JPH01181875A - Adsorptive body of immune complex and removing device for immune complex with it - Google Patents

Adsorptive body of immune complex and removing device for immune complex with it

Info

Publication number
JPH01181875A
JPH01181875A JP63006168A JP616888A JPH01181875A JP H01181875 A JPH01181875 A JP H01181875A JP 63006168 A JP63006168 A JP 63006168A JP 616888 A JP616888 A JP 616888A JP H01181875 A JPH01181875 A JP H01181875A
Authority
JP
Japan
Prior art keywords
immune complex
compound
functional group
adsorbent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63006168A
Other languages
Japanese (ja)
Other versions
JPH0611333B2 (en
Inventor
Takashi Funahashi
舟橋 孝
Fumiyasu Hirai
文康 平井
Nobutaka Tani
敍孝 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP63006168A priority Critical patent/JPH0611333B2/en
Publication of JPH01181875A publication Critical patent/JPH01181875A/en
Publication of JPH0611333B2 publication Critical patent/JPH0611333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To selectively adsorb approximately an immune complex only without losing almost the effective component in a body fluid by obtaining the adsorbent of the immune complex composed by fixing the compound having an anion functional group at a water insoluble porous support. CONSTITUTION:The preferably elimination limit molecule quantity of a water insoluble porous support is desirable at 400,000 or above and 60,000,000 or below. Next, concerning the porous construction of the water insoluble porous support, the total porosity is more preferable than the surface porosity and since the hole volume is large than the adsorption capacity, it is desirable that it is 20% or above. As the compound having an anion functional group, it may be the compound having one anion functional group per polymer or a polyamine compound having plural anion functional groups. The adsorbent is made into the condition in which the compound having the anion functional group is fixed at the water insoluble porous support.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は体液から有害な成分を吸着除去するための吸着
体およびそれを用いた除去装置に関する。さらに詳しく
は体液中より免疫複合体を除去し、自己免疫疾患を抑制
するための吸着体およびそれを用いた免疫複合体の除去
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an adsorbent for adsorbing and removing harmful components from body fluids and a removal device using the adsorbent. More specifically, the present invention relates to an adsorbent for removing immune complexes from body fluids and suppressing autoimmune diseases, and an immune complex removal device using the adsorbent.

[従来の技術および発明が解決しようとする課8] われわれの周囲には、おびただしい種類のウィルス、細
菌、かび、寄生虫などの感染性の異物が存在している。
[Problem 8 to be solved by conventional techniques and inventions] There are numerous types of infectious foreign substances such as viruses, bacteria, molds, and parasites around us.

そのいずれもが生体に疾患をおこすことができ、もし無
制限に生体内で増殖すれば、最終的に生物を殺してしま
うことになる。そこで生体にはこれを防御する機能とし
て免疫系が存在している。この免疫系で主役をなすのが
抗体分子である。つまりウィルスや細菌などの異物が抗
原となり、免疫系を刺激すると、その抗原と選択的に結
合する抗体分子が産生される。
All of these can cause diseases in living organisms, and if they multiply unrestricted within the organism, they will eventually kill the organism. Therefore, the body has an immune system as a function to protect against this. Antibody molecules play a central role in this immune system. In other words, when a foreign substance such as a virus or bacteria acts as an antigen and stimulates the immune system, antibody molecules that selectively bind to the antigen are produced.

一方自己免疫疾患では、外部の生物でなく自己の細胞や
組織のもつ抗原に対して体液性あるいは細胞性の免疫応
答がおこり、自己に対する抗体(以下、自己抗体という
)や抗原抗体が特異的に反応しあって作られる複合体(
以下、免疫複合体という)などが大量に生じる。そして
この体液中の免疫複合体は、生理的排除機構によって処
理されず、腎糸球体、関節滑膜、肺、血管壁などの組織
に沈着して自己免疫疾患に特徴的な病態の出現に直接間
わりをもつことが多い。
On the other hand, in autoimmune diseases, a humoral or cellular immune response occurs against antigens of one's own cells and tissues rather than foreign organisms, and antibodies against oneself (hereinafter referred to as autoantibodies) and antigen-antibodies are produced in a specific manner. A complex formed by reacting with each other (
A large amount of immune complexes (hereinafter referred to as immune complexes) are generated. Immune complexes in body fluids are not processed by physiological elimination mechanisms and are deposited in tissues such as renal glomeruli, joint synovium, lungs, and blood vessel walls, directly contributing to the appearance of pathological conditions characteristic of autoimmune diseases. There are often conflicts.

代表的な自己免疫疾患である全身性エリテマトーデス(
以下、SLEという)では細胞の核成分、とりわけデオ
キシリボ核酸(以下、DNAという)に対する抗体(以
下、抗DNA抗体という)が体液中に出現し、この自己
抗体自身が抗原と結合して免疫複合体を形成し組織に沈
着することにより組織障害を起こす機構が提唱されてい
る。SLHのばあいは発生した抗DNA抗体が同じく血
中に流出した細胞由来のDNAと免疫複合体を形成し、
血管壁、腎糸球体基底膜に沈着することによりそれぞれ
血管炎、ループス腎炎を発症することが知られており、
実際SLEでは腎不全により死亡する例が多い。
Systemic lupus erythematosus (
In SLE (hereinafter referred to as SLE), antibodies (hereinafter referred to as anti-DNA antibodies) against nuclear components of cells, particularly deoxyribonucleic acid (hereinafter referred to as DNA), appear in body fluids, and these autoantibodies themselves bind to antigens and form immune complexes. A mechanism has been proposed that causes tissue damage by forming and depositing in tissues. In the case of SLH, the generated anti-DNA antibodies form immune complexes with cell-derived DNA that also leaked into the bloodstream.
It is known that vasculitis and lupus nephritis occur when deposited on blood vessel walls and renal glomerular basement membranes, respectively.
In fact, many cases of SLE result in death due to renal failure.

このように産生じた自己抗体と対応抗原との免疫複合体
によりさまざまな症状がひきおこされるわけであるから
、治療には免疫複合体のコントロールが非常に重要であ
る。
Immune complexes between the autoantibodies and the corresponding antigens produced in this way cause various symptoms, so controlling immune complexes is extremely important for treatment.

従来より免疫複合体の産生を抑制する目的でステロイド
剤、免疫抑制剤、免疫調節剤、抗炎症剤などがSLHの
治療に広く用いられている。
Steroids, immunosuppressants, immunomodulators, anti-inflammatory agents, and the like have been widely used in the treatment of SLH for the purpose of suppressing the production of immune complexes.

なかでもステロイド剤はもっとも一般的に用いられ、パ
ルス療法と呼ばれるステロイドの短期超大量投与療法も
しばしば行われている。しかしながら、ステロイドは少
量の投与によっても副作用を生じやすいのでステロイド
の短期超大量投与療法によれば、さらに大きな副作用を
生じさせやすくなるのは自明である。また、これらの薬
剤は長期にわたって用いられることが多く、そのような
ばあいには副作用がさらに出やすく、また薬剤耐性によ
りしだいに増量しなければならないことも多いため症例
によってはこれらの薬剤の使用が不可能であったり、充
分な効果を発揮しないばあいも多い。とくにSLHの活
動期は抗DNA抗体および免疫複合体の抑制がもっとも
必要な時期であるにもかかわらず、上記の理由によりパ
ルス療法や免疫抑制剤などの薬剤を用いる強力な療法を
採用できないばあいも多い。
Among these, steroids are the most commonly used, and short-term ultra-dose therapy called pulse therapy is also often performed. However, since steroids tend to cause side effects even when administered in small doses, it is obvious that short-term ultra-dose therapy with steroids tends to cause even greater side effects. In addition, these drugs are often used for a long period of time, in which case side effects are more likely to occur, and the dosage must be gradually increased due to drug resistance, so in some cases, these drugs may not be used. In many cases, it is impossible or does not have sufficient effect. In particular, although suppression of anti-DNA antibodies and immune complexes is most necessary during the active phase of SLH, strong therapy using drugs such as pulse therapy and immunosuppressants cannot be used for the reasons mentioned above. There are also many.

一方、これらの薬剤療法とは別のアプローチとして、体
液中の免疫複合体を体外循環によって直接除去しようと
する試みがなされている。
On the other hand, as an approach different from these drug therapies, attempts have been made to directly remove immune complexes from body fluids by extracorporeal circulation.

もっとも簡便な方法は、免疫複合体を含む患者の血漿を
健常人の血漿と交換する、いわゆる血漿交換療法である
。この方法によって血中の免疫複合体は大幅に低下し、
症状の改善がみられている。しかしながらこの方法では
大量の健常血漿が必要となり高価であるばかりでなく、
該療法処置中に血清肝炎などの感染の危険性を伴うため
に広く普及するには至っていない。
The simplest method is so-called plasma exchange therapy, in which the patient's plasma containing immune complexes is exchanged with the plasma of a healthy person. This method significantly reduces immune complexes in the blood;
Symptoms are showing improvement. However, this method not only requires a large amount of healthy plasma and is expensive;
Because of the risk of infection such as serum hepatitis during the therapeutic treatment, it has not become widely used.

血漿交換療法では血漿中のすべての成分が除かれ、健常
血漿と交換されるわけであるが、これに対して病因物質
である免疫複合体を選択的に除去する目的で、分子サイ
ズにより病因物質を分離する血漿分離膜法が開発された
。この方法では膜により血漿を高分子量画分と低分子量
画分に分離し、病因物質が含まれている高分子量画分を
廃棄し、主要蛋白であるアルブミンが含まれている低分
子量画分を患者に戻すが、免疫複合体は、分子量約18
万のIgG(免疫グロブリンG)と抗原との複合体が主
であり、その分子量分布も広いために、アルブミン、正
常なIgGやIgM(免疫グロブリンM)との分離は必
ずしも充分でなく、免疫複合体を除去する際にこれらも
大量に除去され、さらに病因物質と同等以上の分子量の
蛋白はすべて除去されるなどの欠点がある。
In plasma exchange therapy, all components in plasma are removed and replaced with healthy plasma.In contrast, in order to selectively remove immune complexes, which are pathogenic substances, the pathogenic substances are separated by molecular size. A plasma separation membrane method has been developed to separate In this method, plasma is separated into a high molecular weight fraction and a low molecular weight fraction using a membrane, the high molecular weight fraction containing pathogenic substances is discarded, and the low molecular weight fraction containing the main protein albumin is discarded. When returned to the patient, the immune complex has a molecular weight of approximately 18
Because the main component is a complex of IgG (immunoglobulin G) and antigen, and its molecular weight distribution is wide, separation from albumin, normal IgG, and IgM (immunoglobulin M) is not always sufficient, and immune complex It also has the disadvantage that a large amount of these substances are removed when the body is removed, and all proteins with a molecular weight equal to or higher than that of the pathogenic substance are removed.

したがって、病因物質である免疫複合体をより選択的に
除去し、体液中の有用成分がほとんど失われることのな
い除去手段の出現が望まれていた。
Therefore, it has been desired to develop a means for removing immune complexes, which are pathogenic substances, more selectively, with almost no loss of useful components in body fluids.

本発明者らは、かかる実情に鑑み鋭意研究を重ねた結果
、体液中の有効成分をほとんど失うことなくほぼ免疫複
合体のみを選択的に吸着しうる吸着体を見出し、本発明
を完成するに至った。
As a result of extensive research in view of the above circumstances, the present inventors have discovered an adsorbent that can selectively adsorb almost only immune complexes without losing most of the active ingredients in body fluids, and have completed the present invention. It's arrived.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、水不溶性多孔質担体にアニオン性官
能基を有する化合物が固定されてなる免疫複合体の吸着
体ならびに流体の流入口および流出口を有する容器、流
体および該流体に含まれる成分は通過できるが、前記の
免疫複合体の吸着体は通過できないフィルター、および
前記容器内に充填された前記免疫複合体の吸着体からな
る免疫複合体の除去装置に関する。
That is, the present invention provides an adsorbent for an immune complex in which a compound having an anionic functional group is immobilized on a water-insoluble porous carrier, a container having an inlet and an outlet for a fluid, and a fluid and components contained in the fluid. The present invention relates to an immune complex removal device comprising a filter through which the immune complex adsorbent can pass through but not the immune complex adsorbent, and an immune complex removal device comprising the immune complex adsorbent filled in the container.

[実施例] 本明細書において体液とは血液、血漿、血清、腹水、リ
ンパ液、関節内液およびこれらからえられた分画成分、
ならびにその他の生体由来の液性成分をいう。
[Example] In this specification, body fluids include blood, plasma, serum, ascites, lymph fluid, intraarticular fluid, and fractionated components obtained therefrom.
and other biologically derived humoral components.

本発明において水不溶性多孔質担体とは、アニオン性官
能基を有する化合物を固定するための水に溶解しない性
質を有する物質をいう。本発明に用いる水不溶性多孔質
担体は、大きな径の連続した細孔を有するものが好まし
い。すなわち免疫複合体は、おもにIgGと抗原からな
り、分子量が18万以上であり、分子量が100万位の
巨大分子のものも存在すると予想されるために、これを
効率よく吸着するためには免疫複合体が容易に多孔質体
内に侵入しうろことが必要である。
In the present invention, the water-insoluble porous carrier refers to a substance that is used to immobilize a compound having an anionic functional group and has the property of being insoluble in water. The water-insoluble porous carrier used in the present invention preferably has large, continuous pores. In other words, immune complexes are mainly composed of IgG and antigens, and have a molecular weight of 180,000 or more, and it is expected that there are large molecules with a molecular weight of around 1 million. It is necessary that the composite easily penetrate into the porous body.

細孔径の測定方法には種々あり、水銀圧入法がもっとも
よく用いられているが、親水性多孔質体のばあいには適
用が難しい。これに変わる細孔径の目安として排除限界
分子量がよく用いられ、親水性多孔質体、疎水性多孔質
体のいずれにも適用できる。排除限界分子量とは底置(
たとえば波多野博之、花卉俊彦著、実験高速液体クロマ
トグラフィー、化学同人)などに述べられているごとく
、ゲル浸透クロマトグラフィーにおいて細孔内に侵入で
きない(排除される)分子のうちもっとも小さい分子量
をもつ物の分子量をいう。
There are various methods for measuring the pore diameter, and the mercury intrusion method is the most commonly used, but it is difficult to apply to hydrophilic porous materials. Exclusion limit molecular weight is often used as an alternative guideline for pore diameter, and can be applied to both hydrophilic porous materials and hydrophobic porous materials. The exclusion limit molecular weight is the bottom (
For example, as described in Hiroyuki Hatano, Toshihiko Hana, Experimental High Performance Liquid Chromatography, Kagaku Doujin), among the molecules that cannot enter (excluded) the pores in gel permeation chromatography, molecules with the smallest molecular weight The molecular weight of

排除限界分子量は対象とする化合物により異なることが
知られており、一般に球状蛋白質、デキストラン、ポリ
エチレングリコールなどについてよく調べられているが
本発明に用いる担体のばあい、免疫複合体にもっとも類
似していると思われる球状蛋白質を用いてえられた値を
用いるのが適当である。
It is known that the exclusion limit molecular weight varies depending on the target compound, and in general, globular proteins, dextran, polyethylene glycol, etc. have been well investigated, but in the case of the carrier used in the present invention, the molecular weight that is most similar to the immune complex is It is appropriate to use the values obtained using globular proteins that are thought to be present.

排除限界の異なる種々の水不溶性多孔質担体を用いて検
討した結果、免疫複合体の吸着に適当な細孔径の範囲は
、40万以上8000万以下であることが明らかになっ
た。すなわち40万未満の排除限界分子量をもつ水不溶
性多孔質担体を用いたばあいには免疫複合体の吸着量は
小さく実用に耐えない。一方排除限界分子量が太き(な
るにつれて、免疫複合体の吸着量は増加するがやがて頭
打ちとなり、排除限界分子量が6000万をこえると表
面積が少なすぎ吸着量は目だって低下するばかりでなく
、目的とする免疫複合体以外の吸着、すなわち非特異吸
着が増加し選択性がいちじるしく低下する。
As a result of studies using various water-insoluble porous carriers with different exclusion limits, it was revealed that the range of pore diameters suitable for adsorption of immune complexes is from 400,000 to 80,000,000 to 80,000,000. That is, when a water-insoluble porous carrier having an exclusion limit molecular weight of less than 400,000 is used, the amount of immune complex adsorbed is too small to be practical. On the other hand, as the exclusion limit molecular weight becomes thicker, the adsorption amount of the immune complex increases but eventually reaches a plateau.When the exclusion limit molecular weight exceeds 60 million, the surface area is too small and the adsorption amount not only decreases noticeably, but also Adsorption of substances other than the desired immune complex, that is, non-specific adsorption, increases and selectivity decreases significantly.

したがって本発明に用いる水不溶性多孔質担体の好まし
い排除限界分子量は40万以上8000万以下であり、
さらに好ましくはより選択性吸着容量の大きい点から8
0万以上2000万以下であるのがよい。
Therefore, the preferred exclusion limit molecular weight of the water-insoluble porous carrier used in the present invention is 400,000 to 80 million,
More preferably, 8
It is preferable that the number is 00,000 or more and 20,000,000 or less.

つぎに水不溶性多孔質担体の多孔構造については表面多
孔性よりも全多孔性が好ましく、空孔容積が吸着容量が
大きいという点から20%以上であることが望ましい。
Next, regarding the porous structure of the water-insoluble porous carrier, total porosity is preferable to surface porosity, and the pore volume is desirably 20% or more from the viewpoint of high adsorption capacity.

水不溶性多孔質担体の形状は、粒状、球状、繊維状、膜
状、ホローファイバー状など任意の形状を選ぶことがで
きる。粒状の水不溶性多孔質担体を用いるばあい、その
粒子径は1虜未満のばあい圧力損失が大きく 、500
0m+をこえるばあい吸着容量が小さい点から1虜以上
5000虜以下であるのが好ましい。
The shape of the water-insoluble porous carrier can be selected from any shape such as granules, spheres, fibers, membranes, and hollow fibers. When using a granular water-insoluble porous carrier, if the particle size is less than 1 mm, the pressure loss will be large;
If it exceeds 0m+, the adsorption capacity is small, so it is preferable that the adsorption capacity is 1 or more and 5000 or less.

本発明に用いる水不溶性多孔質担体は有機性、無機性い
ずれであってもよいが、目的とする免疫複合体以外の体
液成分の吸着(いわゆる非特異吸着)の少ないものが好
ましい。親水性であるほうが非特異吸着が少ないので水
不溶性多孔質担体は疎水性であるよりも、親水性である
ほうが好ましい。
The water-insoluble porous carrier used in the present invention may be either organic or inorganic, but it is preferably one that has little adsorption (so-called non-specific adsorption) of body fluid components other than the target immune complex. It is preferable that the water-insoluble porous carrier is hydrophilic rather than hydrophobic, since non-specific adsorption is less likely to occur if the carrier is hydrophilic.

さらに、水不溶性多孔質担体表面には、リガンドの固定
化反応に用いうる官能基が存在していると好都合である
。これらの官能基の代表例としては、水酸基、アミノ基
、アルデヒド基、アルボキシル基、チオール基、シラノ
ール基、アミド基、エポキシ基、ハロゲン基、スクシニ
ルイミド基、酸無水物基などがあげられるが、これらに
限定されるわけではない。また、水不溶性多孔質担体は
前記官能基のなかでも水酸基を有する化合物よりなるも
のであるばあい、非特異吸着が少ないのでとくに好まし
い。これら官能基をスペーサーとして導入された水不溶
性多孔質担体も、用いうろことはいうまでもない。
Furthermore, it is advantageous if a functional group that can be used for a ligand immobilization reaction is present on the surface of the water-insoluble porous carrier. Typical examples of these functional groups include hydroxyl group, amino group, aldehyde group, alkyl group, thiol group, silanol group, amide group, epoxy group, halogen group, succinylimide group, acid anhydride group, etc. It is not limited to these. Further, it is particularly preferable that the water-insoluble porous carrier is made of a compound having a hydroxyl group among the above-mentioned functional groups, since non-specific adsorption is small. Needless to say, water-insoluble porous carriers into which these functional groups are introduced as spacers can also be used.

本発明に用いる水不溶性多孔質担体の代表例としては、
アガロース、デキストラン、ポリアクリルアミドなどの
軟質多孔質体、多孔質ガラス、多孔質シリカゲルなどの
無機多孔質体、ポリメチルメタクリレート、ポリビニル
アルコール、スチレン、ジビニルベンゼン共重合体など
の合成高分子および/またはセルロースなどの天然高分
子を原料とする多孔質ポリマーハードゲルなどがあげら
れるがこれらに限定されるわけではない。
Representative examples of water-insoluble porous carriers used in the present invention include:
Soft porous materials such as agarose, dextran, and polyacrylamide, inorganic porous materials such as porous glass and porous silica gel, synthetic polymers such as polymethyl methacrylate, polyvinyl alcohol, styrene, and divinylbenzene copolymers, and/or cellulose. Examples include, but are not limited to, porous polymer hard gels made from natural polymers such as .

本発明の吸着体を体外循環治療に用いる際には、血液、
血漿のごとき高粘性流体を高速で流す必要があるために
、圧密化を引き起こさない充分な機械的強度を有する硬
質水不溶性多孔質担体を用いるのが好ましい。すなわち
硬質水不溶性多孔質担体とは後記参考例に示すごとく、
水不溶性多孔質担体を円筒状カラムに均一に充填し、水
性流体を流通したばあいの圧力損失と流量との関係が少
なくとも0.3kg/c−まで直線関係にあるものをい
う。
When using the adsorbent of the present invention for extracorporeal circulation treatment, blood,
Due to the need to flow high viscosity fluids such as blood plasma at high speeds, it is preferred to use a rigid, water-insoluble porous carrier that has sufficient mechanical strength to avoid compaction. In other words, the hard water-insoluble porous carrier is as shown in the reference example below.
When a water-insoluble porous carrier is uniformly packed into a cylindrical column and an aqueous fluid is passed through the column, the relationship between pressure loss and flow rate is linear up to at least 0.3 kg/c.

本発明の吸着体のアニオン性官能基は、pHが中性付近
で負に帯電するような官能基であればいかなるものも使
用しうる。これらの代表例としては、カルボキシル基、
スルホン酸基、スルホン基、硫酸エステル基、シラノー
ル基、リン酸エステル基、フェノール性水酸基などがあ
げられるがこれらに限定されるものではない。
As the anionic functional group of the adsorbent of the present invention, any functional group can be used as long as it is negatively charged near neutral pH. Typical examples of these include carboxyl groups,
Examples include, but are not limited to, sulfonic acid groups, sulfone groups, sulfuric acid ester groups, silanol groups, phosphoric acid ester groups, and phenolic hydroxyl groups.

アニオン性官能基を有する化合物としては、1分子あた
りひとつのアニオン性官能基を有する化合物であっても
、また複数のアニオン性官能基を有するポリアニオン化
合物であってもよい。ポリアニオン化合物は、免疫複合
体に対する親和性が大きく、また単位量の水不溶性多孔
質担体に多くのアニオン性官能基を導入しやすいので好
ましい。なかでも分子量が1000以上のポリアニオン
化合物は親和性、アニオン性官能基導入量の点で好まし
い。ポリアニオン化合物が有するアニオン性官能基は1
種類であってもよいし、複数の種類であつてもよい。
The compound having an anionic functional group may be a compound having one anionic functional group per molecule, or a polyanionic compound having a plurality of anionic functional groups. Polyanionic compounds are preferred because they have a high affinity for immune complexes and can easily introduce many anionic functional groups into a unit amount of water-insoluble porous carrier. Among these, polyanionic compounds having a molecular weight of 1000 or more are preferred in terms of affinity and the amount of anionic functional group introduced. The anionic functional group that the polyanion compound has is 1
It may be a type or a plurality of types.

本発明に用いるポリアニオン化合物の代表例としては、
ポリアクリル酸、ポリビニル硫酸、ポリビニルスルホン
酸、ポリビニルリン酸、ポリスチレンスルホン酸、ポリ
スチレンリン酸、ポリグルタミン酸、ポリアスパラギン
酸、ポリメタクリル酸、ポリリン酸、スチレン−マレイ
ン酸共重合体などの合成ポリアニオン化合物、およびヘ
パリン、デキストラン硫酸、コンドロイチン、コンドロ
イチン硫酸、ホスホマンナン、キチン、キトサンなどの
アニオン性官能基含有多糖類があげられるがこれらに限
定されるわけではない。
Representative examples of polyanionic compounds used in the present invention include:
Synthetic polyanionic compounds such as polyacrylic acid, polyvinyl sulfuric acid, polyvinyl sulfonic acid, polyvinyl phosphoric acid, polystyrene sulfonic acid, polystyrene phosphoric acid, polyglutamic acid, polyaspartic acid, polymethacrylic acid, polyphosphoric acid, styrene-maleic acid copolymer, and anionic functional group-containing polysaccharides such as heparin, dextran sulfate, chondroitin, chondroitin sulfate, phosphomannan, chitin, and chitosan, but are not limited thereto.

本発明の吸着体に固定されるアニオン性官能基を有する
化合物は1種類であってもよいし、2種類以上であって
もよい。
The number of compounds having anionic functional groups immobilized on the adsorbent of the present invention may be one type, or two or more types.

本発明の吸着体は、水不溶性多孔質担体にアニオン性官
能基を有する化合物が固定された状態のものをいう。そ
のようなアニオン性官能基を有する化合物が固定されて
なる状態をうるためにアニオン性官能基を水不溶性多孔
質担体に導入する方法としては公知の種々の方法を特別
な制限なしに用いることができるが、そのようなアニオ
ン性官能基を有する化合物が固定されてなる状態をうる
ためのアニオン性官能基の担体への代表的な導入方法と
しては、 (1)  アニオン性官能基あるいは容易にアニオン性
官能基に変換しうる官能基を含有する化合物をモノマー
あるいは架橋剤として用いる重合によって吸着体を形成
させる方法、 (2アニオン性官能基を含有する化合物を水不溶性多孔
質担体に固定させる方法、 G) アニオン性官能基を形成する化合物と水不溶性多
孔質担体とを直接反応させることによって、水不溶性多
孔質担体にアニオン性官能基を有する化合物を固定させ
る方法 などがあげられる。
The adsorbent of the present invention is one in which a compound having an anionic functional group is immobilized on a water-insoluble porous carrier. In order to obtain a state in which such a compound having an anionic functional group is immobilized, various known methods can be used without any particular limitations to introduce the anionic functional group into the water-insoluble porous carrier. However, typical methods for introducing an anionic functional group into a carrier to obtain a state in which a compound having such an anionic functional group is immobilized are as follows: (1) Anionic functional groups or easily anionic A method of forming an adsorbent by polymerization using a compound containing a functional group that can be converted into a functional group as a monomer or a crosslinking agent, (a method of immobilizing a compound containing a dianionic functional group on a water-insoluble porous carrier, G) A method of immobilizing a compound having an anionic functional group on a water-insoluble porous carrier by directly reacting the compound forming the anionic functional group with the water-insoluble porous carrier.

もちろんガラス、シリカ、アルミナなどもともとアニオ
ン性官能基を含有するアニオン性官能基含有化合物を吸
着体として用いてもよい。
Of course, an anionic functional group-containing compound such as glass, silica, alumina, etc. that originally contains an anionic functional group may be used as the adsorbent.

(1)の方法において用いるアニオン性官能基あるいは
容易にアニオン性官能基に変換しうる官能基を含有する
モノマーあるいは架橋剤の代表例としては、アクリル酸
およびそのエステル、メタクリル酸およびそのエステル
、スチレンスルホン酸などがあげられるがこれらに限定
されるわけではない。
Typical examples of monomers or crosslinking agents containing anionic functional groups or functional groups that can be easily converted into anionic functional groups used in method (1) include acrylic acid and its esters, methacrylic acid and its esters, and styrene. Examples include, but are not limited to, sulfonic acids.

(2の方法、すなわちアニオン性官能基を含有する化合
物を水不溶性多孔質担体に固定させる方法としては、物
理的吸着による方法、イオン結合による方法、共有結合
により固定する方法などがあり、いかなる方法を用いて
もよいが、吸着体の保存性ならびに安定性のためにはア
ニオン性官能基含有化合物が脱離しないことが重要であ
るので、強固な固定が可能な共有結合法が望ましい。
(Method 2, that is, a method for immobilizing a compound containing an anionic functional group on a water-insoluble porous carrier, includes methods such as physical adsorption, ionic bonding, and covalent bonding. However, since it is important for the storage stability and stability of the adsorbent that the anionic functional group-containing compound not be desorbed, a covalent bonding method that allows for strong immobilization is preferable.

・ 共有結合によりアニオン性官能基含有化合物を固定
させるばあい、アニオン性官能基含有化合物がアニオン
性官能基以外に固定に利用できる官能基を有するのが好
ましい。
- When an anionic functional group-containing compound is immobilized by a covalent bond, it is preferable that the anionic functional group-containing compound has a functional group other than the anionic functional group that can be used for immobilization.

固定に利用できる官能基の代表例としては、アミノ基、
アミド基、カルボキシル基、酸無水物基、スクシニルイ
ミド基、水酸基、チオール基、アルデヒド基、ハロゲン
基、エポキシ基、シラノール基などがあげられるがこれ
らに限定されるわけではない。
Typical examples of functional groups that can be used for immobilization include amino groups,
Examples include, but are not limited to, amide groups, carboxyl groups, acid anhydride groups, succinylimide groups, hydroxyl groups, thiol groups, aldehyde groups, halogen groups, epoxy groups, and silanol groups.

これらの官能基を有するアニオン性官能基含有化合物は
多数存在するが、実施例に記載した、スルファニル酸、
ホスホリルエタノールアミン、グリシン、タウリンなど
はその一例である。
There are many anionic functional group-containing compounds having these functional groups, but sulfanilic acid,
Examples include phosphorylethanolamine, glycine, and taurine.

また、アニオン性官能基を含有する化合物のうち硫酸エ
ステル基を含有する化合物の代表例としてはアルコール
、糖類、グリコールなどの水酸基含有化合物の硫酸エス
テルがあげられるが、これらのなかでも多価アルコール
の部分硫酸エステル化合物、とりわけ糖類の硫酸エステ
ル化物が硫酸エステル基、固定に必要な官能基の双方を
含んでいるうえに、生体適合性および活性ともに高く、
さらに硫酸化多糖類は容易に水不溶性多孔質担体に画定
しうろことからとくに好ましい。
Among compounds containing anionic functional groups, typical examples of compounds containing sulfate groups include sulfate esters of hydroxyl group-containing compounds such as alcohols, sugars, and glycols. Partial sulfate ester compounds, especially sulfate esters of sugars, contain both sulfate groups and functional groups necessary for immobilization, and have high biocompatibility and activity.
Further, sulfated polysaccharides are particularly preferred because they are easily defined in water-insoluble porous carriers.

つぎに、(3)の方法、すなわちアニオン性官能基を形
成する化合物と水不溶性多孔質担体とを反応させること
によって、水不溶性多孔質担体にアニオン性官能基を有
する化合物を固定させてアニオン性官能基を導入する方
法の代表例として水酸基含有多孔質担体に硫酸エステル
基を導入する反応があげられる。このばあい、水酸基含
有水不溶性多孔質担体とクロロスルホン酸、濃硫酸など
の試薬を反応させることによって直接硫酸エステル基を
導入することができる。
Next, by the method (3), that is, by reacting the compound forming an anionic functional group with the water-insoluble porous carrier, the compound having an anionic functional group is immobilized on the water-insoluble porous carrier, and the anionic functional group is immobilized on the water-insoluble porous carrier. A typical example of a method for introducing a functional group is a reaction in which a sulfate ester group is introduced into a hydroxyl group-containing porous carrier. In this case, the sulfate ester group can be directly introduced by reacting the hydroxyl group-containing water-insoluble porous carrier with a reagent such as chlorosulfonic acid or concentrated sulfuric acid.

導入されるアニオン性官能基の量は、吸着体1mlあた
り0.O1μ■o1以上10m■O1以下が好ましい。
The amount of anionic functional group introduced is 0.000000000000000000 per ml adsorbent. It is preferably 01μ■o1 or more and 10m■O1 or less.

0.O1μs+o1未満のばあい吸着能力が充分でなく
、1011o1をこえるばあい非特異吸着が多すぎて実
用に供することが困難になる。より好ましいアニオン性
官能基導入量は1μ■O1以上100μmol以下であ
るのがよい。
0. If it is less than O1μs+o1, the adsorption capacity is insufficient, and if it exceeds 1011o1, there will be too much non-specific adsorption, making it difficult to put it to practical use. A more preferable amount of anionic functional group to be introduced is 1 .mu.O1 or more and 100 .mu.mol or less.

本発明の吸着体を治療に用いるには種々の方法がある。There are various ways in which the adsorbent of the present invention can be used therapeutically.

もっとも簡便な方法としては患者の血液を体外に導出し
て血液バッグに貯め、これに本発明の吸着体を混合して
免疫複合体を除去後、フィルターを通して吸着体を除去
し、血液を患者に戻す方法がある。この方法は、複雑な
装置を必要としないが、1回の処理量が少なく治療に時
間を要し、操作が煩雑になるという欠点を有する。
The simplest method is to draw the patient's blood outside the body and store it in a blood bag, mix it with the adsorbent of the present invention to remove immune complexes, then pass it through a filter to remove the adsorbent, and then transfer the blood to the patient. There is a way to get it back. Although this method does not require complicated equipment, it has the drawbacks that the amount of treatment per treatment is small, the treatment takes time, and the operation is complicated.

つぎの方法は吸着体をカラムに充填し、体外循環回路に
組み込みオンラインで吸着除去を行うものである。すな
わち流体の流入口および流出口を有する容器、流体およ
び該流体に含まれる成分は通過できるが、水不溶性多孔
質担体にアニオン性官能基を有する化合物が固定されて
なる免疫複合体の吸着体は通過できないフィルター、お
よび前記容器内に充填された前記免疫複合体の吸着体か
らなる免疫複合体の除去装置に体液を通液する方法が簡
便で好ましい。
In the next method, the adsorbent is packed into a column and installed in an extracorporeal circulation circuit, and adsorption and removal is performed online. In other words, a container having an inlet and an outlet for fluid can pass through the fluid and the components contained in the fluid, but an immune complex adsorbent consisting of a water-insoluble porous carrier with a compound having an anionic functional group immobilized thereon can pass through the container. A simple and preferred method is to pass the body fluid through an immune complex removal device comprising an impermeable filter and an adsorbent for the immune complex filled in the container.

第2図に本発明の免疫複合体の除去装置の一実施例の概
略断面図を示す。第2図中、(1)および(2)はそれ
ぞれの流体の流入口と流出口、(3)は本発明の吸着体
、(4)および(Sは流体および流体に含まれる成分は
通過できるが本発明の吸着体は通過できないフィルター
またはメツシュ、(6)はカラム、(刀は容器である。
FIG. 2 shows a schematic cross-sectional view of an embodiment of the immune complex removal device of the present invention. In Figure 2, (1) and (2) are the inlet and outlet of the respective fluids, (3) is the adsorbent of the present invention, (4) and (S are the fluids and the components contained in the fluids can pass through. However, the adsorbent of the present invention cannot pass through a filter or mesh, (6) is a column, and (6) is a container.

ここで流体の流入口側のフィルター魯)は存在しなくて
もよい。
Here, the filter on the fluid inlet side may not be present.

以下、実施例により本発明をさらに詳しく説明するが、
本発明はかかる実施例のみに限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to such embodiments.

参考例 両端に孔径15IxRのフィルターを装着したガラス製
円筒カラム(内径91m、カラム長さ150+u)にア
ガロースゲル(バイオラド(Blorado)社製のB
logel Asm、粒径50〜100メツシユ)、ポ
リマー硬質ゲル(東洋曹達工業■製のトヨパールawe
s、粒径50〜100 tm、およびチッソ■製のセル
ロファインGC700、粒径45〜105.ca)をそ
れぞれ均一に充填しベリスタルティックポンプによりカ
ラム内に水を流通し、流量と圧力損失ΔPとの関係を求
めた。その結果を第1図に示す。
Reference Example: Agarose gel (B from Blorado) was placed on a glass cylindrical column (inner diameter 91 m, column length 150 + u) equipped with filters with a pore size of 15 IxR at both ends.
logel Asm, particle size 50-100 mesh), polymer hard gel (Toyo Pearl Awe manufactured by Toyo Soda Kogyo ■)
s, particle size 50-100 tm, and Cellulofine GC700 manufactured by Chisso ■, particle size 45-105. ca) was uniformly filled in each column, water was passed through the column using a beristaltic pump, and the relationship between the flow rate and pressure loss ΔP was determined. The results are shown in FIG.

同図より明らかなように軟質ゲルであるアガロースゲル
は一定の流量以上では圧密化をおこし、圧力を増加させ
ても流量が増加しないのに対し、トヨパール、セルロフ
ァインなどの硬質ゲルは圧力の増加にほぼ比例して流量
が増加する。
As is clear from the figure, agarose gel, which is a soft gel, becomes compacted when the flow rate exceeds a certain level, and the flow rate does not increase even if the pressure increases, whereas hard gels such as Toyopearl and Cellulofine do not increase pressure. The flow rate increases approximately in proportion to.

製造例1 多孔質セルロースゲルであるCKゲルAS(商品名、チ
ッソ■製、球状蛋白質の排除限界分子量5000万、粒
径45〜105 、ca) 100 mlに20%Na
OH40g1ヘプタン120gおよびノニオン系界面活
性剤トウィーン20(商品名、花王アトラス■製)を1
0滴加えた。40℃で2時間撹拌後、エピクロルヒドリ
ン50gを加えて2時間撹拌し、ゲルを水洗濾過し、エ
ポキシ基の導入されたセルロースゲル(以下、エポキシ
化ゲルという)をえた。
Production Example 1 Porous cellulose gel CK Gel AS (trade name, manufactured by Chisso ■, exclusion limit molecular weight for globular proteins 50 million, particle size 45-105, ca) 20% Na in 100 ml
40 g of OH 120 g of heptane and the nonionic surfactant Tween 20 (trade name, manufactured by Kao Atlas ■)
Added 0 drops. After stirring at 40° C. for 2 hours, 50 g of epichlorohydrin was added and stirred for 2 hours, and the gel was washed and filtered with water to obtain a cellulose gel into which epoxy groups were introduced (hereinafter referred to as epoxidized gel).

実施例1 製造例1でえたエポキシ化ゲル5mlにスルファニル酸
0.L’1gを10m1の水に溶解してpH9,9に調
整した溶液を加え、常温で24時間振盪し、0.5%モ
ノエタノールアミン水溶液を加えて振盪し未反応のエポ
キシ基を封止してスルファニル酸が固定されたセルロー
スゲルをえた。固定されたスルファニル酸により導入さ
れたアニオン性官能基量は吸着体1mlあたり6.5μ
molであった。
Example 1 5 ml of the epoxidized gel obtained in Production Example 1 was added with 0.0 ml of sulfanilic acid. A solution of 1 g of L' dissolved in 10 ml of water and adjusted to pH 9.9 was added, shaken at room temperature for 24 hours, and 0.5% monoethanolamine aqueous solution was added and shaken to seal unreacted epoxy groups. A cellulose gel with immobilized sulfanilic acid was obtained. The amount of anionic functional groups introduced by immobilized sulfanilic acid is 6.5μ per ml of adsorbent.
It was mol.

実施例2 製造例1でえたエポキシ化ゲル5 mlにホスホリルエ
タノールアミン0.1 gを10m1の水に溶解してp
H9,8に調整した溶液を加え、40℃で4時間振盪し
、0.5%モノエタノールアミン水溶液を加えて振盪し
未反応のエポキシ基を封止してホスホリルエタノールア
ミンが固定されたセルロースゲルをえた。固定されたホ
スホリルエタノールアミンにより導入されたアニオン性
官能基量は吸着体1mlあたり4μ■ofであった。
Example 2 In 5 ml of the epoxidized gel obtained in Production Example 1, 0.1 g of phosphorylethanolamine was dissolved in 10 ml of water.
Add the solution adjusted to H9,8, shake at 40°C for 4 hours, add 0.5% monoethanolamine aqueous solution and shake to seal unreacted epoxy groups to form a cellulose gel with phosphorylethanolamine immobilized. I got it. The amount of anionic functional groups introduced by the immobilized phosphorylethanolamine was 4 μι/ml of adsorbent.

実施例3 製造例1でえたエポキシ化ゲル5mlに分子量約500
0、イオウ含量15%のデキストラン硫酸ナトリウム4
gおよび水5mlを加えpH9に調整して45℃で16
時間振盪した。その後、ゲルを濾別して、2M食塩水溶
液、0.5M食塩水溶液および水を用いてこの順に洗浄
し、0.5%モノエタノールアミン水溶液を加えて振盪
し未反応のエポキシ基を封止してデキストラン硫酸ナト
リウムが固定されたセルロースゲルをえた。固定された
デキストラン硫酸により導入されたアニオン性官能基量
は吸着体1mlあたりlOμ−01であった。
Example 3 5 ml of the epoxidized gel obtained in Production Example 1 had a molecular weight of about 500.
0, dextran sodium sulfate with 15% sulfur content 4
Add g and 5 ml of water to adjust the pH to 9 and incubate at 45°C for 16 hours.
Shake for hours. Thereafter, the gel was filtered, washed in this order with 2M saline solution, 0.5M saline solution, and water, and 0.5% monoethanolamine aqueous solution was added and shaken to seal unreacted epoxy groups and dextran. A cellulose gel with immobilized sodium sulfate was obtained. The amount of anionic functional groups introduced by the immobilized dextran sulfate was lOμ-01 per ml of adsorbent.

実施例4 製造例1でえたエポキシ化ゲル5 mlにグリシン0.
221−をlGm1の水に溶解してPH9,8に調整し
た溶液を加えて常温で24時間振盪した。その後、ゲル
を濾別して、0.5%モノエタノールアミン水溶液を加
えて振盪し未反応のエポキシ基を封止してグリシンが固
定されたセルロースゲルをえた。固定されたグリシンに
より導入されたアニオン性官能基量は吸着体1 mlあ
たり9μmolであった。
Example 4 Add 0.0% glycine to 5 ml of the epoxidized gel obtained in Production Example 1.
A solution of 221- dissolved in 1 Gml of water and adjusted to pH 9.8 was added, and the mixture was shaken at room temperature for 24 hours. Thereafter, the gel was filtered, and a 0.5% aqueous monoethanolamine solution was added and shaken to seal unreacted epoxy groups to obtain a cellulose gel with immobilized glycine. The amount of anionic functional group introduced by immobilized glycine was 9 μmol per ml of adsorbent.

実施例5 製造例1でえたエポキシ化ゲル5mlにタウリン0.3
7&−を10m1の水に溶解してpH9,0に調整した
溶液を加えて常温で24時間振盪した。その後、ゲルを
濾別して、0.5%モノエタノールアミン水溶液を加え
て振盪し未反応のエポキシ基を封止してタウリンが固定
されたセルロースゲルをえた。固定されたタウリンによ
り導入されたアニオン性官能基量は吸着体1mlあたり
5μmolであった。
Example 5 Add 0.3 taurine to 5 ml of the epoxidized gel obtained in Production Example 1.
A solution prepared by dissolving 7&- in 10 ml of water and adjusting the pH to 9.0 was added thereto, and the mixture was shaken at room temperature for 24 hours. Thereafter, the gel was filtered, and a 0.5% monoethanolamine aqueous solution was added and shaken to seal unreacted epoxy groups to obtain a cellulose gel with taurine immobilized thereon. The amount of anionic functional group introduced by immobilized taurine was 5 μmol per ml of adsorbent.

実施例6 製造例1で用いたものと同様のCKゲルA3.10m1
を水洗後吸引濾過し、これにジメチルスルホキシド6m
l、2N−NaOH2,6ml、エピクロルヒドリン1
.5mlを加えて40℃で2時間撹拌した。反応後ゲル
を濾別し、水洗してエポキシ基の導入されたセルロース
ゲルをえた。
Example 6 CK gel A3.10ml similar to that used in Production Example 1
After washing with water, suction filtration was carried out, and 6 m of dimethyl sulfoxide was added to this.
1, 2N-NaOH2, 6ml, epichlorohydrin 1
.. 5 ml was added and stirred at 40°C for 2 hours. After the reaction, the gel was filtered and washed with water to obtain a cellulose gel into which epoxy groups were introduced.

これに濃アンモニア水6mlを加え40℃で2時間反応
させてアミノ化セルロースゲルをえた。
6 ml of concentrated ammonia water was added to this and reacted at 40°C for 2 hours to obtain an aminated cellulose gel.

このゲル5mlに分子量19万〜50万のポリアクリル
酸ナトリウム0.2gを10m1の水に溶解してpna
、sに調整した溶液を加え、さらに1−エチル−3−(
ジメチルアミノプロピル)カルボジイミド200■をp
H4,5に保ちながら添加し、4℃で24時間振盪した
。反応後ゲルを濾別し、水洗してポリアクリル酸の導入
されたセルロースゲルをえた。固定されたポリアクリル
酸により導入されたアニオン性官能基量は吸着体1 m
lあたり14μmolであった。
In 5 ml of this gel, 0.2 g of sodium polyacrylate with a molecular weight of 190,000 to 500,000 was dissolved in 10 ml of water, and pna
, add the adjusted solution to s, and then add 1-ethyl-3-(
dimethylaminopropyl) carbodiimide 200p
The mixture was added while maintaining the temperature at 4.5 H and was shaken at 4°C for 24 hours. After the reaction, the gel was filtered and washed with water to obtain a cellulose gel into which polyacrylic acid had been introduced. The amount of anionic functional groups introduced by immobilized polyacrylic acid is 1 m of adsorbent.
It was 14 μmol per liter.

実施例7 多孔質セルロースゲルをCKゲルA22(商品名、チッ
ソ■製、球状蛋白質の排除限界分子量2000万、粒径
45〜1O5I!R)、セルロファインGCL−200
0m  (商品名、チッソ■製、球状蛋白質の排除限界
分子量300万、粒径44〜105 fi) 、セルロ
ファインGCL−1000m (商品名、チッソ■製、
球状蛋白質の排除限界分子量60万、粒径44〜105
虜)、セルロファインCC(OOs+  (商品名、チ
ッソ■製、球状蛋白質の排除限界分子量40万、粒径4
4〜105虜)、セルロファインGC−200層(商品
名、チッソ■製、球状蛋白質の排除限界分子量12万、
粒径45〜105 m+) 、セルロファインGCL−
90(商品名、チッソ■製、球状蛋白質の排除限界分子
量3.5万、粒径45〜105m+)にかえたほかは製
造例1および実施例3と同様にしてデキストラン硫酸ナ
トリウムの固定されたセルロースゲルをえた。固定され
たデキストラン硫酸により導入されたアニオン性官能基
量は吸着体1mlあたりそれぞれ16.18.30.2
4.30.37μ■o1であった。
Example 7 Porous cellulose gels were CK Gel A22 (trade name, manufactured by Chisso ■, exclusion limit molecular weight for globular proteins 20 million, particle size 45-1O5I!R) and Cellulofine GCL-200.
0m (product name, manufactured by Chisso ■, exclusion limit molecular weight of globular protein 3 million, particle size 44-105 fi), Cellulofine GCL-1000m (product name, manufactured by Chisso ■,
Exclusion limit molecular weight of globular protein: 600,000, particle size: 44-105
Cellulofine CC (OOs+ (trade name, manufactured by Chisso ■, exclusion limit molecular weight of globular protein 400,000, particle size 4
4 to 105), Cellulofine GC-200 layer (trade name, manufactured by Chisso ■, exclusion limit molecular weight for globular proteins 120,000,
Particle size 45-105 m+), Cellulofine GCL-
Cellulose on which dextran sodium sulfate was fixed was prepared in the same manner as in Production Example 1 and Example 3, except that 90 (trade name, manufactured by Chisso ■, exclusion limit molecular weight of globular protein 35,000, particle size 45 to 105 m+) was used. I got the gel. The amounts of anionic functional groups introduced by immobilized dextran sulfate were 16, 18, and 30.2 per ml of adsorbent, respectively.
It was 4.30.37μ■o1.

実施例8 エポキシ化架橋アガロースゲルであるエポキシアクティ
ベイティッドセファロースCL−6B(商品名、ファル
マシアファインケミカルズ社製、球状蛋白質の排除限界
分子量400万、粒径45〜185m+)ゲルを用いた
ほかは実施例3と同様の方法でデキストラン硫酸ナトリ
ウムを固定した。固定されたデキストラン硫酸により導
入されたアニオン性官能基量は吸着体1mlあたり20
μ鳳o1であった。
Example 8 Example except that an epoxidized cross-linked agarose gel, Epoxy Activated Sepharose CL-6B (trade name, manufactured by Pharmacia Fine Chemicals, exclusion limit molecular weight for globular proteins 4 million, particle size 45-185 m+) was used. Dextran sodium sulfate was immobilized in the same manner as in 3. The amount of anionic functional groups introduced by immobilized dextran sulfate was 20 per ml of adsorbent.
It was μho o1.

実施例9 ポリメタクリル酸メチルを主成分とする親水性多孔性硬
質ヒドロゲルであるPP−HG  (商品名、三菱化成
■製、球状蛋白質の排除限界分子量400万、粒径12
0m+)を用いたほかは製造例1および実施例3と同様
にしてデキストラン硫酸ナトリウムが固定されたゲルを
えた。固定されたデキストラン硫酸により導入されたア
ニオン性官能基量は吸着性1mlあたり9μs+olで
あった。
Example 9 PP-HG (trade name, manufactured by Mitsubishi Kasei ■, exclusion limit molecular weight for globular proteins: 4 million, particle size: 12
A gel on which dextran sodium sulfate was immobilized was obtained in the same manner as in Production Example 1 and Example 3, except that 0m+) was used. The amount of anionic functional groups introduced by the immobilized dextran sulfate was 9 μs+ol per ml of adsorption.

実施例10 実施例6と同様にしてえたアミノ化セルロースゲル2g
に、実施例3で用いたものと同様の分子量5ooo、イ
オウ含量15%のデキストラン硫酸ナトリウム4gを0
.1Mリン酸バッファー(pH8,0)8mlに溶解し
た液を加え室温で18時間振盪した。反応後NaCNB
Hs 2GI1gを加え室温で30分攪拌後、40℃で
4時間加熱したのちゲルを濾別水洗してデキストラン硫
酸ナトリウムの固定されたセルロースゲルをえた。固定
されたデキストラン硫酸により導入されたアニオン性官
能基量は吸着体1 mlあたり18μs+olであった
Example 10 2 g of aminated cellulose gel obtained in the same manner as Example 6
4 g of dextran sodium sulfate having a molecular weight of 500 and a sulfur content of 15% as used in Example 3 was added to 0.
.. A solution dissolved in 8 ml of 1M phosphate buffer (pH 8,0) was added, and the mixture was shaken at room temperature for 18 hours. NaCNB after reaction
After adding 1 g of Hs 2 GI and stirring at room temperature for 30 minutes, the mixture was heated at 40° C. for 4 hours, and the gel was filtered and washed with water to obtain a cellulose gel on which sodium dextran sulfate was fixed. The amount of anionic functional groups introduced by immobilized dextran sulfate was 18 μs+ol per ml of adsorbent.

実施例11 実施例1〜6およびlOでえられた吸着体および比較の
目的で製造例1で用いた担体のCKゲルA3を15M 
)リス緩衝液(pH7,4)で洗浄したのち、各吸着体
0 、1 mlずつをポリプロピレン製マイクロチュー
ブ(容量7m1)にとり、O,15Mトリス緩衝液(p
H7,4)を加えて全量を1mlとした。これに免疫複
合体を含む血清0.2mlずつを加え、25℃で2時間
振盪した。この吸着操作終了後、遠心分離してゲルを沈
降させ、採取した上清中の免疫複合体濃度を酵素免疫抗
体法(ELISA法)により測定した。つまり、免疫複
合体濃度は、C1qをコートしたプレートに希釈した検
体を加え、抗原−抗体反応を行い、ペルオキシダーゼ標
識抗ヒト免疫グロブリン抗体を滴下し、酵素発色反応を
5LT−210(商品名、ラボサイエンス■製)にて測
定波長486nmで測定した。測定値は、熱変性1gG
により作成した標準曲線により標準化した。第1表に、
各吸着体に固定されたアニオン性官能基を有する化合物
基、および各吸着体の上澄み中の免疫複合体濃度を希釈
を考慮して原血清中の濃度に換算して示す。
Example 11 The adsorbent obtained in Examples 1 to 6 and 1O and the carrier CK gel A3 used in Production Example 1 for comparison purposes were 15M
) After washing with O., 15M Tris buffer (pH 7, 4), 0.1 ml of each adsorbent was placed in a polypropylene microtube (capacity: 7 ml) and added with O., 15 M Tris buffer (pH 7.4).
H7,4) was added to bring the total volume to 1 ml. To this was added 0.2 ml of serum containing immune complexes, and the mixture was shaken at 25°C for 2 hours. After completion of this adsorption operation, the gel was centrifuged to sediment, and the immune complex concentration in the collected supernatant was measured by enzyme-linked immunosorbent assay (ELISA method). In other words, to determine the immune complex concentration, add a diluted sample to a C1q-coated plate, perform an antigen-antibody reaction, drop a peroxidase-labeled anti-human immunoglobulin antibody, and perform an enzymatic color reaction using 5LT-210 (trade name, Lab. The measurement wavelength was 486 nm. Measured value is heat denatured 1gG
Standardization was performed using a standard curve created by In Table 1,
The compound group having an anionic functional group immobilized on each adsorbent and the immune complex concentration in the supernatant of each adsorbent are shown converted to the concentration in the original serum taking into account dilution.

第1表から水不溶性多孔質担体にアニオン性官能基を有
する化合物が固定されてなる吸着体は、免疫複合体を吸
着しているのがわかる。そして、デキストラン硫酸が固
定された吸着体の免疫複合体の吸着能がとくに優れてい
ることがわかる。
From Table 1, it can be seen that the adsorbent formed by immobilizing a compound having an anionic functional group on a water-insoluble porous carrier adsorbs the immune complex. It can be seen that the adsorbent to which dextran sulfate is immobilized has particularly excellent adsorption ability for immune complexes.

[以下余白] 第  1  表 実施例12 実施例3および7〜9でえられた吸着体を用い、加えた
血清量を0.1mlとしたほかは実施例11と同様の方
法にしたがって上澄み中の免疫複合体濃度を希釈を考慮
して原血清中の濃度に換算して求めた。えられた結果を
用いた種々の水不溶性多孔質担体基とともに第2表に示
す。比較のため原血清の免疫複合体濃度を測定したとこ
ろ32.2μg/mlであった。
[Margin below] Table 1 Example 12 The adsorbents obtained in Examples 3 and 7 to 9 were used, and the amount of serum added was 0.1 ml, but in the same manner as in Example 11, the supernatant was The immune complex concentration was calculated by converting it to the concentration in the original serum taking into account dilution. The results obtained are shown in Table 2 along with the various water-insoluble porous carrier groups used. For comparison, the immune complex concentration of the original serum was measured and found to be 32.2 μg/ml.

第2表から、排除限界分子量が40万以下の水不溶性多
孔質担体である実施例7のセルロファインCC−700
m、セル口ファインGC−200rnおよびセルロース
GCL−90の免疫複合体吸着能がおとることがわかる
。また、逆に、排除限界分子量を5000万と大きくし
すぎても実施例3のセルロースCKゲルA3の結果から
免疫複合体吸着能は落ちる傾向にあることがわかる。
From Table 2, Cellulofine CC-700 of Example 7 is a water-insoluble porous carrier with an exclusion limit molecular weight of 400,000 or less.
It can be seen that the immune complex adsorption ability of Cellulose Fine GC-200rn and Cellulose GCL-90 is reduced. On the other hand, the results for cellulose CK gel A3 of Example 3 show that even if the exclusion limit molecular weight is set too high as 50 million, the immune complex adsorption ability tends to decrease.

[以下余白] 第  2  表 [発明の効果] 本発明の吸着体およびそれを用いた除去装置は体液より
免疫複合体を選択的に除去する効果を奏する。
[Margins below] Table 2 [Effects of the Invention] The adsorbent of the present invention and the removal device using the same have the effect of selectively removing immune complexes from body fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3種類のゲルを用いて流速と圧力損失との関係
を調べた結果を示すグラフであり、第2図は本発明の免
疫複合体の除去装置の一実施例の概−新面図である。 (図面の主要符号) (1)二流入口 (2)二流出口 (3):吸着体 (4)、(5):フィルター (7):容 器 才1図 圧力損失ΔP(k8/am2)
FIG. 1 is a graph showing the results of examining the relationship between flow velocity and pressure drop using three types of gels, and FIG. 2 is an overview of an embodiment of the immune complex removal device of the present invention - new aspects. It is a diagram. (Main symbols in the drawing) (1) Two inlets (2) Two outlets (3): Adsorbent (4), (5): Filter (7): Container pressure drop ΔP (k8/am2)

Claims (1)

【特許請求の範囲】 1 水不溶性多孔質担体にアニオン性官能基を有する化
合物が固定されてなる免疫複合体の吸着体。 2 水不溶性多孔質担体の球状蛋白質の排除限界分子量
が40万以上6000万以下である請求項1記載の免疫
複合体の吸着体。 3 水不溶性多孔質担体が水酸基を有する化合物よりな
る請求項1記載の免疫複合体の吸着体。 4 アニオン性官能基を有する化合物が、1分子内に複
数のアニオン性官能基を有するポリアニオン化合物であ
る請求項1記載の免疫複合体の吸着体。 5 流体の流入口および流出口を有する容器、流体およ
び該流体に含まれる成分は通過できるが、請求項1記載
の免疫複合体の吸着体は通過できないフィルター、およ
び前記容器内に充填された前記免疫複合体の吸着体から
なる免疫複合体の除去装置。
[Scope of Claims] 1. An adsorbent for an immune complex comprising a compound having an anionic functional group immobilized on a water-insoluble porous carrier. 2. The immune complex adsorbent according to claim 1, wherein the water-insoluble porous carrier has an exclusion limit molecular weight of globular proteins of 400,000 to 60,000,000. 3. The immune complex adsorbent according to claim 1, wherein the water-insoluble porous carrier comprises a compound having a hydroxyl group. 4. The immune complex adsorbent according to claim 1, wherein the compound having an anionic functional group is a polyanionic compound having a plurality of anionic functional groups in one molecule. 5. A container having an inlet and an outlet for a fluid, a filter through which the fluid and the components contained in the fluid can pass through, but not through which the immune complex adsorbent according to claim 1 can pass, and the filter filled in the container. An immune complex removal device consisting of an immune complex adsorbent.
JP63006168A 1988-01-14 1988-01-14 Immune complex adsorbent and immune complex removing apparatus using the same Expired - Fee Related JPH0611333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006168A JPH0611333B2 (en) 1988-01-14 1988-01-14 Immune complex adsorbent and immune complex removing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006168A JPH0611333B2 (en) 1988-01-14 1988-01-14 Immune complex adsorbent and immune complex removing apparatus using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP09041398A Division JP3251547B2 (en) 1998-04-02 1998-04-02 Immune complex removal device

Publications (2)

Publication Number Publication Date
JPH01181875A true JPH01181875A (en) 1989-07-19
JPH0611333B2 JPH0611333B2 (en) 1994-02-16

Family

ID=11631011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006168A Expired - Fee Related JPH0611333B2 (en) 1988-01-14 1988-01-14 Immune complex adsorbent and immune complex removing apparatus using the same

Country Status (1)

Country Link
JP (1) JPH0611333B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025228A1 (en) * 1995-02-16 1996-08-22 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha ADSORBENT FOR TUMOR NECROSIS FACTOR α, METHOD OF REMOVAL BY ADSORPTION, AND ADSORPTION DEVICE USING SAID ADSORBENT
WO2000043120A1 (en) 1999-01-22 2000-07-27 The Dow Chemical Company Surface modified divinylbenzene resin having a hemocompatible coating
US6127528A (en) * 1995-02-16 2000-10-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for adsorbing and removing tumor necrosis factor-α
WO2002015964A1 (en) * 2000-08-25 2002-02-28 Kaneka Corporation Bacterial toxin adsorbing material, method of removing the toxin by adsorbing, and adsorber formed by filling the adsorbing material therein
US6452545B2 (en) 1999-06-16 2002-09-17 Mitsubishi Denki Kabushiki Kaisha GPS receiver, position-detecting system and positioning method
WO2003014736A1 (en) * 2001-08-10 2003-02-20 Meditech Reserach Limited Biological molecules comprising glycosaminoglycans
CN104525150A (en) * 2014-11-26 2015-04-22 珠海健帆生物科技股份有限公司 IgG1 adsorbent, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186558A (en) * 1983-04-06 1984-10-23 旭化成株式会社 Adsorbing material of self-antibody and/or immunological composite
JPS59186559A (en) * 1983-04-06 1984-10-23 旭化成株式会社 Self-antibody and/or immunological composite adsorbing material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186558A (en) * 1983-04-06 1984-10-23 旭化成株式会社 Adsorbing material of self-antibody and/or immunological composite
JPS59186559A (en) * 1983-04-06 1984-10-23 旭化成株式会社 Self-antibody and/or immunological composite adsorbing material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025228A1 (en) * 1995-02-16 1996-08-22 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha ADSORBENT FOR TUMOR NECROSIS FACTOR α, METHOD OF REMOVAL BY ADSORPTION, AND ADSORPTION DEVICE USING SAID ADSORBENT
US6127528A (en) * 1995-02-16 2000-10-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for adsorbing and removing tumor necrosis factor-α
WO2000043120A1 (en) 1999-01-22 2000-07-27 The Dow Chemical Company Surface modified divinylbenzene resin having a hemocompatible coating
US6452545B2 (en) 1999-06-16 2002-09-17 Mitsubishi Denki Kabushiki Kaisha GPS receiver, position-detecting system and positioning method
WO2002015964A1 (en) * 2000-08-25 2002-02-28 Kaneka Corporation Bacterial toxin adsorbing material, method of removing the toxin by adsorbing, and adsorber formed by filling the adsorbing material therein
JP5009478B2 (en) * 2000-08-25 2012-08-22 株式会社カネカ Bacterial toxin adsorbent, adsorption removal method thereof and adsorber filled with the adsorbent
US8785141B2 (en) 2000-08-25 2014-07-22 Kaneka Corporation Bacterial toxin adsorbing material, method of removing the toxin by adsorbing, and an adsorber formed by filling the adsorbing material therein
WO2003014736A1 (en) * 2001-08-10 2003-02-20 Meditech Reserach Limited Biological molecules comprising glycosaminoglycans
CN104525150A (en) * 2014-11-26 2015-04-22 珠海健帆生物科技股份有限公司 IgG1 adsorbent, and preparation method and application thereof
CN104525150B (en) * 2014-11-26 2017-02-22 珠海健帆生物科技股份有限公司 IgG1 adsorbent, and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0611333B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US5258503A (en) Autoantibody adsorbent and apparatus for removing autoantibodies using the same
AU2021273537A1 (en) The use of a Hemocompatible porous polymer bead sorbent for removal of Endotoxemia-inducing molecules
JPH0256104B2 (en)
JPH01181875A (en) Adsorptive body of immune complex and removing device for immune complex with it
JPH01119264A (en) Adsorbent and removing device therewith
JPH0518625B2 (en)
JPH0667472B2 (en) Adsorbent for serum amyloid P protein
JP2543693B2 (en) Adsorbent for low-density lipoprotein and method for producing the same
JPS59186558A (en) Adsorbing material of self-antibody and/or immunological composite
JPH0622632B2 (en) Adsorbent and removal device
JP3251547B2 (en) Immune complex removal device
JPS59169532A (en) Adsorbing material of c-reactive protein
JPH0771632B2 (en) Adsorbent and removal device using the same
JP3084436B2 (en) Anti-DNA antibody removal device
JPH0424065B2 (en)
JP2726662B2 (en) Adsorbent and removal device using the same
JPS6087854A (en) Adsorbent for purifying blood
JPH025096B2 (en)
JPS6226073A (en) Method and apparatus for direct infusion and adsorption of blood
JP3084437B2 (en) Anti-lipid antibody removal device
JP2983955B2 (en) Device for removing glomerular basement membrane adhering protein
JPS6361024B2 (en)
JPH01320066A (en) Adsorbing substance and removal device
JPH09299478A (en) Method for eliminating anti-cardiolipin beta 2 glycoprotein i conjugated antibody
JPH01135534A (en) Adsorbent of self-antibody and stripper

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees