JPH0275340A - Adsorbing body - Google Patents

Adsorbing body

Info

Publication number
JPH0275340A
JPH0275340A JP63227212A JP22721288A JPH0275340A JP H0275340 A JPH0275340 A JP H0275340A JP 63227212 A JP63227212 A JP 63227212A JP 22721288 A JP22721288 A JP 22721288A JP H0275340 A JPH0275340 A JP H0275340A
Authority
JP
Japan
Prior art keywords
adsorbed
adsorbent
component
components
affinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63227212A
Other languages
Japanese (ja)
Inventor
Makoto Arai
誠 荒井
Hideki Fukuda
秀樹 福田
Tsutomu Okuyama
奥山 勉
Nobutaka Tani
敍孝 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP63227212A priority Critical patent/JPH0275340A/en
Publication of JPH0275340A publication Critical patent/JPH0275340A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To provide an adsorbing body having excellent adsorption capabilities which sufficiently remove harmful components and excessive components, etc., by limiting voids in an adsorbing body relative to components to be adsorbed within a specified range. CONSTITUTION:In an adsorbing body which selectively remove harmful components from humor such as blood, the ratio of volume of void in an adsorbing body which can accommodate components to be adsorbed and removed to the apparent volume of the adsorbing body, i.e., efficient voids of adsorbing body, is in the range of 0.4-0.96. Said adsorbing body is a body, wherein compounds having affinity for components to be adsorbed are immobilized on water-insoluble porous carriers or water-insoluble porous carriers themselves have affinity for components to be adsorbed. Adsorbing bodies thus prepared have excellent adsorption capabilities and can sufficiently remove harmful components and excessive components, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は血液などの体液中から有害成分を選択的に除去
する吸着体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an adsorbent that selectively removes harmful components from body fluids such as blood.

[従来の技術・発明が解決しようとする課題〕従来から
、体液中に直接病因であるか、病因に関連する物質、た
とえば有害成分や過剰な成分などが存在すると想定され
る疾患に対し、体液中の有用成分がほとんど失われるこ
となく、該有害成分や過剰な成分などを選択的に除去す
る選択的吸着体が開発されている。
[Problems to be solved by the conventional technology/invention] Conventionally, body fluids have been used to treat diseases in which it is assumed that substances that are directly the cause of the disease or are related to the cause of the disease, such as harmful components or excessive components, are present in the body fluids. A selective adsorbent has been developed that selectively removes harmful components and excessive components without losing much of the useful components therein.

しかし、現在開発されている吸着体は吸着能力が不充分
なため、充分な吸着容量をうるには吸着器容積を大きく
する必要があり、吸着器容積を大きくすると体外循環量
が大きくなるという欠点がある。体外循環法により処理
するばあいには、患者が許容できる体外循環量には限界
があるため、吸着器容積をあまり大きくできず、吸着容
量の飛躍的増大は不可能であり、本質的な解決にはなら
ない。また、吸着能力を上げるために、従来はおもにリ
ガンドやスペーサーなどの検討が行われてきたが充分な
吸着能力をうるまでには至っていない。
However, the currently developed adsorbents have insufficient adsorption capacity, so it is necessary to increase the adsorber volume to obtain sufficient adsorption capacity, and the drawback is that increasing the adsorber volume increases the amount of extracorporeal circulation. There is. When treating with extracorporeal circulation, there is a limit to the amount of extracorporeal circulation that the patient can tolerate, so the adsorber volume cannot be increased too much, and it is impossible to dramatically increase the adsorption capacity, so there is no essential solution. It won't be. Furthermore, in order to increase the adsorption capacity, research has been carried out mainly on the use of ligands and spacers, but it has not yet been possible to obtain a sufficient adsorption capacity.

そこで、本発明者らはさらに吸着能力を上げるためには
担体または吸着体に関しても最適な構造にする必要があ
ると考えた。
Therefore, the present inventors thought that in order to further increase the adsorption capacity, it is necessary to optimize the structure of the carrier or adsorbent.

本発明者らは、かかる実情に鑑み鋭意検討を重ねた結果
、被吸着除去成分に対する吸着体内空隙率を一定の範囲
にすることにより吸着能力が向上することを見出し、本
発明を完成するに至った。
As a result of intensive studies in view of the above circumstances, the present inventors discovered that the adsorption capacity can be improved by adjusting the porosity within the adsorbent to a certain range for the adsorbed and removed components, and have completed the present invention. Ta.

【課題を解決するための手段] すなわち本発明は、被吸着除去成分に対する吸着体内有
効空隙率が0.4〜0.96の範囲にあることを特徴と
する吸着体に関する。
[Means for Solving the Problems] That is, the present invention relates to an adsorbent characterized in that the effective porosity within the adsorbent for the adsorbed and removed component is in the range of 0.4 to 0.96.

[実施例] 以下に本明細書中で用いる語句について説明する。[Example] The terms used in this specification will be explained below.

被吸着除去成分とは、体液中に存在する有害成分や過剰
な成分などで、吸着体により吸着除°去される対象とな
る成分(以下、除去対象成分ともいう)をいう。
The component to be adsorbed and removed refers to a component that is a harmful component or an excessive component present in a body fluid and is a target to be adsorbed and removed by an adsorbent (hereinafter also referred to as a component to be removed).

有害成分とは、バラコート中毒におけるパラコートや自
己免疫性疾患における自己抗体などの、体液中に直接病
因であるかまたは病因に関連する成分があるとき、その
成分をいう。
Harmful components refer to components in body fluids that directly cause or are associated with the pathogenesis, such as paraquat in balaquat poisoning and autoantibodies in autoimmune diseases.

過剰な成分とは、家族性高コレステロール血症における
LDLやVLDLなどのように、体液中に生体に必要で
はあるが過剰に存在する成分が存在するとき、その成分
をいう。
The term "excessive component" refers to a component necessary for a living body but present in excess, such as LDL and VLDL in familial hypercholesterolemia, in a body fluid.

吸着器とは、吸着体を充填した、流体の流入口および流
出口を有する容器をいう。
An adsorber is a container filled with an adsorbent and having a fluid inlet and an outlet.

体液とは、血液、血漿、腹水またはその他の生体中の液
状成分をいう。
Body fluid refers to blood, plasma, ascites, or other liquid components in living organisms.

吸着操作とは、除去対象成分を含む体液を吸着器の流入
口に送液し、流出口から排液することにより、体液中か
ら除去対象成分を吸着除去する操作をいう。
The adsorption operation refers to an operation in which the component to be removed is adsorbed and removed from the body fluid by feeding the body fluid containing the component to be removed to the inlet of the adsorber and draining the fluid from the outlet.

破過の始まりとは、底置(たとえば、化学工学便覧編、
化学工学便覧、改訂5版、吸着操作、丸善)に説明され
ているように、一般に除去対象成分の流出口の濃度(以
下、出口濃度という2が流入液中の濃度(以下、入口濃
度という)の5〜lO%に達した時点をいい、本明細書
中では5%に達した時点をいう。吸着器に液を流し始め
てからこの時点までを破過時間といい、吸着器に液を流
し始めてから出口濃度が入口濃度と同じになるまでの出
口濃度の経時変化を示すグラフを破過曲線という。
The beginning of breakthrough is the bottom position (for example, chemical engineering handbook,
As explained in the Chemical Engineering Handbook, Revised 5th Edition, Adsorption Operation, Maruzen), in general, the concentration of the component to be removed at the outlet (hereinafter referred to as outlet concentration) is the concentration in the influent (hereinafter referred to as inlet concentration). In this specification, it refers to the time when the liquid reaches 5% to 10%.The time from when the liquid starts flowing into the adsorber until this point is called the breakthrough time. A graph showing the change in outlet concentration over time from the beginning until the outlet concentration becomes the same as the inlet concentration is called a breakthrough curve.

吸着能力とは、吸着容量と吸着している量の差である吸
着余力および/または体液中から除去対象成分を除去す
る速度などを意味し、吸着操作により体液中から除去対
象成分を吸着除去する能力全般をいい、本明細書中では
破過時間の長さを指標として用いて比較した。
Adsorption capacity refers to the adsorption surplus, which is the difference between the adsorption capacity and the adsorbed amount, and/or the speed at which the target component is removed from the body fluid, and the target component is adsorbed and removed from the body fluid through an adsorption operation. It refers to overall performance, and in this specification, the length of breakthrough time is used as an index for comparison.

被吸着除去成分に対する吸着体内有効空隙率(β)とは
、見掛は吸着体体積(Vx)に対する、吸着体内への被
吸着除去成分が入りうる容積(Vp)の比率(β−Vp
/ Vx)をいい、吸着体と被吸着除去成分によりこの
値が決まる。見掛は吸着体体1M (VW)は、吸着器
容積(Vt)と粒子間の容積であるボイド容積(Vo)
の差として求められる。
The effective porosity (β) in the adsorbent for the adsorbed component to be removed is the apparent ratio of the volume (Vp) into which the adsorbed component can enter to the adsorbent volume (Vx) (β-Vp).
/ Vx), and this value is determined by the adsorbent and the component to be adsorbed and removed. The apparent adsorbent body 1M (VW) is the adsorber volume (Vt) and the void volume (Vo) which is the volume between particles.
It is calculated as the difference between

吸着体内への被吸着除去成分が入りうる容積(Vp)は
、吸着器内の被吸着除去成分が入りうる容積(Ve)と
ボイド容積(Vo)の差として求められる。
The volume (Vp) in which the component to be adsorbed and removed can enter the adsorbent is determined as the difference between the volume (Ve) in the adsorber in which the component to be adsorbed and removed can enter and the void volume (Vo).

本発明の吸着体は、被吸着除去成分に親和性を有する化
合物を水不溶性多孔質担体に固定してなる吸着体、また
は水不溶性多孔質担体自体が被吸着除去成分に対する親
和性を有する吸着体であって、該被吸着除去成分に対す
る粒子的有効空隙率が0.4〜0.96の範囲にあるも
のである。被吸着除去成分に対する有効空隙率が0.4
未満のばあい、被吸着除去成分が吸着体に入りにくくな
り吸着量が低下し、0.96をこえるばあい、被吸着除
去成分に親和性を有する部分が少なくなり吸着量が低下
する。
The adsorbent of the present invention is an adsorbent in which a compound having an affinity for the component to be adsorbed and removed is immobilized on a water-insoluble porous carrier, or an adsorbent in which the water-insoluble porous carrier itself has an affinity for the component to be adsorbed and removed. The particle effective porosity for the adsorbed and removed component is in the range of 0.4 to 0.96. Effective porosity for adsorbed and removed components is 0.4
If it is less than 0.96, it becomes difficult for the component to be adsorbed and removed to enter the adsorbent and the amount of adsorption decreases, and if it exceeds 0.96, the amount of adsorption decreases as the amount of the component that has an affinity for the component to be adsorbed and removed decreases.

本発明に用いる水不溶性多孔質担体は有機性、無機性い
ずれであってもよいが、目的とする除去対象成分以外の
体液成分の吸着(いわゆる非特異吸着)の少ないものが
好ましい。親水性であるほうが非特異吸着が少ないので
水不溶性多孔質担体は疎水性であるよりも、親水性であ
るほうが好ましい。
The water-insoluble porous carrier used in the present invention may be either organic or inorganic, but it is preferably one that has little adsorption (so-called non-specific adsorption) of body fluid components other than the target component to be removed. It is preferable that the water-insoluble porous carrier is hydrophilic rather than hydrophobic, since non-specific adsorption is less likely to occur if the carrier is hydrophilic.

さらに、水不溶性多孔質担体表面には、リガンドの固定
化反応に用いうる官能基が存在していると好都合である
。これらの官能基の代表例としては、水酸基、アミノ基
、アルデヒド基、カルボキシル基、チオール基、シラノ
ール基、アミド基、エポキシ基、ハロゲン基、スクシニ
ルイミド基、酸無水物基などがあげられるが、これらに
限定されるわけではない。また、水不溶性多孔質担体は
前記官能基のなかでも水酸基を有する化合物よりなるも
のであるばあい、非特異吸着が少ないのでとくに好まし
い。これら官能基をスペーサーとして導入された水不溶
性多孔質担体も、用いうろことはいうまでもない。
Furthermore, it is advantageous if a functional group that can be used for a ligand immobilization reaction is present on the surface of the water-insoluble porous carrier. Representative examples of these functional groups include hydroxyl group, amino group, aldehyde group, carboxyl group, thiol group, silanol group, amide group, epoxy group, halogen group, succinylimide group, acid anhydride group, etc. It is not limited to these. Further, it is particularly preferable that the water-insoluble porous carrier is made of a compound having a hydroxyl group among the above-mentioned functional groups, since non-specific adsorption is small. Needless to say, water-insoluble porous carriers into which these functional groups are introduced as spacers can also be used.

本発明に用いる水不溶性多孔質担体の代表例としては、
アガロース、デキストラン、ポリアクリルアミドなどの
軟質多孔質体、多孔質ガラス、多孔質シリカゲルなどの
無機多孔質体、ポリメチルメタクリレート、ポリビニル
アルコール、スチレン、ジビニルベンゼン共重合体など
の合成高分子および/またはセルロースなどの天然高分
子を原料とする多孔質ポリマーハードゲルなどがあげら
れるがこれらに限定されるわけではない。
Representative examples of water-insoluble porous carriers used in the present invention include:
Soft porous materials such as agarose, dextran, and polyacrylamide, inorganic porous materials such as porous glass and porous silica gel, synthetic polymers such as polymethyl methacrylate, polyvinyl alcohol, styrene, and divinylbenzene copolymers, and/or cellulose. Examples include, but are not limited to, porous polymer hard gels made from natural polymers such as .

本発明の吸着体を体外循環治療に用いる際には、血液、
血漿のごとき高粘性流体を高速で流す必要があるために
、圧密化を引き起こさない充分な機械的強度を存する硬
質水不溶性多孔質担体を用いるのが好ましい。すなわち
硬質水不溶性多孔質担体とは、水不溶性多孔質担体を円
筒状カラムに均一に充填し、水性流体を流通したばあい
の圧力損失と流速との関係が少なくとも0.3kg/c
−まで直線関係にあるものをいう。
When using the adsorbent of the present invention for extracorporeal circulation treatment, blood,
Because of the need to flow high viscosity fluids such as plasma at high speeds, it is preferred to use a rigid, water-insoluble porous carrier that has sufficient mechanical strength to avoid compaction. In other words, a hard water-insoluble porous carrier is one in which the relationship between pressure loss and flow rate when a water-insoluble porous carrier is uniformly packed into a cylindrical column and an aqueous fluid is passed through it is at least 0.3 kg/c.
It refers to something that has a linear relationship up to -.

本発明に用いる被吸着除去成分に親和性を有する化合物
の代表例としては、ポリアクリル酸、ポリビニル硫酸、
ポリビニルスルホン酸、ポリビニルリン酸、ポリスチレ
ンスルホン酸、ポリスチレンリン酸、ポリグルタミン酸
、ポリアスパラギン酸、ポリメタクリル酸、ポリリン酸
、スチレン−マレイン酸共重合体などの合成ポリアニオ
ン化合物、およびヘパリン、デキストラン硫酸、コンド
ロイチン、コンドロイチン硫酸、ホスホマンナン、キチ
ン、キトサンなどの被吸着除去成分に親和性を有する官
能基含有多糖類があげられるがこれらに限定されるわけ
ではないO 本発明の吸着体に固定される被吸着除去成分に親和性を
有する化合物は1種類であってもよいし、2種類以上で
あってもよい。
Typical examples of compounds that have an affinity for the adsorbed and removed components used in the present invention include polyacrylic acid, polyvinyl sulfate,
Synthetic polyanionic compounds such as polyvinyl sulfonic acid, polyvinyl phosphoric acid, polystyrene sulfonic acid, polystyrene phosphate, polyglutamic acid, polyaspartic acid, polymethacrylic acid, polyphosphoric acid, styrene-maleic acid copolymer, and heparin, dextran sulfate, and chondroitin. , chondroitin sulfate, phosphomannan, chitin, chitosan, and other functional group-containing polysaccharides that have an affinity for the component to be adsorbed and removed, but are not limited to O. The number of compounds having affinity for the removed component may be one, or two or more.

本発明の吸着体は、水不溶性多孔質担体に被吸着除去成
分に親和性を有する化合物が固定された吸着体をいう。
The adsorbent of the present invention is an adsorbent in which a compound having an affinity for a component to be adsorbed and removed is immobilized on a water-insoluble porous carrier.

そのような被吸着除去成分に親和性を有する化合物が固
定されてなる吸着体をうるために被吸着除去成分に親和
性を有する官能基を水不溶性多孔質担体に導入する方法
としては公知の種々の方法を特別な制限なしに用いるこ
とができるが、そのような被吸着除去成分に親和性を有
する化合物が固定されてなる吸着体をうるための被吸着
除去成分に親和性を存する官能基の担体への代表的な導
入方法としては、 (1)被吸着除去成分に親和性を有する官能基あるいは
容易に被吸着除去成分に親和性を有する官能基に変換し
うる官能基を含有する化合物をモノマーあるいは架橋剤
として用いる重合によって吸着体を形成させる方法、 (2被吸着除去成分に親和性を有する官能基を含有する
化合物を水不溶性多孔質担体に固定させる方法、 (3)被吸着除去成分に親和性を有する官能基を形成す
る化合物と水不溶性多孔質担体とを直接反応させること
によって、水不溶性多孔質担体に被吸着除去成分に親和
性を有する官能基を有する化合物を固定させる方法 などがあげられる。
In order to obtain an adsorbent in which a compound having an affinity for the adsorbed component to be removed is immobilized, there are various known methods for introducing into a water-insoluble porous carrier a functional group that has an affinity for the adsorbed component to be removed. The method described above can be used without any special restrictions, but it is necessary to use a functional group that has an affinity for the adsorbed component to obtain an adsorbent on which a compound having an affinity for the adsorbed component is immobilized. Typical methods for introducing into the carrier are: (1) A compound containing a functional group that has an affinity for the component to be adsorbed or that can be easily converted into a functional group that has an affinity for the component to be adsorbed and removed. A method of forming an adsorbent by polymerization using a monomer or a crosslinking agent, (2) A method of fixing a compound containing a functional group that has an affinity for the adsorbed component to a water-insoluble porous carrier, (3) A method of fixing a compound containing a functional group that has an affinity for the adsorbed component to be removed. A method of immobilizing a compound having a functional group having an affinity for a component to be adsorbed and removed onto a water-insoluble porous carrier by directly reacting the compound forming a functional group having an affinity for the water-insoluble porous carrier with the water-insoluble porous carrier. can be given.

もちろんガラス、シリカ、アルミナなどもともと水不溶
性多孔質担体自体を被吸着除去成分に対して親和性を有
する吸着体として用いてもよい。
Of course, an inherently water-insoluble porous carrier such as glass, silica, alumina, etc. may be used as an adsorbent having an affinity for the component to be adsorbed and removed.

(1)の方法において用いる被吸着除去成分に親和性を
有する官能基あるいは容易に被吸着除去成分に親和性を
有する官能基に変換しうる官能基を含有する七ツマ−あ
るいは架橋剤の代表例としては、アクリル酸およびその
エステル、メタクリル酸およびそのエステル、スチレン
スルホン酸などがあげられるがこれらに限定されるわけ
ではない。
Typical examples of 7mers or crosslinking agents that contain a functional group that has an affinity for the adsorbed component to be removed or that can be easily converted into a functional group that has an affinity for the adsorbed and removed component used in method (1) Examples include, but are not limited to, acrylic acid and its esters, methacrylic acid and its esters, styrene sulfonic acid, and the like.

(′2Jの方法、すなわち被吸着除去成分に親和性を有
する官能基を含有する化合物を水不溶性多孔質担体に固
定させる方法としては、物理的吸着による方法、イオン
結合による方法、共有結合により固定する方法などがあ
り、いかなる方法を用いてもよいが、吸着体の保存性な
らびに安定性のためには被吸着除去成分に親和性を有す
る官能基含有化合物が脱離しないことが重要であるので
、強固な固定が可能な共存結合法が望ましい。
(Method '2J, that is, a method for immobilizing a compound containing a functional group that has an affinity for the component to be adsorbed and removed, on a water-insoluble porous carrier includes physical adsorption, ionic bonding, and covalent bonding. Any method may be used, but for the preservation and stability of the adsorbent, it is important that the functional group-containing compound that has an affinity for the component to be adsorbed and removed does not desorb. , a coexistence bonding method that allows for strong fixation is desirable.

共有結合により被吸着除去成分に親和性を有する化合物
を固定させるばあい、被吸着除去成分に親和性を有する
化合物が被吸着除去成分に親和性を有する官能基以外に
固定に利用できる官能基を有するのが好ましい。
In the case of immobilizing a compound that has an affinity for the component to be adsorbed and removed by covalent bonding, the compound that has an affinity for the component to be adsorbed and removed has a functional group that can be used for immobilization in addition to the functional group that has an affinity for the component to be adsorbed and removed. It is preferable to have

固定に利用できる官能基の代表例としては、アミノ基、
アミド基、カルボキシル基、酸無水物基、スクシニルイ
ミド基、水酸基、チオール基、アルデヒド基、ハロゲン
基、エポキシ基、シラノール基などがあげられるがこれ
らに限定されるわけではない。
Typical examples of functional groups that can be used for immobilization include amino groups,
Examples include, but are not limited to, amide groups, carboxyl groups, acid anhydride groups, succinylimide groups, hydroxyl groups, thiol groups, aldehyde groups, halogen groups, epoxy groups, and silanol groups.

また、被吸着除去成分に親和性を有する化合物のうち硫
酸エステル基を含有する化合物の代表例としてはアルコ
ール、糖類、グリコールなどの水酸基含有化合物の硫酸
エステルがあげられるが、これらのなかでも多価アルコ
ールの部分硫酸エステル化合物、とりわけ糖類の硫酸エ
ステル化物が硫酸エステル基、固定に必要な官能基の双
方を含んでいるうえに、生体適合性および活性ともに高
く、さらに硫酸化多糖類は容易に水不溶性多孔質担体に
固定しうろことからとくに好ましい。
Furthermore, among compounds that have an affinity for adsorbed and removed components, typical examples of compounds containing sulfate groups include sulfate esters of hydroxyl group-containing compounds such as alcohols, sugars, and glycols. Partially sulfated alcohol ester compounds, especially saccharide sulfated ester compounds, contain both sulfate groups and functional groups necessary for immobilization, and have high biocompatibility and activity, and sulfated polysaccharides are easily hydrated. It is particularly preferred because it can be fixed on an insoluble porous carrier.

これらの被吸着除去成分に親和性を有する化合物は多数
存在するが、実施例に記載したデキストラン硫酸はその
一例である。
There are many compounds that have an affinity for these adsorbed and removed components, and dextran sulfate described in the Examples is one example.

つぎに、(3)の方法、すなわち被吸着除去成分に親和
性を有する官能基を形成する化合物と水不溶性多孔質担
体とを反応させることによって、水不溶性多孔質担体に
被吸着除去成分に親和性を有する化合物を固定させて被
吸着除去成分に親和性を有する官能基を導入する方法の
代表例として水酸基含有多孔質担体に硫酸エステル基を
導入する反応があげられる。このばあい、水酸基含有水
不溶性多孔質担体とクロロスルホン酸、濃硫酸などの試
薬を反応させることによって直接硫酸エステル基を導入
することができる。
Next, by the method (3), that is, by reacting the water-insoluble porous carrier with a compound that forms a functional group that has an affinity for the adsorbed and removed component, the water-insoluble porous carrier has an affinity for the adsorbed and removed component. A typical example of a method for introducing a functional group having an affinity for a component to be adsorbed and removed by immobilizing a compound having a hydroxyl group is a reaction in which a sulfate ester group is introduced into a porous carrier containing a hydroxyl group. In this case, the sulfate ester group can be directly introduced by reacting the hydroxyl group-containing water-insoluble porous carrier with a reagent such as chlorosulfonic acid or concentrated sulfuric acid.

水不溶性多孔質担体の多孔構造については表面多孔性よ
りも全多孔性が好ましい。水不溶性多孔質担体の形状と
しては、粒状、球状、繊維状、膜状、ホローファイバー
状など、任意の形状を選ぶことができる。粒状の水不溶
性多孔質担体を用いるばあい、その粒子径は1μ畠未満
のばあい圧力損失が大きく 、5000μ−をこえるば
あい吸着速度が遅くなることから、1μ−以上5000
μ厘以下であるのが好ましい。
Regarding the porous structure of the water-insoluble porous carrier, total porosity is preferable to surface porosity. The shape of the water-insoluble porous carrier can be selected from any shape such as granules, spheres, fibers, membranes, and hollow fibers. When using a granular water-insoluble porous carrier, if the particle size is less than 1 μm, the pressure loss will be large, and if it exceeds 5000 μm, the adsorption rate will be slow.
It is preferable that it is less than μl.

水不溶性多孔質担体の細孔容積が小さく粒子内に被吸着
成分が入れないとき、このとき有効空隙率は0になるが
、粒子内に入らないため吸着量は0になる。一方仮想的
に水不溶性多孔質担体の細孔容積を大きくして粒子内に
水不溶性多孔質担体がないとすると粒子内に自由に被吸
着除去成分が入り、このとき有効空隙率は1になるが、
リガンドを固定する水不溶性多孔質担体がないためリガ
ンド量が0になり吸着量は0になる。
When the pore volume of the water-insoluble porous carrier is small and the component to be adsorbed cannot enter the particles, the effective porosity becomes 0, but since it does not enter the particles, the amount of adsorption becomes 0. On the other hand, if we hypothetically increase the pore volume of the water-insoluble porous carrier and assume that there is no water-insoluble porous carrier in the particles, the adsorbed and removed components will freely enter the particles, and in this case, the effective porosity will be 1. but,
Since there is no water-insoluble porous carrier to immobilize the ligand, the amount of ligand becomes 0 and the amount of adsorption becomes 0.

吸着容量を上げるために有効空隙率を適当な値にするこ
とが必要であるが、このとき吸着容量だけでなく吸着速
度の点も考える必要がある。
In order to increase the adsorption capacity, it is necessary to set the effective porosity to an appropriate value, but at this time, it is necessary to consider not only the adsorption capacity but also the adsorption rate.

吸着器を使用する際の目安として、一般に破過が始まっ
た時点で吸着操作中の吸着器の使用を止めて、そこで打
ち切るなり、新しい吸着器に交換する。そこで、吸着能
力の指標として同一の条件で吸着操作を行ったときに破
過する時点が遅いほど、つまり破過時間が長いほど吸着
能力が優れていると考えられ、この指標で判定する。
As a guideline when using an adsorber, generally, use of the adsorber during adsorption operation should be stopped when breakthrough begins, and immediately replaced with a new adsorber. Therefore, as an index of adsorption capacity, it is considered that the later the point of breakthrough when adsorption operation is performed under the same conditions, that is, the longer the breakthrough time, the better the adsorption capacity, and this index is used for determination.

以下に被吸着除去成分がリボ蛋白質であり、水不溶性多
孔質担体が粒状である例を用いて本発明をさらに詳細に
説明するが、本発明はかかる実施例にのみ限定されるも
のではない。
The present invention will be explained in more detail below using an example in which the component to be adsorbed and removed is a riboprotein and the water-insoluble porous carrier is granular, but the present invention is not limited to this example.

実施例1 多孔質セルロースゲルであるCKA−22(商品名、チ
ッソ■製、ポリエチレングリコールの排除限界分子量1
50万〜300万、粒径45〜105爛)60m1に2
N−NaOH32m1 、水60m1を加えて40℃で
30分撹拌後、エピクロルヒドリンfigを加えて、3
時間撹拌した。ゲルを水洗濾過し、エポキシ基の導入さ
れたセルロースゲルをえた。
Example 1 Porous cellulose gel CKA-22 (trade name, manufactured by Chisso ■, polyethylene glycol exclusion limit molecular weight 1
500,000 to 3 million, particle size 45 to 105) 2 per 60 m1
After adding 32 ml of N-NaOH and 60 ml of water and stirring at 40°C for 30 minutes, epichlorohydrin fig was added.
Stir for hours. The gel was washed with water and filtered to obtain a cellulose gel into which epoxy groups were introduced.

えられたエポキシ基の導入されたセルロースゲル55m
1に、デキストラン硫酸(分子量的5000、イオウ含
量15重量%) 0.47gを加え、さらに水を加えて
97.4mlにし、pH9に調整して45℃で18時間
静置した。ゲルを水洗濾過し、水55m1、モノエタノ
ールアミンo、osgを加え、45℃で3時間静置して
未反応のエポキシ基を封止したのち、水洗濾過してデキ
ストラン硫酸が固定されたセルロースゲルをえた。
The resulting cellulose gel with epoxy groups introduced 55m
1, 0.47 g of dextran sulfate (molecular weight: 5000, sulfur content: 15% by weight) was added, water was further added to make 97.4 ml, the pH was adjusted to 9, and the mixture was allowed to stand at 45° C. for 18 hours. The gel was washed and filtered with water, 55 ml of water, monoethanolamine o, and osg were added, and the unreacted epoxy groups were sealed by standing at 45°C for 3 hours, followed by washing and filtration with water to obtain a cellulose gel with fixed dextran sulfate. I got it.

両端にフィルターを装着したガラス製円筒カラム(内径
IO−■、長さ約IQ、50m、以下刃ラムという)に
吸着体としてえられたデキストラン硫酸が固定されたセ
ルロースゲルを均一に充填した。
A glass cylindrical column (inner diameter IO-■, length approximately IQ, 50 m, hereinafter referred to as blade ram) equipped with filters at both ends was uniformly filled with cellulose gel on which dextran sulfate was fixed as an adsorbent.

見掛は吸着体体積(V’x)の測定には、ノニオン系界
面活性剤ツウイーン20(商品名、花王アトラス■製)
の0.2重量%溶液に吸着体の細孔に入らない粒径1μ
虐のポリスチレンラテックス(シグマ社製)を溶かした
液(以下、溶液1という)を用いた。あらかじめ前記界
面活性剤溶液でカラム内を置換したのち、ベリスタルポ
ンプで溶液1を流速0.5ml/sinで流し、カラム
出口濃度の経時変化をυV計(東ソー■製、波長250
nm)にて測定し、出口濃度を入口濃度で割って無次元
化した値の経時変化を測定した。第1図に示すように、
えられた前記無次元化した値の0から1になるまで(入
口濃度と等しくなるまで)の曲線区間を積分して、用い
たゲル間の容積、すなわちボイド容積(Vo)を求め、
カラム内容積、すなわち吸着器容積(Vt)から差し引
いて見掛は吸着体体積(VX)を求めた。
To measure the apparent adsorbent volume (V'x), use the nonionic surfactant Tween 20 (trade name, manufactured by Kao Atlas ■).
A particle size of 1μ that does not enter the pores of the adsorbent in a 0.2% solution of
A solution in which polystyrene latex (manufactured by Sigma) was dissolved (hereinafter referred to as solution 1) was used. After replacing the inside of the column with the surfactant solution in advance, solution 1 was flowed at a flow rate of 0.5 ml/sin using a bersal pump, and the change in column outlet concentration over time was measured using a υV meter (manufactured by Tosoh Corporation, wavelength 250).
nm), and the time-dependent change in the value, which was made dimensionless by dividing the outlet concentration by the inlet concentration, was measured. As shown in Figure 1,
Integrate the curve section from 0 to 1 (until it becomes equal to the inlet concentration) of the obtained dimensionless value to determine the volume between the gels used, that is, the void volume (Vo),
The apparent adsorbent volume (VX) was determined by subtracting from the column internal volume, that is, the adsorber volume (Vt).

なお第1図中、斜線部分は用いたゲル間の容積(Vo)
を示す。カラム内容積に対する用いたゲル間の容積の比
率(Vo/Vt)は0.384であった。
In Figure 1, the shaded area is the volume (Vo) between the gels used.
shows. The ratio of the volume between the gels used to the internal volume of the column (Vo/Vt) was 0.384.

被吸着除去成分(リボ蛋白)対する吸着体内有効空隙率
(β)の測定には、リボ蛋白が吸着体に吸着しないよう
に、NaCl濃度が約IHになるように血漿にNaCf
液を加えた液(以下、溶液2という)を用いた。
To measure the effective porosity (β) in the adsorbent for the component to be adsorbed and removed (riboprotein), NaCf is added to the plasma so that the NaCl concentration is approximately IH so that the riboprotein does not adsorb to the adsorbent.
A solution (hereinafter referred to as solution 2) was used.

あらかじめIMのNaCl液でカラム内を置換したのち
、ペリスタルボンブで溶液2を流し、流出液をフラクシ
ョンコレクターにて分取した。分取した液を、コレステ
ロールCテストフコ−(商品名、和光■製)を用いて、
コレステロール濃度基準で測定した。以下同様にリボ蛋
白濃度をコレステロール濃度基準で表現した。出口濃度
を人口濃度で割って無次元化した値の経時変化を測定し
た。第2図に示すように、えられた経時変化曲線と先の
ラテックスでの溶出曲線とに囲まれた部分を積分すると
とにより吸着体内におけるリボ蛋白質が入りうる容積、
すなわち吸着体内への被吸着除去成分が入りうる容積(
Vp)を求めた。なお第2図中、斜線部分は吸着体内に
おけるリボ蛋白質が入りうる容積(Vp)を示す。えら
れた値(Vp)を見掛は吸着体体積(Vx)で割ること
によってリボ蛋白質に対する吸着体内有効空隙率(β)
を求めた。
After replacing the inside of the column with IM NaCl solution in advance, solution 2 was passed through a peristaltic bomb, and the effluent was collected using a fraction collector. The fractionated liquid was treated with Cholesterol C Test Fuco (trade name, manufactured by Wako ■).
Measured based on cholesterol concentration. Below, riboprotein concentration was similarly expressed on the basis of cholesterol concentration. We measured the change over time in the dimensionless value obtained by dividing the outlet concentration by the population concentration. As shown in Figure 2, by integrating the area surrounded by the obtained time-course curve and the previous elution curve with latex, we can find that the volume in which riboproteins can enter in the adsorbent body is calculated as follows:
In other words, the volume (
Vp) was calculated. In FIG. 2, the shaded area indicates the volume (Vp) in which riboproteins can fit inside the adsorbent. The apparent value (Vp) obtained can be calculated by dividing the apparent adsorbent volume (Vx) to determine the effective porosity (β) in the adsorbent for riboproteins.
I asked for

つぎに、あらかじめ生理食塩水でカラム内を置換したの
ち、ベリスタルボンブでコレステロール濃度184mg
/dlの血漿を流速2.0 ml / sinで流し流
出液をフラクションコレクターにて分取し、コレステロ
ール濃度を測定した。出口濃度を入口濃度で割って無次
元化した値の経時変化を測定した。第3図に示す、えら
れた経時変化曲線とラテックスでの溶出曲線とに囲まれ
た部分を積分することによりカラム内でのコレステロー
ル量の吸着量を求めた。ここで吸着体に入ったコレステ
ロール量をもって、便宜的にコレステロール吸着量とす
る。
Next, after replacing the inside of the column with physiological saline in advance, the cholesterol concentration was adjusted to 184 mg using a beristal bomb.
/dl of plasma was flowed at a flow rate of 2.0 ml/sin, the effluent was collected using a fraction collector, and the cholesterol concentration was measured. The time-dependent change in the value made dimensionless by dividing the outlet concentration by the inlet concentration was measured. The amount of cholesterol adsorbed in the column was determined by integrating the area surrounded by the obtained time course curve and the latex elution curve shown in FIG. Here, the amount of cholesterol that has entered the adsorbent is conveniently referred to as the amount of cholesterol adsorbed.

また別途、未使用の吸着体を乾燥して重量を測定するこ
とにより、吸着体実質重量当りのコレステロール吸着量
を測定した結果、127mg/g−吸着体であった。
Separately, by drying an unused adsorbent and measuring its weight, the amount of cholesterol adsorbed per the actual weight of the adsorbent was determined to be 127 mg/g-adsorbent.

なお吸着体の粒子径は、デキストラン硫酸を固定化した
吸着体を写真撮影することによって測定し、平均粒子径
とした。
The particle diameter of the adsorbent was measured by photographing the adsorbent on which dextran sulfate was immobilized, and was defined as the average particle diameter.

第1表に用いた担体基、吸着体の平均粒子径、リボ蛋白
に対する有効空隙率(β)、コレステロール濃度および
コレステロールの吸着量を示す。
Table 1 shows the carrier group used, the average particle diameter of the adsorbent, the effective porosity (β) for riboprotein, the cholesterol concentration, and the amount of cholesterol adsorbed.

実施例2および3 多孔質セルロースゲルであるCKA−32(商品名、チ
ッソ■製、ポリエチレングリコールの排除限界分子量1
00万〜200万、粒径45〜105μm)(実施例2
 ) 、CKA−3−C(商品名、チッソ■製、ポリエ
チレングリコールの排除限界分子量200万〜500万
、粒径210〜315μm) (実施例3)をそれぞれ
約60m1とり、実施例1と同様の条件、操作でデキス
トラン硫酸を固定した。
Examples 2 and 3 Porous cellulose gel CKA-32 (trade name, manufactured by Chisso ■, polyethylene glycol exclusion limit molecular weight 1
000,000 to 2,000,000, particle size 45 to 105 μm) (Example 2
), CKA-3-C (trade name, manufactured by Chisso ■, exclusion limit molecular weight of polyethylene glycol 2 million to 5 million, particle size 210 to 315 μm) (Example 3) were taken, and the same method as in Example 1 was taken. Dextran sulfate was fixed under certain conditions and operations.

被吸着成分(リボ蛋白)に対する有効空隙率(β)は、
溶液1および溶液2を用いて、実施例1と同様の測定を
行って求めた。値はそれぞれ0.488 (実施例2)
および0.958 (実施例3)であった。
The effective porosity (β) for the adsorbed component (riboprotein) is
It was determined by performing the same measurements as in Example 1 using Solution 1 and Solution 2. Each value is 0.488 (Example 2)
and 0.958 (Example 3).

さらに、デキストラン硫酸を固定した各吸着体をカラム
に充填し、実施例1と同様の操作を行い破過曲線を測定
しコレステロールの全吸着量を求めた。別途測定した吸
着体の乾燥重量で割って、吸着体実質重量当りのコレス
テロール吸着量を求めた。コレステロール吸着量はそれ
ぞれ79.1mg/g−吸着体(実施例2)および75
.9−g/g−吸着体(実施例3)であった。
Furthermore, a column was filled with each adsorbent on which dextran sulfate was immobilized, and the same operation as in Example 1 was performed to measure the breakthrough curve and determine the total adsorption amount of cholesterol. The amount of cholesterol adsorbed per actual weight of the adsorbent was determined by dividing by the dry weight of the adsorbent, which was measured separately. The amount of cholesterol adsorbed was 79.1 mg/g-adsorbent (Example 2) and 75 mg/g, respectively.
.. 9-g/g-adsorbent (Example 3).

それぞれの値は実施例1と併わせで第1表に示す。The respective values are shown in Table 1 together with Example 1.

実施例1.2および3において第1表に示すように入口
濃度が異なるためそのままでは吸着量を比較できない。
As shown in Table 1 in Examples 1, 2 and 3, the inlet concentrations are different, so the adsorption amounts cannot be directly compared.

底置(慶伊富長著、吸着、共立出版)にあるように液相
吸着では一般にフロイントリッヒ(Freundlie
h)型吸着等混線が成り立つ。CKA−3(商品名、チ
ッソ■製、ポリエチレングリコールの排除限界分子量2
00万〜500万、粒径45〜105μl)を担体とし
て用いて実施例1と同様にデキストラン硫酸が固定され
た吸着体を作製し、コレステロール吸着量を測定し次式
のフロイントリッヒ型吸着等温式:コレステロール吸着
量− 係数×コレステロール濃度0・424 (ただし、コレステロール吸着量E−g/g−吸着体]
、コレステロール濃度[■g/dll)をえた。これを
用いることにより同じコレステロール濃度における比較
をすることができる。
In liquid phase adsorption, Freundlich is generally
h) Type adsorption and crosstalk is established. CKA-3 (trade name, manufactured by Chisso ■, polyethylene glycol exclusion limit molecular weight 2
An adsorbent on which dextran sulfate was immobilized was prepared in the same manner as in Example 1 using dextran sulfate as a carrier, and the amount of cholesterol adsorbed was measured using the following Freundlich type adsorption isotherm. : Cholesterol adsorption amount - coefficient x cholesterol concentration 0.424 (Cholesterol adsorption amount E-g/g-adsorbent)
, cholesterol concentration [■g/dll) was obtained. By using this, comparisons can be made at the same cholesterol concentration.

破過時間を比べるとき、実施例1.2および3の実験に
用いた吸着体の中には粒子径の異なる吸着体があるため
、このままでは吸着速度を考えるとき粒子径の影響が含
まれる。そこで底置(慶伊富長著、吸着、共立出版)に
ある充填塔による吸着のばあいの方程式を用いて拡散係
数などを求め、同一粒子径基準で比較できるようにした
。このとき、粒子の表面付近から内部まで均一であるこ
とは、走差型電子顕微鏡による観察で確認した。
When comparing breakthrough times, since some of the adsorbents used in the experiments of Examples 1, 2 and 3 have different particle sizes, the effect of particle size is included when considering the adsorption rate. Therefore, we used the equation for adsorption using a packed column in Sokoki (Kei Tominaga, Adsorption, Kyoritsu Shuppan) to determine the diffusion coefficient, etc., and made it possible to compare on the basis of the same particle size. At this time, it was confirmed by observation using a scanning electron microscope that the particles were uniform from near the surface to inside.

同一粒子径基準で破過時間の比較を行うために、吸着体
内有効空隙率(β)に対するコレステロール吸着量、吸
着体内拡散係数の関係をそれぞれ第4図、第5図に示す
ように区間に分けて直線で補間し、粒子径72.5μ履
の同一粒子径のばあい、内径1cm、長さlocmの吸
着器に流速1.65 ml / sinでコレステロー
ル濃度150mg/diの血漿を流したときの破過曲線
を求めたところ、第6図に示すように有効空隙率に対し
て破過時間が上に凸になった。この結果より吸着性能の
指標である破過時間から考えて、すぐれた吸着性能を有
する吸着体の被吸着除去成分に対する吸着体内有効空隙
率は0.4〜0.96の範囲である。さらに好ましくは
有効空隙率が0.B〜0.7である。
In order to compare breakthrough times based on the same particle size, the relationship between the effective porosity (β) in the adsorbent, the adsorbed amount of cholesterol, and the diffusion coefficient in the adsorbent was divided into sections as shown in Figures 4 and 5, respectively. In the case of the same particle size of 72.5μ, when plasma with a cholesterol concentration of 150mg/di is poured into an adsorbent with an inner diameter of 1cm and a length of locm at a flow rate of 1.65ml/sin, When the breakthrough curve was determined, as shown in FIG. 6, the breakthrough time was upwardly convex with respect to the effective porosity. From this result, considering the breakthrough time which is an index of adsorption performance, the effective porosity within the adsorbent for the adsorbed and removed components of an adsorbent having excellent adsorption performance is in the range of 0.4 to 0.96. More preferably, the effective porosity is 0. B~0.7.

破過時間が最大になる吸着体内有効空隙率の値は、吸着
量が最大になる吸着体内有効空隙率の値よりも大きくな
った。これは被吸着除去成分に対する有効空隙率が大き
いほど被吸着成分が粒子内を拡散するさいの障害が少な
く拡散係数が大きくなるためと考えられる。このことは
吸着量だけに着目して担体を最適化しただけでは実際の
使用を考えた際の吸着性能を判定するには不充分である
ことを示している。
The value of the effective porosity within the adsorbent at which the breakthrough time was maximized was larger than the value of the effective porosity within the adsorbent at which the amount of adsorption was maximized. This is thought to be because the greater the effective porosity for the adsorbed component to be removed, the fewer obstacles there are to the diffusion of the adsorbed component within the particles, and the larger the diffusion coefficient becomes. This shows that optimizing the carrier by focusing only on the amount of adsorption is insufficient to judge the adsorption performance when considering actual use.

実施例1で説明したようなリボ蛋白に対する吸着体内有
効空隙率の測定方法においては、被吸着成分と吸着体と
に応じ、吸着体や被吸着成分が変性や形状の変化が無い
範囲内で被吸着除去成分が吸着されないようにpHやイ
オン強度などの溶液の条件を変えたり尿素などを混ぜる
などして、適当な条件を選定すればよい。
In the method for measuring the effective porosity within an adsorbent for riboproteins as explained in Example 1, depending on the adsorbed component and the adsorbent, the adsorbent and the adsorbed component are covered within a range where there is no denaturation or change in shape. Appropriate conditions may be selected by changing the conditions of the solution such as pH and ionic strength, or by adding urea or the like so that the components to be adsorbed and removed are not adsorbed.

この方法を用いることにより吸着除去すべき有害成分に
分子量分布があり、正確な分子量を規定できないような
疾患においても被吸着成分に対して一つの値をうろこと
ができる。
By using this method, the harmful components to be adsorbed and removed have a molecular weight distribution, and even in diseases where the exact molecular weight cannot be determined, it is possible to determine a single value for the adsorbed component.

実施例ではセルロース系担体にリガンドを固定化した吸
着体を用いたが、アガロース系の担体でも、それ以外の
ものでもよい。さらに、前記したごとくとくに担体自体
に被吸着成分に対する親和性があってリガンドを固定化
していない吸着体でもよい。
In the examples, an adsorbent having a ligand immobilized on a cellulose-based carrier was used, but an agarose-based carrier or other carrier may be used. Furthermore, as described above, the adsorbent may be an adsorbent in which the carrier itself has an affinity for the component to be adsorbed and no ligand is immobilized thereon.

吸着体の有効空隙率の測定法として、吸着体を充填した
カラムに溶液を流す方式を実施例において説明したが、
一つの容器に吸着体とラテックスなどの吸着体に入らな
い物質あるいは被吸着成分を含む溶液を入れ、平衡にな
るまで放置して、濃度の低下の程度がら求めてもよい。
As a method for measuring the effective porosity of an adsorbent, the method of flowing a solution through a column packed with an adsorbent was explained in the example.
The concentration may be determined by placing an adsorbent and a solution containing a substance that does not fit into the adsorbent such as latex or a component to be adsorbed in one container, and leaving the solution to reach equilibrium, based on the degree of decrease in concentration.

[以下余白] 第    1    表 [発明の効果] 本発明の被吸着除去成分に対する吸着体内有効空隙率が
0.4〜0.96の範囲に設定された吸着体は、すぐれ
た吸着能力を有しており、有害成分や過剰な成分などを
充分に除去しうるという効果を奏する。
[Margins below] Table 1 [Effects of the Invention] The adsorbent of the present invention, in which the effective porosity within the adsorbent for the adsorbed and removed components is set in the range of 0.4 to 0.96, has excellent adsorption ability. It has the effect of sufficiently removing harmful components and excessive components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第2図は、本発明の主要な因子である吸着体内
有効空隙率の計算方法を説明するための出口濃度/入口
濃度と液量との関係を示すグラフであり、第3図は、本
発明の吸着体によりコレステロール吸着量の定量方法を
説明するための出口濃度/入口濃度と液量との関係を示
すグラフであり、第4図は、吸着体内有効空隙率とコレ
ステロール吸着量との関係を示すグラフであり、第5図
は、吸着体内有効空隙率と吸着体内拡散係数との関係を
示すグラフであり、第6図は、吸着体内有効空隙率と破
過時間との関係を示すグラフである。 第1− 第2口 才30 工 0   α2  0.4  0.6  0.8  1.
0吸着体内有効空隙率 (β)[−] 第5図 0   0.2  0.4  0.6   α8!、0
吸着体内有効空隙率 (βン【刊 26図
Figures 1 and 2 are graphs showing the relationship between outlet concentration/inlet concentration and liquid volume to explain the method of calculating the effective porosity within the adsorbent, which is the main factor of the present invention. 4 is a graph showing the relationship between the outlet concentration/inlet concentration and the liquid volume to explain the method for quantifying the amount of cholesterol adsorbed by the adsorbent of the present invention. FIG. FIG. 5 is a graph showing the relationship between the effective porosity within the adsorbent and the diffusion coefficient within the adsorbent, and FIG. 6 is a graph showing the relationship between the effective porosity within the adsorbent and the breakthrough time. This is a graph showing. 1st - 2nd Mouth 30 Work 0 α2 0.4 0.6 0.8 1.
0 Effective porosity inside the adsorbent (β) [-] Fig. 5 0 0.2 0.4 0.6 α8! ,0
Effective porosity inside the adsorbent (β)

Claims (1)

【特許請求の範囲】[Claims] 1 被吸着除去成分に対する吸着体内有効空隙率が0.
4〜0.96の範囲にあることを特徴とする吸着体。
1 The effective porosity within the adsorbent relative to the adsorbed and removed component is 0.
An adsorbent characterized in that the adsorbent is in the range of 4 to 0.96.
JP63227212A 1988-09-09 1988-09-09 Adsorbing body Pending JPH0275340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227212A JPH0275340A (en) 1988-09-09 1988-09-09 Adsorbing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227212A JPH0275340A (en) 1988-09-09 1988-09-09 Adsorbing body

Publications (1)

Publication Number Publication Date
JPH0275340A true JPH0275340A (en) 1990-03-15

Family

ID=16857253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227212A Pending JPH0275340A (en) 1988-09-09 1988-09-09 Adsorbing body

Country Status (1)

Country Link
JP (1) JPH0275340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125799A (en) * 2016-01-15 2017-07-20 日立化成株式会社 Separation material and column

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976158A (en) * 1972-11-22 1974-07-23
JPS5252876A (en) * 1975-10-22 1977-04-28 Atomic Energy Authority Uk Method of manufacturing porous gel of inorganic materials
JPS56158249A (en) * 1980-05-09 1981-12-05 Kaou Kueekaa Kk Acidic gas capturing material in gas produced from mold
JPS60242863A (en) * 1984-05-18 1985-12-02 旭化成株式会社 Porous adsorbing material for adosorbing low specific gravity lipoprotein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976158A (en) * 1972-11-22 1974-07-23
JPS5252876A (en) * 1975-10-22 1977-04-28 Atomic Energy Authority Uk Method of manufacturing porous gel of inorganic materials
JPS56158249A (en) * 1980-05-09 1981-12-05 Kaou Kueekaa Kk Acidic gas capturing material in gas produced from mold
JPS60242863A (en) * 1984-05-18 1985-12-02 旭化成株式会社 Porous adsorbing material for adosorbing low specific gravity lipoprotein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125799A (en) * 2016-01-15 2017-07-20 日立化成株式会社 Separation material and column

Similar Documents

Publication Publication Date Title
EP2198901B1 (en) Adsorption column for purifying body fluid
US4430229A (en) Immune adsorbent and adsorbing device
JP2543693B2 (en) Adsorbent for low-density lipoprotein and method for producing the same
JPH02149341A (en) Adsorbent for serum amyloid p-protein
Uzun et al. Poly (hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma
JPH01119264A (en) Adsorbent and removing device therewith
JPH0275340A (en) Adsorbing body
JPH01181875A (en) Adsorptive body of immune complex and removing device for immune complex with it
JPS59186558A (en) Adsorbing material of self-antibody and/or immunological composite
JPH0260660A (en) Adsorbent for treating body fluid
JPS59169532A (en) Adsorbing material of c-reactive protein
JPS59186559A (en) Self-antibody and/or immunological composite adsorbing material
JP4156160B2 (en) Body fluid treatment device for direct blood perfusion
JPH0622632B2 (en) Adsorbent and removal device
JP3084436B2 (en) Anti-DNA antibody removal device
JPH0771632B2 (en) Adsorbent and removal device using the same
JP3157026B2 (en) Adsorbent for blood purification
JP3251547B2 (en) Immune complex removal device
JPS6361024B2 (en)
JPH11332981A (en) Method for removing low-density lipoprotein in blood
JPH0975725A (en) Bradykinin adsorbent, adsorbing and removing method and adsorber
JPH06296861A (en) Bradykinin adsorbent
JP2726662B2 (en) Adsorbent and removal device using the same
JPS5826819A (en) Porous glass adsorbent for low-density lipoprotein particles
JPH043988B2 (en)