7) housed within the dilution cup (3) is used for this dilution operation. The thin dilution tube (7) used for the dilution operation is immediately discarded. Small diameter tube for dilution (
By making 7) disposable in this way, it is possible to prevent so-called carryover that occurs when it is shared. The dilution cup (3) is also used to carry out the primary immunoreaction between the solid phase narrow tube (8) and the diluted sample liquid therein. The internal volume of the dilution cup (3) is usually 0.5 to 2.0 II (preferably. is stored, but a small diameter tube for solid phase (8
) is first used to carry out the primary immune reaction in the dilution cup (3) as described above. In addition, a lysis solution, such as a dilution solution of a common reagent or a washing solution, is aspirated and injected into the reaction cup, and the freeze-dried labeled substance (6) in the reaction cup (4) is aspirated.
) is also used to dissolve. After that, the narrow diameter tube (8
) is immersed in a dissolved label solution and subjected to a second immune reaction. The internal volume of the reaction cup (4) is preferably 0.5 to 2.0 m12 similarly to the dilution cup (3). The freeze-dried enzyme label (6) before dissolution is placed in the reaction cup (4).
) together with the small-diameter tube for solid phase (8), but at that time, the marker (6) and the small-diameter tube for solid phase (8) must never come into contact with each other.

そのために、凍結乾燥標識体(6)は反応カップ(4)
の底部に収納され、固相用細径管(8)はその上部に離
間して収容される。
For this purpose, the lyophilized label (6) is placed in the reaction cup (4).
The small-diameter solid phase tube (8) is housed in the upper part of the tube at a distance.

しかし、凍結乾燥標識体(6)を少量の溶解溶液、例え
ば希釈液で再溶解した時に標識体溶液中に固相用細径管
の先端部を浸漬する必要があるので、離間させた凍結乾
燥標識体(6)の上面と固相用細径管(8)の先端部の
距離は可能な限り短くすることが望ましい。通常その距
離は0.2〜2mm程度である。このような位置に凍結
乾燥標識体を保持するために第2図で示されるように反
応カップ(4)の底部付近にしぼり部(12)を設ける
ことが好ましい。
However, when the freeze-dried labeled substance (6) is redissolved in a small amount of a dissolution solution, such as a diluent, it is necessary to immerse the tip of the solid phase thin tube in the labeled solution, so freeze-drying at a distance is necessary. It is desirable that the distance between the top surface of the marker (6) and the tip of the small-diameter solid phase tube (8) be as short as possible. Usually, the distance is about 0.2 to 2 mm. In order to hold the freeze-dried label in such a position, it is preferable to provide a constriction part (12) near the bottom of the reaction cup (4) as shown in FIG. 2.

本発明の酵素免疫測定用のカートリッジは測定項目固有
の試薬としての固相用細径管と酵素標識体、および測定
項目を表示するバーコードと一検体の測定を行うに必要
な使い捨て品としての試料カップ、希釈カップ、反応カ
ップ、希釈用細径管を備えている。したがって、使用者
は該カートリッジの試料カップの中に試料液体を入れて
、それを後述する装置に装着するのみで測定が自動的に
行われる。
The cartridge for enzyme immunoassay of the present invention includes a thin tube for solid phase as a reagent specific to the measurement item, an enzyme label, a barcode for displaying the measurement item, and a disposable item necessary for measuring one sample. Equipped with sample cup, dilution cup, reaction cup, and small diameter tube for dilution. Therefore, the user simply puts a sample liquid into the sample cup of the cartridge and attaches it to the apparatus described later, and the measurement is automatically performed.

次に上記酵素免疫測定用カートリッジを使用した酵素免
疫測定装置の一実施例を図面にて説明する。第3図は本
発明装置の正面図、第4図は平面図、第5図は本発明装
置の基本構成を示す概略図である。
Next, an embodiment of an enzyme immunoassay apparatus using the above cartridge for enzyme immunoassay will be described with reference to the drawings. FIG. 3 is a front view of the device of the present invention, FIG. 4 is a plan view, and FIG. 5 is a schematic diagram showing the basic configuration of the device of the present invention.

本発明の酵素免疫測定装置は、上記カートリッジ(1)
を希釈ステーション(B)、洗浄ステー7ョン(C)及
び測定ステーション(D)がこの順序で配列された操作
ステーション(A)へ供給する手段と、該操作ステーシ
ョンにおいて、ピペットチップ形状の希釈用細径管(7
)及び固相用細径管(8)の上端開口に挿嵌されるピペ
ットヘッド(28)を介して細径管内へ肢体を吸引また
は細径管内に吸引された液体を吐出する分注手段(E)
と、該ピペットヘッド(28)を昇降させて細径管を各
カップに挿脱させる昇降手段(F)と、該昇降手段を水
平方向へ往復移動させる往復移動手段(G)と、ピペッ
トヘッドに挿嵌された細径管を脱離させる手段()I)
を備えている。
The enzyme immunoassay device of the present invention includes the above-mentioned cartridge (1).
to an operating station (A) in which a dilution station (B), a washing station (C) and a measuring station (D) are arranged in this order; Small diameter tube (7
) and a pipette head (28) inserted into the upper end opening of the solid phase narrow tube (8) to aspirate the limb into the narrow tube or discharge the liquid sucked into the narrow tube. E)
, an elevating means (F) for elevating the pipette head (28) to insert and remove the small diameter tube into each cup, a reciprocating means (G) for reciprocating the elevating means in the horizontal direction, and a reciprocating means (G) for reciprocating the elevating means in the horizontal direction; Means for detaching the inserted small diameter tube ()I)
It is equipped with

カートリッジ供給手段はカートリッジ(1)を操作ステ
ーション(A)へ供給するもので、通常カートリッジを
円周に沿って移動させるターンテーブル機構やカートリ
ッジを直線的に移動させるコンベア機構等が採用される
。第3図〜第5図ではコンベア機構(31)を使用した
例を示している。また操作ステーション(^)内をカー
トリッジが移動する間に反応カップの中で免疫反応がお
こなわれる。
The cartridge supply means supplies the cartridge (1) to the operation station (A), and usually employs a turntable mechanism that moves the cartridge along the circumference, a conveyor mechanism that moves the cartridge linearly, or the like. 3 to 5 show examples using a conveyor mechanism (31). Also, during the movement of the cartridge within the operating station (^), an immunological reaction takes place in the reaction cup.

免疫反応は室温で行われることもあるが、通常は一定温
度、たとえば37℃で行なわれるため、カートリッツ移
動中にカートリッジを一定温度に保持させることが好ま
しい。そのため第4図に示すようにコンベア(31)を
ヒーティングブロック(29)上に張設したり、またコ
ンベア機構(31)を密閉部材で被覆して、その中に加
温された空気を供給してカートリッジ周囲を37°Cに
保持してもよい。
Although the immunoreaction may be performed at room temperature, it is usually performed at a constant temperature, for example 37° C., so it is preferable to maintain the cartridge at a constant temperature during cartridge transport. Therefore, as shown in Figure 4, the conveyor (31) is stretched over a heating block (29), or the conveyor mechanism (31) is covered with a sealing member to supply heated air into it. The surrounding area of the cartridge may be maintained at 37°C.

上記コンベア機構には、例えば一定間隔にカートリッジ
把持機構(31)が設けられて1.該把持機構でカート
リッジの両側端が把持され、コンベアの移動により間欠
的または連続的にカートリッジを移動させる。操作ステ
ーション(A)で測定が終了したカートリッジ(1)は
その時点で把持機構(30)が解除されてコンベア機構
(31)の端部に設けられたカートリッジの廃棄容器(
19)に排出される。
The conveyor mechanism is provided with, for example, cartridge gripping mechanisms (31) at regular intervals.1. Both ends of the cartridge are gripped by the gripping mechanism, and the cartridge is moved intermittently or continuously by the movement of the conveyor. At that point, the gripping mechanism (30) of the cartridge (1) whose measurement has been completed at the operation station (A) is released, and the cartridge (1) is placed in a cartridge waste container (
19).

コンベア機構(31)の操作ステーション入口にはカー
トリッジのII+壁に貼着されたバーコードラベル(9
)を読み取るバーコードリーダ(32)が設けられ、操
作ステーションに供給されるカートリッジのバーコード
を読み取る。
At the entrance of the operation station of the conveyor mechanism (31), there is a barcode label (9) attached to the cartridge II + wall.
) is provided to read the barcode of the cartridge supplied to the operating station.

操作ステーション(八)には該ステーションの人口側か
ら順に希釈ステーション(B)と洗浄ステーション(C
)及び測定ステーション(D)が配置されている。
The operation station (8) includes a dilution station (B) and a cleaning station (C) in order from the population side of the station.
) and a measuring station (D) are arranged.

希釈ステーション(B)には上面に設けられた溝の一端
に開口する希釈液人口と他端に開口する溢流液出口を有
する希釈液セル(36)が設けられている。希釈液は容
器(44)からポンプ(40)によって希釈液セル(3
6)に供給され、該セルの上面に設けられた溝から溢流
し、溢流液出口から後述する洗浄液及び基質溶液ととも
にポンプ(41)によって廃液容器(45)に排出され
る。
The dilution station (B) is provided with a diluent cell (36) having a diluent outlet opening at one end of a groove provided on the upper surface and an overflow outlet opening at the other end. The diluent is transferred from the container (44) to the diluent cell (3) by the pump (40).
6), overflows from the groove provided on the top surface of the cell, and is discharged from the overflow outlet to a waste liquid container (45) along with a cleaning liquid and a substrate solution, which will be described later, by a pump (41).

洗浄ステーション(C)には上記希釈液セル(35)と
同一形状の洗浄液セル(35)が設けられている。
The cleaning station (C) is provided with a cleaning liquid cell (35) having the same shape as the diluting liquid cell (35).

洗浄液は洗浄液容器(43)からポンプ(39)によっ
て洗浄液セル(35)に供給され、該セルの上面に設け
られた溝から溢流し、溢流液出口からポンプ(41)に
よって廃液容器(45)に排出される。
The cleaning liquid is supplied from the cleaning liquid container (43) to the cleaning liquid cell (35) by the pump (39), overflows from the groove provided on the top surface of the cell, and is transferred from the overflow liquid outlet to the waste liquid container (45) by the pump (41). is discharged.

試料希釈液および洗浄液を所定温度例えば37°Cで使
用する場合、洗浄液セル(35)および希釈液セル(3
6)を恒温化する必要があるが、その場合にはこれらの
セルを恒温ヒートブロックとすることが好ましい。かか
るセル(35)、(36)には通常アルミニウムなどの
金属が用いられる。
When using the sample diluent and washing liquid at a predetermined temperature, for example, 37°C, the washing liquid cell (35) and the dilution liquid cell (3
6) needs to be kept at a constant temperature, in which case it is preferable to use these cells as a constant temperature heat block. Such cells (35) and (36) are usually made of metal such as aluminum.

測定ステーション(D)には基質溶液の入口と溢流液出
口を有し、かつ基質溶液の流通路に感応部を露出させた
pH電極(18)が収容された測定セル(33)が設け
られている。基質溶液は洗浄液と尿素原岐を各に洗浄液
容器(43)と尿素原演容器(42)からポンプ(38
)によってミキサ(34)に供給し、該ミキサ(34)
で混合することによって調製され、その後測定セル(3
3)に供給される。該測定セルから溢流した溢流液は溢
流液出口からポンプ(41)によって廃液容器(45)
に排出される。
The measurement station (D) is provided with a measurement cell (33) that has a substrate solution inlet and an overflow liquid outlet and houses a pH electrode (18) with a sensitive part exposed to the substrate solution flow path. ing. The substrate solution is pumped (38) from the washing liquid container (43) and the urea original container (42) to the washing liquid and urea source container, respectively.
) to the mixer (34), and the mixer (34)
prepared by mixing in the measuring cell (3
3). The overflowing liquid from the measurement cell is transferred to a waste liquid container (45) by a pump (41) from an overflowing liquid outlet.
is discharged.

尿素基質溶液としては、濃厚原波を希釈して用いる方式
と、すでに希釈された尿素基質溶液を用いる方法がある
が、すでに希釈された基質溶液を用いるときにポンプ(
38)は尿素基質溶液のみを送ることとなり、ミキサ(
34)は不要となる。
As a urea substrate solution, there are two methods: diluting a concentrated raw wave and using an already diluted urea substrate solution.
38) will send only the urea substrate solution, and the mixer (
34) becomes unnecessary.

第6図は測定セルの詳細断面図であり、該セルは金属製
のブロック(60)からなり、セルの下部側壁に基質溶
液の入口(61)、該人口と連通ずる測定室(62)、
測定室(62)の上部に設けられた基質溶液溢流口(6
3)、および該セルからの基質溶液出口(64)を備え
た基質溶液流路を形成している。この測定室(62)に
はpH電極(65)がその感応部が基質溶液の流路に露
出するように収容されている。
FIG. 6 is a detailed sectional view of the measuring cell, which consists of a metal block (60), a substrate solution inlet (61) in the lower side wall of the cell, a measuring chamber (62) communicating with the population;
Substrate solution overflow port (6) provided at the top of the measurement chamber (62)
3), and a substrate solution flow path comprising a substrate solution outlet (64) from the cell. A pH electrode (65) is housed in this measurement chamber (62) so that its sensitive part is exposed to the flow path of the substrate solution.

金属製ブロックからなる測定セル(60)は基質溶液(
通常尿素が用いられる。)に対して耐腐蝕性を有するも
ので通常チタン、ニッケルが好ましく用いられる。アル
ミニウムなどを用いる場合には基質溶液との接触面を耐
腐蝕性樹脂でコーティングする必要がある。またpi−
を測定を一定の温度で行う場合には金属製ブロック(6
0)に伝熱線を収容するための開孔(90)を穿設し、
この開孔に伝熱線(91)を収容して、該ブロックを一
定の温度に加温する。
A measuring cell (60) consisting of a metal block contains a substrate solution (
Urea is usually used. ), titanium and nickel are usually preferably used. If aluminum or the like is used, the surface that will come into contact with the substrate solution must be coated with a corrosion-resistant resin. Also pi-
When measuring at a constant temperature, a metal block (6
An opening (90) for accommodating the heat transfer wire is bored in 0),
A heat transfer wire (91) is accommodated in this opening to heat the block to a constant temperature.

測定室(62)内に収容されるpH1を極(65)とし
ては従来から最も多用されているいわゆるガラス電極の
他に、pH感応性電界効果トランジスタ(以下pH−F
ETという)、酸化パラジウム/パラジウムワイヤ等の
表面酸化金属線タイプのpH電極、プロトン受容体を含
有するポリ塩化ビニルから成るpH感応性高分子膜を金
属線や炭素線にコートしたコーチイドワイヤ型のpH電
極等、各種の微小pHi!極を用いることができる。し
かしながらガラス電極型のpH1K極は、細径化すると
誘導ノイズが増大する傾向がある。表面酸化金属線型p
H電極は細径化が容易であるが、長期の水中寿命等に難
点がある。コーチイドワイヤ型のpH電極も細径化が容
易であるが、pH変化に対する直線応答域が狭い、水中
寿命が短いなどの難点がある。そのためこれらのpH電
極を使用する場合には上記問題点を予め解消しておく必
要がある。
In addition to the so-called glass electrode, which has conventionally been most commonly used as the pH1 electrode (65) housed in the measurement chamber (62), a pH-sensitive field effect transistor (hereinafter referred to as pH-F
ET), surface oxidized metal wire type pH electrodes such as palladium oxide/palladium wires, and corchid wire type pH electrodes in which metal wires or carbon wires are coated with a pH-sensitive polymer film made of polyvinyl chloride containing proton acceptors. Various micro pH electrodes such as pH electrodes, etc. Poles can be used. However, when the diameter of the glass electrode type pH1K electrode is reduced, the induced noise tends to increase. surface oxidized metal linear p
The diameter of the H electrode can be easily reduced, but there are drawbacks such as a long underwater life. Corchid wire type pH electrodes are also easy to reduce in diameter, but have drawbacks such as a narrow linear response range to pH changes and a short underwater life. Therefore, when using these pH electrodes, it is necessary to solve the above problems in advance.

それに対してpH−PETは(1)細径化が容易である
。(2)細径化した時の誘導ノイズが少ない、(3)I
C技術で製造するので、電極間の特性のバラつきが小さ
くでき、かつpH感応面(ゲート部)を微小化すること
ができる。(4)pH変化に対する応答が極めて速く、
かつ応答曲線にヒステリシスが残らない、(5)pH変
化に対する直線応答域が広い、(6)水中の保存寿命が
半永久的で、かつpH感度等の特性の経時変化が少ない
、(7)温度検出用のダイオードを基板に取り付けるこ
とができる等の優れた特徴を有しているので測定室(6
2)内に収容されるpH電極として最適である。第6図
はpH−PETを使用した例を示している。pH−F 
E T (65)は外筒(66)の先端にpH−F’E
Tの感応部を突出させ、電極に連結させたリード線を外
筒の他端に延在させ、pH−FETの電極部と外筒内壁
間に樹脂を封入し、−かっ外筒を閉塞している。さらに
、該外筒(66)と比較電極(67)とをより太い外筒
(68)に挿通し、先端を樹脂で閉塞している。この太
い外筒(68)は端部にコネクタ部(71)を設けたハ
ウジング(69)内に挿入され、該ハウジング内壁と外
筒(68)及び比較電極(67)間は樹脂が封入されて
いる。コネクタII(71)にはリード線接続用のピン
が納められており、これにすくなくともpH−PETの
ソース、ドレイン、および比較電極の3本のリード線が
接続される。pH−F E T (65)は外筒(66
)にチップカプラ(75)を挿入した後、電極最外筒に
設けられたネジ部(72)によってセル(60)の測定
室(62)の中に挿入され、0リング(73)とおさえ
ネジ(74)によって所定のは置に固定される。pH測
定時には固相用細径管(8)が測定セルの上部から測定
室内に挿入され、チップカブラ(75)に導かれてp 
H−F E T (65)に被せられる。
On the other hand, pH-PET (1) can be easily reduced in diameter; (2) Less induced noise when the diameter is reduced, (3) I
Since it is manufactured using C technology, variations in characteristics between electrodes can be reduced, and the pH-sensitive surface (gate portion) can be miniaturized. (4) Extremely fast response to pH changes;
and no hysteresis remains in the response curve; (5) wide linear response range to pH changes; (6) semi-permanent shelf life in water; and little change in characteristics such as pH sensitivity over time; (7) temperature detection. The measurement chamber (6
2) It is most suitable as a pH electrode housed in the interior. FIG. 6 shows an example using pH-PET. pH-F
E T (65) has pH-F'E at the tip of the outer cylinder (66).
The sensitive part of the T is made to protrude, the lead wire connected to the electrode is extended to the other end of the outer cylinder, a resin is sealed between the electrode part of the pH-FET and the inner wall of the outer cylinder, and the outer cylinder is closed. ing. Further, the outer tube (66) and the reference electrode (67) are inserted into a thicker outer tube (68), and the tip is closed with resin. This thick outer cylinder (68) is inserted into a housing (69) having a connector part (71) at the end, and a resin is sealed between the inner wall of the housing, the outer cylinder (68), and the reference electrode (67). There is. Connector II (71) houses pins for connecting lead wires, to which at least three lead wires, the source, drain, and reference electrode of pH-PET, are connected. pH-FET (65) is the outer cylinder (66
), the chip coupler (75) is inserted into the measurement chamber (62) of the cell (60) by the threaded part (72) provided on the outermost electrode cylinder, and then the O-ring (73) and the holding screw are inserted. (74), it is fixed at a predetermined position. During pH measurement, the small-diameter solid phase tube (8) is inserted into the measurement chamber from the top of the measurement cell, guided to the tip coupler (75), and then
It is placed on H-FET (65).

チップカブラ(75)は固相用細径管(8)をpHF 
E T (65)に被せるためのガイドとしての役割を
有している。該チップカプラは第7図及び第8図(第7
図のA−A矢視図)に示すように固相用細径管(8)の
ガイドとしての中空部(80)の周囲にクローバ−状の
基質溶液流路を形成する4ケの空胴(81)が設けられ
ている。
Chip Kabra (75) is a thin tube for solid phase (8) with pHF
It has a role as a guide for covering E T (65). The chip coupler is shown in FIGS.
As shown in the A-A arrow view in the figure, four cavities form a clover-shaped substrate solution flow path around a hollow part (80) that serves as a guide for the solid phase thin tube (8). (81) is provided.

細径管内への液体の吸引または細径管内の液体を吐出せ
る分注手段(E)は細径管の上端開口に挿嵌されるピペ
ットヘッド(28)と該ピペットヘッドの端部にチュー
ブ(26)を介して接続されたシリンジ(25)で構成
されている。(27)はチューブ(26)の分岐に取着
されたチューブ開閉弁である。
The dispensing means (E) capable of sucking liquid into a small diameter tube or discharging the liquid inside the small diameter tube includes a pipette head (28) inserted into the upper end opening of the small diameter tube and a tube (28) attached to the end of the pipette head. It consists of a syringe (25) connected via a syringe (26). (27) is a tube opening/closing valve attached to a branch of the tube (26).

該ピペットヘッド(28)はカップ内に細径管を挿脱さ
せる、例えばシリンダなどからなる昇降手段(F)に連
結されて該昇降手段の作動と連動して昇降する。該昇降
手段(F)はさらに水平方向移動手段(G)、例えばX
軸駆動アーム(22)に連結されてX方向に往復移動さ
れる。また必要であれば該X軸駆動アームをY軸駆動ア
ーム(21)に連結するとY方向に往復移動させること
ができる。
The pipette head (28) is connected to an elevating means (F), such as a cylinder, for inserting and removing a small diameter tube into and from the cup, and is raised and lowered in conjunction with the operation of the elevating means. The lifting means (F) further includes horizontal movement means (G), e.g.
It is connected to a shaft drive arm (22) and reciprocated in the X direction. Furthermore, if necessary, the X-axis drive arm can be connected to the Y-axis drive arm (21) for reciprocating movement in the Y direction.

また昇降手段(F)には第9図に示すようにピペットヘ
ッド(28)に挿嵌された細径管の上端を下方へ押圧し
て細径管をピペットヘッド(28)から脱離させる手段
(I()が設けられている。(37)は希釈操作の終了
した希釈用細径管を廃棄するための容器である。
Further, as shown in FIG. 9, the elevating means (F) includes a means for pushing downward the upper end of the small diameter tube inserted into the pipette head (28) to detach the small diameter tube from the pipette head (28). (I()) is provided. (37) is a container for discarding the thin dilution tube after the dilution operation has been completed.

第10図は本発明装置の制御回路図であり、上記各部の
作動はコンピュータによって制御される。
FIG. 10 is a control circuit diagram of the apparatus of the present invention, and the operations of the above-mentioned parts are controlled by a computer.

pH3l極出力から測定対象物質の濃度への変換のため
のデータ処理もコンピュータによって行われ、その結果
はデイスプレーもしくはプリンタまたはその両者に表示
される。
Data processing for converting the pH3l polar output to the concentration of the substance to be measured is also performed by the computer, and the results are displayed on a display and/or printer.

またpH電極としてpH−FETを使用する場合にはそ
の出力の読み取りとして特開昭60−4851号、同6
0−225056号などに記載されたソースフォロワ型
の測定回路が用いられる。
In addition, when using a pH-FET as a pH electrode, the output of the pH-FET can be read using JP-A-60-4851 and JP-A-60-4851.
A source follower type measurement circuit described in eg No. 0-225056 is used.

次に本発明のカートリッジを用いた酵素免疫測定方法に
ついて、2ステツプサンドイツチアツセイの場合につい
て説明する。下記の説明において固相用細径管には測定
対象抗原(または抗体)を捕捉するための抗体(または
抗原)が固定化されている。また凍結乾燥標識体として
は測定対象物質をサンドイッチするための標識抗体(ま
たは標識抗原)が用いられる。ユーザは所望の測定項目
用のカートリッジを取りだし、カートリッジの上面に貼
着されたシール片(10)をはがし、試料カップ(2)
の中に20μQ程度の試料液体を入れ、これをカートリ
ッジ供給用のコンベア機構(31)にセットすると第1
0図に示す測定回路jこよって以下の各操作が全て自動
的に行われる。
Next, regarding the enzyme immunoassay method using the cartridge of the present invention, a two-step German assay will be described. In the following explanation, an antibody (or antigen) for capturing the antigen (or antibody) to be measured is immobilized on the solid phase thin tube. Furthermore, a labeled antibody (or labeled antigen) for sandwiching the substance to be measured is used as the freeze-dried label. The user takes out the cartridge for the desired measurement item, peels off the seal piece (10) affixed to the top of the cartridge, and inserts the sample cup (2).
When about 20 μQ of sample liquid is placed in the cartridge and set on the cartridge supply conveyor mechanism (31), the first
The measurement circuit shown in FIG. 0 automatically performs all of the following operations.

■上記コンベアによりカートリッジ(L)が操作ステー
ション(A)へ供給されるとまずバーコードリーダ(3
2)がバーコード(9)から測定項目等を読み取り、そ
れに応じた操作プログラムや検量線が選択される。
■When the cartridge (L) is supplied to the operation station (A) by the above conveyor, the barcode reader (3
2) reads the measurement items etc. from the barcode (9) and selects the operating program and calibration curve accordingly.

■次はカートリッジが希釈ステーション(B)に送られ
ると昇降手段が作動してピペットヘッド(28)が希釈
カップ(3)内の希釈用細径管(7)を装着して試料カ
ップ(2)内の試料溶液を所定量(例えば10μの吸引
し、直ちに希釈液セル(36)に移動して、所定量の希
釈液(例えば90μ0を追加吸引する。次いでピペッタ
ヘッドが希釈カップ(3)に戻り、その中に試料と希釈
液の混合溶液(例えば100μ0を吐出し、さらにその
液の再吸引−再吐出を繰り返して試料と希釈液とを混合
することにより所定の倍率に(例えば10倍)希釈され
た試料溶液を調製する。上記希釈用細径管は容器(37
)に廃棄される。
■Next, when the cartridge is sent to the dilution station (B), the elevating means is activated and the pipette head (28) attaches the thin dilution tube (7) in the dilution cup (3) and moves it to the sample cup (2). Aspirate a predetermined amount (for example, 10μ) of the sample solution in the sample solution, immediately move it to the diluent cell (36), and aspirate an additional predetermined amount of diluent (for example, 90μ).Then, the pipetter head returns to the dilution cup (3), A mixed solution of the sample and diluent (e.g., 100μ0) is discharged into the sample, and the solution is then repeatedly re-suctioned and re-discharged to mix the sample and diluent, thereby diluting the sample to a predetermined ratio (e.g., 10 times). Prepare the sample solution.The small diameter tube for dilution is the container (37
) will be discarded.

■次にピペッタヘッド(28)が反応カップ(4)内の
固相用細径管(8)を装着し、これを希釈カップ(3)
内の希釈試料液の中に挿入して所定M(例えばlOμQ
)の希釈試料液を吸引した後、該細径管(8)を希釈カ
ップ(3)内に離脱静置させ、この状態で所定時間(例
えば10分間)−次免疫反応を行う。
■Next, the pipetter head (28) attaches the solid phase thin tube (8) in the reaction cup (4), and connects it to the dilution cup (3).
A predetermined M (for example, lOμQ)
) After aspirating the diluted sample solution, the thin tube (8) is removed from the dilution cup (3) and allowed to stand still, and in this state the next immune reaction is carried out for a predetermined period of time (for example, 10 minutes).

■−次免疫反応を終えるとカートリッジを洗浄ステーシ
ョン(B)へ移動させる。そして該ステーションでピペ
ッタヘッドが固相用細径管を再装着し、これを希釈液セ
ル(36)に移動し、該セルの上面に設けられた溝をオ
ーバーフローしている希釈液を数回吸引−吐出して該細
径管を洗浄する。
(2) After completing the next immune reaction, move the cartridge to the washing station (B). Then, at this station, the pipettor head reinstalls the small-diameter tube for the solid phase, moves it to the diluent cell (36), and aspirates the diluent overflowing the groove provided on the top of the cell several times. Discharge to clean the small diameter tube.

そのあと所定量(例えば20μQ)の希釈液を吸引し、
ピペッタヘッドをカートリッジの反応カップ(4)に移
動し、その中に吸引した希釈液を吐出して凍結乾燥され
た標識体(6)を溶解させる。標識体をより完全に溶解
するために、反応カップ内で溶解した標識体溶液を数回
吸引−注出して完全に溶解させた後、固相細径管(8)
を反応カップ(4)内に離脱静置させ、この状態で所定
時間(例えば5分間)第二次免疫反応を行った後、カー
トリッジを測定ステーション(C)へ移動させる。
Then, aspirate a predetermined amount (for example, 20μQ) of the diluted liquid,
The pipettor head is moved to the reaction cup (4) of the cartridge and the aspirated diluent is expelled into it to dissolve the lyophilized label (6). In order to dissolve the label more completely, the dissolved label solution in the reaction cup is aspirated and poured out several times to completely dissolve it, and then the solid phase small diameter tube (8)
is removed from the reaction cup (4) and allowed to stand still in this state for a predetermined period of time (for example, 5 minutes), after which the secondary immune reaction is carried out, and then the cartridge is moved to the measurement station (C).

■第二次免疫反応を終えた固相用細径管(8)をピペッ
タヘッドに再装着し、これを洗浄液セル(35)に移動
し、該セルの上面に設けられた溝をオーバーフローして
いる液を数回吸引−吐出して、該細径管を洗浄する。そ
のあと該細径管を測定セル(33)に設けられた測定室
内に挿入し、該測定セル内を流通する尿素基質溶液を吸
引した後、pH−FETに被せ、該細径管とpH−FE
Tの間に封入された基質溶液のp)[変化を測定する。
■The small-diameter solid phase tube (8) that has undergone the second immune reaction is reattached to the pipettor head, moved to the washing liquid cell (35), and overflowed through the groove provided on the top surface of the cell. The small diameter tube is cleaned by aspirating and discharging the liquid several times. After that, the thin tube is inserted into the measurement chamber provided in the measurement cell (33), and after suctioning the urea substrate solution flowing through the measurement cell, it is placed over the pH-FET, and the thin tube and pH- FE
Measure p) [changes in the substrate solution encapsulated during T.

pH変化測定中に、チューブ(26)の温度が変化する
と、チューブ内の空気の体積が変化し、これがpH−F
ETと細径管で形成される間隙に封入された基質溶液の
流動を誘起し、測定誤差を生じる恐れがある。そのため
にpH変化測定中にチューブ開閉弁(27)を開いて、
チューブ内の圧力を大気圧に解放することが好ましい。
During pH change measurement, when the temperature of the tube (26) changes, the volume of air inside the tube changes, which causes pH-F
This may induce flow of the substrate solution sealed in the gap formed by the ET and the small diameter tube, leading to measurement errors. To do this, open the tube on-off valve (27) during pH change measurement.
Preferably, the pressure within the tube is released to atmospheric pressure.

pH変化はpH−FETのソース電位の変化とし読み取
られる。そして、通常細径管がpH−FETに被せられ
た後数十秒間のいずれかの時間帯における、ソース電位
の変化速度が算出され、その変化速度があらかじめ求め
られた換算式によって測定対象物質の濃度に換算表示さ
れる。
The pH change is read as a change in the source potential of the pH-FET. Then, the rate of change in the source potential during a period of several tens of seconds after the small-diameter tube is placed over the pH-FET is calculated, and the rate of change is calculated using a conversion formula calculated in advance for the amount of the substance to be measured. Converted to concentration and displayed.

本発明のカートリッジ、それを用いた測定方法及び装置
はサンドイツチ法および競合法の酵素免疫測定に使用で
きる。また本発明はいわゆる2ステツプサンドイツチ法
および2ステップ競合法について説明しているが、原理
的にはIステップのサンドイツチ法および1ステツプの
競合法にも適用することが可能である。これら1.ステ
ップ法を用することが可能である。これらIステップ法
を採用する際には、測定対象物質の濃度が極端に高くな
ったときに検出出力がかえって低下すると言う、いわゆ
るプロゾーン現象を防止するようなアッセイ条件を設定
する必要がある。
The cartridge of the present invention, a measuring method using the same, and an apparatus can be used for enzyme immunoassay using the Sand-Deutsch method and the competitive method. Furthermore, although the present invention describes the so-called 2-step Sander-German search method and the 2-step competitive method, it is also possible in principle to apply to the I-step Sanderutsch method and the 1-step competitive method. These 1. It is possible to use a step method. When employing these I-step methods, it is necessary to set assay conditions that prevent the so-called prozone phenomenon, in which the detection output decreases when the concentration of the substance to be measured becomes extremely high.

(発明の効果) 以上性べてきたように本発明の酵素免疫測定用のカート
リッツ、それを用いた測定方法及び装置は (1)任意の測定項目を任意の順序で測定することがで
きるため少数の検体でも試薬のロスなく、中小規模病院
での検査にも応用できる、(2)簡単なハードウェアで
完全自動化を行うことができる、 といった特徴の他にさらに、 (3)ピペットチップ形状の細径管の先端細径部と言う
微少な領域で免疫反応および酵素反応を行わせるので、
それぞれの反応か極めて速やかであり、反応時間が短く
て、また使用する試料液体の量もわずかでよい、 (4)酵素免疫測定方法においては、一般に固相用細径
管の洗浄が重要で結合体/遊離体分離と称されているが
本発明では、こ−れを分注手段によって行うので洗浄用
の特殊な駆動部を必要としない。
(Effects of the Invention) As described above, the Cartlitz for enzyme immunoassay of the present invention, the measurement method and apparatus using the same, (1) can measure any measurement item in any order; In addition to the following features: (2) it can be fully automated with simple hardware without any loss of reagents even with a small number of samples, and (3) it has the shape of a pipette tip. Because immunoreactions and enzymatic reactions are carried out in a minute area called the narrow end of a narrow tube,
Each reaction is extremely rapid, the reaction time is short, and the amount of sample liquid used is small. Although this is called body/educt separation, in the present invention, this is carried out by a dispensing means, so there is no need for a special drive unit for cleaning.

という優れた効果を有している。It has this excellent effect.

実験例1 本発明の酵素免疫測定用カートリッジを、第3図に示す
測定装置に適用して、アルファフェトプロティン(AF
P)の測定を行った。この場合、固相用細径管には抗A
FP抗体を固定し、反応カップの底部に抗AFP抗体の
ウレアーゼ標識体の凍結乾燥体を収納した。
Experimental Example 1 The cartridge for enzyme immunoassay of the present invention was applied to the measuring device shown in FIG.
P) was measured. In this case, anti-A
The FP antibody was immobilized, and a lyophilized urease-labeled anti-AFP antibody was stored at the bottom of the reaction cup.

また測定項目によらない共通試薬としては次のものが用
いられた。
The following common reagents were used regardless of the measurement items.

希釈液: 0.0915Mリン酸水素2ナトリウム+0
、ON5Mリン酸ナトリウム(p H7,8)洗浄t 
: 0.1M塩化アンモニウム+0.154M塩化ナト
リウム 基質液: 0.1M塩化アンモニウム+0.154M塩
化ナトリウム+0.1M尿素 AFP測定用のカートリッジを取り出し、シール片を開
いた後、その試料カップの中に20μgの血清試料を入
れた。次に該カートリッジを測定装置に装着し以下の順
序で測定を行った。
Diluent: 0.0915M disodium hydrogen phosphate +0
, ON5M sodium phosphate (pH 7,8) washing
: 0.1M ammonium chloride + 0.154M sodium chloride substrate solution: 0.1M ammonium chloride + 0.154M sodium chloride + 0.1M urea After taking out the cartridge for AFP measurement and opening the seal piece, put 20 μg into the sample cup. A serum sample was added. Next, the cartridge was attached to a measuring device, and measurements were performed in the following order.

a)分注器が、希釈カップの中に収納されている希釈用
細径管を装着し、試料カップ中の試料を10u(lと希
釈液セルの希釈液90μeとを吸引し、これを希釈カッ
プ中に吐出し、10倍希釈された試料溶液を調製した。
a) The dispenser attaches the thin dilution tube housed in the dilution cup, sucks up 10 u (l) of the sample in the sample cup and 90 μe of the diluent in the diluent cell, and dilutes this. A sample solution diluted 10 times was prepared by discharging it into a cup.

その後希釈用細径管は廃棄用ボトルの中に廃棄された。The dilution tube was then discarded into a waste bottle.

b)分注手段により、反応カップ中に収納されている固
相用細径管を装着し、これを上記10倍希釈試料溶液の
中に離脱することにより、第1次免疫反応が開始された
。その後この状態で希釈カップ内の細径管は37℃で1
0分間温置された。次し)で再び分注手段が、該細径管
を装着して、これを希釈液セルに移動し、希釈液を吸引
−吐出することにより洗浄がおこなわれた。
b) The first immune reaction was started by attaching the solid phase thin tube housed in the reaction cup using the dispensing means and removing it into the 10-fold diluted sample solution. . After that, in this state, the small diameter tube inside the dilution cup was heated to 1
Incubated for 0 minutes. Next, the dispensing means reattached the small-diameter tube, moved it to the diluent cell, and sucked and discharged the diluent to perform cleaning.

C)分注手段が固相用細径管を装着したまま、該希釈液
を30μe吸引し、これを反応カップ中に吐出し、吸引
−吐出をくりかえすことにより該カップ底部にある凍結
乾燥標識体を溶解した。その後絞チップを該カップ中に
離脱させることにより、第2免疫反応が開始された。こ
の状態でカップ内のチップは37℃で5分間装置された
C) With the dispensing means attached to the small-diameter tube for solid phase, 30 μe of the diluted liquid is sucked, and it is discharged into the reaction cup, and by repeating the suction and discharge, the lyophilized label at the bottom of the cup is removed. was dissolved. A second immune reaction was then initiated by withdrawing the squeeze tip into the cup. In this state, the chip in the cup was placed at 37° C. for 5 minutes.

d)分注手段が該固相用細径管を再装着し、該細径管を
洗浄液セルに移動させ、そこで洗浄液を吸引−吐出する
ことにより該細径管を洗浄し、洗浄液を吐出した後、細
径管をpH測定セルの中に挿入しながら、基質溶液(l
素および塩化アンモニウム溶液)を細径管中に吸引した
。次いでpH測定セルの中に細径管を収納して、該細径
管の先端をpH−FETに被せた。
d) The dispensing means reinstalled the small diameter tube for solid phase, moved the small diameter tube to the washing liquid cell, cleaned the small diameter tube by sucking and discharging the washing liquid there, and discharged the washing liquid. After that, while inserting the small diameter tube into the pH measuring cell, add the substrate solution (l
ammonium chloride solution) was aspirated into a small diameter tube. Next, the thin tube was placed in the pH measurement cell, and the tip of the thin tube was placed over the pH-FET.

e)  p H−F E Tの出力(ソース電位)を2
0秒間読み取り、測定開始後10秒から20秒の間10
秒間の出力の変化速度の平均値を求めた。
e) Set the output (source potential) of pH-FET to 2
Read for 0 seconds, 10 for 10 to 20 seconds after starting measurement
The average value of the rate of change in output per second was determined.

f)pH測定セルの中に基質溶液をポンプで10秒間送
入してセル内の基質溶液を新鮮なものに置換し、次の測
定に備えた。
f) Substrate solution was pumped into the pH measurement cell for 10 seconds to replace the substrate solution in the cell with fresh one, in preparation for the next measurement.

このようにして測定されたpH−PETの出力の変化速
度とAFPの濃度との関係を表1に示した。
Table 1 shows the relationship between the rate of change in the output of pH-PET measured in this way and the concentration of AFP.

AFPlkK   pH−PET 出力変化速度 3.9 7.9 15.6 31.3 62.5 L25.Q 50 0 500.0 1000.0 0.024 0.080 0.149 0.245 0.445 0 、768 1.404 2.568 4.065 6.676 実験例2 実験例Iと同様にしてフェリチンの測定を行った。この
場合固相用細径管には抗フェリチン抗体を固定し、反応
カップの底部に抗フェリチン抗体のウレアーゼ標識体の
凍結乾燥体を収納した。
AFPlkK pH-PET Output change rate 3.9 7.9 15.6 31.3 62.5 L25. Q 50 0 500.0 1000.0 0.024 0.080 0.149 0.245 0.445 0 , 768 1.404 2.568 4.065 6.676 Experimental Example 2 Ferritin was determined in the same manner as Experimental Example I. Measurements were made. In this case, an anti-ferritin antibody was immobilized on the solid phase narrow tube, and a lyophilized urease-labeled anti-ferritin antibody was stored at the bottom of the reaction cup.

実験例1と全く同様の操作手順で測定を行った結果を表
2に示した。
Table 2 shows the results of measurements performed using the same operating procedure as in Experimental Example 1.

出力変化速度 3.9 9 15.6 31.3 62.5 125.0 250.0 500.0 0.021 0.031 o、iog  175 0.488 0.879 1.737 3.331 実験例3 実験例1と同様に、癌胎児性抗原(CEA)の測定を行
った。この場合固相用細径管には抗CEA抗体を固定し
、反応カップには抗CEA抗体のウレアーゼ標識体の凍
結乾燥体を収納し、以下の順序で測定を行った。
Output change rate 3.9 9 15.6 31.3 62.5 125.0 250.0 500.0 0.021 0.031 o, iog 175 0.488 0.879 1.737 3.331 Experimental example 3 Carcinoembryonic antigen (CEA) was measured in the same manner as in Experimental Example 1. In this case, an anti-CEA antibody was immobilized on the solid phase narrow tube, a lyophilized product of the urease-labeled anti-CEA antibody was stored in the reaction cup, and measurements were performed in the following order.

a)分注手段が希釈カップ中に収納された希釈用細径管
を装着し、試料カップ中の血清試料10μQと希釈液2
0μQとを吸引し、これを希釈カップに吐出し、3倍希
釈された試料溶液を調製した。その後希釈用細径管は廃
棄された。
a) The dispensing means is equipped with a thin dilution tube housed in a dilution cup, and the serum sample 10 μQ and diluent 2 in the sample cup are
0 μQ was aspirated and discharged into a dilution cup to prepare a 3-fold diluted sample solution. The dilution tube was then discarded.

以下実験例1のb)〜e)と同様の操作を行った結果を
表−3に示した。
Table 3 shows the results of the same operations as b) to e) of Experimental Example 1.

以下余白 出力変化速度 0.0           0.0071.25  
        0.12g2.5         
  0.2555.0           0.51
010.0          0.99520、Q 
          1.91640.0      
    3 430go、o           5
.918160.0          9 375
Below margin output change rate 0.0 0.0071.25
0.12g2.5
0.2555.0 0.51
010.0 0.99520,Q
1.91640.0
3 430go, o 5
.. 918160.0 9 375

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酵素免疫測定用カートリッジの斜視図
であり、第2図は該カートリッジの断面図である。第3
図は本発明の測定装置の正面図であり、第4図は平面図
であり、第5図は本発明装置の基本構成を示す概略図で
あり、第6図は測定セルの詳細構造を示す断面図であり
、第7図はチップカブラの構造を示す断面図であり、第
8図は第7図のA−A矢視図であり、第9図は昇降手段
を示す正面図であり、第10図は本発明装置の制御回路
図である。 A ・・・操作ステーション B ・・・希釈ステーション C・・・先浄ステーション D ・・・測定ステーション E・・・分注手段、F・・・昇降手段 G ・・・往復移動手段、H・・・脱 離 手 段I・
・・カートリッジ、2・・・試料カップ3・・・希釈カ
ップ、4・・・反応カップ6・・・凍結乾燥標識体、 7・・・希釈用細径管、8・・・固相用細径管10・・
・シール片、33・・・測定セル35・・・洗浄セル、
36・・・希釈セル65・・・pH電極。
FIG. 1 is a perspective view of a cartridge for enzyme immunoassay of the present invention, and FIG. 2 is a sectional view of the cartridge. Third
The figure is a front view of the measuring device of the present invention, FIG. 4 is a plan view, FIG. 5 is a schematic diagram showing the basic configuration of the device of the present invention, and FIG. 6 is a detailed structure of the measuring cell. 7 is a sectional view showing the structure of the chip coverr, FIG. 8 is a view taken along the line A-A in FIG. 7, and FIG. 9 is a front view showing the elevating means; FIG. 10 is a control circuit diagram of the device of the present invention. A...Operating station B...Dilution station C...Pre-cleaning station D...Measurement station E...Dispensing means, F...Elevating means G...Reciprocating means, H...・Detachment means I・
... Cartridge, 2... Sample cup 3... Dilution cup, 4... Reaction cup 6... Lyophilized label, 7... Thin tube for dilution, 8... Thin tube for solid phase. Diameter pipe 10...
・Seal piece, 33...Measuring cell 35...Cleaning cell,
36... Dilution cell 65... pH electrode.

Claims (1)

【特許請求の範囲】 1、測定されるべき試料を収容するための試料カップと
、ピペットチップ形状の希釈用細径管が収容された希釈
カップ及び反応カップが一体に配列された酵素免疫測定
用のカートリッジであって、該反応カップの底部に凍結
乾燥させた酵素標識試薬が収容され、かつ少くとも先端
部内壁に測定対象物質たる抗原(または抗体)と結合す
る抗体(または抗原)が固定されたピペットチップ形状
の固相用細径管が、該反応カップ内にその先端が酵素標
識試薬から離間して収容されるとともに、上記各カップ
の上端開口がシール片で気密に閉塞されたことを特徴と
する酵素免疫測定用カートリッジ。 2、請求項1記載の酵素免疫測定用カートリッジを用い
た酵素免疫測定方法であって、 (1)希釈カップ内に収容されたピペットチップ形状の
希釈用細径管で試料カップ内の試料および希釈液を希釈
カップ内に注入し、該希釈カップ内で所定の倍率に希釈
された試料液体を調製する工程。 (2)反応カップ内に収容されたピペットチップ形状の
固相用細径管の先端部を希釈カップ内の試料液体中に浸
漬して1次免疫反応を行わせる工程。 (3)反応カップ内に溶解溶液を注入して、該反応カッ
プ内の凍結乾燥された酵素標識試薬を溶解させた後、該
溶解させた酵素標識体溶液中に1次免疫反応が終了した
固相用細径管の先端部を浸漬して2次免疫反応を行わせ
る工程。 (4)2次免疫反応が終了した固相用細径管を洗浄する
工程。 (5)洗浄された固相用細径管を基質溶液が満たされた
測定セル内に設けられたpH電極の感応部に被せて、該
細径管とpH電極の感応部間における基質溶液の分解反
応に伴うpH変化を測定する工程。 からなる酵素免疫測定方法。 3、請求項1記載の酵素免疫測定用カートリッジを用い
た酵素免疫測定装置であって、 酵素免疫測定用カートリッジを操作ステーシヨンへ供給
する手段と、 該操作ステーションに設けられた、希釈液入口と溢流液
出口を有する希釈液セルと、該希釈液セルへ希釈液を供
給するポンプを備えた希釈ステーションと、洗浄液入口
と溢流液出口を有する洗浄液セルと、該洗浄液セルへ洗
浄液を供給するポンプを備えた洗浄ステーションと、基
質溶液入口と溢流液出口を有し、かつ基質溶液の流通路
にpH電極の感応部を露出させた測定セルと、該測定セ
ルへ基質溶液を供給するポンプを備えた測定ステーショ
ンと、 該操作ステーションに供給されたカートリッジの希釈カ
ップ及び反応カップ内に収容されたピペットチップ形状
の希釈用細径管及び固相用細径管の上端開口に挿嵌され
るピペットヘッドを一端に有し、他端にチューブを介し
てシリンジが接続された分注手段と、 該ピペットヘッドを昇降させる手段と、 該昇降手段を水平方向に往復移動させる手段と、 該ピペットヘッドが挿嵌された細径管の上端を押し下げ
て細径管を脱離させる手段 とを備えた酵素免疫測定装置。
[Claims] 1. For enzyme immunoassay, in which a sample cup for accommodating a sample to be measured, a dilution cup accommodating a thin tube for dilution in the shape of a pipette tip, and a reaction cup are integrally arranged. A cartridge containing a freeze-dried enzyme-labeled reagent at the bottom of the reaction cup, and at least an antibody (or antigen) that binds to the antigen (or antibody) that is the substance to be measured is immobilized on the inner wall of the tip. A small-diameter pipette tip-shaped solid phase tube was housed in the reaction cup with its tip separated from the enzyme labeling reagent, and the upper end opening of each cup was airtightly closed with a seal piece. Characteristic enzyme immunoassay cartridge. 2. An enzyme immunoassay method using the enzyme immunoassay cartridge according to claim 1, which comprises: (1) a pipette tip-shaped thin dilution tube housed in the dilution cup; A step of injecting a liquid into a dilution cup and preparing a sample liquid diluted to a predetermined ratio in the dilution cup. (2) A step of performing a primary immune reaction by immersing the tip of a pipette tip-shaped small-diameter solid phase tube housed in a reaction cup into a sample liquid in a dilution cup. (3) After injecting the dissolution solution into the reaction cup and dissolving the freeze-dried enzyme labeling reagent in the reaction cup, solids that have undergone the primary immune reaction are added to the dissolved enzyme label solution. A step of immersing the tip of a small-diameter phase tube to perform a secondary immune reaction. (4) A step of washing the small-diameter tube for solid phase after the completion of the secondary immune reaction. (5) Place the cleaned solid phase thin tube over the sensitive part of the pH electrode installed in the measurement cell filled with the substrate solution, and the substrate solution between the thin tube and the sensitive part of the pH electrode is Step of measuring pH change accompanying decomposition reaction. An enzyme immunoassay method consisting of 3. An enzyme immunoassay device using the enzyme immunoassay cartridge according to claim 1, comprising means for supplying the enzyme immunoassay cartridge to an operating station, and a diluent inlet and overflow provided at the operating station. A dilution station having a diluent cell having a flow outlet, a dilution station having a pump for supplying diluent to the diluent cell, a cleaning fluid cell having a cleaning fluid inlet and an overflow fluid outlet, and a pump for supplying cleaning fluid to the cleaning fluid cell. a measuring cell having a substrate solution inlet and an overflow liquid outlet and exposing the sensitive part of the pH electrode to the substrate solution flow path, and a pump for supplying the substrate solution to the measuring cell. A measuring station equipped with the same, and a pipette inserted into the upper end opening of the pipette tip-shaped dilution tube and the solid phase thin tube housed in the dilution cup and reaction cup of the cartridge supplied to the operation station. a dispensing means having a head at one end and a syringe connected to the other end via a tube; means for raising and lowering the pipette head; means for reciprocating the raising and lowering means in a horizontal direction; An enzyme immunoassay device comprising a means for pushing down the upper end of the inserted thin tube to remove the thin tube.
JP1322886A 1989-12-12 1989-12-12 Cartridge for enzyme immunoassay, measuring method and measuring apparatus using the same Expired - Fee Related JP2731613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322886A JP2731613B2 (en) 1989-12-12 1989-12-12 Cartridge for enzyme immunoassay, measuring method and measuring apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322886A JP2731613B2 (en) 1989-12-12 1989-12-12 Cartridge for enzyme immunoassay, measuring method and measuring apparatus using the same

Publications (2)

Publication Number Publication Date
JPH03181853A true JPH03181853A (en) 1991-08-07
JP2731613B2 JP2731613B2 (en) 1998-03-25

Family

ID=18148716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322886A Expired - Fee Related JP2731613B2 (en) 1989-12-12 1989-12-12 Cartridge for enzyme immunoassay, measuring method and measuring apparatus using the same

Country Status (1)

Country Link
JP (1) JP2731613B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183484A (en) * 1997-12-17 1999-07-09 Olympus Optical Co Ltd Automatic analyzing apparatus
WO2001084152A1 (en) * 2000-04-28 2001-11-08 Mitsubishi Chemical Corporation Automatic measuring cartridge and mesuring method using it
JP2002535657A (en) * 1999-01-22 2002-10-22 マーテック・バイオサイエンスィズ・コーポレーション A simple method for producing labeled conjugates.
WO2006062236A1 (en) * 2004-12-10 2006-06-15 Universal Bio Research Co., Ltd. Chip having biosubstance immobilization region hermetically sealed therein, biosubstance immobilization region treating apparatus and method of treatment
WO2006062235A1 (en) * 2004-12-10 2006-06-15 Universal Bio Research Co., Ltd. Biomaterial immobilization carrier enclosing chip, biomaterial immobilization carrier treating apparatus and method of treating therefor
WO2010084921A1 (en) * 2009-01-23 2010-07-29 アークレイ株式会社 Analysis system, analysis device, vessel, analysis method, program, and recording medium
JP2010540971A (en) * 2007-10-02 2010-12-24 セラノス, インコーポレイテッド Modular point-of-care device and use thereof
JP2011501132A (en) * 2007-10-10 2011-01-06 ポカード・ディアグノスティクス・リミテッド System for identifying bacteria in urine
JP2011137694A (en) * 2009-12-28 2011-07-14 Tosoh Corp Freeze-dried reagent
US8187538B2 (en) 2008-01-17 2012-05-29 Ortho-Clinical Diagnostics, Inc. Diluent wells produced in card format for immunodiagnostic testing
US8445265B2 (en) 2004-10-06 2013-05-21 Universal Bio Research Co., Ltd. Reaction vessel and reaction controller
JP2013134069A (en) * 2011-12-26 2013-07-08 Hitachi High-Technologies Corp Automatic analyzer
JP2013150634A (en) * 2007-07-13 2013-08-08 Handylab Inc Reagent holder and reagent system
US8518347B2 (en) 2005-01-07 2013-08-27 Universal Bio Research Co., Ltd. Carrier enclosing tip, carrier treating apparatus and method of carrier treatment
US8828331B2 (en) 2005-09-05 2014-09-09 Universal Bio Research Co., Ltd. Various-substance holder, various-substance holder treating apparatus, and various-substance holder treating method
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
JP2015014615A (en) * 2014-09-19 2015-01-22 株式会社日立ハイテクノロジーズ Sample treatment device and reaction vessel used in sample treatment method
US8940231B2 (en) 2000-06-12 2015-01-27 Arkray, Inc. Measuring equipment and measuring method using cartridge container, and program recording medium
JP2015111150A (en) * 2008-12-25 2015-06-18 ユニバーサル・バイオ・リサーチ株式会社 Method for pretreating specimen, and method for assaying bio-related substance
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9464981B2 (en) 2011-01-21 2016-10-11 Theranos, Inc. Systems and methods for sample use maximization
US9506866B2 (en) 2008-02-05 2016-11-29 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9701957B2 (en) 2007-07-13 2017-07-11 Handylab, Inc. Reagent holder, and kits containing same
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US10065185B2 (en) 2007-07-13 2018-09-04 Handylab, Inc. Microfluidic cartridge
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10076754B2 (en) 2011-09-30 2018-09-18 Becton, Dickinson And Company Unitized reagent strip
USD831843S1 (en) 2011-09-30 2018-10-23 Becton, Dickinson And Company Single piece reagent holder
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10288632B2 (en) 2009-09-21 2019-05-14 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
USD1029291S1 (en) 2020-12-14 2024-05-28 Becton, Dickinson And Company Single piece reagent holder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425309B2 (en) * 2000-01-31 2008-09-16 Emory University Immunological assay system and method

Cited By (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183484A (en) * 1997-12-17 1999-07-09 Olympus Optical Co Ltd Automatic analyzing apparatus
JP2002535657A (en) * 1999-01-22 2002-10-22 マーテック・バイオサイエンスィズ・コーポレーション A simple method for producing labeled conjugates.
JP2008203279A (en) * 2000-04-28 2008-09-04 Mitsubishi Kagaku Iatron Inc Automatic measurement cartridge
WO2001084152A1 (en) * 2000-04-28 2001-11-08 Mitsubishi Chemical Corporation Automatic measuring cartridge and mesuring method using it
US8409872B2 (en) 2000-04-28 2013-04-02 Mitsubishi Chemical Medience Corporation Cartridge for automatic measurement and measuring method using it
US8940231B2 (en) 2000-06-12 2015-01-27 Arkray, Inc. Measuring equipment and measuring method using cartridge container, and program recording medium
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US10351901B2 (en) 2001-03-28 2019-07-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US11078523B2 (en) 2003-07-31 2021-08-03 Handylab, Inc. Processing particle-containing samples
US10865437B2 (en) 2003-07-31 2020-12-15 Handylab, Inc. Processing particle-containing samples
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US11441171B2 (en) 2004-05-03 2022-09-13 Handylab, Inc. Method for processing polynucleotide-containing samples
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US10604788B2 (en) 2004-05-03 2020-03-31 Handylab, Inc. System for processing polynucleotide-containing samples
US10494663B1 (en) 2004-05-03 2019-12-03 Handylab, Inc. Method for processing polynucleotide-containing samples
US8445265B2 (en) 2004-10-06 2013-05-21 Universal Bio Research Co., Ltd. Reaction vessel and reaction controller
JP4851343B2 (en) * 2004-12-10 2012-01-11 ユニバーサル・バイオ・リサーチ株式会社 Biological material fixed region enclosing chip, biological material fixed region processing apparatus and method
US8921095B2 (en) 2004-12-10 2014-12-30 Universal Bio Research Co., Ltd. Biological material fixed carrier enclosing tip, biological material fixed carrier treatment apparatus, and treatment method thereof
US8425860B2 (en) 2004-12-10 2013-04-23 Universal Bio Research Co., Ltd. Biological material fixed region enclosing tip, biological material fixed region treatment apparatus, and treatment method thereof
WO2006062236A1 (en) * 2004-12-10 2006-06-15 Universal Bio Research Co., Ltd. Chip having biosubstance immobilization region hermetically sealed therein, biosubstance immobilization region treating apparatus and method of treatment
WO2006062235A1 (en) * 2004-12-10 2006-06-15 Universal Bio Research Co., Ltd. Biomaterial immobilization carrier enclosing chip, biomaterial immobilization carrier treating apparatus and method of treating therefor
JPWO2006062236A1 (en) * 2004-12-10 2008-08-07 ユニバーサル・バイオ・リサーチ株式会社 Biomaterial fixed region enclosing chip, biomaterial fixed region treatment device and method thereof
US8133454B2 (en) 2004-12-10 2012-03-13 Universal Bio Research Co., Ltd. Biological material fixed region enclosing tip, biological material fixed region treatment apparatus, and treatment method thereof
US8263390B2 (en) 2004-12-10 2012-09-11 Universal Bio Research Co., Ltd. Biological material fixed carrier enclosing tip, biological material fixed carrier treatment apparatus, and treatment method thereof
JP4776549B2 (en) * 2004-12-10 2011-09-21 ユニバーサル・バイオ・リサーチ株式会社 Biological material fixed carrier enclosing chip, biological material fixed carrier processing apparatus and processing method therefor
US8518347B2 (en) 2005-01-07 2013-08-27 Universal Bio Research Co., Ltd. Carrier enclosing tip, carrier treating apparatus and method of carrier treatment
US9101921B2 (en) 2005-01-07 2015-08-11 Universal Bio Research Co., Ltd. Carrier enclosing tip, carrier treating apparatus and method of carrier treatment
US9260744B2 (en) 2005-09-05 2016-02-16 Universal Bio Research Co., Ltd. Various-substance holder, various-substance holder treating apparatus, and various-substance holder treating method
US8852525B2 (en) 2005-09-05 2014-10-07 Universal Bio Research Co., Ltd. Various-substance holder, various-substance holder treating apparatus, and various-substance holder treating method
US8828331B2 (en) 2005-09-05 2014-09-09 Universal Bio Research Co., Ltd. Various-substance holder, various-substance holder treating apparatus, and various-substance holder treating method
US11141734B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11085069B2 (en) 2006-03-24 2021-08-10 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10857535B2 (en) 2006-03-24 2020-12-08 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10821446B1 (en) 2006-03-24 2020-11-03 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11959126B2 (en) 2006-03-24 2024-04-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10843188B2 (en) 2006-03-24 2020-11-24 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10913061B2 (en) 2006-03-24 2021-02-09 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10821436B2 (en) 2006-03-24 2020-11-03 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11666903B2 (en) 2006-03-24 2023-06-06 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US10139012B2 (en) 2007-07-13 2018-11-27 Handylab, Inc. Integrated heater and magnetic separator
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10717085B2 (en) 2007-07-13 2020-07-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10632466B1 (en) 2007-07-13 2020-04-28 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625261B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11845081B2 (en) 2007-07-13 2023-12-19 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
JP2013150634A (en) * 2007-07-13 2013-08-08 Handylab Inc Reagent holder and reagent system
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US9701957B2 (en) 2007-07-13 2017-07-11 Handylab, Inc. Reagent holder, and kits containing same
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US11466263B2 (en) 2007-07-13 2022-10-11 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US11254927B2 (en) 2007-07-13 2022-02-22 Handylab, Inc. Polynucleotide capture materials, and systems using same
US11060082B2 (en) 2007-07-13 2021-07-13 Handy Lab, Inc. Polynucleotide capture materials, and systems using same
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US10875022B2 (en) 2007-07-13 2020-12-29 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10100302B2 (en) 2007-07-13 2018-10-16 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10065185B2 (en) 2007-07-13 2018-09-04 Handylab, Inc. Microfluidic cartridge
US11899010B2 (en) 2007-10-02 2024-02-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11061022B2 (en) 2007-10-02 2021-07-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11092593B2 (en) 2007-10-02 2021-08-17 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10670588B2 (en) 2007-10-02 2020-06-02 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US9012163B2 (en) 2007-10-02 2015-04-21 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
JP2010540971A (en) * 2007-10-02 2010-12-24 セラノス, インコーポレイテッド Modular point-of-care device and use thereof
US9435793B2 (en) 2007-10-02 2016-09-06 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
JP2021103185A (en) * 2007-10-02 2021-07-15 ラブラドール ダイアグノスティクス エルエルシー Modular point-of-care devices and uses thereof
US11366106B2 (en) 2007-10-02 2022-06-21 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US9121851B2 (en) 2007-10-02 2015-09-01 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
JP2018136345A (en) * 2007-10-02 2018-08-30 セラノス アイピー カンパニー エルエルシー Modular point-of-care devices and use thereof
US9285366B2 (en) 2007-10-02 2016-03-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
JP2020073941A (en) * 2007-10-02 2020-05-14 セラノス アイピー カンパニー エルエルシー Modular point-of-care devices and uses thereof
US8822167B2 (en) 2007-10-02 2014-09-02 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9581588B2 (en) 2007-10-02 2017-02-28 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US10634667B2 (en) 2007-10-02 2020-04-28 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US8697377B2 (en) 2007-10-02 2014-04-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9588109B2 (en) 2007-10-02 2017-03-07 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11143647B2 (en) 2007-10-02 2021-10-12 Labrador Diagnostics, LLC Modular point-of-care devices, systems, and uses thereof
US11137391B2 (en) 2007-10-02 2021-10-05 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US8808649B2 (en) 2007-10-10 2014-08-19 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in urine
US9606105B2 (en) 2007-10-10 2017-03-28 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in urine
US10656140B2 (en) 2007-10-10 2020-05-19 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in urine
JP2011501132A (en) * 2007-10-10 2011-01-06 ポカード・ディアグノスティクス・リミテッド System for identifying bacteria in urine
US8496878B2 (en) 2008-01-17 2013-07-30 Ortho-Clinical Diagnostics, Inc. Diluent wells produced in card format for immunodiagnostic testing
US8187538B2 (en) 2008-01-17 2012-05-29 Ortho-Clinical Diagnostics, Inc. Diluent wells produced in card format for immunodiagnostic testing
US10073036B2 (en) 2008-02-05 2018-09-11 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
US9506866B2 (en) 2008-02-05 2016-11-29 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
US10801962B2 (en) 2008-02-05 2020-10-13 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9753032B2 (en) 2008-12-25 2017-09-05 Universal Bio Research Co., Ltd. Method for pretreating specimen and method for assaying biological substance
JP2015111150A (en) * 2008-12-25 2015-06-18 ユニバーサル・バイオ・リサーチ株式会社 Method for pretreating specimen, and method for assaying bio-related substance
JP2017072603A (en) * 2008-12-25 2017-04-13 ユニバーサル・バイオ・リサーチ株式会社 Biological substance measuring device
US9121839B2 (en) 2009-01-23 2015-09-01 Arkray, Inc. Analyzing system, analyzing apparatus, container, analyzing method, program, and recording medium
JPWO2010084921A1 (en) * 2009-01-23 2012-07-19 アークレイ株式会社 Analysis system, analysis apparatus, container, analysis method, program, and recording medium
WO2010084921A1 (en) * 2009-01-23 2010-07-29 アークレイ株式会社 Analysis system, analysis device, vessel, analysis method, program, and recording medium
JP5498944B2 (en) * 2009-01-23 2014-05-21 アークレイ株式会社 Analysis system, analysis apparatus, container, analysis method, program, and recording medium
US10288632B2 (en) 2009-09-21 2019-05-14 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
US11002752B2 (en) 2009-09-21 2021-05-11 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
JP2011137694A (en) * 2009-12-28 2011-07-14 Tosoh Corp Freeze-dried reagent
US11199489B2 (en) 2011-01-20 2021-12-14 Labrador Diagnostics Llc Systems and methods for sample use maximization
US10557786B2 (en) 2011-01-21 2020-02-11 Theranos Ip Company, Llc Systems and methods for sample use maximization
US11644410B2 (en) 2011-01-21 2023-05-09 Labrador Diagnostics Llc Systems and methods for sample use maximization
US10876956B2 (en) 2011-01-21 2020-12-29 Labrador Diagnostics Llc Systems and methods for sample use maximization
US9464981B2 (en) 2011-01-21 2016-10-11 Theranos, Inc. Systems and methods for sample use maximization
US9677993B2 (en) 2011-01-21 2017-06-13 Theranos, Inc. Systems and methods for sample use maximization
US11788127B2 (en) 2011-04-15 2023-10-17 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis
US9128015B2 (en) 2011-09-25 2015-09-08 Theranos, Inc. Centrifuge configurations
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9952240B2 (en) 2011-09-25 2018-04-24 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10627418B2 (en) 2011-09-25 2020-04-21 Theranos Ip Company, Llc Systems and methods for multi-analysis
US11009516B2 (en) 2011-09-25 2021-05-18 Labrador Diagnostics Llc Systems and methods for multi-analysis
US9719990B2 (en) 2011-09-25 2017-08-01 Theranos, Inc. Systems and methods for multi-analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US10018643B2 (en) 2011-09-25 2018-07-10 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10557863B2 (en) 2011-09-25 2020-02-11 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10534009B2 (en) 2011-09-25 2020-01-14 Theranos Ip Company, Llc Systems and methods for multi-analysis
US11054432B2 (en) 2011-09-25 2021-07-06 Labrador Diagnostics Llc Systems and methods for multi-purpose analysis
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US10518265B2 (en) 2011-09-25 2019-12-31 Theranos Ip Company, Llc Systems and methods for fluid handling
US10371710B2 (en) 2011-09-25 2019-08-06 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
US11524299B2 (en) 2011-09-25 2022-12-13 Labrador Diagnostics Llc Systems and methods for fluid handling
USD905269S1 (en) 2011-09-30 2020-12-15 Becton, Dickinson And Company Single piece reagent holder
USD831843S1 (en) 2011-09-30 2018-10-23 Becton, Dickinson And Company Single piece reagent holder
US10076754B2 (en) 2011-09-30 2018-09-18 Becton, Dickinson And Company Unitized reagent strip
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
JP2013134069A (en) * 2011-12-26 2013-07-08 Hitachi High-Technologies Corp Automatic analyzer
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
JP2015014615A (en) * 2014-09-19 2015-01-22 株式会社日立ハイテクノロジーズ Sample treatment device and reaction vessel used in sample treatment method
USD1029291S1 (en) 2020-12-14 2024-05-28 Becton, Dickinson And Company Single piece reagent holder

Also Published As

Publication number Publication date
JP2731613B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JP2731613B2 (en) Cartridge for enzyme immunoassay, measuring method and measuring apparatus using the same
JP3521144B2 (en) Automatic continuous random access analysis system and its components
US10775369B2 (en) Fluidic systems for analyses
EP1921439B1 (en) Measuring device, measuring instrument and method of measuring
US6214626B1 (en) Apparatus (cuvette) for taking up and storing liquids and for carrying out optical measurements
EP1278067B1 (en) Clinical analyzer with wash-free reagent dispenser
CN1161611C (en) Biosensor
US4608231A (en) Self-contained reagent package device for an assay
CA2555621C (en) Sample pick-up and metering device with integrated liquid compartments
KR102058506B1 (en) Mechanical washing and measuring device for performing analyses
EP4012410A1 (en) Magnetic particle luminescence micro-fluidic chip for multi-marker detection, and detection device
EP4012411A1 (en) Magnetic particle luminescence micro-fluidic chip for multi-marker detection, and detection device
EP0226600A1 (en) Immunoassay apparatus and method
JP2002090362A (en) Holding container for biological fluid for analysis
JP2002519700A (en) Immunoassay test kits and containers
JPH04363667A (en) Immunological automatic analyser
CN210720418U (en) Magnetic particle luminous micro-fluidic chip
JPS6319520A (en) Liquid level detector
JPH04138368A (en) Reaction container
JPH0477670A (en) Quantitative analysis using antigen/antibody reaction
JPS61118662A (en) Immunological automatic analysis
Natelson Automatic analysis of microsamples contained in capillaries with a microsample dispenser
JPS61213771A (en) Liquid specimen dripping device
JPH0664784U (en) Liquid channel cleaning device
JPH02236454A (en) Automatic immunoassay device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees