JPH03132628A - Wavelength converting element - Google Patents

Wavelength converting element

Info

Publication number
JPH03132628A
JPH03132628A JP1272001A JP27200189A JPH03132628A JP H03132628 A JPH03132628 A JP H03132628A JP 1272001 A JP1272001 A JP 1272001A JP 27200189 A JP27200189 A JP 27200189A JP H03132628 A JPH03132628 A JP H03132628A
Authority
JP
Japan
Prior art keywords
refractive index
region
titanium
polarization inversion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1272001A
Other languages
Japanese (ja)
Inventor
Yasuo Kimura
靖夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1272001A priority Critical patent/JPH03132628A/en
Publication of JPH03132628A publication Critical patent/JPH03132628A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Abstract

PURPOSE:To obtain the wavelength converting element having high conversion efficiency and good light condensing property by additionally diffusing magnesium oxide into a titanium-diffused region. CONSTITUTION:A polarization inversion region is formed by a titanium diffusion method in a lithium niobate crystal 5 and the addition diffusion of the magne sium oxide is so executed as to overlap on the region thereof to form the low- refractive index polarization inversion region 6 having the refractive index nearly equal to the refractive index of the region not diffused with the titanium. The optical waveguide 7 is crossed with the low-refractive index polarization inversion region 6 by the proton exchange. Since the refractive index of the titanium-diffused region is lowered by the additional diffusion of this magnesium oxide, the difference in the refractive index between the polarization inversion part and the non-inversion part is lessened. Thus, the wavelength converting element which allows condensing of light without using a special lens system and has the high conversion efficiency is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレントな短波長光源の実現を可能にす
るレーザ用波長変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wavelength conversion element for a laser that makes it possible to realize a coherent short wavelength light source.

〔従来の技術〕[Conventional technology]

波長変換素子、特に第2次高調波発生(SHG: 5e
cond Harmonic Generation)
素子は、エキシマレーザなどでは得にくいコヒーレント
な短波長光を得るデバイスとして産業上極めて重要であ
る。
Wavelength conversion elements, especially second harmonic generation (SHG: 5e
(Harmonic Generation)
The device is extremely important industrially as a device that can obtain coherent short-wavelength light that is difficult to obtain with excimer lasers and the like.

半導体レーザは、小型で高出力のコヒーレントレーザ光
源として各種の光通信機器や光情報処理機器に使用され
ている。現在、この半導体レーザから得られる光の波長
は0.68μmから1.55μmの赤色可視光から近赤
外領域の波長である。このため、デイスプレィやより微
少な光スポツト形成など、応用範囲の拡大のなめに、赤
色、緑色、青色等、より短波長で発振が可能な半導体レ
ーザ光源が求められているが、現在の技術ではこの種の
半導体レーザを実現するのは難しい。半導体レーザの出
力程度でも効率よく可視光へ波長変換できる波長変換素
子が実現できるとその効果が甚大である。
Semiconductor lasers are used as compact, high-output coherent laser light sources in various optical communication devices and optical information processing devices. Currently, the wavelength of light obtained from this semiconductor laser is from 0.68 μm to 1.55 μm, ranging from visible red light to near-infrared light. For this reason, semiconductor laser light sources that can oscillate at shorter wavelengths such as red, green, and blue are required in order to expand the range of applications such as displays and the formation of finer light spots, but current technology does not. It is difficult to realize this type of semiconductor laser. If a wavelength conversion element capable of efficiently converting wavelength into visible light even at the output level of a semiconductor laser could be realized, the effect would be enormous.

近年、半導体レーザの製作技術が発達して、従来にも増
して高出力の特性が得られるようになってきた。このた
め、先導波路型のSHG素子を構成すれば、光の回折に
よるエネルギ密度の減少を回避でき、半導体レーザ程度
の光強度でも比較的高い変換効率で波長変換素子を実現
できる可能性がある。
In recent years, semiconductor laser manufacturing technology has developed, and it has become possible to obtain higher output characteristics than ever before. Therefore, by configuring a guided waveguide type SHG element, it is possible to avoid a decrease in energy density due to light diffraction, and it is possible to realize a wavelength conversion element with relatively high conversion efficiency even with a light intensity comparable to that of a semiconductor laser.

このような例として、第2図に示すニオブ酸リチウム結
晶1に光導波路2を形成し、この光導波路2に近赤外励
起光3を端面結合し、これから結晶基板中に放射(チェ
レンコフ放射)される第2次高調波光4を得る方式のS
HG素子がある。この方式のSHG素子は、基本波とS
HG波の位相整合が自動的に取れているため、精密な温
度制御が必要ないという特徴を持つ。一方、SHG出力
が基板放射光であるなめ波面が特異で、収差の大きな光
が基板の端面から出てくる。このため、この光をガウス
状強度分布の通常の使いやすいビームに変換することは
、この収差を補正するシリンドリカルレンズなどの高級
なレンズ系を必要とする。
As an example of this, an optical waveguide 2 is formed in a lithium niobate crystal 1 shown in FIG. 2, near-infrared excitation light 3 is end-coupled to the optical waveguide 2, and then radiated into the crystal substrate (Cherenkov radiation). S of the method to obtain the second harmonic light 4
There is an HG element. This type of SHG element uses the fundamental wave and S
Since the phase matching of the HG waves is automatically achieved, there is no need for precise temperature control. On the other hand, the slanted wavefront in which the SHG output is the substrate radiation light is unique, and light with large aberrations comes out from the end surface of the substrate. Therefore, converting this light into a normal, easy-to-use beam with a Gaussian intensity distribution requires a sophisticated lens system, such as a cylindrical lens, to correct this aberration.

この問題点を解決するなめに、光導波路上に、自発分極
が周期的に反転している領域を設けける方式が提案され
ている。この方式では、分極反転周期Δが Δc=2π/ (β (2ω)−2β (ω))1で与
えられるコヒーレント長Δ。と等しくなるように設定す
ることで第2次高調波も導波モードとすることができ集
光性の良い波面を得ることができる。ここでβ(2ω)
、β(ω)はそれぞれ光導波路の第2次高調波、基本波
に対する伝搬定数である。
In order to solve this problem, a method has been proposed in which a region in which the spontaneous polarization is periodically reversed is provided on the optical waveguide. In this method, the polarization inversion period Δ is the coherence length Δ given by Δc=2π/(β (2ω)−2β (ω))1. By setting it to be equal to , the second harmonic can also be made into a waveguide mode, and a wavefront with good light focusing ability can be obtained. Here β(2ω)
, β(ω) are propagation constants for the second harmonic and fundamental wave of the optical waveguide, respectively.

このような自発分極の反転領域を選択的に形成する方法
として、チタンを熱拡散する方法がある。これは、ニオ
ブ酸リチウム結晶の+0面に、分極反転を起こしない領
域にのみチタンパターンを形成し、1100℃程度の雰
囲気中で数時間拡散を行うものである。
As a method for selectively forming such spontaneous polarization inversion regions, there is a method of thermally diffusing titanium. In this method, a titanium pattern is formed on the +0 face of a lithium niobate crystal only in a region where polarization inversion does not occur, and the titanium pattern is diffused in an atmosphere of about 1100° C. for several hours.

この方式は、たとえばオプティカル ソサイエティ オ
ブ アメリカ発行のr1989  テクニカル ダイジ
ェスト シリーズ ボリューム4インテグレーテツド 
アンド ガイデッド−ウェーブ オプティカル、ポスト
 デッドライン ペーパーズJ PD3に掲載の「フア
プリケーションメソッズ フォー プロデューシイング
 ペリオディカリー ドメイン−インバーチイツト ウ
ェイブガイズ イン リチウム ナイオベートフォー 
セカンド ハーモニクス ジェネレーション」と題する
論文、あるいはオプティカル ソサイエティ オブ ア
メリカ発行のr1989テクニカル ダイジェスト シ
リーズ ボリューム2 ノンリニア ガイデッド−ウェ
ーブ フェノミナ:フィジクス アンド アプリケーシ
ョンズ、ポストデッドラインペーパーJ PD3掲載の
「セカンド ハーモニクス ジェネレーションオブ ブ
ルー アンド グリーン ライト インペリオディ力す
−−ボールド プレーナー リチウム ナイオベート 
ウェーブガイズ」と題する論文に詳述されている。
This method is used, for example, in the R1989 Technical Digest Series Volume 4 Integrated Edition published by the Optical Society of America.
and Guided Wave Optical, published in Post Deadline Papers J PD3.
``Second Harmonics Generation'' or ``Second Harmonics Generation of Blue and Green Light Imperiody'' published in R1989 Technical Digest Series Volume 2, Nonlinear Guided-Wave Phenomena: Physics and Applications, Post-Deadline Paper J PD3, published by the Optical Society of America. Power - Bold Planer Lithium Niobate
The details are detailed in the paper entitled "Wave Guys".

〔従来技術の解決すべき課題〕[Issues to be solved by conventional technology]

以上述べた従来の技術による波長変換素子では、チェレ
ンコフ放射型では既に述べたように集光することが困難
であるという欠点を有する。また分極反転型では次のよ
うな問題点を有している。分極反転を選択的に起こすた
めに、従来では上述のようにチタン拡散法を用いている
が、この方法は同時に拡散部分の屈折率の上昇をも引き
起こす。従って、光導波路を伝搬する光波は、分極の反
転、非反転領域の境界を通過する毎に屈折率の変化を受
けることになり、境界では反射損失が非常に大きなもの
となり、見かけ上導波損失の大きい光導波路となってし
まう。よく知られているように、第2高調波への変換効
率は励起光強度に比例するため、導波損失の大きい導波
路では高い変換効率を達成することは困難である。
The wavelength conversion elements according to the conventional techniques described above have the drawback that it is difficult to condense light in the Cerenkov radiation type as described above. Furthermore, the polarization inversion type has the following problems. In order to selectively cause polarization reversal, the titanium diffusion method has conventionally been used as described above, but this method also causes an increase in the refractive index of the diffusion portion. Therefore, a light wave propagating through an optical waveguide undergoes a change in refractive index each time it passes through the boundary of polarization inversion and non-inversion regions, and the reflection loss at the boundary becomes extremely large, giving rise to an apparent waveguide loss. This results in a large optical waveguide. As is well known, since the conversion efficiency to the second harmonic is proportional to the excitation light intensity, it is difficult to achieve high conversion efficiency with a waveguide with large waveguide loss.

本発明は、上述の問題点を解決し、高変換効率で、かつ
集光性の良好な波長変換素子を提供することを目的とす
る。
An object of the present invention is to solve the above-mentioned problems and provide a wavelength conversion element with high conversion efficiency and good light focusing ability.

〔課題を解決するための手段〕[Means to solve the problem]

以上述べた従来技術の持つ課題を解決するために、本発
明が用いる手段は、ニオブ酸リチウム結晶に設けた光導
波路に、チタンを選択的に熱拡散して形成した自発分極
反転領域を有する波長変換素子において、前記チタン拡
散領域に酸化マグネシウムを追拡散したことを特徴とす
る構成になつている。
In order to solve the above-mentioned problems of the prior art, the means used in the present invention is to provide an optical waveguide provided in a lithium niobate crystal with a spontaneous polarization region formed by selectively thermally diffusing titanium. The conversion element is characterized in that magnesium oxide is additionally diffused into the titanium diffusion region.

〔作用〕[Effect]

本発明では、分極反転を用いて位相整合を達成する第2
高調波発生素子において、チタン拡散に伴う分極反転部
の屈折率上昇を補償するために、酸化マグネシウムを追
拡散する方法を用いる。酸化マグネシウムの追拡散によ
りチタン拡散部の屈折率が低下することは、たとえば応
用物理学会光学懇話会編の「光集積回路基礎と応用」 
(1988年朝倉書店発行)の第126ページから12
7ページに記載されている。従って、酸化マグネシウム
をチタン拡散部に合致するようにパターニングし、追拡
散を行うことにより、分極反転部と非反転部の屈折率差
を小さくすることができる。境界部での反射が小さくな
ることから伝搬損失の小さい光導波路を作製することが
でき、結果として高い変換効率を有する波長変換素子を
実現することができる。
In the present invention, the second
In the harmonic generation element, a method of additionally diffusing magnesium oxide is used to compensate for the increase in refractive index of the polarization inversion portion due to titanium diffusion. The fact that the refractive index of the titanium diffused part decreases due to the additional diffusion of magnesium oxide is explained in, for example, "Fundamentals and Applications of Optical Integrated Circuits" edited by the Optics Conference of the Japan Society of Applied Physics.
(published by Asakura Shoten in 1988), pages 126 to 12
It is listed on page 7. Therefore, by patterning magnesium oxide to match the titanium diffusion portion and performing additional diffusion, it is possible to reduce the difference in refractive index between the polarization inversion portion and the non-inversion portion. Since reflection at the boundary is reduced, an optical waveguide with small propagation loss can be manufactured, and as a result, a wavelength conversion element with high conversion efficiency can be realized.

〔実施例〕〔Example〕

以下図面を参照しながら本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明の詳細な説明するための図である。ニオ
ブ酸リチウム結晶1にチタン拡散法により分極反転領域
を作製し、その領域と重なるように酸化マグネシウムの
追拡散を行い屈折率がチタンの非拡散領域とほぼ等しい
、低屈折率分極反転領域6が形成されている。光導波路
7はプロトン交換により低屈折率分極反転領域6と交わ
るように作製している。励起光8を光導波路7の端面か
ら結合させる。第2高調波光9はほぼ光導波路の導波モ
ードとなり、光導波路端面から出射する。第3図A、B
は本素子の構成を示すための平面図及び断面図である。
FIG. 1 is a diagram for explaining the present invention in detail. A polarization inversion region is created in the lithium niobate crystal 1 by a titanium diffusion method, and magnesium oxide is additionally diffused so as to overlap with the region, thereby forming a low refractive index polarization inversion region 6 having a refractive index almost equal to that of the non-diffusion region of titanium. It is formed. The optical waveguide 7 is fabricated so as to intersect with the low refractive index polarization inversion region 6 by proton exchange. Excitation light 8 is coupled from the end face of optical waveguide 7. The second harmonic light 9 becomes approximately the waveguide mode of the optical waveguide and is emitted from the end face of the optical waveguide. Figure 3 A, B
1 is a plan view and a sectional view showing the configuration of the present device.

低屈折率分極反転領域6の深さ及び幅はプロトン交換光
導波路7の深さ及び幅よりも十分深く、かつ広くなるよ
うに設定している。
The depth and width of the low refractive index polarization inversion region 6 are set to be sufficiently deeper and wider than the depth and width of the proton exchange optical waveguide 7.

第4図は、本発明による素子の作製プロセスを説明する
ための図である。チタン薄膜10をZカットニオブ酸リ
チウム結晶11の+0面上に作製しく第4図A)、フォ
トプロセス、エツチングにより分極反転パターンに対応
したチタンパターン12を形成する(第4図B)。11
00°C程度の温度で数時間処理することにより分極反
転領域13が形成される(第4図C)。この分極反転領
域13に一致するようにMgOパターン14を形成する
(第4図D)。Mg0層の形成は例えばスパッタ法によ
り作製することができる。また、M g Oのパターン
はリフトオフ法や、ドライエツチング法等、公知の技術
を用いて行うことができる。MgOの追拡散は、数百°
Cの拡散温度で、チタンの拡散とほぼ同様の手法で行う
ことができ、これにより低屈折率分極反転領域15が形
成される(第4図E)。その後、公知の技術であるプロ
トン交換法により光導波路16を形成する(第4図F)
FIG. 4 is a diagram for explaining the manufacturing process of an element according to the present invention. A titanium thin film 10 is prepared on the +0 face of the Z-cut lithium niobate crystal 11 (FIG. 4A), and a titanium pattern 12 corresponding to a polarization inversion pattern is formed by photoprocessing and etching (FIG. 4B). 11
A polarization inversion region 13 is formed by processing at a temperature of about 00° C. for several hours (FIG. 4C). An MgO pattern 14 is formed to match this polarization inversion region 13 (FIG. 4D). The Mg0 layer can be formed by, for example, a sputtering method. Further, the MgO pattern can be formed using a known technique such as a lift-off method or a dry etching method. The additional diffusion of MgO is several hundred degrees
The diffusion can be carried out at a diffusion temperature of C in substantially the same manner as the diffusion of titanium, thereby forming a low refractive index polarization inversion region 15 (FIG. 4E). Thereafter, the optical waveguide 16 is formed by the proton exchange method, which is a known technique (FIG. 4F).
.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特殊なレンズ系を用いることなく集光
が可能で、かつ高変換効率な波長変換素子を提供するこ
とができる。
According to the present invention, it is possible to provide a wavelength conversion element that is capable of condensing light without using a special lens system and has high conversion efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図、第2図は従
来の技術を説明するための図、第3図、第4図は本発明
の詳細な説明するための図である。図において、 1.5・・・ニオブ酸リチウム結晶、2,7.16・・
・光導波路、3.8・・・励起光、4.9・・・第2高
調波光、6,15・・・低屈折率分極反転領域、10・
・・チタン薄膜、11・・・Zカットニオブ酸リチウム
結晶、12・・・チタンパターン、13・・・分極反転
領域、14・・Mg○パターン である。
FIG. 1 is a diagram for explaining the present invention in detail, FIG. 2 is a diagram for explaining the conventional technique, and FIGS. 3 and 4 are diagrams for explaining the present invention in detail. In the figure, 1.5...lithium niobate crystal, 2,7.16...
・Optical waveguide, 3.8... Excitation light, 4.9... Second harmonic light, 6, 15... Low refractive index polarization inversion region, 10.
...Titanium thin film, 11...Z-cut lithium niobate crystal, 12...Titanium pattern, 13...Polarization inversion region, 14...Mg◯ pattern.

Claims (1)

【特許請求の範囲】[Claims] ニオブ酸リチウム結晶に設けた光導波路に、チタンを選
択的に熱拡散して形成した自発分極反転領域を有する波
長変換素子において、前記チタン拡散領域に酸化マグネ
シウムを追拡散したことを特徴とする波長変換素子。
A wavelength conversion element having a spontaneous polarization inversion region formed by selectively thermally diffusing titanium in an optical waveguide provided in a lithium niobate crystal, characterized in that magnesium oxide is additionally diffused into the titanium diffusion region. conversion element.
JP1272001A 1989-10-18 1989-10-18 Wavelength converting element Pending JPH03132628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272001A JPH03132628A (en) 1989-10-18 1989-10-18 Wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272001A JPH03132628A (en) 1989-10-18 1989-10-18 Wavelength converting element

Publications (1)

Publication Number Publication Date
JPH03132628A true JPH03132628A (en) 1991-06-06

Family

ID=17507764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272001A Pending JPH03132628A (en) 1989-10-18 1989-10-18 Wavelength converting element

Country Status (1)

Country Link
JP (1) JPH03132628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1355188A2 (en) * 2002-04-02 2003-10-22 Ngk Insulators, Ltd. Systems and a method for generating blue laser beam
WO2006059389A1 (en) * 2004-12-03 2006-06-08 Mitsubishi Denki Kabushiki Kaisha Light wavelength conversion light source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1355188A2 (en) * 2002-04-02 2003-10-22 Ngk Insulators, Ltd. Systems and a method for generating blue laser beam
EP1355188A3 (en) * 2002-04-02 2006-06-07 Ngk Insulators, Ltd. Systems and a method for generating blue laser beam
WO2006059389A1 (en) * 2004-12-03 2006-06-08 Mitsubishi Denki Kabushiki Kaisha Light wavelength conversion light source
JPWO2006059389A1 (en) * 2004-12-03 2008-06-05 三菱電機株式会社 Light wavelength conversion light source
US7605973B2 (en) 2004-12-03 2009-10-20 Mitsubishi Electric Corporation Optical wavelength conversion light source

Similar Documents

Publication Publication Date Title
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JPH0523410B2 (en)
JPH077135B2 (en) Optical waveguide, optical wavelength conversion element, and method for manufacturing short wavelength laser light source
JP2725302B2 (en) Waveguide type wavelength conversion element
JPH0523413B2 (en)
JPH03132628A (en) Wavelength converting element
JP2676743B2 (en) Waveguide type wavelength conversion element
JP2921208B2 (en) Wavelength conversion element and short wavelength laser light source
JP2658381B2 (en) Waveguide type wavelength conversion element
JP3147412B2 (en) Incident taper optical waveguide and wavelength conversion element using the same
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH01257922A (en) Waveguide type wavelength converting element
JP2502818B2 (en) Optical wavelength conversion element
JP3049986B2 (en) Optical wavelength conversion element
JP2693842B2 (en) Optical wavelength converter
JP2666540B2 (en) Waveguide type wavelength conversion element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH0331828A (en) Wavelength converting element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2982366B2 (en) Waveguide type wavelength conversion element
JPH02189527A (en) Waveguide type wavelength converting element
JPH02282233A (en) Waveguide type wavelength converting element
JP3178849B2 (en) Waveguide type SHG element
JP2973463B2 (en) Optical waveguide device
JP2738155B2 (en) Waveguide type wavelength conversion element