JPH0262522A - Waveguide type wavelength converting element - Google Patents

Waveguide type wavelength converting element

Info

Publication number
JPH0262522A
JPH0262522A JP21551888A JP21551888A JPH0262522A JP H0262522 A JPH0262522 A JP H0262522A JP 21551888 A JP21551888 A JP 21551888A JP 21551888 A JP21551888 A JP 21551888A JP H0262522 A JPH0262522 A JP H0262522A
Authority
JP
Japan
Prior art keywords
waveguide
refractive index
optical
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21551888A
Other languages
Japanese (ja)
Inventor
Yoshinori Ota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21551888A priority Critical patent/JPH0262522A/en
Publication of JPH0262522A publication Critical patent/JPH0262522A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure

Abstract

PURPOSE:To offer the high-efficiency waveguide type wavelength converting element by providing a waveguide layer in single-layered or multi-layered structure containing a material with nonlinear optical effect on an optical crystal substrate and specifying the relation between the refractive index between the nonlinear material and optical crystal substrate. CONSTITUTION:An optical waveguide layer 2 consisting of an organic material single-crystal film 3 with nonlinear optical effect, a high-refractive-index thin film 4 like TiO2, and a low-refractive-index layer 5 like SiO2 is provided on the substrate 1 like LiNbO3 crystal. The refractive index nS (2omega) of the optical crystal substrate 1 to a 2nd high frequency (frequency 2omega) and the refractive index nf(omega) of the organic nonlinear material 3 to a basic wave (frequency omega) are so specified that nS(2omega)>nf(omega). The double layer which is constituted as mentioned above is given total reflection condition to basic wave light by light interference effect and becomes an excellent waveguide, but given transmission condition to a 2nd higher harmonic to form a emission waveguide for emitted light 7 in the substrate crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレントな短波長小型光源の実現を可能
にする波長変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wavelength conversion element that makes it possible to realize a coherent short wavelength compact light source.

〔従来の技術〕[Conventional technology]

波長変換素子とくに第2次高調波発生(SHG : 5
eeond Harmonic Generation
)素子は、エキシマレーザなどでは得にくいコヒーレン
トの短波長光を得るデバイストして産業上極めて重要で
ある。
Wavelength conversion element, especially second harmonic generation (SHG: 5
eeond Harmonic Generation
) devices are extremely important in industry as devices that can obtain coherent short-wavelength light that is difficult to obtain with excimer lasers and the like.

半導体レーザは小型で高出力のコヒーレントレーザ光源
として各種の光通信機器や光情報機器に使用されている
。現在この半導体レーザから得られる光の波長は0.7
8μm〜1.55μmの近赤外領域の波長である。この
半導体レーザをデイスプレィ、光ディスクやレーザプリ
ンタ等、レーザ応用機器にさらに広く応用するために、
赤色、緑色、青色等、より短波長の光が求められている
が、現在の技術ではこの種の半導体レーザをにわかに実
現するのは難しい。半導体レーザの出力程度でも効率よ
く波長変換できる波長変換素子が実現できるとその効果
は甚大である。
Semiconductor lasers are used as compact, high-power coherent laser light sources in various optical communication devices and optical information devices. Currently, the wavelength of light obtained from this semiconductor laser is 0.7
The wavelength is in the near-infrared region of 8 μm to 1.55 μm. In order to apply this semiconductor laser more widely to laser-applied equipment such as displays, optical disks, and laser printers,
There is a demand for light with shorter wavelengths such as red, green, and blue, but with current technology it is difficult to suddenly realize this type of semiconductor laser. If a wavelength conversion element capable of efficiently converting wavelength even with the output of a semiconductor laser could be realized, the effect would be enormous.

近年半導体レーザのデバイス技術が発達して、従来にも
増して高出力の発振特性が得られるようになってきた。
In recent years, semiconductor laser device technology has developed, and it has become possible to obtain higher output oscillation characteristics than ever before.

このため、光導波路型のSHG素子を構成すれば、光の
回折によるエネルギ密度の減少を回避でき、半導体レー
ザ程度の光強度でも比較的高い変換効率で波長変換素子
を実現できる可能性がある。このような例として、ニオ
ブ酸リチウム結晶に光導波路を形成し、この光導波路に
近赤外光を透過し、これから結晶基板中に放射(チェレ
ンコフ輻射)される第2次高調波を得る方式のSHG素
子の発明がある(特開昭61−94031>。この方式
SHG素子は、基本波とSHG波との位相整合条件が自
動的に取れているため、精密な温度調節が必要ないとい
う特長を持つ。しかしながら、この公知例の難点は、導
波路自体の非線形光学効果が小さいために、効率の良い
SHG励起に成功していない点にある。上記公知例では
、LiNb0.結晶を基板とし、プロトイオン(H4)
変換を用いて光導波路を形成している。周知の如く、L
iNbO3結晶にH+交換を施すと、結晶の対称性が増
し、圧電効果、電気光学効果、非線形光学効果など、結
晶の非対称性から生じる各種の効果を減少する。このた
め、基本波入力40mWで効率1%程度しか得られてい
ない。
Therefore, by configuring an optical waveguide type SHG element, it is possible to avoid a decrease in energy density due to light diffraction, and it is possible to realize a wavelength conversion element with relatively high conversion efficiency even with a light intensity comparable to that of a semiconductor laser. An example of this is a method in which an optical waveguide is formed in a lithium niobate crystal, near-infrared light is transmitted through the optical waveguide, and the second harmonic is radiated (Cherenkov radiation) into the crystal substrate. The SHG element was invented (Japanese Patent Application Laid-Open No. 61-94031>. This type of SHG element has the advantage that it does not require precise temperature control because the phase matching conditions between the fundamental wave and the SHG wave are automatically established. However, the drawback of this known example is that efficient SHG excitation has not been successful due to the small nonlinear optical effect of the waveguide itself.In the above known example, the substrate is LiNb0. Ion (H4)
Conversion is used to form optical waveguides. As is well known, L
Performing H+ exchange on an iNbO3 crystal increases the symmetry of the crystal and reduces various effects resulting from the asymmetry of the crystal, such as piezoelectric effects, electro-optic effects, and nonlinear optical effects. For this reason, an efficiency of only about 1% is obtained with a fundamental wave input of 40 mW.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上述の従来の導波型SHG素子の持つ
難点を収り除き、高効率となる構造の導波路型波長変換
素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a waveguide type wavelength conversion element having a structure that eliminates the drawbacks of the above-mentioned conventional waveguide type SHG element and achieves high efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は基板波が導波路光である光の第2高調波を基板
への放射光として取り出す方式の導波路型波長変換素子
であって、導波路の導波層を構成する材料に非線形光学
効果を示す材料を用い基板に、第2高調波(周波数2ω
)に対する屈折率ns (2ω)が前記有機非線形材料
の基本波(周波数ω)に対する屈折率nf  (ω)と
の間にns(2ω)>nf(ω)なる条件を有する材料
を用いた構成になっている。
The present invention is a waveguide-type wavelength conversion element in which the second harmonic of light whose substrate wave is waveguide light is extracted as radiation light to the substrate, and in which the material constituting the waveguide layer of the waveguide uses nonlinear optical The second harmonic (frequency 2ω
) with respect to the fundamental wave (frequency ω) of the organic nonlinear material, and the refractive index nf (ω) with respect to the fundamental wave (frequency ω) of the organic nonlinear material. It has become.

以下本発明の実施例に基すき図面を用いて詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be explained in detail using the accompanying drawings.

(実施例1) 第1図は本発明の第1の実施例である導波路型波長変換
素子の断面の構造を示す図であり、1は光学結晶、2は
非線形光学効果の高い有機材料3を有する先導波層であ
る。更に詳しくは光学結晶1は屈折率nsが1,8程度
より大きい、例えばLiNbO3結晶板であり、基板方
位は、この実施例ではy板(すなわち、基板に立てた法
線はy軸)に、光透過方向をZ軸に選んである。そして
、結晶の表面に設けな光導波層2は、非線形光学効果を
有する有機材料単結晶膜3と、TiO□のような高屈折
率の薄層4と、SiO3のような低屈折率の層5とによ
って構成されている。
(Example 1) Fig. 1 is a diagram showing the cross-sectional structure of a waveguide type wavelength conversion element which is the first example of the present invention, where 1 is an optical crystal, 2 is an organic material 3 with high nonlinear optical effect. It is a leading wave layer with More specifically, the optical crystal 1 is, for example, a LiNbO3 crystal plate with a refractive index ns larger than about 1.8, and the substrate orientation is, in this embodiment, a y-plate (that is, the normal to the substrate is the y-axis). The light transmission direction is chosen to be the Z axis. The optical waveguide layer 2 provided on the surface of the crystal includes an organic material single crystal film 3 having a nonlinear optical effect, a thin layer 4 with a high refractive index such as TiO□, and a layer 4 with a low refractive index such as SiO3. 5.

非線形光学効果の高い有機材料の単結晶膜としては、こ
の実施例では例えばMNA(メチル訃ロアニリン、2−
methyl−4−nit、roaniline)を用
いている。
In this example, the single crystal film of an organic material with a high nonlinear optical effect is, for example, MNA (methyl aniline, 2-
methyl-4-nit, roaniline) is used.

上記の構成の光導波層2は以下の光学特性を持つ。入射
光でありLiNbO3結晶基板1のX軸に平行な電界成
分を持つTE波の基本波(周波数ω)に対しては、これ
を極めて低損失に伝搬させるが、2倍に高調波(周波数
2ω)に対しては、L i N b OS結晶基板への
放射光としてよく放出する。例えば、波長0.8μmの
光を基本波としたとき、この光に対して屈折率が1.8
程度の大きさを持つMNAを2.52程度の大きさを持
つLiNbO3結晶の上に直接設けてもL i N b
03結晶基板の屈折率の方がMNAの屈折率より大きい
ために、MNAは光導波路とはならない。
The optical waveguide layer 2 having the above configuration has the following optical properties. The fundamental wave (frequency ω) of the TE wave, which is incident light and has an electric field component parallel to the X-axis of the LiNbO3 crystal substrate 1, is propagated with extremely low loss, but it is twice as harmonic (frequency 2ω). ), it is well emitted as synchrotron radiation to the L i N b OS crystal substrate. For example, when light with a wavelength of 0.8 μm is the fundamental wave, the refractive index for this light is 1.8
Even if MNA with a size of about 2.52 is placed directly on a LiNbO3 crystal with a size of about 2.52, L i N b
Since the refractive index of the 03 crystal substrate is greater than the refractive index of the MNA, the MNA does not function as an optical waveguide.

低屈折率のSiO□ (屈折率1.45程度)層5をL
 i N b O3結晶基板1の上に厚さ1μm程度設
け、この上に、高屈折率の薄膜(Ti’02、屈折率2
.5.厚さ0.056.czm程度)4、この2重層の
上に、MANを2μm程度設ける。このようにして設け
た2重層は、光の干渉効果によって、波長0.8μmの
基本波光に対しては全反射条件を与え、一方、2倍の高
調波に対しては透過条件を墜える。すなわち、この2重
層の上のMNAは、波長0.8μmの基本波光に対して
は良好な導波路となり、一方、波長0.4μmの2倍の
高調波に対しては放射導波路となる。
The low refractive index SiO□ (refractive index of about 1.45) layer 5 is L
i N b O3 crystal substrate 1 is provided with a thickness of about 1 μm, and a high refractive index thin film (Ti'02, refractive index 2
.. 5. Thickness 0.056. czm) 4. On this double layer, MAN is provided to a thickness of about 2 μm. Due to the optical interference effect, the double layer thus provided provides total reflection conditions for fundamental wave light having a wavelength of 0.8 μm, while impairing transmission conditions for twice the harmonics. That is, the MNA on this double layer serves as a good waveguide for fundamental wave light with a wavelength of 0.8 μm, and on the other hand, serves as a radiation waveguide for twice the harmonics with a wavelength of 0.4 μm.

非線形光学効果を有する有機材料単結晶膜3の端面から
注入されたLiNbO3結晶基板1のX軸に平行な電界
成分を持つTE波の基本波6は、有機材料単結晶膜3中
を進むにつれ、その2次の非線形光学定数dllを介し
て、基本波と同じ電界成分を持つTE波の2倍の高調波
を励起する。この2倍の高調波は、光導波層2の光学特
性が上記のようであるため基板結晶中に放射光7として
放出されるが、下記の条件の角度θに効率よく放射され
る。すなわち、角度θは、L i N b O3結晶基
板1の屈折率をns、有機材料単結晶膜3の屈折率をn
fとしたとき、nf=nscO5θで与えられる。波長
0.4μmに対するLiNbO3結晶基板1の屈折率(
本実施例の結晶方位ではnsは常光屈折率)は2.41
程度であり、−角度θは41度程度となる。
As the fundamental wave 6 of the TE wave, which has an electric field component parallel to the X-axis of the LiNbO3 crystal substrate 1 and is injected from the end face of the organic material single crystal film 3 having a nonlinear optical effect, advances through the organic material single crystal film 3, Through the second-order nonlinear optical constant dll, twice the harmonic of the TE wave having the same electric field component as the fundamental wave is excited. Since the optical characteristics of the optical waveguide layer 2 are as described above, this double harmonic is emitted into the substrate crystal as radiated light 7, but it is efficiently emitted at an angle θ under the following conditions. That is, the angle θ is such that the refractive index of the L i N b O3 crystal substrate 1 is ns, and the refractive index of the organic material single crystal film 3 is n
When f is given, nf=nscO5θ. Refractive index of LiNbO3 crystal substrate 1 for wavelength 0.4 μm (
In the crystal orientation of this example, ns (ordinary refractive index) is 2.41
The -angle θ is about 41 degrees.

もし、n r > n sでは、上式を満足する角度θ
は存在しない。基板結晶中に放射光7として取り出すた
めにはn r < n sが必須条件となる。
If n r > n s, the angle θ that satisfies the above equation
does not exist. In order to extract the radiation light 7 into the substrate crystal, n r < ns is an essential condition.

ここで、光透過方向をL i N b 03結晶基板の
別な方位、例えば同じくy板(すなわち、基板に立てた
法線はy軸)で、光透過方法X軸、電界振動方向Z軸に
選んだ場合、nsは異常光屈折率(−2,31程度)と
なり、角度θは38度程度となる。このとき、LiNb
O3結晶の最大の非線形光学定数d33も有効に寄与す
る。
Here, the light transmission direction is set to a different direction of the L i N b 03 crystal substrate, for example, the same y plate (i.e., the normal line erected to the substrate is the y axis), the light transmission direction is the X axis, and the electric field vibration direction is the Z axis. If selected, ns will be the extraordinary refractive index (about -2.31) and the angle θ will be about 38 degrees. At this time, LiNb
The maximum nonlinear optical constant d33 of the O3 crystal also contributes effectively.

(実施例2) 上記第1の実施例では、導波路2は二次元の平面構造で
ある。基本波のパワー密度を高め、SHGの変換効率を
さらに高めるには、基本波の導波路はチャンネル構造で
あることが望ましい。これを可能にするためには、第2
図の光透過方向の垂直断面で示した導波路の構造にすれ
ばよい。すなわち、チャンネルとすべき領域以外には、
導波路の中間厚さ位置に、薄い高屈折層8を設ければよ
い。高屈折率お中間層8を持つ領域は基本波にないして
カットオフとなる。このため、基本波は中間層8の無い
領域に集中して導波される。
(Example 2) In the first example described above, the waveguide 2 has a two-dimensional planar structure. In order to increase the power density of the fundamental wave and further improve the conversion efficiency of SHG, it is desirable that the fundamental wave waveguide has a channel structure. To make this possible, the second
The structure of the waveguide shown in the vertical cross section in the light transmission direction in the figure may be used. In other words, other than the area that should be the channel,
A thin high refractive index layer 8 may be provided at a mid-thickness position of the waveguide. The region having the high refractive index intermediate layer 8 is not at the fundamental wave and becomes a cutoff. Therefore, the fundamental wave is guided in a concentrated manner in a region where there is no intermediate layer 8.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば非線形光学定数の
極めて大きい有機非線形材料を利用できるため高効率で
、しかもチェレンコフ放射により位相整合条件を収って
いるために、導波層の膜厚変動や屈折率の温度変動等に
対しても安定な導波路型波長変換素子が得られる。
As explained above, according to the present invention, it is possible to use an organic nonlinear material with an extremely large nonlinear optical constant, resulting in high efficiency, and since the phase matching condition is satisfied by Cerenkov radiation, the film thickness of the waveguide layer can be varied. A waveguide type wavelength conversion element that is stable even against temperature fluctuations in refractive index and the like can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の導波路型波長変換素子
の構造を説明する断面図であり、第2図は第2の実施例
の導波路型波長変換素子の構造を説明する断面図である
。 1・・・L i NbO3,2・・・光導波層、3・・
・非線形有機材料単結晶膜、4・・・高屈折率薄層、5
・・・低屈折率薄層、8・・・高屈折率中間層。 万 1i2]
FIG. 1 is a sectional view illustrating the structure of a waveguide type wavelength conversion element according to the first embodiment of the present invention, and FIG. 2 is a sectional view illustrating the structure of the waveguide type wavelength conversion element according to the second embodiment. FIG. 1...L i NbO3, 2... Optical waveguide layer, 3...
・Nonlinear organic material single crystal film, 4...high refractive index thin layer, 5
...Low refractive index thin layer, 8...High refractive index intermediate layer. 11i2]

Claims (1)

【特許請求の範囲】[Claims] 非線形光学効果を示す材料を含む1層構造または多層構
造の導波層を光学結晶基板上に備え、第2高周波(周波
数2ω)に対する前記光学結晶基板の屈折率n_s(2
ω)と前記有機非線形材料の基本波(周波数ω)に対す
る屈折率n_f(ω)との間にn_s(2ω)>n_f
(ω)なる条件を有することを特徴とする導波路型波長
変換素子。
A waveguide layer having a single layer structure or a multilayer structure containing a material exhibiting a nonlinear optical effect is provided on an optical crystal substrate, and the refractive index n_s(2
ω) and the refractive index n_f(ω) for the fundamental wave (frequency ω) of the organic nonlinear material, n_s(2ω)>n_f.
A waveguide type wavelength conversion element characterized by having a condition (ω).
JP21551888A 1988-08-29 1988-08-29 Waveguide type wavelength converting element Pending JPH0262522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21551888A JPH0262522A (en) 1988-08-29 1988-08-29 Waveguide type wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21551888A JPH0262522A (en) 1988-08-29 1988-08-29 Waveguide type wavelength converting element

Publications (1)

Publication Number Publication Date
JPH0262522A true JPH0262522A (en) 1990-03-02

Family

ID=16673741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21551888A Pending JPH0262522A (en) 1988-08-29 1988-08-29 Waveguide type wavelength converting element

Country Status (1)

Country Link
JP (1) JPH0262522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113227A (en) * 1988-10-24 1990-04-25 Canon Inc Thin film waveguide element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113227A (en) * 1988-10-24 1990-04-25 Canon Inc Thin film waveguide element
JP2835956B2 (en) * 1988-10-24 1998-12-14 キヤノン株式会社 Thin film waveguide device

Similar Documents

Publication Publication Date Title
JPH01105220A (en) Optical wavelength converting element
JP2693582B2 (en) Wavelength conversion element
JP2647190B2 (en) Optical wavelength converter
JP2753118B2 (en) Optical wavelength converter
JP2725302B2 (en) Waveguide type wavelength conversion element
JPS63121829A (en) Harmonic generating device
JP3159716B2 (en) Waveguide structure
JP2676743B2 (en) Waveguide type wavelength conversion element
JPH0262522A (en) Waveguide type wavelength converting element
JP2921208B2 (en) Wavelength conversion element and short wavelength laser light source
JP2693842B2 (en) Optical wavelength converter
JP2643735B2 (en) Wavelength conversion element
JP2658381B2 (en) Waveguide type wavelength conversion element
JP2982366B2 (en) Waveguide type wavelength conversion element
CN201303203Y (en) Crystal frequency multiplier
JPS6118933A (en) Device for changing wavelength of light
JPH06265952A (en) Optical wavelength converting element
JP2738155B2 (en) Waveguide type wavelength conversion element
JP2666540B2 (en) Waveguide type wavelength conversion element
JP2688102B2 (en) Optical wavelength converter
JPH03132628A (en) Wavelength converting element
JPH02282233A (en) Waveguide type wavelength converting element
JP3178849B2 (en) Waveguide type SHG element
JPH0223323A (en) Waveguide type wavelength converting element
JPH05341343A (en) Optical wavelength converting element