JPH0311618A - Crystalline semiconductor film and forming method thereof - Google Patents

Crystalline semiconductor film and forming method thereof

Info

Publication number
JPH0311618A
JPH0311618A JP14425489A JP14425489A JPH0311618A JP H0311618 A JPH0311618 A JP H0311618A JP 14425489 A JP14425489 A JP 14425489A JP 14425489 A JP14425489 A JP 14425489A JP H0311618 A JPH0311618 A JP H0311618A
Authority
JP
Japan
Prior art keywords
crystal
seed
original
crystalline semiconductor
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14425489A
Other languages
Japanese (ja)
Other versions
JP2766315B2 (en
Inventor
Kenji Yamagata
憲二 山方
Toshiyuki Komatsu
利行 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1144254A priority Critical patent/JP2766315B2/en
Publication of JPH0311618A publication Critical patent/JPH0311618A/en
Application granted granted Critical
Publication of JP2766315B2 publication Critical patent/JP2766315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To cause an aggregation reaction at a much lower temperature than the melting point of an original seed material and thereby to make it possible to turn the material to be of a single crystal by a method wherein a non-single- crystal film of said material processed minutely is subjected to heat treatment. CONSTITUTION:On the occasion when a part of an original seed film 2 of non- single-crystal properties is etched with a part in an arbitrary position left unetched, the film thickness and size (patterning dimensions) of original seeds 3 are selected so that the original seeds are aggregated to be a single substance by heating. Etching is executed and the original seeds are subjected to heat treatment in the atmosphere of hydrogen. In order to make a crystal grow in a solid phase, starting from seed crystals 4 thus formed, a semiconductor material 5 of non-single-crystal properties is so deposited on a base as to cover the seed crystals 4 and crystal growth is executed in the solid phase. Thereby atoms migrate to be aggregated at a temperature of a melting point or below and thus the material can be turned to be of a single crystal.

Description

【発明の詳細な説明】 [従来の技術] 非晶質絶縁物上に半導体電子素子のための半導体薄膜を
形成する方法は数多く報告されているが、近年高速デバ
イスの製作を目的とした大粒径多結晶薄膜の形成方法に
ついて特に報告が増えつつある。中でも代表的なものと
して、非晶質もしくは多結晶の半導体層をレーザーや棒
状ヒータ等の熱エネルギーによって溶融固化させ、ミリ
メートル程度もの大粒径の多結晶膜を得る方法(Sin
gle Crystal 5ilicon on no
n−3ingleCrysj、al  In5ulat
ors−Journal  [11CrysLaGro
wth  vol、63.No、3,0ctober 
 1983  edited  by  G。
[Detailed Description of the Invention] [Prior Art] Many methods have been reported for forming semiconductor thin films for semiconductor electronic devices on amorphous insulators. In particular, reports on methods for forming polycrystalline thin films with large diameters are increasing. Among them, a typical method is to melt and solidify an amorphous or polycrystalline semiconductor layer using thermal energy such as a laser or a rod-shaped heater to obtain a polycrystalline film with large grain sizes on the order of millimeters (Sin
gle crystal 5ilicon on no
n-3ingleCrysj, al In5ulat
ors-Journal [11CrysLaGro
wth vol, 63. No, 3,0ctober
1983 edited by G.

W、Cul 1en)等が挙げられる。また、非晶質の
Siを、Si結晶核の発生する臨界温度付近(約600
’C)て長時間(数十〜数百時間)熱処理して、数μm
大の平均粒径を有する多結晶薄膜を得る方法(T、No
guchi、 H,Hayashi、旧0hsh im
a 、 Po ] ys i I i conand 
Interfaces、Boston 1987.Ma
ster、Res、Soc。
W, Cul 1en), etc. In addition, amorphous Si is heated near the critical temperature at which Si crystal nuclei are generated (approximately 600°C).
'C) After long-term heat treatment (several tens to hundreds of hours), several μm
Method for obtaining polycrystalline thin films with large average grain size (T, No.
guchi, H, Hayashi, former 0hsh im
a, Po ] ys i I i conand
Interfaces, Boston 1987. Ma
ster, Res, Soc.

Symp、Proc、Vol、106(Elsevie
r 5cience Publ ishing、New
 York 198B、 p293)  などが報告さ
れている。
Symp, Proc, Vol. 106 (Elsevie
r 5science Publishing, New
York 198B, p293), etc. have been reported.

これらの技術に対して非晶質体の任意の位置に核(成長
起点)を発生させて、その核より結晶成長させることに
よって、多結晶体の粒子サイスを制御する方法が、特公
昭62−44403号公報に記されている。この方法は
、非晶質体に核の発生を誘起させる物質のイオンを、任
意の位置の極めて微細な領域にイオン注入し、その後の
加熱によってイオン注入部分に単一の核を発生させ、そ
の核より結晶を成長させるものである。
In contrast to these techniques, a method of controlling the grain size of a polycrystalline body by generating a nucleus (growth starting point) at an arbitrary position in an amorphous body and growing crystals from that nucleus was proposed in Japanese Patent Publication No. 1983- It is described in Publication No. 44403. In this method, ions of a substance that induces the generation of nuclei in an amorphous material are implanted into an extremely fine region at an arbitrary position, and then heated to generate a single nucleus in the ion-implanted area. It grows crystals from nuclei.

[発明か解決しようとしている課題] しかしなから、上記従来例ては、レーザー等による薄膜
の溶融再結晶化と非晶質体を核発生温度付近て長時間ア
ニールする技術はいずれも得られた多結晶膜中の各フレ
インの大きさ(粒径)や形か制御されていないために、
その多結晶膜−トに形成されたテハイスは、その性能に
ばらつきを生ずる恐れかある。
[Invention or problem to be solved] However, in the above conventional example, both the technology of melting and recrystallizing a thin film using a laser etc. and annealing an amorphous material for a long time near the nucleation temperature have been obtained. Because the size (grain size) and shape of each grain in the polycrystalline film are not controlled,
The high-speed film formed on the polycrystalline film may cause variations in performance.

また、非晶質体の任意の位置に核発生を誘起させるイオ
ンを注入し・ その発生した核より結晶を覗長させる方
法においては、まず第1にイオン注入領域か極めて小さ
いために 通常のICプロセスて用いられるようなフォ
トリングラフィ、エッチンダプロセスか使え唱、スルー
プウドか悪い恐れかあり 大面積化には向いていない恐
れかあるという欠点か指摘される。第2にこの方法は核
の発生後に第2加熱をして核成長させるものであるか、
その際に新たな核か発生してしまう確率か高く 核発生
の制御か困難である恐れかあることか指摘される、 そこで 本発明の目的は 前記 従来の課題を解決し、
結晶の粒径および結晶粒界 ざらに各村(フレイン)の
形か制御された結晶性半導体膜及びその形成方法を提供
することにある。
In addition, in the method of implanting ions that induce nucleation into arbitrary positions of an amorphous material and making the crystal look longer than the generated nuclei, first of all, because the ion implantation area is extremely small, it is difficult to use normal ICs. It has been pointed out that the disadvantages are that it cannot be used with photolithography or etching processes, which may cause throughput, and may not be suitable for large-area applications. Secondly, does this method involve second heating to grow the nucleus after the generation of the nucleus?
It has been pointed out that there is a high probability that new nuclei will be generated at that time, and that it may be difficult to control the generation of nuclei.Therefore, the purpose of the present invention is to solve the above-mentioned conventional problems,
The object of the present invention is to provide a crystalline semiconductor film in which the grain size and grain boundaries of grains are roughly controlled, and a method for forming the same.

[課題を解決するための手段] 本発明に従って、非単結晶性の原種子と非晶質絶縁物材
料とを有する基体上に前記原種子の変質した単結晶性の
種結晶を配し、ついて該種結晶を覆い基体上に非単結晶
質半導体材料を堆積した後、加熱処理することにより固
相で結晶生長させることを特徴とする結晶性半導体膜の
形成方法及び該方法により得られ結晶性半導体膜か提供
される。
[Means for Solving the Problems] According to the present invention, a modified single-crystalline seed crystal of the original seed is arranged on a substrate having a non-single-crystalline original seed and an amorphous insulating material, and A method for forming a crystalline semiconductor film, which comprises depositing a non-single-crystalline semiconductor material on a substrate covering the seed crystal, and then heating it to grow crystals in a solid phase; A semiconductor film is provided.

本発明においては、まず基体上の任意の位置に単結晶性
の種結晶を配するため、例えば、i)非単結晶性の原種
予成を任意の位置の部分を残して他の部分をエツチング
する際に、原種子が加熱により凝集して単一体になり得
るように後述する原種子の膜厚と大きさ(パターニンク
寸法)を選んてエツチングする。
In the present invention, in order to first arrange a single crystal seed crystal at an arbitrary position on a substrate, for example, i) a non-single crystal seed pre-preparation is performed by leaving a part at an arbitrary position and etching other parts; At the time of etching, the film thickness and size (patterning dimensions) of the original seeds, which will be described later, are selected so that the original seeds can be aggregated into a single body by heating.

】1)原種子を水素雰囲気中て加熱処理する。1) Heat-treat the original seeds in a hydrogen atmosphere.

の2過程を経る。It goes through two processes.

なお、本発明において、「原種子」とは、凝集により単
結晶性の種結晶となる非単結晶体(非晶質体または多結
晶体)である。
In the present invention, the "original seed" is a non-single crystal (amorphous or polycrystalline) that becomes a single crystal seed crystal by aggregation.

尚、本発明における「凝集」とは、物質の表面エネルギ
ーを最小にするため、もしくは内部応力を緩和するため
に 融点以下の温度て原子か移動することをいう。従っ
て、得られた凝集物は、表面エネルギーまたは内部応力
か緩和された結果、微細領域の膜から微細領域の半球状
にその外形を変化する。
In the present invention, "agglomeration" refers to the movement of atoms at a temperature below the melting point in order to minimize the surface energy of a substance or to relieve internal stress. Therefore, as a result of the relaxation of surface energy or internal stress, the obtained aggregate changes its external shape from a film of fine regions to a hemispherical shape of fine regions.

次に、このようにして形成された種結晶を起点として固
相て結晶成長させるため、例えば、種結晶を覆うように
基体上に非単結晶質(非晶質または多結晶質)半導体材
料を堆積させ、固相で結晶成長させる際に、核発生温度
T。と成長開始温度T6どの間には、 T、>T、。
Next, in order to cause crystal growth in the solid phase using the seed crystal thus formed as a starting point, for example, a non-single crystal (amorphous or polycrystalline) semiconductor material is placed on the substrate so as to cover the seed crystal. Nucleation temperature T during deposition and crystal growth in solid phase. and the growth starting temperature T6, where T,>T,.

なる関係かあることに基き 非単結晶質半導体材材中に
新たな俵か発生しないか 既に存在している核(種結晶
)からは固相成長するような温度範囲て熱処理ご施す、 このとき前記非単結晶質半導体材料には詠半導体材料を
母体としてp型 n型の電気導電けを支配する不純物を
添加し、てもよい 未発明を図面により詳し・、説明する 第1図(こ本発明の工程図を示す、。
Based on the relationship that exists, whether or not new grains are generated in the non-single-crystalline semiconductor material, heat treatment is performed at a temperature range that will allow solid-phase growth from the already existing nuclei (seed crystals). The non-single-crystalline semiconductor material may be doped with an impurity that controls p-type and n-type electrical conductivity using a non-semiconductor material as a matrix. A process diagram of the invention is shown.

第1図(a)は基体1の表面に種結晶となる材料の非単
結晶体(原種子材料)を堆積し原種予成2を形成したと
ころである。
FIG. 1(a) shows a state in which a non-single crystal of a material to be a seed crystal (original seed material) is deposited on the surface of a substrate 1 to form an original seed preform 2. As shown in FIG.

基体表面は非晶質の絶縁物であることか望ましく、例え
は、カラス、その他のセラミックス S1単結晶基板の
表面を酸化したちの等か挙げられる。また 原種子材料
としてはSi、に+:、 Sn等の単独て半導体を構成
し得る元素や GaAs等の化合物半導体 さらにはS
iJコe、 5i−3n等の混合物 Au碑、 CIl
、 Pt、 Pd等の金属 Pt−5i、 In−5n
等の合金なと、凝集し易い斗勿質てあれはよい1、第1
1”/l (b )はL記原種予成を個ノ?か単一体心
−・号果才るC−十カ微・j−な表面積となるよう 十
分微細←ニック・ターニンクして原種子を形成したとこ
ろである しかし 中一体に凝集する原種子の大きさは
 原種子の膜厚とパターンの大きさに相関かあるので一
概に決定てきない、 例えは第2図(a)に描かれているように厚さtの膜か
一辺立の大きさにバターニングされている場合、この原
種子に加熱処理を施すと第2図(a)の右側のように膜
は分断され、凝集し、単一の種結晶を形成し得ない。そ
の原因はバターニンク寸法文に対してtが小さ過ぎたた
めである。
The surface of the substrate is preferably an amorphous insulator, such as glass or other ceramics S1 single crystal substrate oxidized. In addition, raw seed materials include elements that can independently constitute semiconductors such as Si, Sn, etc., compound semiconductors such as GaAs, and even S.
Mixture of iJkoe, 5i-3n, etc. Au monument, CIl
, Pt, Pd and other metals Pt-5i, In-5n
For alloys such as, it is better to use alloys that tend to agglomerate.
1"/l (b) is the original seed preformed in the letter L, so that it becomes an individual body, a single body mind, and a surface area of 10 microns and j. However, the size of the original seeds that aggregate into a single core cannot be determined unambiguously because there is a correlation between the film thickness of the original seeds and the size of the pattern.For example, as shown in Figure 2 (a). When the original seed is buttered into a membrane with a thickness of t or a one-sided size, as shown in Figure 2 (a), when heat treatment is applied, the membrane is divided and aggregated, as shown on the right side of Figure 2 (a). A single seed crystal could not be formed because t was too small for the Butterninck dimension.

そこて第2図(b)に示すように文の大きさを変えずに
膜厚たけを厚くすると、第2図(b)の右側のように単
一に凝集することかできる。もしくは、第2図(c)の
ようにtを変えずに文だけを短かくしても、単一に凝集
することができる。本発明者らか実験を重ねた結果、原
種子を単一体にa東し得る七と文の関係は、例えば原種
子材料か多結晶Siもしくは非晶質S1である場合には
、第3図のような関係をもつことかわかった。第3図に
おいて斜線領域にある原種子が加熱処理後に単一の種結
晶に凝集し、本発明の結晶性半導体膜の形成方法に使用
する種結晶となり得る。但し、凝集反応は膜厚が厚い程
起こり難く、物質によっては、1000人程度以上にな
ると、もはや凝集か起こらなくなってしまうものもある
。そのような場合には母体となる原種子材料にリン(P
)、ホウ素(B)、ヒ素(As)等の不純物を高濃度に
トープすることも効果的である。例えば、膜厚2000
人の多結晶Si膜を原種子材料としたとき、水素雰囲気
中1000°Cでアニールしても、凝集は起こり難いか
、膜中にPか7 X 10 ”cm3程度の高濃度にド
ープされていれば、同条件でも4000人の膜か凝集す
る。
Therefore, if the film thickness is increased without changing the size of the text as shown in FIG. 2(b), it is possible to aggregate them into a single structure as shown on the right side of FIG. 2(b). Alternatively, as shown in FIG. 2(c), by shortening only the sentences without changing t, it is possible to aggregate them into a single sentence. As a result of repeated experiments by the present inventors, the relationship between 7 and 7 that can be used to transform the original seed into a single body is as shown in Figure 3, for example, when the original seed material is polycrystalline Si or amorphous S1. It turns out that there is a relationship like this. In FIG. 3, the original seeds in the shaded area aggregate into a single seed crystal after heat treatment, and can serve as a seed crystal used in the method for forming a crystalline semiconductor film of the present invention. However, the thicker the film is, the more difficult the aggregation reaction is to occur, and for some substances, aggregation no longer occurs when the number of people exceeds about 1,000. In such cases, phosphorus (P) is added to the parent seed material.
), boron (B), arsenic (As), and other impurities are also effective. For example, film thickness 2000
When a human polycrystalline Si film is used as the original seed material, even if annealed at 1000°C in a hydrogen atmosphere, aggregation is unlikely to occur, or the film is doped with P at a high concentration of about 7 x 10"cm3. If so, even under the same conditions, 4,000 people's membranes would aggregate.

次に、第1図において、上記に示したように単一体に凝
集てきる程充分微細に加工された原種子3(第1図(b
))は、次の工程で水素雰囲気中て加熱処理される。加
熱処理された原種子は第1図(c)のように凝集し、そ
のいずれもが単結晶の種結晶4に変化する。この時の加
熱処理条件は、水素の圧力に関して常圧、減圧のいすね
てもよく、温度は物質によって異なるか、その物質の融
点(絶対温度)の50〜80%程度の温度て行なう。ま
た、加熱処理における雰囲気については、水素以外ては
、凝集反応を全く起こさないか、もしくは、極めて起こ
し難いこともある。
Next, in Fig. 1, the original seeds 3 (Fig. 1 (b)
)) is heat treated in a hydrogen atmosphere in the next step. The heat-treated original seeds aggregate as shown in FIG. 1(c), and all of them transform into single-crystal seed crystals 4. The heat treatment conditions at this time may be normal pressure or reduced pressure with respect to the hydrogen pressure, and the temperature varies depending on the substance, or is carried out at a temperature of about 50 to 80% of the melting point (absolute temperature) of the substance. Furthermore, regarding the atmosphere during the heat treatment, there are cases where the agglomeration reaction does not occur at all or is extremely difficult to occur except for hydrogen.

次に第1図(d)のように種結晶を覆い、基体全面に非
単結晶質を半導体材料5を堆積する。堆積方法は堆積さ
せる物質によっても異なり、特に制限されないが、例え
ばスパッタ法、LPCVD法か一般的である。また、種
結晶と非単結晶質体材料中は前記種結晶上にエピタキシ
ャル成長する材料であれば、同じ材料であってもなくて
もさしつかえない。
Next, as shown in FIG. 1(d), the seed crystal is covered and a non-single crystal semiconductor material 5 is deposited on the entire surface of the substrate. The deposition method differs depending on the substance to be deposited, and is not particularly limited, but is commonly used, for example, by sputtering or LPCVD. Further, the seed crystal and the non-single crystal material may or may not be the same material as long as they are materials that can epitaxially grow on the seed crystal.

次に、第1図(d)ててきたものを固相アニルする。ア
ニールの条件については雰囲気はN2゜Ar、 He等
の不活性ガス雰囲気中とする。アニール温度は堆積した
非単結晶質半導体材料の核発生温度(T、、)未満て、
かつ非単結晶質体材料中に核か既に存在している場合に
はその核より成長することが可能な臨界成長温度(T6
)以上とする。尚アニール温度か600°C以下ならば
、水素雰囲気中て行なってもさしつかえない。
Next, the product prepared in FIG. 1(d) is annealed on a solid phase. Regarding the annealing conditions, the atmosphere is an inert gas atmosphere such as N2°Ar or He. The annealing temperature is below the nucleation temperature (T, ) of the deposited non-single-crystalline semiconductor material,
In addition, if a nucleus already exists in the non-single crystal material, the critical growth temperature (T6) at which the nucleus can grow
) or more. Note that as long as the annealing temperature is 600°C or less, it may be carried out in a hydrogen atmosphere.

以上のようにして、種結晶を起点に成長した単結晶粒6
は第1図(e)のように、隣接する種結晶とのほぼ中間
地点まで成長し粒界7を形成したところて成長を停止す
る。
Single crystal grain 6 grown from the seed crystal as a starting point in the above manner
As shown in FIG. 1(e), the crystals grow to approximately the midpoint between the adjacent seed crystals and stop growing when a grain boundary 7 is formed.

[実施例] 以下、本発明を実施例により説明するか、本発明は以下
に記す構成のみに何等限定されるものてはない。
[Examples] Hereinafter, the present invention will be explained by examples, but the present invention is not limited to the configurations described below.

実施例1 まず、石英基板上にLPGVDを用いて多結晶Siを1
200人堆積した。このときの条件は、原料ガスを5i
l14とし、50 SCCM、0.3Torr 、62
0°Cて行なった(第1図(a))。
Example 1 First, polycrystalline Si was deposited on a quartz substrate using LPGVD.
200 people deposited. The conditions at this time are that the raw material gas is
l14, 50 SCCM, 0.3 Torr, 62
The test was carried out at 0°C (Fig. 1(a)).

次に上記堆積した多結晶Si層を0.9 JJ、III
 X[L9p−[11の島状に10 ILm間隔て通常
のフォトリンクラフィてパターニングし、稀フッ硝酸溶
液によりエッチンク処理を施し、第1図(b)に示すよ
う1 な原種子を形成した。
Next, the deposited polycrystalline Si layer is 0.9 JJ, III
X[L9p-[11 islands were patterned at intervals of 10 ILm using normal photolink graffiti, and etched with a dilute fluoro-nitric acid solution to form 1 original seeds as shown in FIG. 1(b).

次に、上記原種子の形成された基板を常圧水素雰囲気中
、1050°C13分間の加熱処理をし、凝集を起させ
、原種子を単結晶性の種結晶へと変質させた(第1図(
C))。
Next, the substrate on which the original seeds were formed was heat-treated at 1050°C for 13 minutes in a hydrogen atmosphere at normal pressure to cause aggregation and transform the original seeds into single-crystalline seed crystals (first figure(
C)).

次にLPGVD法により種結晶を覆うように非晶質Si
膜を厚さ2000人堆積した。この時のLPGVDの条
件は、原料ガスをSiH4とし、503CCM、0.3
Torr、560°Cて行なった(第1図(d))。
Next, amorphous Si was deposited to cover the seed crystal using the LPGVD method.
A film was deposited to a thickness of 2000 nm. The LPGVD conditions at this time were as follows: raw material gas was SiH4, 503 CCM, 0.3
Torr, 560°C (Fig. 1(d)).

次に、これを窒素雰囲気中で非晶質Si膜中に核か形成
され、より低い温度である585°Cて200時間アニ
ールした。すると非晶質中から新たな結晶核を発生させ
ることなしに種結晶から固相成長してゆき、丁度隣接す
る種結晶同士の中間付近て粒界を形成した(第1図(e
))。このとき原種子のパターニングを前述したとおり
10μm間隔の格子点上に形成したため、得られた結晶
性Si薄膜は一辺か10 p−mの正方形領域内を単結
晶とするものか整列したものてあった。
Next, this was annealed at a lower temperature of 585° C. for 200 hours to form nuclei in the amorphous Si film in a nitrogen atmosphere. Then, solid-phase growth started from the seed crystal without generating new crystal nuclei from the amorphous state, and a grain boundary was formed exactly in the middle between adjacent seed crystals (Fig. 1(e)
)). At this time, since the original seed was patterned on lattice points with an interval of 10 μm as described above, the obtained crystalline Si thin film had either a single crystal on one side or a square area of 10 μm, or an aligned one. Ta.

実施例2 2 ガラス基板上にスパッタ法により多結晶Ge(ゲルマニ
ウム)膜を厚さ200人堆積した。この堆積膜を通常の
EB(電子線)露光技術を用いて0.3ルmX0Jμm
の圧力形でioルm間隔にパターニングし、他の領域を
エツチングし、島状部分を原種子とした。
Example 2 2 A polycrystalline Ge (germanium) film was deposited to a thickness of 200 mm on a glass substrate by sputtering. This deposited film was 0.3 m x 0 J μm using ordinary EB (electron beam) exposure technology.
The seeds were patterned at iolm intervals using a pressure of 100 mL, other areas were etched, and the island-shaped portions were used as original seeds.

上記原種子を配したカラス基板を水素雰囲気中、650
℃て2分間の熱処理をした。多結晶Ge膜からなる原種
子は凝集を起こし、単結晶の種結晶Geになった。
The glass substrate with the original seeds placed on it was placed in a hydrogen atmosphere for 650 min.
A heat treatment was performed at ℃ for 2 minutes. The original seed consisting of a polycrystalline Ge film agglomerated and became a single crystal seed crystal Ge.

以降は実施例1と同様にして非晶質Si膜を堆積し、ア
ニールした結果、実施例1と同様の結晶性Si薄膜か得
られた。
Thereafter, an amorphous Si film was deposited in the same manner as in Example 1, and as a result of annealing, a crystalline Si thin film similar to that in Example 1 was obtained.

実施例3 まず、石英基板」−に、実施例1と同様にしてLPGV
D法により厚さ2000人の多結晶Si膜を堆積した。
Example 3 First, LPGV was applied to a quartz substrate in the same manner as in Example 1.
A polycrystalline Si film with a thickness of 2000 nm was deposited by the D method.

次に、多結晶Si堆積膜中に、不純物として:1lll
f″(ワン)イオンを、イオンインブランターで2×1
0 ”cm””、30 keVて注入した。
Next, in the polycrystalline Si deposited film, as an impurity: 1llll
f'' (one) ion in 2×1 with ion implanter
The injection was performed at 0 ``cm'''' and 30 keV.

次に、リンがトープされた前記Si膜を通常のフォトリ
ソクラフィ技術により]、、2 gm xl、2 gr
nの正方形て10 p−m間隔にパターニングし、これ
を原種子とした。
Next, the phosphorus-topped Si film is formed by a normal photolithography technique], 2 gm xl, 2 gr
The seeds were patterned into n squares at intervals of 10 pm and used as original seeds.

次に水素雰囲気中、960°C71分間の熱処理をし、
凝集させ、単結晶化した。
Next, heat treatment was performed at 960°C for 71 minutes in a hydrogen atmosphere.
It was aggregated and made into a single crystal.

以降は実施例1と同様にして非晶質Si膜を堆積し、ア
ニールした結果、実施例1と同様に粒径及び粒界の位置
の制御された結晶性Si薄膜が得られた。
Thereafter, an amorphous Si film was deposited and annealed in the same manner as in Example 1, and as a result, a crystalline Si thin film with controlled grain size and grain boundary position was obtained as in Example 1.

[発明の効果] 本発明によれば、微細に加工された原種子材料の非単結
晶体膜を加熱処理することにより、その材料のもつ融点
より、はるかに低い温度て凝集反応を起こし、単結晶化
することかてきる。
[Effects of the Invention] According to the present invention, by heat-treating the non-single-crystalline film of the finely processed original seed material, an agglomeration reaction occurs at a temperature far lower than the melting point of the material, resulting in a monocrystalline film. It can be crystallized.

これを利用して、基体」二の任意の点に上記単結晶の種
結晶を配し、次にその上に非単結晶質半導体材料の層を
形成し、該種結晶より、結晶を固相成長させることによ
り、結晶性半導体膜中のグレインサイズ、グレインの形
、粒界の位置を制御てきるようになった。また、従来の
ように非単結晶質体中て、核発性を制御するのてなく、
核(種結晶)の形成と結晶成長を全く別のプロセスにす
ることにより、歩留りよく、しかも再現性よく、大粒径
の結晶性半導体膜か得られるようになった。
Utilizing this, the above-mentioned single crystal seed crystal is placed at an arbitrary point on the substrate, and then a layer of non-single crystal semiconductor material is formed on it, and the crystal is grown into a solid phase from the seed crystal. Through growth, it has become possible to control the grain size, grain shape, and grain boundary position in a crystalline semiconductor film. In addition, it is not possible to control nucleation in non-single crystal bodies as in the past.
By making the formation of nuclei (seed crystals) and crystal growth completely separate processes, it has become possible to obtain large-grain crystalline semiconductor films with good yield and good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の形成方法を示す工程図、第2図は原種
子膜の凝集により単一の種結晶か形成される場合、形成
されない場合のモデル図、第3図は原種子膜か単一の種
結晶に成り得る膜厚とパターヱンク寸法の相関図(原種
子材−料はSi)である。 1・・・基体 2・・・原種子膜 3・・・原種子 4・・・種結晶 5・・・非単結晶質半導体材料 6・・・単結晶粒 7°°°結晶粒界 F埋入 弁理士 山 下 穣 5 115− 図 ・′T−Uこネ+:lV j:F5書 平成 1年 8月1(月」
Fig. 1 is a process diagram showing the formation method of the present invention, Fig. 2 is a model diagram of cases in which a single seed crystal is formed by aggregation of the original seed membrane and when it is not formed, and Fig. 3 is a model diagram of the cases in which a single seed crystal is formed by aggregation of the original seed membrane. This is a correlation diagram between the film thickness that can form a single seed crystal and the pattern dimension (original seed material is Si). 1... Substrate 2... Original seed film 3... Original seed 4... Seed crystal 5... Non-single crystal semiconductor material 6... Single crystal grain 7°°° Grain boundary F buried Joined Patent Attorney Minoru Yamashita 5 115- Fig. 'T-U Kone +: lV j: F5 book August 1, 1999 (Monday)

Claims (7)

【特許請求の範囲】[Claims] (1)非単結晶性の原種子と非晶質絶縁物材料とを有す
る基体上に前記原種子の変質した単結晶性の種結晶を配
し、ついで該種結晶を覆い基体上に非単結晶質半導体材
料を堆積した後、加熱処理することにより固相で結晶成
長させることを特徴とする結晶性半導体膜の形成方法。
(1) A modified single crystal seed crystal of the original seed is placed on a substrate having a non-monocrystalline original seed and an amorphous insulating material, and then the seed crystal is covered and a non-monocrystalline seed crystal is placed on the substrate. A method for forming a crystalline semiconductor film, which comprises depositing a crystalline semiconductor material and then performing heat treatment to grow crystals in a solid phase.
(2)前記原種子の変質した単結晶性の種結晶は、前記
原種子をその融点未満の温度で加熱処理することにより
形成する請求項1記載の結晶性半導体膜の形成方法。
(2) The method for forming a crystalline semiconductor film according to claim 1, wherein the modified single crystal seed crystal of the original seed is formed by heat treating the original seed at a temperature below its melting point.
(3)前記原種子は、加熱処理により凝集するに十分微
小な表面積を有する請求項1記載の結晶性半導体膜の形
成方法。
(3) The method for forming a crystalline semiconductor film according to claim 1, wherein the original seed has a sufficiently small surface area to be aggregated by heat treatment.
(4)前記原種子は、水素雰囲気中で加熱処理される請
求項1記載の結晶性半導体膜の形成方法。
(4) The method for forming a crystalline semiconductor film according to claim 1, wherein the original seed is heat-treated in a hydrogen atmosphere.
(5)前記加熱処理の温度は、種結晶を起点として結晶
成長し得るが、非単結晶質半導体材料中に核を発生し得
ない温度である請求項1、2記載の結晶性半導体膜の形
成方法。
(5) The crystalline semiconductor film according to claim 1 or 2, wherein the temperature of the heat treatment is such that the crystal can grow from the seed crystal as a starting point, but cannot generate nuclei in the non-single crystal semiconductor material. Formation method.
(6)前記非晶質半導体材料は、シリコンを母体とする
請求項1〜3記載の結晶性半導体膜の形成方法。
(6) The method for forming a crystalline semiconductor film according to any one of claims 1 to 3, wherein the amorphous semiconductor material has silicon as its base material.
(7)請求項1〜6の方法により得られた結晶性半導体
膜。
(7) A crystalline semiconductor film obtained by the method of claims 1 to 6.
JP1144254A 1989-06-08 1989-06-08 Semiconductor manufacturing method Expired - Fee Related JP2766315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1144254A JP2766315B2 (en) 1989-06-08 1989-06-08 Semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1144254A JP2766315B2 (en) 1989-06-08 1989-06-08 Semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPH0311618A true JPH0311618A (en) 1991-01-18
JP2766315B2 JP2766315B2 (en) 1998-06-18

Family

ID=15357825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1144254A Expired - Fee Related JP2766315B2 (en) 1989-06-08 1989-06-08 Semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP2766315B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521798A (en) * 1991-02-18 1993-01-29 Alps Electric Co Ltd Thin-film transistor
KR100578821B1 (en) * 2004-08-24 2006-05-11 삼성전자주식회사 Method of manufacturing a thin layer
US8048773B2 (en) 2009-03-24 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127117A (en) * 1984-11-24 1986-06-14 Sony Corp Method for forming polycrystalline semiconductor thin film
JPS6276715A (en) * 1985-09-30 1987-04-08 Sony Corp Forming method for single crystal silicon thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127117A (en) * 1984-11-24 1986-06-14 Sony Corp Method for forming polycrystalline semiconductor thin film
JPS6276715A (en) * 1985-09-30 1987-04-08 Sony Corp Forming method for single crystal silicon thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521798A (en) * 1991-02-18 1993-01-29 Alps Electric Co Ltd Thin-film transistor
KR100578821B1 (en) * 2004-08-24 2006-05-11 삼성전자주식회사 Method of manufacturing a thin layer
US8048773B2 (en) 2009-03-24 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate

Also Published As

Publication number Publication date
JP2766315B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
EP0472970B1 (en) Process for growing crystalline thin film
JPS59155121A (en) Manufacture of semiconductor thin film
JPH03290924A (en) Manufacture of crystalline silicon film, crystalline silicon semiconductor utilizing the same and its manufacture
JPH0311618A (en) Crystalline semiconductor film and forming method thereof
JPH04152624A (en) Manufacture of thin film semiconductor device
JP2756320B2 (en) Crystal formation method
JP3102772B2 (en) Method for producing silicon-based semiconductor thin film
JP2800060B2 (en) Method for manufacturing semiconductor film
JPH02140916A (en) Crystal growth of semiconductor thin film
EP0390607B1 (en) Process for forming crystalline semiconductor film
JPH059099A (en) Method for growing crystal
JP2687393B2 (en) Method for manufacturing semiconductor device
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JPS6191917A (en) Manufacture of semiconductor thin film crystal
JP3217419B2 (en) Crystal film formation method
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JP2603351B2 (en) Crystal growth method and crystal article obtained by the method
JPH01187873A (en) Manufacture of semiconductor device
JPH05109638A (en) Method for forming polycrystalline silicon film
JPH04373171A (en) Forming method of semiconductor crystal article
JP2833878B2 (en) Method of forming semiconductor thin film
JP2737152B2 (en) SOI forming method
JP2541456B2 (en) Microstructure fabrication method
JPH02238617A (en) Crystal growth of semiconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees