JP4104104B2 - 4-winding transformer applied substation - Google Patents

4-winding transformer applied substation Download PDF

Info

Publication number
JP4104104B2
JP4104104B2 JP2000216775A JP2000216775A JP4104104B2 JP 4104104 B2 JP4104104 B2 JP 4104104B2 JP 2000216775 A JP2000216775 A JP 2000216775A JP 2000216775 A JP2000216775 A JP 2000216775A JP 4104104 B2 JP4104104 B2 JP 4104104B2
Authority
JP
Japan
Prior art keywords
winding
voltage
transformer
pair
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000216775A
Other languages
Japanese (ja)
Other versions
JP2002033222A (en
Inventor
徹 矢野
昭司 但田
和夫 村田
悟 橘内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP2000216775A priority Critical patent/JP4104104B2/en
Publication of JP2002033222A publication Critical patent/JP2002033222A/en
Application granted granted Critical
Publication of JP4104104B2 publication Critical patent/JP4104104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、4巻線変圧器応用変電所、特に多巻線変圧器を備えることにより、敷地面積の縮小化と経済性の向上を図るようにした4巻線変圧器応用変電所に関するものである。
【0002】
【従来の技術】
大都市周辺とか臨海地区に設置される変電所あるいは開閉所においては、用地の入手難とか、建設時点が古いことなどから狭隘な立地条件が多く、敷地を効率的に活用するため、2つの系統電圧に対応した変電所ではなく、3つ以上の系統電圧に対応する変電所として複数の変電所を集約して構成することが行なわれている。更に、電気機器の縮小化に対して効果の大きいガス絶縁開閉装置を適用したり、敷地に合わせた機器配置が考慮され、敷地面積の大幅な縮小化を図るようにしている。
図4は、例えば「三菱電機技報59巻11号1985年」に記載された3つ以上の系統電圧に対応した従来の変電所の構成を示すもので、(a)は母線や電気機器、予備スペース等の配置例を示す簡略平面図、(b)は変電所の主要な構成要素間の電気的な接続関係を示す単線結線図である。
【0003】
図4(a)において、1は変電所で、4つの系統電圧、即ち500KV、275KV、154KV、77KVに対応し得るようにされたものである。
なお、母線を支持する鉄構などは省略している。11〜15は系統電圧に応じて設けられたヤードで、11は500KV用、12、13は275KV用で、図示のように、2ヶ所に分割配置されている。また、14は154KV用、15は77KV用である。16はヤード11と12との間に設けられた変圧器用ヤード、17はヤード14とヤード13との間に設けられた変圧器用ヤード、18はヤード15とヤード13との間に設けられた変圧器用ヤードである。
21〜25は各ヤードに設けられた母線で、21はヤード11に設けられた500KV用母線、22はヤード12に設けられた275KV用母線の一部、23はヤード13に設けられた275KV用母線の他の一部で、ヤード12の275KV用母線22と連繋されている。24はヤード14に設けられた154KV用母線、25はヤード15に設けられた77KV用母線である。
なお、母線に接続されている遮断器等の開閉機器類は図示していない。
【0004】
31〜35は各母線に接続された送電線引出部で、31は500KV用母線に対応し、32はヤード12の275KV用母線に対応し、33はヤード13の275KV用母線に、また、34はヤード14の154KV用母線に、35はヤード15の77KV用母線にそれぞれ対応している。
41〜43は母線対応で設置された変圧器で、41は変圧器用ヤード16に設置されて500KV用母線21とヤード12に設けられた275KV用母線22との間に接続され、42は変圧器用ヤード17に設置されてヤード13に設けられた275KV用母線23と154KV用母線24との間に接続され、43は変圧器用ヤード18に設置されてヤード13に設けられた275KV用母線23と77KV用母線25との間に接続されている。また、51、52、54、56は適宜のヤードに設けられた送電線や機器増設用の予備スペースで、51はヤード11の一部に設けられたもの、52はヤード12の一部に設けられたもの、54は同じくヤード14の一部に設けられたもの、また、56は変圧器用ヤード16に設けられたものである。また、図4(b)は、単線結線図であるが、500KV用及び275KV用母線21及び22並びにこれらの母線に接続された変圧器41、送電線引出部31、32のみを示し、その他の母線については省略している。
【0005】
次に、従来の変電所の作用について説明する。従来の変電所においては、変圧器は1次、2次、3次の各巻線からなる3巻線変圧器が使用され、1次巻線と2次巻線間で対応する系統電圧の変換を行ない、3次巻線は調相設備用と所内電源用あるいは変圧器内部の高調波対策用安定巻線として用いられるのが通例である。
また、変電所の電力需要が増えると、それに応じて各ヤード11〜18に設置された母線や関連機器あるいは変圧器41〜43の増設が予備スペース51、52、54、56等を利用して行なわれる。図示の例では、500KV用ヤード11、275KV用ヤード12及び154KV用ヤード14には大小の程度の相違はあるが、それぞれに予備スペースがあるため、母線と関連機器の増設を行なうことが出来る。また、変圧器用ヤード16にも予備スペース56があるため、変圧器41の増設を行なうことが出来る。しかし、77KV用ヤード15及び変圧器用ヤード17、18には予備スペースがないため、母線25とその関連機器あるいは変圧器42、43の増設をすることが出来ない。
【0006】
【発明が解決しようとする課題】
従来の変電所は、以上のように構成され、図示の例では154KV用ヤード14の予備スペース54の比率が500KV用と275KV用ヤードのそれと比較して非常に小さく、更に、275KVと154KV間の変圧器用ヤード17の予備スペースがないので、例えば、500KV、275KV、154KVに係わる送電線、母線、変圧器等を電力需要の増大に応じて増設しようとする場合、500KV、275KV、154KVに係わる送電線、母線の増設と、500KVと275KV間の変圧器の増設には困難性はないが、275KVと154KV間の変圧器の増設は困難もしくは不可能である。特に、変圧器は重量物で大形であるところから配置の制約も多く、このため敷地を拡張しなければ増設することが出来ないという欠点があった。従って、敷地の確保が困難な環境にある場合には、電力需要の増大に対応できないという欠点があった。このため、建設当初から将来の増設対応のための広大な予備スペースを確保しておかなければならないので、先行投資が大きく、経済的な負担となる欠点があった。
【0007】
この発明は、上記のような問題点を解消するためになされたもので、変圧器を少ない予備スペースで設置あるいは増設できるように、合理的でスペース効率のよい変圧器を備えた変電所を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る4巻線変圧器応用変電所は、上位電圧A、中位電圧B、下位電圧Cの3つの異なる電圧の送電線と母線及び電圧Aに対応する1次巻線と電圧Bに対応する2次巻線と他の電圧Hに対応する3次巻線とを有する上位電圧対応3巻線変圧器と、電圧Bに対応する1次巻線と電圧Cに対応する2次巻線と上記電圧Hに対応する3次巻線とを有する下位電圧対応3巻線変圧器とが電圧Bの母線を介して接続された3巻線変圧器群を有する変電所において、電圧A、B、Cにそれぞれ対応する1次、2次、3次巻線と電圧Hに対応する4次巻線をそれぞれ一対の1次コイル、第1の2次コイル及び一対の第2の2次コイル、一対の3次コイル、一対の4次コイルにて構成し、第1の2次コイルを中央部に装着しこの第1の2次コイルを挟んで一対の1次コイル、一対の第2の2次コイル、一対の3次コイル、一対の4次コイルを順次共通鉄心に装着した4巻線変圧器を備え、4巻線変圧器の2次巻線は、上位電圧対応3巻線変圧器の2次巻線及び下位電圧対応3巻線変圧器の1次巻線に対応する共通巻線とし、4巻線変圧器の4次巻線は、上位及び下位電圧対応3巻線変圧器の3次巻線に対応する共通巻線とすることにより、3巻線変圧器群と4巻線変圧器とを電圧A、B、Cの母線を介して接続したものである。
【0009】
この発明に係る4巻線変圧器応用変電所は、また、4巻線変圧器の1次及び2次巻線の定格容量を、上位電圧対応3巻線変圧器と同一、3次巻線の定格容量を、下位電圧対応3巻線変圧器の2次巻線容量と同一、4次巻線の定格容量を、上位電圧対応3巻線変圧器の3次巻線と同一としたものである。
【0010】
この発明に係る4巻線変圧器応用変電所は、また、上位電圧A、中位電圧B、下位電圧Cの3つの異なる電圧の送電線と母線及び電圧Aに対応する1次巻線と電圧Bに対応する2次巻線と他の電圧Hに対応する3次巻線とを有する上位電圧対応3巻線変圧器と、電圧Aに対応する1次巻線と電圧Cに対応する2次巻線と上記電圧Hに対応する3次巻線とを有する下位電圧対応3巻線変圧器とが電圧Aの母線を介して接続された3巻線変圧器群を有する変電所において、電圧A、B、Cにそれぞれ対応する1次、2次、3次巻線と電圧Hに対応する4次巻線をそれぞれ一対の1次コイル、第1の2次コイル及び一対の第2の2次コイル、一対の3次コイル、一対の4次コイルにて構成し、第1の2次コイルを中央部に装着しこの第1の2次コイルを挟んで一対の1次コイル、一対の第2の2次コイル、一対の3次コイル、一対の4次コイルを順次共通鉄心に装着した4巻線変圧器を備え、4巻線変圧器の1次巻線は、上位電圧対応3巻線変圧器の1次巻線及び下位電圧対応3巻線変圧器の1次巻線に対応する共通巻線とし、4巻線変圧器の2次巻線は、上位電圧対応3巻線変圧器の2次巻線に対応する巻線とし、4巻線変圧器の3次巻線は、下位電圧対応3巻線変圧器の2次巻線に対応する巻線とすることにより、3巻線変圧器群と4巻線変圧器とを電圧A、B、Cの母線を介して接続したものである。
【0011】
この発明に係る4巻線変圧器応用変電所は、また、4巻線変圧器の1次巻線の定格容量を、上位電圧対応及び下位電圧対応3巻線変圧器の1次巻線容量を合算したものとし、4巻線変圧器の2次巻線と3次巻線の定格容量を、上位電圧対応3巻線変圧器の2次巻線と下位電圧対応3巻線変圧器の2次巻線と同等としたものである。
【0012】
この発明に係る4巻線変圧器応用変電所は、また、上位電圧A、中位電圧B、下位電圧Cの3つの異なる電圧の送電線と母線及び電圧A、B、Cにそれぞれ対応する1次、2次、3次巻線と他の電圧Hに対応する4次巻線とをそれぞれ一対の1次コイル、第1の2次コイル及び一対の第2の2次コイル、一対の3次コイル、一対の4次コイルにて構成し、第1の2次コイルを中央部に装着しこの第1の2次コイルを挟んで一対の1次コイル、一対の第2の2次コイル、一対の3次コイル、一対の4次コイルを順次共通鉄心に装着した4巻線変圧器を備え、4巻線変圧器の1次巻線と2次巻線とを電圧Aと電圧Bの母線にそれぞれ接続し、4巻線変圧器の3次巻線を電圧Cの母線に接続したものである。
この発明の4巻線変圧器は、1次〜3次巻線については、それぞれの電圧位相が3巻線変圧器の電圧位相と一致するように、巻線形態を、例えば後述する図1、図3に示すように合わせている。
【0013】
以上のようにこの発明は、従来の変電所において、上位電圧と中位電圧との間及び中位電圧と下位電圧との間にそれぞれ接続されていた2台の3巻線変圧器、あるいは上位電圧と中位電圧との間及び上位電圧と下位電圧との間にそれぞれ接続されていた2台の3巻線変圧器を1台の4巻線変圧器として構成するものである。
このため、2台の3巻線変圧器の調相設備用と所内電源用の3次巻線を統合して1つにし、これに合わせて各3次巻線にそれぞれ接続されていた調相設備と所内電源も統合する。更に、共通電圧となる上位電圧対応3巻線変圧器の2次巻線と下位電圧対応3巻線変圧器の1次巻線、あるいは、上位電圧対応3巻線変圧器の1次巻線と下位電圧対応3巻線変圧器の1次巻線とを統合して1つにしている。
この結果、2台の3巻線変圧器の6つの巻線は、共通化によって4巻線となり、これらの巻線を共通鉄心に装着して1台の4巻線変圧器を構成し機能させている。
【0014】
この発明における4巻線変圧器の各巻線は、従来の3巻線変圧器と同じように、電圧の高い順から1次、2次、3次、4次巻線とする。即ち、上位電圧対応3巻線変圧器の1次、2次巻線を4巻線変圧器の1次、2次巻線とし、下位電圧対応3巻線変圧器の1次巻線を4巻線変圧器の2次巻線と共通化すると共に、下位電圧対応3巻線変圧器の2次巻線を、4巻線変圧器の3次巻線とし、統合した3巻線変圧器の3次巻線を、4巻線変圧器の4次巻線とする。
変圧器の定格容量は、変電所への電力供給が上位電圧対応3巻線変圧器の1次巻線を介することが多いので、4巻線変圧器の1次、2次巻線の定格容量は、従来の上位電圧対応3巻線変圧器の巻線容量と同じとし、同じく3次巻線の定格容量は、下位電圧対応3巻線変圧器の2次巻線容量と同じとし、かつ4次巻線の定格容量は、上位電圧対応3巻線変圧器の3次巻線と同じにすることができる。
あるいは、また、上位電圧及び下位電圧対応3巻線変圧器の1次巻線を共通化して4巻線変圧器の1次巻線とし、上位電圧対応3巻線変圧器の2次巻線と下位電圧対応3巻線変圧器の2次巻線を4巻線変圧器のそれぞれ2次、3次巻線とし、統合した3巻線変圧器の3次巻線を4巻線変圧器の4次巻線とする。
変圧器の定格容量は、4巻線変圧器の1次巻線を、3巻線変圧器群の1次巻線容量を合算した容量とつり合うようにし、4巻線変圧器の2次及び3次巻線の定格容量を、上位電圧対応3巻線変圧器の2次巻線容量及び下位電圧対応3巻線変圧器の2次巻線容量と同じにしたものである。4次巻線の定格容量は、3巻線変圧器群の3次巻線容量を合算した容量とすることができる。
なお、同様の考え方で4つの異なる電圧A、B、C、Dの送電線に対応する1次、2次、3次、4次巻線と更に他の電圧Hの調相設備用と所内電源用に対応する5次巻線とを共通鉄心に装着して1台の変圧器として構成することも可能である(3台の3巻線変圧器を同様の考え方で1台にすると5巻線変圧器になる)ことから、以下、4つ以上の巻線を有する変圧器を多巻線変圧器と総称する。
【0015】
この発明においては、多巻線変圧器の複数の巻線を、単に一つの変圧器容器に収容するのではなく、共通鉄心に装着される1次、2次、3次及び4次巻線はそれぞれ複数個のコイルで構成されるので、短絡インピーダンスの調整などが可能になる。
また、多巻線変圧器を採用したこの発明の変電所においては、異なる電圧階級の複数台の3巻線変圧器を1台の4巻線変圧器とし、しかも4巻線変圧器の定格容量は、従来の上位電圧対応3巻線変圧器の定格容量と同等あるいは若干増加する程度であるため、4次巻線が増えるだけであり、4巻線変圧器と上位電圧対応3巻線変圧器の体格も大差なくすることができる。従って、統合して4巻線変圧器にすることにより、変電所の増設を従来より狭い敷地で行なうことができ、必要な予備スペースを少なくすることができる。
【0016】
更に、上位電圧対応3巻線変圧器の2次巻線と下位電圧対応3巻線変圧器の1次巻線が共通になるので、母線と接続する回路も共通になり、同回路の電路と遮断器等の機器を1回路分省略できる。同様に、3巻線変圧器の3次巻線も共通になるので、調相設備用と所内電源用の3次回路も共通になり、必要なスペースを一層少なくして経済性も向上する他、多巻線変圧器1台にすると複数の3巻線変圧器の巻線数が共通化によって減少するため、電力損失を少なくすることも出来る。
【0017】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1における主要な構成要素間の電気的な接続を示す単線結線図、図2は、4巻線変圧器の鉄心と巻線との配置関係を外鉄形変圧器の例で示す概略図である。
図1において、21は上位電圧の母線、22、23は中位電圧の母線で、22と23は図4で説明したように連繋されている。24は下位電圧の母線である。
41は母線21と22との間に接続された既設の3巻線変圧器で、上位電圧の母線21に接続された1次巻線411と、中位電圧の母線22に接続された2次巻線412と、調相設備及び所内電源用として設けられた3次巻線413とを有する。71、72は上記変圧器41と母線21及び22との間にそれぞれ接続された遮断器、42は母線23と24との間に接続された既設の3巻線変圧器で、中位電圧の母線23に接続された1次巻線421と、下位電圧の母線24に接続された2次巻線422と、調相設備及び所内電源用として設けられた3次巻線423とを有する。
【0018】
73、74は上記変圧器42と母線23、24との間にそれぞれ接続された遮断器、31、32、34はそれぞれ母線21、22、24から遮断器70を介して引き出された送電線引出部である。また、45は母線21〜24に接続された増設の4巻線変圧器で、上位電圧の母線21に接続された1次巻線451と、中位電圧の母線22、23に接続された2次巻線452と、下位電圧の母線24に接続された3次巻線453と、調相設備及び所内電源用として設けられた4次巻線454とを有する。また、4つの巻線451〜454は、図2に示すように、共通鉄心に装着されている。図2については後述する。
81、82、83は上記変圧器45と母線21、22、24との間にそれぞれ接続された遮断器、31A、32A、34Aはそれぞれ母線21、22、24から遮断器80を介して引き出された増設対応の送電線引出部である。
【0019】
また、図2は、この発明の主要部を構成する4巻線変圧器45の鉄心と4つの巻線の配置の仕方を外鉄形変圧器の例で簡略的に示したものである。
この図において、9は長方形の枠鉄心、91、92、93は枠鉄心9に等間隔に取り付けられ、枠鉄心と共に各相の磁気回路を形成する3つの脚鉄心、451〜454は脚鉄心91に装着された1次〜4次巻線で、他の相の脚鉄心92、93についても同様に構成されるものであるが、図示を省略している。具体的構成は、脚鉄心91を軸にして中央部に第1の2次コイルとしての2次巻線452を配置し、その両側に対称に一対の1次コイルとしての1次巻線451、一対の第2の2次コイルとしての2次巻線452、一対の3次コイルとしての3次巻線453と斜線で示す追加された一対の4次コイルとしての4次巻線454を順次配置している。巻線径と厚みの相対関係は、ほぼ実際の巻線の傾向を示している。
【0020】
次に、実施の形態1の作用について説明する。
電力需要の増大に対応して変圧器45を増設しようとする場合、変圧器45の大きさと増設スペースの有無について検討する必要がある。増設変圧器45は、上述のように、従来の3巻線変圧器41と42の2台分の機能を有するものであるが、従来の6巻線が4巻線となり、しかも、4巻線のうち1次巻線〜3次巻線は、上述のように、従来の1次、2次巻線と同容量であるため、寸法的には4次巻線の追加分だけが増大要素となるが、図2に示すように、斜線で示す2つの4次巻線454が増えても枠鉄心9の図においてV寸法が10%程度大きくなるだけでH寸法は変わらないので、4巻線変圧器45は従来の3巻線変圧器41、42の大きさと大差がない。従って、図4の変圧器用ヤード16の予備スペース56のように、従来と同等あるいはそれより狭いスペースに設置することができ、電力需要の増大に対応することが出来る。なお、図2に示すように、4次巻線454を含め各巻線451〜453はそれぞれ複数個で構成されるので、短絡インピーダンスの調整などが可能になる。
【0021】
なお、4巻線変圧器45の定格容量は必ずしも固定的ではなく、従来の3巻線変圧器2台分の容量まで大きくすれば、それに対応した予備スペースが必要となるが、従来の3巻線変圧器2台の設置に比較すれば、狭い予備スペースでの設置が可能である。また、4巻線変圧器の場合には、図1の3巻線変圧器41、42と母線22との間の遮断器72、73が共通になり、いずれか一方、例えば73が不要になるので、図1には示していないが、遮断器73と母線22との間の断路器も不要になり、設置スペースは一層縮小化できることになる。
更に、4次巻線454も、従来の3巻線変圧器41、42の3次巻線が共通化されて1つになったので、図示していない所内電源や調相設備に接続するための遮断器、断路器、電力ケーブルなども統合され、設置スペースの縮小化に寄与する。このように、この発明によれば機器台数が減るので、敷地造成、基礎工事も少なくなり、建設期間が短縮できる結果、建設費用も低減することができる。
変電所の運転、保守面では、機器台数が減り変電所が簡素化されることにより、運転の信頼性が向上し、保守の省力化も図られる。更に、4巻線変圧器とすることによる副次的な効果として、巻線数が減ることで電力損失を低減することができる。
変圧器容量については、更に他の実施形態も考えられる。例えば、容量を大きくする場合は、既設変圧器との関連で4巻線変圧器の1次巻線の定格容量は、上位電圧対応と下位電圧対応3巻線変圧器の1次巻線容量を合算したものとし、4巻線変圧器の2次巻線と3次巻線の定格容量は、上位電圧対応3巻線変圧器の2次巻線と下位電圧対応3巻線変圧器の2次巻線と同等とする。
容量を小さくする場合は、既設変圧器との関連で4巻線変圧器の1次巻線の定格容量は、上位電圧対応3巻線変圧器の1次巻線容量とし、2次巻線定格容量は、上位電圧対応と下位電圧対応3巻線変圧器の1次巻線容量の差とし、4巻線変圧器の3次巻線の定格容量は、容量を大きくする場合も、小さくする場合も下位電圧対応3巻線変圧器の2次巻線容量とすることができる。
【0022】
実施の形態2.
次に、この発明の実施の形態2について説明する。上述の実施の形態1では、4巻線変圧器の2次巻線は上位電圧対応3巻線変圧器の2次巻線と下位電圧対応3巻線変圧器の1次巻線とを共通にしたものであったが、3つの異なる電圧A、B、Cの送電線と母線を有する変電所で、電圧A、Cに対応する1次、2次巻線とその他の電圧Hに対応する3次巻線とからなる3巻線変圧器と、電圧A、Bに対応する1次、2次巻線と上記電圧Hに対応する3次巻線とからなる3巻線変圧器とが、電圧Aの母線を介して接続されることにより構成される3巻線変圧器群が当該変電所に1群以上ある場合には、4巻線変圧器の1次巻線は、一方の3巻線変圧器の1次巻線と他方の3巻線変圧器の1次巻線とを共通にしたものとし、同2次巻線は、一方の3巻線変圧器の2次巻線に対応させ、同3次巻線は、他方の3巻線変圧器の2次巻線に対応させて3巻線変圧器群と4巻線変圧器とを電圧A、B、Cの母線を介して接続することも可能であり、この場合にも実施の形態1と同様な効果が期待できる。
【0023】
実施の形態3.
次に、この発明の実施の形態3を図にもとづいて説明する。図3は、実施の形態3の電気的接続関係を示す単線結線図である。
上述した各実施の形態は、いずれも3巻線変圧器41、42を母線間に接続して構成する既設変電所に、4巻線変圧器45を増設する例を示したが、実施の形態3は、図3に示すように、変電所建設当初から4巻線変圧器451を用いて建設し、増設に際しても4巻線変圧器452を設置するものである。
このようにすれば、当初から狭い敷地で変電所を建設することができ、一層の効果を挙げることができる。
【0024】
【発明の効果】
以上のようにこの発明によれば、複数の変圧器の巻線の共通巻線を整理して電圧A、B、Cにそれぞれ対応する1次、2次、3次巻線と電圧Hに対応する4次巻線をそれぞれ一対の1次コイル、第1の2次コイル及び一対の第2の2次コイル、一対の3次コイル、一対の4次コイルにて構成し、第1の2次コイルを中央部に装着しこの第1の2次コイルを挟んで一対の1次コイル、一対の第2の2次コイル、一対の3次コイル、一対の4次コイルを順次共通鉄心に装着し4巻線あるいは多巻線変圧器1台として構成し、この変圧器を増設変圧器として機能させるようにしたので、変電所の機器増設を従来より狭いスペースで行なうことができる。また、共通鉄心に装着される1次、2次、3次及び4次巻線はそれぞれ複数個のコイルで構成されるので、短絡インピーダンスの調整などが可能になる。
また、4巻線変圧器あるいは多巻線変圧器を変電所の建設当初から設置することにより、狭い敷地での変電所建設が可能となるものである。
更に、多巻線変圧器とすることにより、変電所での機器台数を減らすことができるので、敷地造成、基礎工事が少なくなり、建設期間も短縮でき、建設費用を低減できる効果がある。
また、変電所の運転、保守面では、機器台数が減少して変電所が簡素化されることにより、運転の信頼性が向上し、保守の省力化も図ることができる。
また、変圧器の巻線数が減るので、電力損失を低減することができる他、機器台数が減少して変電所が簡素化されるので信頼性が向上する効果もある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による変電所の単線結線図である。
【図2】 この発明の実施の形態1による鉄心と巻線との配置関係を外鉄形変圧器の例で示す概略図である。
【図3】 この発明の実施の形態3による変電所の単線結線図である。
【図4】 従来の変電所の構成を示すもので、(a)は配置例を示す簡略平面図、(b)は変電所の単線結線図である。
【符号の説明】
9 枠鉄心、21〜24 母線、31〜34 送電線引出部、
31A〜34A 送電線引出部、41,42 3巻線変圧器、45 4巻線変圧器、
70〜74 遮断器、91〜93 脚鉄心、
411〜413,421〜423 3巻線変圧器の巻線、
451〜454 4巻線変圧器の巻線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a four-winding transformer applied substation, and more particularly to a four-winding transformer applied substation that is provided with a multi-winding transformer to reduce the site area and improve the economy. is there.
[0002]
[Prior art]
In substations or switch stations installed in the vicinity of metropolitan areas or in the coastal areas, there are many narrow locations due to difficulties in obtaining land, old construction, etc., and there are two systems for efficient use of the site. A plurality of substations are aggregated as a substation corresponding to three or more system voltages, not a substation corresponding to a voltage. Furthermore, a gas insulated switchgear that has a great effect on the reduction of electrical equipment is applied, and the equipment layout according to the site is considered, so that the site area is greatly reduced.
FIG. 4 shows a configuration of a conventional substation corresponding to three or more system voltages described in, for example, “Mitsubishi Electric Technical Report Vol. 59, No. 11, 1985”. A simplified plan view showing an arrangement example of a spare space and the like, (b) is a single line connection diagram showing an electrical connection relationship between main components of a substation.
[0003]
In FIG. 4A, reference numeral 1 denotes a substation, which can correspond to four system voltages, that is, 500 KV, 275 KV, 154 KV, and 77 KV.
In addition, the iron structure etc. which support a bus-bar are omitted. Reference numerals 11 to 15 denote yards provided according to the system voltage, 11 is for 500 KV, 12 and 13 are for 275 KV, and are divided and arranged at two locations as shown in the figure. Further, 14 is for 154 KV and 15 is for 77 KV. 16 is a transformer yard provided between the yards 11 and 12, 17 is a transformer yard provided between the yard 14 and the yard 13, and 18 is a transformer provided between the yard 15 and the yard 13. It is a dexterous yard.
21 to 25 are buses provided in each yard, 21 is a 500 KV bus provided in the yard 11, 22 is a part of a 275 KV bus provided in the yard 12, and 23 is a 275 KV provided in the yard 13 The other part of the bus is connected to the 275 KV bus 22 in the yard 12. 24 is a 154 KV bus provided in the yard 14, and 25 is a 77 KV bus provided in the yard 15.
Note that switchgear such as a circuit breaker connected to the bus is not shown.
[0004]
Reference numerals 31 to 35 denote transmission line lead portions connected to the respective buses, 31 corresponding to a 500 KV bus, 32 corresponding to a 275 KV bus in yard 12, 33 corresponding to a 275 KV bus in yard 13, and 34 Corresponds to the 154 KV bus at Yard 14 and 35 corresponds to the 77 KV bus at Yard 15.
41 to 43 are transformers installed corresponding to the buses, 41 is installed in the transformer yard 16 and connected between the 500 KV bus 21 and the 275 KV bus 22 provided in the yard 12, and 42 is for the transformer. Connected between the 275 KV bus 23 and the 154 KV bus 24 provided in the yard 17 and provided in the yard 13, and 43 is provided in the transformer yard 18 and provided with the 275 KV bus 23 and 77 KV provided in the yard 13. It is connected between the service bus 25. In addition, 51, 52, 54, and 56 are spare spaces for transmission lines and equipment expansion provided in appropriate yards, 51 is provided in part of the yard 11, and 52 is provided in part of the yard 12. , 54 is also provided in part of the yard 14, and 56 is provided in the transformer yard 16. FIG. 4B is a single line connection diagram, showing only the buses 21 and 22 for 500 KV and 275 KV, the transformer 41 connected to these buses, and the power transmission line leaders 31 and 32. The bus is omitted.
[0005]
Next, the operation of the conventional substation will be described. In a conventional substation, a three-winding transformer comprising primary, secondary, and tertiary windings is used as a transformer, and the corresponding system voltage is converted between the primary and secondary windings. In practice, the tertiary winding is usually used as a stable winding for phase-adjusting equipment and for in-house power supply or for harmonic countermeasures inside the transformer.
Also, as the power demand at substations increases, buses and related equipment installed in each yard 11 to 18 or the addition of transformers 41 to 43 use spare spaces 51, 52, 54, 56, etc. Done. In the example shown in the drawing, the 500 KV yard 11, the 275 KV yard 12 and the 154 KV yard 14 are slightly different in size, but each has a spare space, so that it is possible to increase the bus and related equipment. Further, since there is a spare space 56 in the transformer yard 16, the transformer 41 can be added. However, since 77KV yard 15 and transformer yards 17 and 18 have no spare space, it is not possible to add bus 25 and related equipment or transformers 42 and 43.
[0006]
[Problems to be solved by the invention]
The conventional substation is configured as described above, and in the illustrated example, the ratio of the spare space 54 of the 154 KV yard 14 is very small compared to that of the 500 KV and 275 KV yard, and further between 275 KV and 154 KV. Since there is no spare space in the transformer yard 17, for example, when transmission lines, buses, transformers, etc. related to 500KV, 275KV, 154KV are to be added in response to an increase in power demand, transmission related to 500KV, 275KV, 154KV There is no difficulty in adding wires and buses, and adding a transformer between 500 KV and 275 KV, but adding a transformer between 275 KV and 154 KV is difficult or impossible. In particular, since transformers are heavy and large, there are many restrictions on their arrangement, and there is a disadvantage that expansion is not possible unless the site is expanded. Therefore, when there is an environment in which it is difficult to secure a site, there is a drawback that it cannot cope with an increase in power demand. For this reason, since it is necessary to secure a vast spare space for future expansion from the beginning of the construction, there is a drawback that the upfront investment is large and becomes an economic burden.
[0007]
The present invention has been made to solve the above problems, and provides a substation equipped with a rational and space-efficient transformer so that the transformer can be installed or added with a small spare space. The purpose is to do.
[0008]
[Means for Solving the Problems]
The four-winding transformer applied substation according to the present invention has three different voltage transmission lines, buses, and primary windings and voltage B corresponding to voltage A, upper voltage A, middle voltage B, and lower voltage C. Upper voltage corresponding three-winding transformer having a corresponding secondary winding and a tertiary winding corresponding to other voltage H, a primary winding corresponding to voltage B, and a secondary winding corresponding to voltage C In a substation having a three-winding transformer group in which a lower voltage corresponding three-winding transformer having a tertiary winding corresponding to the voltage H is connected through a bus of voltage B, the voltages A, B , A primary winding, a secondary winding, a tertiary winding corresponding to C, and a quaternary winding corresponding to voltage H, respectively, a pair of primary coils, a first secondary coil, and a pair of second secondary coils, It is composed of a pair of tertiary coils and a pair of quaternary coils, and the first secondary coil is mounted in the center portion and the first secondary coil is sandwiched between them. In a pair of primary coils, a pair of second secondary coil, a pair of tertiary coil, 4-winding transformer mounted sequentially common core with a pair of 4 coil, secondary 4 windings transformer The winding is a common winding corresponding to the secondary winding of the upper winding corresponding to the three-voltage transformer and the primary winding of the lower winding corresponding to the three-winding transformer, and the fourth winding of the four-winding transformer is By using a common winding corresponding to the tertiary winding of the upper and lower voltage corresponding three-winding transformer, the three-winding transformer group and the four-winding transformer are connected to the buses of the voltages A, B, and C. It is connected via.
[0009]
The four-winding transformer applied substation according to the present invention has the same rated capacity of the primary and secondary windings of the four-winding transformer as that of the upper-voltage compatible three-winding transformer. The rated capacity is the same as the secondary winding capacity of the lower voltage compatible 3-winding transformer, and the rated capacity of the quaternary winding is the same as the tertiary winding of the upper voltage compatible 3-winding transformer. .
[0010]
The four-winding transformer applied substation according to the present invention also has three different voltage transmission lines, buses, and primary windings and voltages corresponding to the upper voltage A, middle voltage B, and lower voltage C. A three-winding transformer corresponding to a higher voltage having a secondary winding corresponding to B and a tertiary winding corresponding to another voltage H, a primary winding corresponding to voltage A, and a secondary corresponding to voltage C In a substation having a three-winding transformer group in which a lower-voltage corresponding three-winding transformer having a winding and a tertiary winding corresponding to the voltage H is connected via a bus of voltage A, the voltage A , B, primary respectively corresponding to C, secondary, tertiary winding and voltage each pair of the primary coil 4 winding corresponding to H, the second second-order first secondary coil, and a pair This coil is composed of a coil, a pair of tertiary coils, and a pair of quaternary coils, and the first secondary coil is mounted in the central portion. Interposed therebetween a pair of primary coils, a pair of second secondary coil, a pair of tertiary coil, includes a 4-winding transformer mounted sequentially common core with a pair of 4 coil, fourth winding transformer The primary winding is a common winding corresponding to the primary winding of the three-winding transformer corresponding to the upper voltage and the primary winding of the three-winding transformer corresponding to the lower voltage. The secondary winding of the four-winding transformer The wire corresponds to the secondary winding of the 3-winding transformer for the upper voltage, and the tertiary winding of the 4-winding transformer corresponds to the secondary winding of the 3-winding transformer for the lower voltage. By making the windings to be connected, a three-winding transformer group and a four-winding transformer are connected via buses of voltages A, B, and C.
[0011]
The four-winding transformer applied substation according to the present invention also provides the rated capacity of the primary winding of the four-winding transformer, and the primary winding capacity of the three-winding transformer corresponding to the upper voltage and the lower voltage. The rated capacity of the secondary and tertiary windings of the 4-winding transformer is the sum of the secondary winding of the 3-winding transformer corresponding to the upper voltage and the secondary capacity of the 3-winding transformer corresponding to the lower voltage. It is equivalent to a winding.
[0012]
The four-winding transformer applied substation according to the present invention also corresponds to a transmission line, a bus line, and voltages A, B, C of three different voltages, upper voltage A, middle voltage B, and lower voltage C, respectively. Next, a secondary winding, a tertiary winding, and a quaternary winding corresponding to another voltage H are respectively connected to a pair of primary coils, a first secondary coil, a pair of second secondary coils, and a pair of tertiary windings. The coil is composed of a pair of quaternary coils, the first secondary coil is mounted in the center, and the pair of primary coils, the pair of second secondary coils, and the pair are sandwiched between the first secondary coils. And a four-winding transformer in which a pair of quaternary coils are sequentially mounted on a common iron core, and the primary and secondary windings of the four-winding transformer are used as buses for voltage A and voltage B. Each is connected, and the tertiary winding of the 4-winding transformer is connected to the bus of voltage C.
In the four-winding transformer of the present invention, for the primary to tertiary windings, the winding form is set, for example, as shown in FIG. 1, which will be described later, so that the respective voltage phases coincide with the voltage phase of the three-winding transformer. As shown in FIG.
[0013]
As described above, according to the present invention, in the conventional substation, two three-winding transformers connected between the upper voltage and the middle voltage and between the middle voltage and the lower voltage, respectively, Two three-winding transformers connected between the voltage and the middle voltage and between the upper voltage and the lower voltage are configured as one four-winding transformer.
For this reason, the three windings for the three-winding transformers and the third winding for the in-house power supply are integrated into one, and the phase adjustment that was connected to each tertiary winding in accordance with this. The equipment and on-site power supply will also be integrated. Furthermore, the secondary winding of the higher voltage compatible 3-winding transformer and the primary winding of the lower voltage compatible 3-winding transformer, or the primary winding of the upper voltage compatible 3-winding transformer, which are common voltages, The primary winding of the three-winding transformer corresponding to the lower voltage is integrated into one.
As a result, the six windings of the two three-winding transformers become four windings by sharing, and these four windings are mounted on a common iron core to configure and function as a single four-winding transformer. ing.
[0014]
Each winding of the four-winding transformer in the present invention is a primary, secondary, tertiary, and quaternary winding in descending order of voltage as in the conventional three-winding transformer. That is, the primary and secondary windings of the three-winding transformer corresponding to the upper voltage are used as the primary and secondary windings of the four-winding transformer, and four primary windings of the three-winding transformer corresponding to the lower voltage are used. It is shared with the secondary winding of the line transformer, and the secondary winding of the 3-winding transformer corresponding to the lower voltage is used as the tertiary winding of the 4-winding transformer. The secondary winding is the quaternary winding of a 4-winding transformer.
The rated capacity of the transformer is that the power supply to the substation is often via the primary winding of the three-winding transformer for higher voltage, so the rated capacity of the primary and secondary windings of the four-winding transformer Is the same as the winding capacity of the conventional three-winding transformer for higher voltage, and the rated capacity of the third winding is the same as the secondary winding capacity of the three-winding transformer for lower voltage. The rated capacity of the secondary winding can be the same as that of the tertiary winding of the higher voltage compatible 3-winding transformer.
Alternatively, the primary winding of the three-winding transformer corresponding to the upper voltage and the lower voltage is made common to form the primary winding of the four-winding transformer, The secondary winding of the three-winding transformer corresponding to the lower voltage is made the secondary winding and the third winding of the four-winding transformer, respectively, and the tertiary winding of the integrated three-winding transformer is 4 of the four-winding transformer. Next winding.
The rated capacity of the transformer is such that the primary winding of the 4-winding transformer is balanced with the sum of the primary winding capacity of the 3-winding transformer group, and the secondary and 3 of the 4-winding transformer. The rated capacity of the secondary winding is the same as the secondary winding capacity of the higher voltage corresponding three-winding transformer and the secondary winding capacity of the lower voltage corresponding three-winding transformer. The rated capacity of the quaternary winding can be the total capacity of the tertiary winding capacity of the three-winding transformer group.
In the same way, the primary, secondary, tertiary, and quaternary windings corresponding to the transmission lines of four different voltages A, B, C, and D, and the other voltage H phase adjusting equipment and on-site power source It is also possible to configure a single transformer by attaching a corresponding fifth winding to a common iron core (if three three-winding transformers are combined into a single unit based on the same concept, five windings Hereinafter, a transformer having four or more windings is generically called a multi-winding transformer.
[0015]
In the present invention, the primary, secondary, tertiary and quaternary windings mounted on the common iron core are not simply housed in a single transformer container. Since each is composed of a plurality of coils, it is possible to adjust the short-circuit impedance.
Further, in the substation of the present invention adopting a multi-winding transformer, a plurality of three-winding transformers of different voltage classes are used as one four-winding transformer, and the rated capacity of the four-winding transformer is also provided. Is equivalent to or slightly increased from the rated capacity of the conventional three-winding transformer for higher voltage, only the fourth winding is increased. The physique can be made no big difference. Therefore, by integrating the four-winding transformer, it is possible to increase the number of substations in a smaller site than before, and to reduce the necessary spare space.
[0016]
In addition, since the secondary winding of the higher voltage compatible 3-winding transformer and the primary winding of the lower voltage compatible 3-winding transformer are common, the circuit connected to the bus is also common, Equipment such as a circuit breaker can be omitted for one circuit. Similarly, since the tertiary winding of the three-winding transformer is also common, the tertiary circuit for the phase adjusting equipment and the in-house power supply are also common, and the required space is further reduced and the economy is improved. If a single multi-winding transformer is used, the number of windings of a plurality of three-winding transformers is reduced by the common use, so that power loss can be reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a single-line diagram showing electrical connections between main components in the first embodiment, and FIG. 2 shows the arrangement relationship between iron cores and windings of a four-winding transformer. It is the schematic shown in an example.
In FIG. 1, 21 is a high voltage bus, 22 and 23 are medium voltage buses, and 22 and 23 are connected as described in FIG. Reference numeral 24 denotes a lower voltage bus.
Reference numeral 41 denotes an existing three-winding transformer connected between the buses 21 and 22. The primary winding 411 connected to the higher voltage bus 21 and the secondary connected to the middle voltage bus 22. It has a winding 412 and a tertiary winding 413 provided for phase adjusting equipment and in-house power supply. 71 and 72 are circuit breakers connected between the transformer 41 and buses 21 and 22, respectively, and 42 is an existing three-winding transformer connected between the buses 23 and 24. It has a primary winding 421 connected to the bus 23, a secondary winding 422 connected to the lower voltage bus 24, and a tertiary winding 423 provided for phase adjusting equipment and in-house power supply.
[0018]
Reference numerals 73 and 74 are circuit breakers connected between the transformer 42 and the buses 23 and 24, respectively. Reference numerals 31, 32 and 34 are power line leads drawn from the buses 21, 22, and 24 through the circuit breaker 70, respectively. Part. Reference numeral 45 denotes an additional four-winding transformer connected to the buses 21 to 24, which is connected to the primary winding 451 connected to the higher voltage bus 21 and to the middle voltage buses 22 and 23. It has a secondary winding 452, a tertiary winding 453 connected to the lower voltage bus 24, and a quaternary winding 454 provided for phase-adjusting equipment and in-house power supply. Further, the four windings 451 to 454 are attached to a common iron core as shown in FIG. FIG. 2 will be described later.
81, 82, 83 are circuit breakers connected between the transformer 45 and the buses 21, 22, 24, respectively. 31A, 32A, 34A are respectively pulled out from the buses 21, 22, 24 through the circuit breaker 80. It is a transmission line lead-out section that can be expanded.
[0019]
FIG. 2 is a simplified example of the arrangement of the iron core and the four windings of the four-winding transformer 45 constituting the main part of the present invention, using an example of a shell-type transformer.
In this figure, 9 is a rectangular frame core, 91, 92, 93 are attached to the frame core 9 at equal intervals, and three leg iron cores that form a magnetic circuit of each phase together with the frame core, 451 to 454 are leg iron cores 91. The other-phase leg cores 92 and 93 are similarly configured with the primary to quaternary windings attached to, but the illustration is omitted. Specifically, a secondary winding 452 as a first secondary coil is arranged at the center with a leg iron core 91 as an axis, and primary windings 451 as a pair of primary coils symmetrically on both sides thereof. A secondary winding 452 as a pair of second secondary coils, a tertiary winding 453 as a pair of tertiary coils, and a quaternary winding 454 as a pair of added quaternary coils indicated by hatching are sequentially arranged. is doing. The relative relationship between the winding diameter and thickness indicates a tendency of the actual winding.
[0020]
Next, the operation of the first embodiment will be described.
In order to increase the number of transformers 45 in response to an increase in power demand, it is necessary to consider the size of the transformer 45 and the presence or absence of additional space. The extension transformer 45 has the function of two conventional three-winding transformers 41 and 42 as described above, but the conventional six-winding turns into four windings, and four windings. Among them, the primary winding to the tertiary winding have the same capacity as the conventional primary and secondary windings as described above. However, as shown in FIG. 2, even if two quaternary windings 454 indicated by hatching are increased, the V dimension in the figure of the frame core 9 is only increased by about 10%, and the H dimension does not change. The transformer 45 is not greatly different from the size of the conventional three-winding transformers 41 and 42. Therefore, it can be installed in a space equivalent to or narrower than the conventional space 56 such as the spare space 56 of the transformer yard 16 of FIG. 4, and can respond to an increase in power demand. As shown in FIG. 2, since each of the windings 451 to 453 including the quaternary winding 454 is composed of a plurality of windings, the short-circuit impedance can be adjusted.
[0021]
Note that the rated capacity of the four-winding transformer 45 is not necessarily fixed. If the capacity of the conventional four-winding transformer 45 is increased to the capacity of two conventional three-winding transformers, a corresponding spare space is required. Compared with the installation of two line transformers, installation in a narrow spare space is possible. In the case of a four-winding transformer, the circuit breakers 72 and 73 between the three-winding transformers 41 and 42 and the bus 22 in FIG. 1 are common, and one of them, for example, 73 is unnecessary. Therefore, although not shown in FIG. 1, the disconnecting switch between the circuit breaker 73 and the bus bar 22 becomes unnecessary, and the installation space can be further reduced.
Furthermore, since the tertiary winding of the conventional three-winding transformers 41 and 42 is integrated into one, the quaternary winding 454 is also connected to an in-house power source or phase adjusting equipment not shown. Integrated circuit breakers, disconnectors, power cables, etc. will contribute to the reduction of installation space. Thus, according to the present invention, since the number of devices is reduced, site preparation and foundation work are also reduced, and the construction period can be shortened, so that construction costs can also be reduced.
In terms of operation and maintenance of the substation, the number of devices is reduced and the substation is simplified, so that the reliability of operation is improved and labor saving is achieved. Furthermore, as a secondary effect of using a four-winding transformer, power loss can be reduced by reducing the number of windings.
Still other embodiments of the transformer capacity are possible. For example, when the capacity is increased, the rated capacity of the primary winding of the 4-winding transformer in relation to the existing transformer is the primary winding capacity of the 3-winding transformer corresponding to the upper voltage and the lower voltage. The rated capacity of the secondary winding and tertiary winding of the 4-winding transformer is the sum of the secondary winding of the upper winding compatible 3-winding transformer and the secondary winding of the lower winding 3-winding transformer. Same as winding.
When reducing the capacity, the rated capacity of the primary winding of the 4-winding transformer in relation to the existing transformer is the primary winding capacity of the 3-winding transformer for higher voltage, and the secondary winding rating. The capacity is the difference between the primary winding capacity of the higher voltage compatible and lower voltage compatible 3-winding transformer, and the rated capacity of the tertiary winding of the 4-winding transformer is increased or decreased. Can be the secondary winding capacity of the three-winding transformer corresponding to the lower voltage.
[0022]
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. In the first embodiment described above, the secondary winding of the four-winding transformer is commonly used as the secondary winding of the upper winding voltage corresponding three winding transformer and the lower winding voltage corresponding three winding transformer. In a substation having transmission lines and buses of three different voltages A, B, and C, the primary and secondary windings corresponding to the voltages A and C and the other 3 corresponding to the voltage H A three-winding transformer comprising a secondary winding, and a three-winding transformer comprising a primary and secondary winding corresponding to voltages A and B and a tertiary winding corresponding to the voltage H When there are one or more groups of three-winding transformers configured by being connected via the bus A, the primary winding of the four-winding transformer is one of the three windings. It is assumed that the primary winding of the transformer and the primary winding of the other three-winding transformer are common, and the secondary winding corresponds to the secondary winding of one three-winding transformer. The third winding is It is also possible to connect the three-winding transformer group and the four-winding transformer via the buses of the voltages A, B, C in correspondence with the secondary winding of the other three-winding transformer. In this case, the same effect as in the first embodiment can be expected.
[0023]
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a single-line diagram showing the electrical connection relationship of the third embodiment.
Each of the above-described embodiments has shown an example in which a four-winding transformer 45 is added to an existing substation configured by connecting three-winding transformers 41 and 42 between buses. 3, as shown in FIG. 3, a 4-winding transformer 451 is constructed from the beginning of the substation construction, and a 4-winding transformer 452 is also installed at the time of expansion.
In this way, a substation can be constructed in a small site from the beginning, and further effects can be obtained.
[0024]
【The invention's effect】
As described above, according to the present invention, common windings of a plurality of transformer windings are arranged to correspond to primary, secondary, and tertiary windings and voltage H corresponding to voltages A, B, and C, respectively. The quaternary windings to be configured include a pair of primary coils, a first secondary coil, a pair of second secondary coils, a pair of tertiary coils, and a pair of quaternary coils, respectively. A coil is mounted at the center, and a pair of primary coils, a pair of second secondary coils, a pair of tertiary coils, and a pair of quaternary coils are sequentially mounted on the common iron core with the first secondary coil interposed therebetween. Since it is configured as one 4-winding or multi-winding transformer and this transformer is made to function as an additional transformer, it is possible to increase the number of substation equipment in a narrower space than before. In addition, since the primary, secondary, tertiary and quaternary windings mounted on the common iron core are each composed of a plurality of coils, it is possible to adjust the short-circuit impedance.
In addition, by installing a 4-winding transformer or a multi-winding transformer from the beginning of the construction of the substation, it is possible to construct a substation on a small site.
Furthermore, since the number of devices at the substation can be reduced by using a multi-winding transformer, site preparation and foundation work are reduced, the construction period can be shortened, and construction costs can be reduced.
Moreover, in terms of operation and maintenance of the substation, the number of devices is reduced and the substation is simplified, so that the reliability of operation is improved and maintenance labor can be saved.
Moreover, since the number of windings of the transformer is reduced, power loss can be reduced, and the number of devices is reduced and the substation is simplified, so that the reliability is improved.
[Brief description of the drawings]
FIG. 1 is a single-line connection diagram of a substation according to Embodiment 1 of the present invention.
FIG. 2 is a schematic view showing an arrangement relationship between the iron core and the winding according to the first embodiment of the present invention as an example of a shell-type transformer.
FIG. 3 is a single line connection diagram of a substation according to a third embodiment of the present invention.
4A and 4B show a configuration of a conventional substation, where FIG. 4A is a simplified plan view showing an arrangement example, and FIG. 4B is a single-line connection diagram of the substation.
[Explanation of symbols]
9 frame iron core, 21-24 busbar, 31-34 transmission line lead-out part,
31A-34A Transmission line lead-out part, 41, 42 3-winding transformer, 45 4-winding transformer,
70-74 circuit breaker, 91-93 leg core,
411 to 413, 421 to 423 windings of a three winding transformer,
451-454 Windings of 4-winding transformer.

Claims (5)

上位電圧A、中位電圧B、下位電圧Cの3つの異なる電圧の送電線と母線、及び電圧Aに対応する1次巻線と電圧Bに対応する2次巻線と他の電圧Hに対応する3次巻線とを有する上位電圧対応3巻線変圧器と、電圧Bに対応する1次巻線と電圧Cに対応する2次巻線と上記電圧Hに対応する3次巻線とを有する下位電圧対応3巻線変圧器とが電圧Bの母線を介して接続された3巻線変圧器群を有する変電所において、電圧A、B、Cにそれぞれ対応する1次、2次、3次巻線と電圧Hに対応する4次巻線をそれぞれ一対の1次コイル、第1の2次コイル及び一対の第2の2次コイル、一対の3次コイル、一対の4次コイルにて構成し、上記第1の2次コイルを中央部に装着しこの第1の2次コイルを挟んで上記一対の1次コイル、上記一対の第2の2次コイル、上記一対の3次コイル、上記一対の4次コイルを順次共通鉄心に装着した4巻線変圧器を備え、4巻線変圧器の2次巻線は、上位電圧対応3巻線変圧器の2次巻線及び下位電圧対応3巻線変圧器の1次巻線に対応する共通巻線とし、4巻線変圧器の4次巻線は、上位及び下位電圧対応3巻線変圧器の3次巻線に対応する共通巻線とすることにより、3巻線変圧器群と4巻線変圧器とを電圧A、B、Cの母線を介して接続したことを特徴とする4巻線変圧器応用変電所。Corresponding to three different voltage transmission lines and buses, upper voltage A, middle voltage B, lower voltage C, primary winding corresponding to voltage A, secondary winding corresponding to voltage B, and other voltage H An upper voltage corresponding three-winding transformer, a primary winding corresponding to the voltage B, a secondary winding corresponding to the voltage C, and a tertiary winding corresponding to the voltage H. In a substation having a group of three-winding transformers connected to a lower-voltage corresponding three-winding transformer via a bus of voltage B, primary, secondary, and third respectively corresponding to voltages A, B, and C each pair of the primary coil 4 winding corresponding to the next winding and voltage H, the first secondary coil and the pair of second secondary coil, a pair of tertiary coil, by a pair of 4 coil The first secondary coil is mounted at the center, and the pair of primary coils and the pair are sandwiched between the first secondary coils. The second secondary coil, the pair of tertiary coil, includes a 4-winding transformer mounted sequentially common core the pair of quaternary coil, the secondary coil 4 winding transformer, higher voltages corresponding The secondary winding of the 3-winding transformer and the lower winding are compatible with the primary winding of the 3-winding transformer. The fourth winding of the 4-winding transformer is compatible with the upper and lower voltages. A common winding corresponding to the tertiary winding of the winding transformer is connected to the three-winding transformer group and the four-winding transformer via the buses of the voltages A, B, and C. A four-winding transformer applied substation. 4巻線変圧器の1次及び2次巻線の定格容量は、上位電圧対応3巻線変圧器と同一、3次巻線の定格容量は、下位電圧対応3巻線変圧器の2次巻線容量と同一、4次巻線の定格容量は、上位電圧対応3巻線変圧器の3次巻線と同一としたことを特徴とする請求項1記載の4巻線変圧器応用変電所。  The rated capacity of the primary and secondary windings of the 4-winding transformer is the same as the 3-winding transformer corresponding to the upper voltage, and the rated capacity of the tertiary winding is the secondary winding of the lower-winding 3-winding transformer. 4. The four-winding transformer applied substation according to claim 1, wherein the rated capacity of the quaternary winding is the same as that of the line capacity, and is the same as that of the tertiary winding of the three-winding transformer for higher voltage. 上位電圧A、中位電圧B、下位電圧Cの3つの異なる電圧の送電線と母線、及び電圧Aに対応する1次巻線と電圧Bに対応する2次巻線と他の電圧Hに対応する3次巻線とを有する上位電圧対応3巻線変圧器と、電圧Aに対応する1次巻線と電圧Cに対応する2次巻線と上記電圧Hに対応する3次巻線とを有する下位電圧対応3巻線変圧器とが電圧Aの母線を介して接続された3巻線変圧器群を有する変電所において、電圧A、B、Cにそれぞれ対応する1次、2次、3次巻線と電圧Hに対応する4次巻線をそれぞれ一対の1次コイル、第1の2次コイル及び一対の第2の2次コイル、一対の3次コイル、一対の4次コイルにて構成し、上記第1の2次コイルを中央部に装着しこの第1の2次コイルを挟んで上記一対の1次コイル、上記一対の第2の2次コイル、上記一対の3次コイル、上記一対の4次コイルを順次共通鉄心に装着した4巻線変圧器を備え、4巻線変圧器の1次巻線は、上位電圧対応3巻線変圧器の1次巻線及び下位電圧対応3巻線変圧器の1次巻線に対応する共通巻線とし、4巻線変圧器の2次巻線は、上位電圧対応3巻線変圧器の2次巻線に対応する巻線とし、4巻線変圧器の3次巻線は、下位電圧対応3巻線変圧器の2次巻線に対応する巻線とすることにより、3巻線変圧器群と4巻線変圧器とを電圧A、B、Cの母線を介して接続したことを特徴とする4巻線変圧器応用変電所。Corresponding to three different voltage transmission lines and buses, upper voltage A, middle voltage B, lower voltage C, primary winding corresponding to voltage A, secondary winding corresponding to voltage B, and other voltage H An upper voltage corresponding three-winding transformer, a primary winding corresponding to the voltage A, a secondary winding corresponding to the voltage C, and a tertiary winding corresponding to the voltage H. In a substation having a three-winding transformer group connected to a lower-voltage corresponding three-winding transformer via a bus of voltage A, primary, secondary, and third respectively corresponding to voltages A, B, and C The secondary winding and the quaternary winding corresponding to the voltage H are respectively a pair of primary coils, a first secondary coil, a pair of second secondary coils, a pair of tertiary coils, and a pair of quaternary coils. The first secondary coil is mounted at the center, and the pair of primary coils and the pair are sandwiched between the first secondary coils. The second secondary coil, the pair of tertiary coil, includes a 4-winding transformer mounted sequentially common core the pair of quaternary coil, the primary coil 4 winding transformer, higher voltages corresponding The primary winding of the 3-winding transformer and the common winding corresponding to the primary winding of the 3-winding transformer corresponding to the lower voltage, and the secondary winding of the 4-winding transformer are 3 windings corresponding to the upper voltage The winding corresponding to the secondary winding of the transformer and the tertiary winding of the four-winding transformer are windings corresponding to the secondary winding of the three-winding transformer corresponding to the lower voltage. A four-winding transformer applied substation characterized in that a winding transformer group and a four-winding transformer are connected via buses of voltages A, B, and C. 4巻線変圧器の1次巻線の定格容量は、上位電圧対応及び下位電圧対応3巻線変圧器の1次巻線容量を合算したものとし、4巻線変圧器の2次巻線と3次巻線の定格容量は、上位電圧対応3巻線変圧器の2次巻線と下位電圧対応3巻線変圧器の2次巻線と同等としたことを特徴とする請求項3記載の4巻線変圧器応用変電所。  The rated capacity of the primary winding of the 4-winding transformer is the sum of the primary winding capacity of the 3-winding transformer corresponding to the upper voltage and the lower voltage, and the secondary winding of the 4-winding transformer 4. The rated capacity of the tertiary winding is equal to that of the secondary winding of the higher voltage corresponding three winding transformer and the lower winding corresponding to the lower voltage three winding transformer. 4-winding transformer applied substation. 上位電圧A、中位電圧B、下位電圧Cの3つの異なる電圧の送電線と母線及び電圧A、B、Cにそれぞれ対応する1次、2次、3次巻線と他の電圧Hに対応する4次巻線とをそれぞれ一対の1次コイル、第1の2次コイル及び一対の第2の2次コイル、一対の3次コイル、一対の4次コイルにて構成し、上記第1の2次コイルを中央部に装着しこの第1の2次コイルを挟んで上記一対の1次コイル、上記一対の第2の2次コイル、上記一対の3次コイル、上記一対の4次コイルを順次共通鉄心に装着した4巻線変圧器を備え、4巻線変圧器の1次巻線と2次巻線とを電圧Aと電圧Bの母線にそれぞれ接続し、4巻線変圧器の3次巻線を電圧Cの母線に接続したことを特徴とする4巻線変圧器応用変電所。Corresponding to the primary, secondary, and tertiary windings and other voltages H corresponding to the transmission line and bus of three different voltages, upper voltage A, middle voltage B, and lower voltage C, and voltages A, B, and C, respectively. And a pair of primary coils, a first secondary coil, a pair of second secondary coils, a pair of tertiary coils, and a pair of quaternary coils, respectively. A secondary coil is mounted in the center, and the pair of primary coils, the pair of second secondary coils, the pair of tertiary coils, and the pair of quaternary coils are sandwiched between the first secondary coils. A four-winding transformer is sequentially mounted on the common iron core, and the primary winding and the secondary winding of the four-winding transformer are connected to the buses of voltage A and voltage B, respectively. A four-winding transformer applied substation characterized in that the next winding is connected to the bus of voltage C.
JP2000216775A 2000-07-18 2000-07-18 4-winding transformer applied substation Expired - Fee Related JP4104104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216775A JP4104104B2 (en) 2000-07-18 2000-07-18 4-winding transformer applied substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216775A JP4104104B2 (en) 2000-07-18 2000-07-18 4-winding transformer applied substation

Publications (2)

Publication Number Publication Date
JP2002033222A JP2002033222A (en) 2002-01-31
JP4104104B2 true JP4104104B2 (en) 2008-06-18

Family

ID=18711979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216775A Expired - Fee Related JP4104104B2 (en) 2000-07-18 2000-07-18 4-winding transformer applied substation

Country Status (1)

Country Link
JP (1) JP4104104B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325928B2 (en) * 1974-02-27 1978-07-29
JPS5812816B2 (en) * 1977-10-19 1983-03-10 株式会社明電舎 Power reception and distribution system that configures the network
JPH118138A (en) * 1997-06-15 1999-01-12 Mitsutsu Electric Kk Coaxial, group of coaxial, maltiaxial and coaxial, phase-shifting adjustment coaxial orthogonal, multiphase phase-shifting adjustment co-axial orthogonal, group of coaxial orthogonal, group of phase-shifting coaxial orthogonal, three-phase and single-phase coaxial orthogonal, group of multiphase single-phase coaxial-orthogonal, variable voltage adjustment coaxial, variable phase-shifting coaxial orthogonal, total transformation coaxial orthogonal transformer, transformer with degaussing device and cooling manifold and reactor
JPH11206018A (en) * 1998-01-16 1999-07-30 Hitachi Ltd Controller for substation voltage and reactive power

Also Published As

Publication number Publication date
JP2002033222A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP2007525933A (en) Superconducting current limiting system and superconducting current limiting method
CA2701669C (en) Various methods and apparatuses for an integrated zig-zag transformer
JP4104104B2 (en) 4-winding transformer applied substation
EP1947659A1 (en) Compact power transformer in V-V for electrical traction
US3290510A (en) Electrical apparatus
JPH09312216A (en) Oil-immersed split electric device
CN112397294B (en) Iron core, winding structure and traction transformer
JPS5846047B2 (en) On-load tap switching autotransformer
JPS5836201Y2 (en) conductor communication device
JPH06310350A (en) Heterocapacitance load three-phase scott connection transformer
CN116247714A (en) High-voltage transmission system
JPH0260044B2 (en)
JPH0751782Y2 (en) Shunt reactor
JPS5941104A (en) Gas insulated switching device
JPH08265926A (en) Gas insulated switchgear
JP2001157332A (en) Gas-insulated switchgear
JPS62205611A (en) Transformer for three-phase, two-phase conversion
JPH0556643B2 (en)
US20030222745A1 (en) Combination of transformer and coil
JPS6028370B2 (en) transformer
JPS6037707A (en) Three-phase autotransformer
JPS5951507A (en) Split type transformer
JPS5850011B2 (en) transformer
JPS62291907A (en) 3-phase/2-phase conversion transformer
JPH09121413A (en) Gas insulated switchgear

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20041005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071022

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees