JPH028860B2 - - Google Patents

Info

Publication number
JPH028860B2
JPH028860B2 JP24386583A JP24386583A JPH028860B2 JP H028860 B2 JPH028860 B2 JP H028860B2 JP 24386583 A JP24386583 A JP 24386583A JP 24386583 A JP24386583 A JP 24386583A JP H028860 B2 JPH028860 B2 JP H028860B2
Authority
JP
Japan
Prior art keywords
work
instruction device
order
station
work instruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24386583A
Other languages
Japanese (ja)
Other versions
JPS60135165A (en
Inventor
Kazumi Sogabe
Sadao Shimosha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58243865A priority Critical patent/JPS60135165A/en
Publication of JPS60135165A publication Critical patent/JPS60135165A/en
Publication of JPH028860B2 publication Critical patent/JPH028860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Multi-Process Working Machines And Systems (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、複数の作業ステーシヨンを経て製品
を完成させる生産職場におけるジヨブシヨツプの
作業順序決定に係り、特に、納期遵守を目的と
し、生産変動に対応して、作業順序変更をタイム
リーに行なうのに好適なスケジユーリング方式に
関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to determining the work order of jobs in a production workplace where a product is completed through a plurality of work stations. The present invention relates to a scheduling method suitable for changing the work order in a timely manner.

〔発明の背景〕[Background of the invention]

従来のジヨブシヨツプにおける作業順序決定の
ためのスケジユーリングでは、中央コンピユータ
を用いて、集中バツチ的に処理を行なつていた。
このため中央コンピユータでは、設備の故障や特
急作業の割込み等による生産変動に対して、その
都度対応することは困難であつた。また、各作業
ステーシヨンの作業日程の処理は、上記の方法に
よるものであつたため、現場における目標である
納期遵守ができない可能性が高くなり、スケジユ
ーリングの一部が無効になるという欠点があつ
た。
In conventional scheduling for determining the order of work in a job shop, a central computer is used to perform processing in centralized batches.
For this reason, it has been difficult for the central computer to respond to production fluctuations due to equipment failures, interruptions in express work, etc. on a case-by-case basis. In addition, since the work schedule for each work station was processed using the method described above, there was a high possibility that the delivery date, which was the goal at the site, could not be met, and there was a drawback that part of the scheduling would be invalidated. Ta.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の大型コンピユータによ
るジヨブシヨツプスケジユーリングの欠点をなく
し、納期を守れると同時に、製品の作業の進度状
況に即応して、各作業ステーシヨンでの作業日程
をすぐに変更できるようなジヨブシヨツプスケジ
ユーリング方式を提供することにある。
The purpose of the present invention is to eliminate the disadvantages of job scheduling using large computers as described above, to meet delivery deadlines, and at the same time, to immediately change the work schedule at each work station in response to the progress of product work. The object of the present invention is to provide a job scheduling method that allows for efficient job scheduling.

〔発明の概要〕[Summary of the invention]

かかる目的のため本発明は、まず、納期を守る
ことを考慮して、各作業ステーシヨンの中でネツ
クとなつている作業ステーシヨンを検出し、その
作業ステーシヨンを中心として、各作業ステーシ
ヨンでの製品の作業順序を決定していくようにし
たものである。この場合の決定方法につき、以下
その原理並びに概要を述べる。
For this purpose, the present invention first detects the work station that is the network among the work stations in order to meet the delivery deadline, and then uses that work station as the center to manage the products at each work station. It is designed to determine the order of work. The principle and outline of the determination method in this case will be described below.

(1) ネツクになる作業ステーシヨンの検出 各作業ステーシヨンに作業が配分されること
によつて、その作業ステーシヨンでは、生産速
度、平均リードタイム(作業時間+作業待ち時
間)、平均仕掛量、稼動率が求められる。また、
これらの値より、全体の生産速度、リードタイ
ムも算出できる。本方法は、例えば、J.
Solbergによつて1976年、Proc.AIIE Systems
Engineering Conferenceに、閉ネツトワーク
モデルを想定して計算する方法が報告されたも
のなどを利用することができる。
(1) Detection of networked work stations By allocating work to each work station, the production speed, average lead time (work time + work waiting time), average amount of work in progress, and operation rate are determined at each work station. is required. Also,
From these values, the overall production speed and lead time can also be calculated. This method can be used, for example, in J.
1976 by Solberg, Proc.AIIE Systems
You can use the method reported at the Engineering Conference on a calculation method assuming a closed network model.

そして、それらの値により、作業ステーシヨ
ンの状態も把握できるとともに、負荷量が最も
大きい作業ステーシヨンをネツクとなる作業ス
テーシヨンとして検出する。
Based on these values, the status of the work station can be grasped, and the work station with the largest load amount is detected as the work station that is the link.

(2) 機械干渉の制約 1台の設備では、同時に2個以上の作業はで
きない。これを機械干渉の制約と定義する。
(2) Restrictions on mechanical interference One piece of equipment cannot perform two or more operations at the same time. This is defined as a mechanical interference constraint.

いま、P1個目の製品の第q工程目の作業を
J(P1、q1)とする。ある機械において、作業
J(P1、q1)に作業がなされているとき、次に
行なう作業J(P2、q2)には、次の関係式が成
り立つ。
Now, let J(P 1 , q 1 ) be the q-th process operation for P 1 -th product. In a certain machine, when work J (P 1 , q 1 ) is being performed, the following relational expression holds for the next work J (P 2 , q 2 ).

J(P3、q3)の着手可能時刻=J(P1、q1)の完了時
刻+J(P2、q2)の作業時間 (3) 先行関係の制約 製品Pのq番目の作業は(q−1)番目の作
業が完了してからでないと着手できない。これ
を作業の先行関係の制約と定義する。この制約
を次式で示す。
Possible start time for J (P 3 , q 3 ) = Completion time for J (P 1 , q 1 ) + Working time for J (P 2 , q 2 ) (3) Constraints on precedence relationship The qth work for product P is It cannot be started until the (q-1)th task is completed. This is defined as a constraint on the precedence relationship of work. This constraint is expressed by the following equation.

J(P、q)の着手可能時刻 ≧J(P、q−1)の着手可能時刻 +J(P、q−1)の作業時間 上記(1)〜(3)を考慮してスケジユーリングをす
る。このとき、検出したネツク工程を中心として
前工程、後工程のスケジユーリングをしていく。
これらの処理は第1図a,bで示すように該当作
業指示装置2−1〜2−3で行なう処理(作業量
把握、生産速度予測等)、速度監視装置1で行な
う処理(ネツク工程検出等)そして各装置の情報
授受で行なう処理(機械干渉削除等)に分類でき
る。そこで、各作業指示装置2−1〜2−3単位
に各々1つのパーソナルコンピユータ、速度監視
装置1にも1つのパーソナルコンピユータを割り
当て、それらをローカルネツトワーク3で結合す
れば、ジヨブシヨツプスケジユーリング処理の分
散処理が可能となる。
J (P, q)'s possible start time ≧J (P, q-1)'s possible start time +J (P, q-1)'s work time Schedule in consideration of (1) to (3) above. do. At this time, the preceding and subsequent processes are scheduled around the detected network process.
As shown in FIG. 1a and b, these processes include the processing performed by the corresponding work instruction devices 2-1 to 2-3 (work amount grasp, production speed prediction, etc.), and the processing performed by the speed monitoring device 1 (neck process detection, etc.). etc.) and processing performed by each device to exchange information (machine interference deletion, etc.). Therefore, if one personal computer is assigned to each of the work instruction devices 2-1 to 2-3, and one personal computer is assigned to the speed monitoring device 1, and these are connected via the local network 3, the job Distributed ring processing becomes possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図〜第6図によ
り説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 6.

第2図が全体のコンピユータシステムの構成図
である。本システムは、ローカルネツクワーク3
と、各作業ステーシヨンにおける生産速度を算出
する複数の作業指示装置2−1,2−2,2−
3,2−4とこの生産速度の情報を各作業指示装
置2−1,2−2,2−3,2−4より、ローカ
ルネツトワーク3を通して受け、この情報に基づ
き、負荷量の最も大きい作業ユニツトを検出し、
機械干渉を取り除く作業指示装置を決める速度監
視装置1、およびローカルネツトワーク3と各装
置2−1〜2−4、1を結合するデータ送受信コ
ントローラ4−1,4−2,4−3,4−4,4
−5、並びに終端抵抗5−1,5−2より構成さ
れる。
FIG. 2 is a block diagram of the entire computer system. This system uses local network 3
and a plurality of work instruction devices 2-1, 2-2, 2- that calculate the production speed at each work station.
3, 2-4, and this production speed information is received from each work instruction device 2-1, 2-2, 2-3, 2-4 through the local network 3, and based on this information, the machine with the largest load is detect the work unit,
A speed monitoring device 1 that determines a work instruction device to eliminate mechanical interference, and a data transmission/reception controller 4-1, 4-2, 4-3, 4 that connects the local network 3 and each device 2-1 to 2-4, 1. -4,4
-5, and terminating resistors 5-1 and 5-2.

作業指示装置2−1〜2−4では、自分の作業
ステーシヨンの生産速度を計算し、速度監視装置
1に報告する他に、速度監視装置1よりネツク工
程になる作業指示装置と指定された場合は、決め
られた優先順位で干渉を取除く。
The work instruction devices 2-1 to 2-4 calculate the production speed of their own work station and report it to the speed monitoring device 1. In addition, they also calculate the production speed of their own work station and report it to the speed monitoring device 1. removes interference in a determined priority order.

それによつて、前倒しされた場合はその前工程
の作業指示装置へと連絡し、同様に後倒しされた
場合は、その後工程の作業指示装へと連絡してい
く。以下、同様の処理を繰り返して作業スケジユ
ールを更新していくが、ネツク工程が、予め与え
られたスケジユール期間を超えた場合もしくは、
各作業ステーシヨンの機械干渉が無くなつた場合
は、処理を終了する。
As a result, if the work has been moved forward, the work instruction device for the previous process is contacted, and similarly, if the work has been moved back, the work instruction device for the subsequent process is contacted. Thereafter, the work schedule is updated by repeating the same process, but if the network process exceeds the schedule period given in advance, or
When there is no mechanical interference at each work station, the process ends.

次に、第3図に具体的な例題を提示し、第4
図、第6図で本方式の分散処理によるスケジユー
ルの作成経過を、第5図に機械干渉削除、着手可
能時間の修正の処理のフローチヤート図(第6図
の処理の説明)を示し、以下これらの図に従つて
処理手順を説明する。
Next, we present a concrete example in Figure 3, and
Figures 6 and 6 show the progress of creating a schedule by distributed processing using this method, and Figure 5 shows a flowchart of the process of removing machine interference and correcting the startable time (explanation of the process shown in Figure 6). The processing procedure will be explained according to these figures.

第3図は対象製品が3つ、対象作業ステーシヨ
ンがM1、M2、M3、M4(作業指示装置2−1,
2−2,2−3,2−4に対応)の4つの場合の
例で、各製品には、製品が通る工程経路および各
作業ステーシヨンでの使用設備、作業時間が与え
られている。
In Figure 3, there are three target products, and target work stations are M1, M2, M3, and M4 (work instruction device 2-1,
In the four cases (corresponding to 2-2, 2-3, and 2-4), each product is given a process route that the product takes, equipment used at each work station, and work time.

第4図は、各作業の先行関係の制約のみで作業
ステーシヨンに作業を配分したときのM1〜M4の
各作業指示置2−1〜2−4の状態を各作業に要
する時間(着手〜終了時間)で示している。この
時、各作業指示装置2−1〜2−4において、先
に述べたとおり、例えば、J.Solbergの方法で生
産速度を予測し、速度監視装置1でネツク工程を
検出する。以下、処理は第5図のフローチヤート
で示す手順で行なわれる。まず第4図に示す情報
をもとにM1〜M4の各作業指示装置2−1〜2−
4で生産速度を夫々予測して(ステツプ101)、
通信回線3を通して速度監視装置1に送信する。
速度監視装置1では、これらの情報をもとにネツ
ク工程として使用設備M4を検出したとすると
(ステツプ102)、M4の作業指示装置2−4へ
ネツク工程であることを知らせ、M4について機
械干渉の削除を行なわしめる(ステツプ103)。
Figure 4 shows the state of each work instruction station 2-1 to 2-4 (M1 to M4) when the work is distributed to the work stations based only on the constraints of the preceding relationship of each work, and the time required for each work (from start to finish). time). At this time, each of the work instruction devices 2-1 to 2-4 predicts the production speed using, for example, J. Solberg's method, as described above, and the speed monitoring device 1 detects a missing process. Hereinafter, the processing is performed according to the procedure shown in the flowchart of FIG. First, based on the information shown in Fig. 4, each work instruction device 2-1 to 2- of M1 to M4 is
4, predict the production speed (step 101),
It is transmitted to the speed monitoring device 1 through the communication line 3.
If the speed monitoring device 1 detects equipment M4 to be used as a neck process based on this information (step 102), it notifies the work instruction device 2-4 of M4 that it is a neck process, and prevents machine interference regarding M4. is deleted (step 103).

そしてネツク工程M4の作業指示装置2−4か
ら後工程に関して着手可能時刻を修正するよう作
業指示装置2−2に依頼する(部品02、工程
M2について、17〜20を19〜22に修正)(ステツプ
104)また、M4から前工程に関しても着手可
能時刻を修正するよう作業指示装置2−3,2−
2,2−1に依頼する(部品01について、工程
M3:7〜10を3〜6、工程M2:5〜7を1〜
3、工程M1:0〜5を−4〜1に修正)(ステツ
プ105)。ここで、あらかじめ与えられていた
時刻より前倒しになるときは督促の指示を送り
(部品01、工程M1〜M3について指示(ステツプ
106)、また、同時に、ネツク工程の全ての前
工程に、ネツク工程の前工程であるという情報を
送る(第6図*印)。ここまでが、第6図aの状
態である。
Then, the work instruction device 2-4 of the network process M4 requests the work instruction device 2-2 to correct the start time for the subsequent process (part 02, process
Regarding M2, 17-20 is corrected to 19-22) (Step 104) Work instruction devices 2-3, 2-
2, Request to 2-1 (for part 01, process
M3: 3-6 for 7-10, Process M2: 1-6 for 5-7
3. Process M1: Correct 0 to 5 to -4 to 1) (Step 105). Here, if the time is moved forward from the pre-given time, a reminder instruction is sent (instruction for part 01, processes M1 to M3 (step 106), and at the same time, all previous processes of the net process are (marked with * in Fig. 6).The state up to this point is the state shown in Fig. 6a.

以下、各作業指示装置2−1〜2−4内で、機
械干渉を取り除き(ステツプ107)、それぞれ、
前工程同志、後工程同志で着手可能時刻の修正指
示を依頼し(ステツプ108)、第7図bの状態
を得て処理が終了する。
Thereafter, in each work instruction device 2-1 to 2-4, mechanical interference is removed (step 107), and each
The preceding process and the subsequent process request an instruction to correct the startable time (step 108), and the process ends with the state shown in FIG. 7b obtained.

以後、各作業ステーシヨンで実績があがる度に
生産速度を監視し、ネツク工程の検出以下、本処
理を各装置をもつて行なう。
Thereafter, the production speed is monitored every time the results are improved at each work station, and after the detection of the net process, this process is performed using each device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、大型計算機によるバツチ処理
に比べて、作業の特急作業の割込みや設備の故障
等による生産変動に即応し、ネツク工程を中心と
して全体のスピードを管理することにより、あら
かじめ設定した日程を守る方向でのスケジユール
変更がリアルタイムで設定できるので、作業者ま
たは設備の遊休時間や製品の納期の遅延を無くし
た生産活動を実現する効果がある。
According to the present invention, compared to batch processing using large-scale computers, it is possible to quickly respond to production fluctuations due to interruptions in urgent work or equipment failures, and to manage the overall speed with a focus on network processes. Since schedule changes can be made in real time to maintain the schedule, it is effective in realizing production activities that eliminate idle time of workers or equipment and delays in product delivery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による機能と処理の概要図、第
2図は本発明の適用される装置の1例を示す構成
図、第3図は本発面を説明するための例題を示す
図、第4図は各ステーシヨンに配分された作業量
の状態を示す図、第5図は本発明による処理手順
の1例を示すフローチヤート、第6図は本発明に
よるスケジユールの作成経過の状態を示す図であ
る。 1……速度監視装置、2−1,2−2,2−
3,2−4……作業指示装置、3……通信回線、
4−1,4−2,4−3,4−4,4−5……デ
ータ送受信コントローラ、5−1,5−2……終
端抵抗。
FIG. 1 is a schematic diagram of functions and processing according to the present invention, FIG. 2 is a configuration diagram showing an example of a device to which the present invention is applied, and FIG. 3 is a diagram showing an example problem for explaining the present invention. FIG. 4 is a diagram showing the state of the amount of work distributed to each station, FIG. 5 is a flowchart showing an example of the processing procedure according to the present invention, and FIG. 6 is a diagram showing the progress of schedule creation according to the present invention. It is a diagram. 1...Speed monitoring device, 2-1, 2-2, 2-
3, 2-4...Work instruction device, 3...Communication line,
4-1, 4-2, 4-3, 4-4, 4-5...Data transmission/reception controller, 5-1, 5-2...Terminal resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の作業ステーシヨンを経ながら、順次作
業が付加されて、製品が完成される生産職場にお
けるジヨブシヨツプの作業順序決定のためのスケ
ジユール方法において、各作業ステーシヨンに設
置された作業指示装置にて、作業量を把握し、生
産速度を検出して、その情報を、各作業指示装置
を結合する通信装置を介して、速度監視装置に送
信し、前記速度監視装置にて、各作業指示装置よ
り送られてくる前記生産速度情報をもとに各作業
ステーシヨンの中で最も負荷の大きいネツク工程
を検出して、その情報を前記通信装置を介して当
該ネツク工程となる作業ステーシヨンの作業指示
装置に送信し、前記速度監視装置により指定され
た作業指示装置において、機械干渉を取り除くべ
く、同じ時刻に同一機械に作業が割り付けられる
ことのないように作業順序を決定し、当該ネツク
工程を中心として前記通信装置を介して後工程も
しくは前工程の作業ステーシヨンの作業指示装置
に作業着手可能時刻の修正依頼を行ない、順次各
作業指示装置にて前記作業着手可能時刻の修正依
頼に基づき当該工程における機械干渉を取り除く
べく作業順序を決定するようにしたことを特徴と
する分散型スケジユール方法。
1. In a scheduling method for determining the work order of a job in a production workplace where work is added sequentially through multiple work stations to complete a product, a work instruction device installed at each work station is used to The quantity is grasped, the production speed is detected, and the information is sent to a speed monitoring device via a communication device that connects each work instruction device, and the information is sent from each work instruction device by the speed monitoring device. Based on the production speed information received, the network process with the largest load among each work station is detected, and the information is transmitted via the communication device to the work instruction device of the work station that is the network process. In the work instruction device designated by the speed monitoring device, in order to eliminate machine interference, the work order is determined so that work is not assigned to the same machine at the same time, and the communication device A request is sent to the work instruction device of the work station in the subsequent process or the previous process to correct the work start time, and each work instruction device sequentially removes machine interference in the process based on the request for correction of the work start time. A distributed scheduling method characterized in that the order of work is determined according to the order of work.
JP58243865A 1983-12-26 1983-12-26 Distributed scheduling system Granted JPS60135165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243865A JPS60135165A (en) 1983-12-26 1983-12-26 Distributed scheduling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243865A JPS60135165A (en) 1983-12-26 1983-12-26 Distributed scheduling system

Publications (2)

Publication Number Publication Date
JPS60135165A JPS60135165A (en) 1985-07-18
JPH028860B2 true JPH028860B2 (en) 1990-02-27

Family

ID=17110121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243865A Granted JPS60135165A (en) 1983-12-26 1983-12-26 Distributed scheduling system

Country Status (1)

Country Link
JP (1) JPS60135165A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233763A (en) * 1984-05-04 1985-11-20 Asics Corp Line balance control system of production process
JPS6226510A (en) * 1985-07-26 1987-02-04 Mitsubishi Electric Corp Process plan information processor
JP2504008B2 (en) * 1986-12-09 1996-06-05 トヨタ自動車株式会社 Production control method
JP3110102B2 (en) * 1991-09-27 2000-11-20 富士通株式会社 Product production planning equipment in batch plant

Also Published As

Publication number Publication date
JPS60135165A (en) 1985-07-18

Similar Documents

Publication Publication Date Title
KR100275639B1 (en) Production controller capable of controlling work start in each facility of a facility group taking buffer capacity of the facility group into consideration
JP3741562B2 (en) Production plan creation method and apparatus
JP2746264B2 (en) Work management method and management device
JPH07113843B2 (en) Subsystem cooperation method
CN108803553A (en) Work order executes method and device, medium, numerically-controlled machine tool and production management system
CN116192907B (en) Industrial Internet of things monitoring method and system based on service sub-platform
CN111209091B (en) Scheduling method of Spark task containing private data in mixed cloud environment
JPH09259181A (en) Work flow managing system
JPH028860B2 (en)
JPH03251351A (en) Production progress management device
JPS58201105A (en) Process controlling system
JPS6020845A (en) Job shop scheduling method using distributed processing system
JPH1050571A (en) Method and device for controlling production
JPH0573574A (en) Production controller
JP3466750B2 (en) Dynamic scheduling method and system
JPH04176545A (en) Production planning device
JPH069005B2 (en) Production progress control system
JP2663890B2 (en) Production control device
JPH04348856A (en) Work starting order deciding system
JPS5945503A (en) Indicating system of work
JPH07192051A (en) Manufacturing schedule preparation device
JP2000198050A (en) Buffer control device and processing system
JPH05108138A (en) Producing plan preparing device
TW200412518A (en) Front end dispatching method and system for long batch processing equipment in semiconductor manufacturing
JPH09225787A (en) Device and method for production control