JPH0260044B2 - - Google Patents

Info

Publication number
JPH0260044B2
JPH0260044B2 JP17289884A JP17289884A JPH0260044B2 JP H0260044 B2 JPH0260044 B2 JP H0260044B2 JP 17289884 A JP17289884 A JP 17289884A JP 17289884 A JP17289884 A JP 17289884A JP H0260044 B2 JPH0260044 B2 JP H0260044B2
Authority
JP
Japan
Prior art keywords
winding
primary
transformer
tap
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17289884A
Other languages
Japanese (ja)
Other versions
JPS6156406A (en
Inventor
Yoshitake Kashima
Shigeo Shirato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17289884A priority Critical patent/JPS6156406A/en
Publication of JPS6156406A publication Critical patent/JPS6156406A/en
Publication of JPH0260044B2 publication Critical patent/JPH0260044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は単相負荷時タツプ切換変圧器、特に鉄
心の主脚の1次巻線、1次タツプ巻線、二次巻線
および3次巻線を配置して構成する単相負荷時タ
ツプ切換変圧器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a single-phase load tap-change transformer, particularly a primary winding, a primary tap winding, a secondary winding, and a tertiary winding of the main leg of an iron core. This invention relates to a single-phase on-load tap-change transformer configured by arranging wires.

〔発明の背景〕[Background of the invention]

超々高圧の送電系統に使用する変圧器は、ます
ます大容量大形化しており、一般には運輸送上の
問題から単相変圧器の複数台を組合せて3相構成
するようになつている。これら送電系統の単相変
圧器は、電圧調整用のタツプ巻線を有しており、
負荷時タツブ切換器にてタツプ切換を行い、所定
の電圧に調整している。
Transformers used in ultra-high voltage power transmission systems are becoming larger and larger in capacity, and generally, due to transportation problems, multiple single-phase transformers are combined to form a three-phase configuration. Single-phase transformers in these power transmission systems have tap windings for voltage regulation.
Tap switching is performed using a tab switching device during load to adjust the voltage to a specified level.

このような変圧器では、例えば変電所内の電源
用の3次巻線を備えるときには、3次回路の遮断
器の遮断容量を小さくしたり、短絡時の機械力を
考えねばならず、系統運用を良好にするため、変
圧器の3次巻線と1次巻線間或いは2次巻線間の
(特に3次と2次巻線間)の%インピーダンスを
大きくする必要が生じる。これは、変圧器が大容
量化するにしたがい、一定値以上に保たねばなら
ないそのオームインピーダンスが小さくなり、3
次側の短絡容量を制限するのが難しくなるためで
ある。
For example, when such a transformer is equipped with a tertiary winding for the power supply in a substation, it is necessary to reduce the breaking capacity of the tertiary circuit breaker, and to consider the mechanical force in the event of a short circuit, making it difficult to operate the system. In order to improve the performance, it is necessary to increase the % impedance between the tertiary winding and the primary winding or between the secondary winding (particularly between the tertiary and secondary winding) of the transformer. This is because as the capacity of a transformer increases, its ohmic impedance, which must be kept above a certain value, decreases,
This is because it becomes difficult to limit the short-circuit capacity on the next side.

通常、内鉄形の変圧器においては、3次巻線と
他の各巻線間の%インピーダンスを大きくする手
段としては、次のような方式がある。すなわち、
鉄心の主脚に近い内側から順に、3次、2次、1
次巻線を配置するときに、3次巻線と2次巻線の
間の絶縁距離を調節する方式、または鉄心の主脚
に内側から2次、1次、3次巻線の順に配置する
方式、或いはリアクトルを別に設置する方式があ
る。ところが、第1の方式では各巻線特に1次お
よび2次巻線の直径が大きくなるので、変圧器を
経済的に製作できず、しかも輸送上問題を生ずる
ばかりか、寸法が制約されるため%インピーダン
スを極端に大きくできない。また第2の方式では
巻線の全体寸法は小さくなるが、1次巻線が超々
高圧であるときには、1次と3次巻線間の絶縁寸
法を大きくせねばならず、しかも高圧端子へのリ
ード線の引出しと絶縁が難しくなる。更に第3の
方式では、別個のリアクトルを必要とするので、
製作しにくく不経済である。
Generally, in a core type transformer, the following method is available as a means for increasing the percentage impedance between the tertiary winding and each other winding. That is,
Starting from the inside of the core near the main leg, tertiary, secondary, first
A method of adjusting the insulation distance between the tertiary winding and the secondary winding when placing the secondary winding, or placing the secondary, primary, and tertiary windings in the order from the inside on the main leg of the iron core. There are two methods: one method is to install a reactor separately. However, in the first method, the diameter of each winding, especially the primary and secondary windings, becomes large, making it impossible to economically manufacture the transformer, causing transportation problems, and limiting the size of the transformer. Impedance cannot be made extremely large. In addition, in the second method, the overall dimensions of the winding are smaller, but when the primary winding is at ultra-high voltage, the insulation dimension between the primary and tertiary windings must be increased, and moreover, the insulation dimension to the high voltage terminal is increased. It becomes difficult to draw out the lead wires and insulate them. Furthermore, the third method requires a separate reactor, so
It is difficult and uneconomical to manufacture.

このため、%インピーダンスを大きくする必要
のある巻線の単相変圧器では、種々の問題のある
上記の各方式に代えて、第1図または第2図に示
すように構成することが提案されている。
For this reason, for single-phase transformers with windings that require a large impedance, it has been proposed to configure them as shown in Figures 1 and 2 instead of the above-mentioned methods, which have various problems. ing.

すなわち、第1図の単相負荷時タツプ切換変圧
器では、2つの主脚C1,C2と2つの側脚S1,S2
を有する単相4脚構成の鉄心10を用い、この各
主脚C1,C2にそれぞれ内側に2次巻線L1,L2
配置し、並列接続して線路側および中性点側の2
次端子u,oに至らせ、これらの外側に1次巻線
H1,H2を配置して両者間は直列接続し、線路間
および中性点側の1次端子U,Oに至るようにな
つている。この場合、3次巻線Tの中性点側の1
次巻線H2の位置する主脚C2側のみに配置して3
次端子a,bを引出し、これによつて他巻線との
間の%インピーダンスを大きくできるようにした
もので、また中性点側の1次巻線H2に直列に接
続する1次タツプ巻線Tw1,Tw2は、主脚C2に設
けると巻線全体の直径が大となり、輸送限界から
2次巻線L2と3次巻線T間の寸法を大きくでき
ず、%インピーダンスを所定値にできぬのを防ぐ
ため、3次巻線Tと並列接続する励磁巻線Eと共
に一方の側脚S2に配置してタツプ切換器TC1
TC2によつて切換えるように構成している。(特
開昭53−106422号公報参照) この第1図の方式のものでは、%インピーダン
スを大きくするために1次タツプ巻線Tw1,Tw2
と励磁巻線Eとを、側脚S2部分の断面が矩形であ
るのを絶縁物や非磁性体で円形に成形した上で配
置せねばならず、製作を容易に行えないばかりか
全体寸法が大きくなる不都合があり、更に重要な
ことには、1次タツプ巻線Tw1,Tw2に電流が流
れると、その分だけ各主脚C1,C2側の容量が増
減することになり、タツプ切換器TC1,TC2にて
切換えるタツプによつて、1次、2次巻線間の%
インピーダンスが大幅に変化してしまい、変圧器
の利用率が悪くなる欠点がある。
That is, in the single-phase on-load tap switching transformer shown in Fig. 1, two main legs C 1 and C 2 and two side legs S 1 and S 2 are used.
A single-phase four-leg iron core 10 is used, and secondary windings L 1 and L 2 are arranged inside each of the main legs C 1 and C 2 and connected in parallel to the line side and neutral point side. 2
Connect the primary winding to the secondary terminals u and o, and connect the primary winding to the outside of these terminals.
H 1 and H 2 are arranged and connected in series to reach the primary terminals U and O between the lines and on the neutral point side. In this case, 1 on the neutral point side of the tertiary winding T
Place it only on the main landing gear C 2 side where the next winding H 2 is located.
The secondary terminals a and b are pulled out, thereby increasing the % impedance between them and other windings, and the primary tap connected in series to the primary winding H2 on the neutral point side. When the windings T w1 and T w2 are installed on the main landing gear C 2 , the diameter of the entire winding becomes large, and due to transportation limitations, the dimension between the secondary winding L 2 and the tertiary winding T cannot be increased, and the % impedance In order to prevent the inability to reach a predetermined value, a tap changer TC 1 , which is placed on one side leg S 2 together with an excitation winding E connected in parallel with the tertiary winding T, is installed.
It is configured to be switched by TC 2 . (Refer to Japanese Unexamined Patent Publication No. 106422/1983) In the method shown in Fig. 1, primary tap windings T w1 and T w2 are used to increase the % impedance.
The rectangular cross section of the side leg S 2 has to be formed into a circular shape using an insulator or non-magnetic material, and then the excitation winding E and the excitation winding E have to be arranged, which not only makes manufacturing difficult, but also reduces the overall size This has the disadvantage of increasing the current, and more importantly, when current flows through the primary tap windings T w1 and T w2 , the capacity of each main landing gear C 1 and C 2 increases or decreases by that amount. , the percentage between the primary and secondary windings is determined by the taps switched by tap changers TC 1 and TC 2 .
This has the drawback that the impedance changes significantly, resulting in poor transformer utilization.

上記の欠点をさけるため、第2図に示すもので
は第1図と同様に鉄心10の各主脚C1,C2に、
1次巻線H1,H2および2次巻線L1,L2を配置し
て所定の結線を行わせ、中性点側の1次巻線H2
の位置する主脚C2に、1次巻線に連らなり、タ
ツプ切換器TCで切換える1次タツプ巻線Twを配
置すると共に、この最外側に3次巻線Tを配置せ
しめ、これによつて2次および3次巻線間の寸法
を大きくして%インピーダンスを増す方式であ
る。(特開昭51−4528号公報参照) この第2図の方式では、中性点側の1次巻線
H2の端部に高い電圧が出ることになるし、1次
タツプ巻線Twが3次巻線Tの内側となるをタツ
プリード線の引出しが困難となるなどの欠点を有
する。また、この場合には変圧器が大容量である
と、使用する負荷時タツプ切換器の容量を考えて
回路を2並列とし、電流を分割する必要がある
が、この分割は上下を並列に使用する線路側の1
次巻線H1の上下端をそのまま引廻し、2本の並
列導体で作つた中性点側の1次巻線H2と別々に
接続せねばならず、1次タツプ巻線Twも並列回
路とするため、リード線の本数も増大する欠点が
ある。
In order to avoid the above drawbacks, in the one shown in FIG. 2, each main leg C 1 , C 2 of the iron core 10 has a
The primary windings H 1 , H 2 and the secondary windings L 1 , L 2 are arranged and connected as specified, and the primary winding H 2 on the neutral point side
A primary tap winding T w connected to the primary winding and switched by a tap changer TC is arranged on the main landing gear C 2 where is located, and a tertiary winding T is arranged on the outermost side of this winding. This method increases the impedance by increasing the size between the secondary and tertiary windings. (Refer to Japanese Patent Application Laid-Open No. 51-4528.) In the method shown in Fig. 2, the primary winding on the neutral point side
A high voltage will be generated at the end of H2 , and there are disadvantages such as it is difficult to draw out the tap lead wire when the primary tap winding Tw is inside the tertiary winding T. In addition, in this case, if the transformer has a large capacity, it is necessary to divide the current by arranging two circuits in parallel to take into consideration the capacity of the load tap changer used, but this division uses the top and bottom in parallel. 1 on the track side
The upper and lower ends of the secondary winding H 1 must be routed as they are and connected separately to the primary winding H 2 on the neutral point side made of two parallel conductors, and the primary tap winding T w must also be connected in parallel. Since it is a circuit, there is a drawback that the number of lead wires increases.

〔発明の目的〕[Purpose of the invention]

本発明の単相負荷時タツプ切換変圧器の目的
は、各巻線間の%インピーダンスの大きなものを
小形化して輸送重量の制限内で容易に製作できる
ようにすると共に、タツプ切換によつても%イン
ピーダンスの変動を少なくすることにある。
The purpose of the single-phase on-load tap switching transformer of the present invention is to miniaturize a transformer with a large % impedance between each winding so that it can be manufactured easily within the transportation weight limit, and also to enable tap switching. The purpose is to reduce fluctuations in impedance.

〔発明の概要〕[Summary of the invention]

本発明では複数の分割変圧器の構成に主脚と側
脚を有するそれぞれ独立した鉄心を用い、この各
鉄心の主脚に1次、2次、3次巻線更には1次タ
ツプ巻線を配置する際、3次巻線を線路側となる
1次巻線が位置する鉄心の主脚に配置し、1次タ
ツプ巻線を中性点側の1次巻線が位置する鉄心の
主脚に配置して組合せ形の変圧器をすることを特
徴としている。
In the present invention, independent cores each having a main leg and a side leg are used in the configuration of a plurality of split transformers, and the main legs of each core are provided with primary, secondary, and tertiary windings, as well as a primary tap winding. When placing the tertiary winding, place the tertiary winding on the main leg of the core where the primary winding on the line side is located, and the primary tap winding on the main leg of the core where the primary winding on the neutral side is located. It is characterized by being placed in a combination transformer.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を従来と同一部分を同符号とした第
3図から第5図に示す各実施例を用いて説明す
る。
The present invention will be described below with reference to embodiments shown in FIGS. 3 to 5, in which the same parts as those of the prior art are given the same reference numerals.

本発明の実施例である第3図の単相負荷時タツ
プ切換変圧器は、2つの独立した鉄心11を用い
て構成する例で、各鉄心11には1つの主脚C1
又はC2と2つの側脚S1,S2又はS3,S4を有する
単相3脚構成(センターコア)のものを用い、こ
れら各主脚C1,C2に後述するように巻線群をそ
れぞれ配置して所定の接続を行なう分割変圧器を
構成している。
The single-phase load tap switching transformer shown in FIG. 3, which is an embodiment of the present invention, is an example constructed using two independent cores 11, and each core 11 has one main leg C 1 .
Alternatively, use a single-phase three-leg configuration (center core) having C 2 and two side legs S 1 and S 2 or S 3 and S 4 , and wind each of these main legs C 1 and C 2 as described below. A split transformer is constituted by arranging wire groups and making predetermined connections.

すなわち、各鉄心11の主脚C1,C2に内側か
ら2次巻線L1,L2と1次巻線H1,H2を組合せて
配置し、各2次巻線L1,L2間は並列接続して2
次端子u,oに至るようになしており、また各鉄
心11の主脚C1,C2に位置して上下並列構造の
1次巻線H1,H2は線路側の1次端子U側である
1次巻線H1と中性点側の1次端子0側である1
次巻線H2とが直列関係になるように接続されて
いる。他巻線との間の%インピーダンスを増大さ
せるため、3次巻線Tは線路側の1次巻線H1
位置する一方の鉄心11の主脚C1の最内側に配
置している。段絶縁の中性点側1次巻線H2に連
らなる1次タツプ巻線Tw1,Tw2は、他方の鉄心
11の主脚C2の最外側に上下に離して配置せし
め、タツプ選択器TC1,TC2によつてそれぞれタ
ツプを選択するようにしている。
That is, the secondary windings L 1 , L 2 and the primary windings H 1 , H 2 are arranged in combination from the inside on the main legs C 1 , C 2 of each iron core 11, and each secondary winding L 1 , L 2 are connected in parallel and 2
The primary windings H 1 and H 2, located on the main legs C 1 and C 2 of each core 11 and having an upper and lower parallel structure , are connected to the primary terminal U on the line side. The primary winding H 1 is on the side and 1 is the primary terminal 0 side on the neutral point side.
It is connected in series with the next winding H2 . In order to increase the % impedance with other windings, the tertiary winding T is arranged at the innermost side of the main leg C 1 of one iron core 11 where the primary winding H 1 on the line side is located. The primary tap windings T w1 and T w2 connected to the primary winding H 2 on the neutral point side of the stage insulation are arranged vertically apart from each other on the outermost side of the main leg C 2 of the other iron core 11. The taps are selected by selectors TC 1 and TC 2 , respectively.

このようにすれば、分割変圧器を構成する線路
側および中性点側の各鉄心11の主脚C1,C2
巻線数をいずれも3巻線とすることができるの
で、各主脚C1,C2への巻線配分を適正化してほ
ぼ等しくすることもでき、各分割変圧器の製作を
容易にして小形化することができる。また、一方
の鉄心11の主脚C1においては2次巻線L1と3
次巻線T間の寸法を十分に大きくすることができ
るので、これら間の%インピーダンスも十分に大
となる。この場合、1次・2次巻線間の%インピ
ーダンスは、段絶縁の中性点側である分割変圧器
の1次巻線H2と2次巻線L2間の寸法を大きくす
ることで任意に調整することができ、線路側であ
る分割変圧器の1次巻線H1と2次巻線L1間は、
絶縁上きまる最小寸法でよいから、2次巻線L1
と3次巻線T間の寸法が十分にとれることにな
る。更に、本方式で線路側分割変圧器の1次巻線
H1と2次巻線L1、中性点側分割変圧器の1次巻
線H2と2次巻線L2間の容量比を変え、例えば線
路側の容量を中性点側の容量より小さくすれば、
線路側の巻線H1,L1が小となるから、これによ
つて2次巻線L1と3次巻線T間の寸法を大とし
て%インピーダンスを調節することも可能である
し、3次巻線Tを最外側に配置して2次巻線L1
との間を大きくして調節することもできる。
In this way, the number of windings in the main legs C 1 and C 2 of each iron core 11 on the line side and neutral point side that constitute the split transformer can be reduced to three, so each main leg C 1 and C 2 can have three windings. It is also possible to optimize the distribution of windings to the legs C 1 and C 2 so that they are approximately equal, making it easier to manufacture each split transformer and making it more compact. In addition, in the main leg C 1 of one iron core 11, the secondary windings L 1 and 3
Since the dimension between the next windings T can be made sufficiently large, the % impedance between them can also be made sufficiently large. In this case, the % impedance between the primary and secondary windings can be determined by increasing the dimension between the primary winding H 2 and the secondary winding L 2 of the split transformer, which is the neutral point side of the stage insulation. It can be adjusted arbitrarily, and between the primary winding H 1 and the secondary winding L 1 of the split transformer on the line side,
The secondary winding L 1 is sufficient because it has the minimum dimensions determined by insulation.
This means that a sufficient dimension can be secured between the tertiary winding T and the tertiary winding T. Furthermore, with this method, the primary winding of the line-side split transformer
By changing the capacitance ratio between H 1 and the secondary winding L 1 and between the primary winding H 2 and the secondary winding L 2 of the neutral-side split transformer, for example, change the capacity on the line side to the capacity on the neutral side. If you make it smaller,
Since the windings H 1 and L 1 on the line side are small, it is also possible to adjust the % impedance by increasing the dimension between the secondary winding L 1 and the tertiary winding T. The tertiary winding T is placed on the outermost side and the secondary winding L 1
It can also be adjusted by increasing the distance between the two.

一方、本方式の構造においては、1次タツプ巻
線Tw1,Tw2が、主巻線である1次巻線H2と2次
巻線L2に隣接して配置されているので、タツプ
切換器TC1,TC2によるタツプ切換でも、1次・
2次巻線間の%インピーダンスも殆んど変化しな
いし、また2次・3次巻線間や1次・3次巻線間
の%インピーダンスも変化することがなくなる。
上述した如く本発明は、独立した構造に製作した
分割変圧器の接続が行われて所望の単相負荷時タ
ツプ切換変圧器となるもので、このように構成す
る場合には、輸送重量に制限のある変圧器も容易
に製作できる。
On the other hand, in the structure of this system, the primary tap windings T w1 and T w2 are arranged adjacent to the primary winding H 2 and the secondary winding L 2 , which are the main windings, so the tap Even with tap switching using switchers TC 1 and TC 2 , primary and
The % impedance between the secondary windings hardly changes, and the % impedance between the secondary and tertiary windings and between the primary and tertiary windings also does not change.
As mentioned above, the present invention involves connecting split transformers fabricated as independent structures to form a desired single-phase load tap-changing transformer. It is also easy to manufacture transformers with .

第4図に示す本発明は、分割変圧器で構成する
単相負荷時タツプ切換変圧器の別の例を示してお
り、この例では後述する各鉄心の3つの各主脚
C1,C2,C3にそれぞれ2次巻線L1,L2,L3
別々に配置してこれらを並列接続し、また高圧の
1次巻線H1,H2,H3もそれぞれ配置して、この
うちの線路側の1次端子Uに近い2つの1次巻線
H1,H2間を並列接続すると共にこれを残りの1
次巻線H3と直列に接続して構成するものである。
中性点側の次巻線H3に連らなる1次タツプ巻線
Tw1,Tw2は同じ主脚C3の最外側に配置してタツ
プ切換器TC1,TC2にて切換えるようにしてい
る。線路側の各主脚C1,C2には、それぞれ3次
巻線T1,T2が最内側に配置し、これら間は並列
接続して3次端子a,bに至るようにしている。
The present invention shown in FIG. 4 shows another example of a single-phase load tap-change transformer configured with split transformers.
Secondary windings L 1 , L 2 , and L 3 are placed separately in C 1 , C 2 , and C 3 and connected in parallel, and high-voltage primary windings H 1 , H 2 , and H 3 are also connected in parallel. The two primary windings closest to the primary terminal U on the line side
Connect H 1 and H 2 in parallel and connect this to the remaining 1
It is configured by connecting in series with the next winding H3 .
Primary tap winding connected to the next winding H3 on the neutral point side
T w1 and T w2 are arranged on the outermost side of the same main landing gear C 3 and are switched by tap changers TC 1 and TC 2 . The tertiary windings T 1 and T 2 are arranged on the innermost side of each of the main legs C 1 and C 2 on the track side, and these are connected in parallel to reach the tertiary terminals a and b. .

このように複数の分割変圧器で構成した変圧器
は、前記例の効果を達成できると共に、1次側の
容量を大きくするのに好適であり、また3次巻線
T1,T2の調節も容易なので3次容量を大きくす
るのに最適である。
A transformer configured with a plurality of divided transformers in this way can achieve the effects of the above example, and is suitable for increasing the capacity on the primary side.
Since it is easy to adjust T 1 and T 2 , it is ideal for increasing the tertiary capacity.

上記の第4図に使用する鉄心としては、線路側
分割変圧器に用いる単相4脚構成と中性点側分割
変圧器に用いる単相3脚構成の2つの鉄心との組
合せ、更には単相3脚構成の3つの鉄心の組合せ
などがあり、この各主脚に図のように各巻線を配
置して構成することができる。
The cores used in Figure 4 above include a combination of two cores: a single-phase 4-leg configuration used for the line-side split transformer and a single-phase 3-leg configuration used for the neutral-side split transformer, and There is a combination of three iron cores in a phase three-leg configuration, and each main leg can be configured by arranging each winding as shown in the figure.

これらの鉄心の使用は、変圧器の製作条件や輸
送条件などに応じて適宜使い分けることができる
ので製作が容易に行える。
These iron cores can be used appropriately depending on the manufacturing conditions, transportation conditions, etc. of the transformer, so manufacturing can be facilitated.

本発明の他の実施例である第5図のものは、第
4図と同様に3つの主脚C1,C2,C3に各巻線を
配置して分割変圧器を構成する構造であるが、逆
に中性点側となる2つの1次巻線H2,H3を並列
接続して線路側の1つの1次巻線H1と直列接続
したものである。この場合、3次巻線Tは1つの
主脚C1の最内側又は最外側に配置して使用され、
他巻線との間の%インピーダンスを充分に大きく
なるようにして使用される。中性点側の主脚C2
C3の最外側には、それぞれ1次タツプ巻線Tw1
Tw2およびTw3,Tw4が配置され、これら各脚の
1次タツプ巻線間をタツプ切換器TC1,TC2
TC3,TC4を介して並列に接続して使用する。こ
のように、2つの主脚にタツプ巻線をそれぞれ配
置して並列に使用し、3次巻線は別の主脚に配置
すれば前述の例と同じ効果を達成できると共に、
変圧器の電圧調整容量を著しく大きくすることが
できるし、タツプ選択器も切換容量の小さなもの
を使用できる効果がある。
Another embodiment of the present invention, shown in FIG. 5, has a structure in which windings are arranged on three main legs C 1 , C 2 , and C 3 to form a split transformer, similar to that in FIG. 4. However, on the contrary, two primary windings H 2 and H 3 on the neutral point side are connected in parallel and connected in series with one primary winding H 1 on the line side. In this case, the tertiary winding T is placed at the innermost or outermost side of one main leg C1 ,
It is used by making the % impedance between it and other windings sufficiently large. Main landing gear C 2 on the neutral point side,
On the outermost side of C 3 are primary tap windings T w1 ,
T w2 , T w3 , and T w4 are arranged, and tap changers TC 1 , TC 2 ,
Used by connecting in parallel via TC 3 and TC 4 . In this way, by placing the tap windings on each of the two main landing gears and using them in parallel, and placing the tertiary winding on another main landing gear, the same effect as in the previous example can be achieved, and
The voltage adjustment capacity of the transformer can be significantly increased, and a tap selector with a small switching capacity can be used.

この第5図の例においても、前述と同様に単相
3脚鉄心と単相4脚鉄心の組合せ、3つの単相3
脚鉄心などが適宜使用できる。
In the example shown in FIG.
Leg iron cores can be used as appropriate.

本発明の変圧器に用いる1次タツプ巻線Tw1
…Tw4は、図の各実施例においては同一主脚の最
外側に2つを上下に対向させるもので示している
が、この構成に限らず使用できるし、次巻線も上
下並列構成に使用できることは勿論である。
The primary tap winding T w1 used in the transformer of the present invention,
...T w4 is shown as having two vertically opposed upper and lower outermost parts of the same main landing gear in each embodiment of the figure, but it can be used not only in this configuration, and the next winding can also be configured in upper and lower parallel configurations. Of course, it can be used.

本発明の単相負荷時タツプ切換変圧器を構成す
れば、3次巻線と1次タツプ巻線がそれぞれ線路
側と中性点側分割変圧器の主脚に分けて配置され
るので、各分割変圧器は巻線配分が良好でしかも
側脚に巻線を配置しないので、各巻線間の%イン
ピーダンスの大きな変圧器を分割変圧器の組合せ
で容易に製作することができる。また、複数の分
割変圧器の組合せで変圧器を製作するため、輸送
条件に適合する変圧器を容易に製作できるし、単
相3脚と単相4脚の各鉄心を用いる分割変圧器の
組合せでは、2つの主脚の1次巻線を並列接続
し、他の1次巻線と直列接続して使用し、2脚に
並置した3次巻線を並列に接続して使用したり、
又は2脚の1次タツプ巻線を並列接続して使用す
れば、より大容量の変圧器を構成できるし、3次
容量の調節又は電圧調整容量の調節が容易に行え
る。
When the single-phase load tap-changing transformer of the present invention is configured, the tertiary winding and the primary tap winding are arranged separately on the main legs of the line-side and neutral-side split transformers, respectively. Since the split transformer has good winding distribution and no windings are arranged on the side legs, a transformer with a large % impedance between each winding can be easily manufactured by combining the split transformers. In addition, since a transformer is manufactured by combining multiple split transformers, it is easy to manufacture a transformer that meets transportation conditions. In this case, the primary windings of the two main legs are connected in parallel, and the other primary windings are connected in series, and the tertiary windings placed in parallel on the two legs are connected in parallel.
Alternatively, if two primary tap windings are connected in parallel and used, a transformer with a larger capacity can be constructed, and the tertiary capacitance or voltage adjustment capacitance can be easily adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来の単相負荷
時タツプ切換変圧器を示す巻線配置図、第3図か
ら第5図はそれぞれ本発明の単相負荷時タツプ切
換変圧器の異なる例を示す巻線配置図である。 10,11……鉄心、C1,C2,C3……主脚、
S1,S2,S3……側脚、H1,H2,H3……1次巻
線、L1,L2,L3……2次巻線、T,T1,T2……
3次巻線、Tw1,Tw2,Tw3,Tw4……1次タツプ
巻線。
1 and 2 are winding layout diagrams showing conventional single-phase load tap-changing transformers, respectively, and FIGS. 3 to 5 each show different examples of the single-phase load tap-changing transformer of the present invention. FIG. 10, 11... Iron core, C 1 , C 2 , C 3 ... Main landing gear,
S 1 , S 2 , S 3 ... Side leg, H 1 , H 2 , H 3 ... Primary winding, L 1 , L 2 , L 3 ... Secondary winding, T, T 1 , T 2 ……
Tertiary winding, T w1 , T w2 , T w3 , T w4 ...Primary tap winding.

Claims (1)

【特許請求の範囲】 1 複数の分割変圧器の構成に用いる主脚と側脚
とを有する鉄心と、前記各分割変圧器の鉄心の主
脚にそれぞれ配置して並列接続して並列接続する
2次巻線と、前記2次巻線の外側にそれぞれ配置
して直列接続する1次巻線と、前記1次巻線に連
らなる1次タツプ巻線と、3次巻線とを備え、前
記3次巻線は線路側分割変圧器の1次巻線が位置
する鉄心の主脚に配置し、前記1次タツプ巻線は
中性点側分割変圧器の1次巻線が位置する鉄心の
主脚に配置して構成したことを特徴とする単相負
荷時タツプ切換変圧器。 2 前記3次巻線は、線路側分割変圧器の鉄心の
主脚に位置する巻線群の最内側に配置し、前記1
次タツプ巻線は中性点側分割変圧器の鉄心の主脚
に位置する巻線群の最外側に配置して構成したこ
とを特徴とする特許請求の範囲第1項記載の単相
負荷時タツプ切換変圧器。 3 前記各分割変圧器の鉄心は、1つの主脚と2
つの側脚を有する単相3脚構成であることを特徴
とする特許請求の範囲第1項又は第2項記載の単
相負荷時タツプ切換変圧器。 4 前記各分割変圧器の鉄心は、1つの主脚と2
つの側脚を有する単相3脚構成および2つの主脚
と2つの側脚を有する単相4脚構成であることを
特徴とする特許請求の範囲第1項又は第2項記載
の単相負荷時タツプ切換変圧器。 5 前記各鉄心は、2つの主脚と2つの側脚を有
する単相4脚構成であることを特徴とする特許請
求の範囲第1項又は第2項記載の単相負荷時タツ
プ切換変圧器。 6 前記1次巻線は、3つの鉄心の主脚にそれぞ
れ配置し、2つの1次巻線は並列接続して残りの
1次巻線と直列接続して構成したことを特徴とす
る特許請求の範囲第3項記載の単相負荷時タツプ
切換変圧器。 7 前記3次巻線は、2つの鉄心の主脚にそれぞ
れ配置して並列接続したことを特徴とする特許請
求の範囲第3項記載の単相負荷時タツプ切換変圧
器。 8 前記1次タツプ巻線は、一方の分割変圧器の
鉄心の2つの主脚にそれぞれ配置して並列接続し
たことを特徴とする特許請求の範囲第4項又は第
5項記載の単相負荷時タツプ切換変圧器。
[Scope of Claims] 1. An iron core having main legs and side legs used in the configuration of a plurality of divided transformers, and 2. A secondary winding, a primary winding arranged outside the secondary winding and connected in series, a primary tap winding connected to the primary winding, and a tertiary winding, The tertiary winding is arranged on the main leg of the core where the primary winding of the line-side split transformer is located, and the primary tap winding is located on the main leg of the core where the primary winding of the neutral-side split transformer is located. A single-phase load tap-change transformer, characterized in that it is configured by being placed in the main leg of a. 2. The tertiary winding is arranged at the innermost side of the winding group located on the main leg of the iron core of the line-side split transformer, and
At the time of a single-phase load according to claim 1, the next tap winding is arranged at the outermost side of the winding group located on the main leg of the core of the neutral point side split transformer. Tap switching transformer. 3. The iron core of each split transformer is one main leg and two
A single-phase on-load tap-change transformer according to claim 1 or 2, characterized in that it has a single-phase three-leg configuration having two side legs. 4. The iron core of each split transformer has one main leg and two
The single-phase load according to claim 1 or 2, characterized in that the load has a single-phase three-leg configuration having two side legs and a single-phase four-leg configuration having two main legs and two side legs. Time tap switching transformer. 5. The single-phase on-load tap-change transformer according to claim 1 or 2, wherein each of the iron cores has a single-phase four-leg configuration having two main legs and two side legs. . 6. A patent claim characterized in that the primary windings are arranged on the main legs of three iron cores, two primary windings are connected in parallel, and the remaining primary windings are connected in series. Single-phase on-load tap-change transformers as described in item 3. 7. The single-phase load tap switching transformer according to claim 3, wherein the tertiary windings are arranged on the main legs of two iron cores and connected in parallel. 8. A single-phase load according to claim 4 or 5, characterized in that the primary tap windings are respectively arranged on two main legs of the iron core of one split transformer and connected in parallel. Time tap switching transformer.
JP17289884A 1984-08-20 1984-08-20 Single phase on-load tap changing transformer Granted JPS6156406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17289884A JPS6156406A (en) 1984-08-20 1984-08-20 Single phase on-load tap changing transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17289884A JPS6156406A (en) 1984-08-20 1984-08-20 Single phase on-load tap changing transformer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14919978A Division JPS5575210A (en) 1978-12-01 1978-12-01 Tap-change transformer at the time of single-phase loading

Publications (2)

Publication Number Publication Date
JPS6156406A JPS6156406A (en) 1986-03-22
JPH0260044B2 true JPH0260044B2 (en) 1990-12-14

Family

ID=15950380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17289884A Granted JPS6156406A (en) 1984-08-20 1984-08-20 Single phase on-load tap changing transformer

Country Status (1)

Country Link
JP (1) JPS6156406A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934601B2 (en) * 2008-01-25 2012-05-16 西日本旅客鉄道株式会社 Compensation transformer

Also Published As

Publication number Publication date
JPS6156406A (en) 1986-03-22

Similar Documents

Publication Publication Date Title
JP2001509955A (en) Transformer with voltage adjustment means
JPH0260044B2 (en)
JPH0260045B2 (en)
JPS5846047B2 (en) On-load tap switching autotransformer
CN219286184U (en) Transformer voltage regulating winding and transformer
JPS6112363B2 (en)
CN216212794U (en) Transformer device
JPS6236370B2 (en)
JPH07264777A (en) Transformation panel board
CN216133751U (en) Voltage regulation structure of on-load tap-changing transformer
JPH06310350A (en) Heterocapacitance load three-phase scott connection transformer
JPS5834740Y2 (en) Three-phase on-load tap-changing transformer
EP0117515B1 (en) Reactor having a plurality of coaxially disposed windings
JPH11186070A (en) Single-phase autotransformer
JPH0212007B2 (en)
JP4104104B2 (en) 4-winding transformer applied substation
JPS5877214A (en) Single-phase autotransformer
JPS6037707A (en) Three-phase autotransformer
JPH0452602B2 (en)
JPS6159651B2 (en)
JPH0751782Y2 (en) Shunt reactor
JPH0320891B2 (en)
JPH05205950A (en) On-load tap changing single-phase transformer
JPH07220954A (en) Three-phase on-load tap switching transformer
JPS586290B2 (en) On-load tap-changing transformer