JPH0231764B2 - - Google Patents

Info

Publication number
JPH0231764B2
JPH0231764B2 JP57018933A JP1893382A JPH0231764B2 JP H0231764 B2 JPH0231764 B2 JP H0231764B2 JP 57018933 A JP57018933 A JP 57018933A JP 1893382 A JP1893382 A JP 1893382A JP H0231764 B2 JPH0231764 B2 JP H0231764B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
internal combustion
combustion engine
working medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57018933A
Other languages
Japanese (ja)
Other versions
JPS58138213A (en
Inventor
Juichi Kitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1893382A priority Critical patent/JPS58138213A/en
Publication of JPS58138213A publication Critical patent/JPS58138213A/en
Publication of JPH0231764B2 publication Critical patent/JPH0231764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • F03G6/005Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、内燃機関の排ガス利用して一次エネ
ルギーの熱効率を高めた発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a power generation device that uses exhaust gas from an internal combustion engine to improve the thermal efficiency of primary energy.

(従来の技術) 原油価格の上昇とともに石油代替エネルギーの
開発が積極的に行なわれているが、一方従来の発
電システムの熱効率の向上も検討され、たとえば
電力熱併給の地域形分散発電所の計画がなされた
りしている。これら高効率発電装置では排熱を最
大限有効に利用しても、熱効率は80〜85%程度が
限度であり、最終的に大気に放出する排ガス温度
は150℃程度の中温となり、これらは有効に利用
されていない。
(Conventional technology) As the price of crude oil rises, energy alternatives to petroleum are being actively developed. At the same time, improvements in the thermal efficiency of conventional power generation systems are also being considered. is being done. Even if these high-efficiency power generation devices utilize exhaust heat to the maximum extent possible, the thermal efficiency is limited to about 80-85%, and the temperature of the exhaust gas finally released into the atmosphere is a medium temperature of about 150 degrees Celsius. is not used.

第1図に最近実用化されつつある熱併給発電装
置の一例を示す。すなわち、デイーゼル機関、ガ
スタービン、ガスエンジンなどの内燃機関1に直
結された発電機2で所要の電力2aを供給し、従
来無駄に捨てられていた内燃機関1の冷却水を熱
交換器3を介して80℃程度の温水に変換して給湯
3aに使用すると共に、内燃機関1の約500℃の
排気ガスを吸収式の冷温水器4に導入し、排気ガ
スの有する熱エネルギーを利用して冷・温水を作
り出して冷暖房4aに使用している。この熱併給
発電装置は、電力負荷と熱負荷とが同時に要求さ
れる場合、例えばオフイス、ビル、デパート、病
院、住宅などでは、別個に電力と熱エネルギーを
作るよりも効率が高く、熱効率は80〜85%に達
し、省エネルギーへの貢献度が大きい。
Figure 1 shows an example of a combined heat and power generation device that has recently been put into practical use. That is, a generator 2 directly connected to an internal combustion engine 1 such as a diesel engine, a gas turbine, or a gas engine supplies the required electric power 2a, and the cooling water of the internal combustion engine 1, which was previously wasted, is transferred to the heat exchanger 3. At the same time, the exhaust gas of about 500°C from the internal combustion engine 1 is introduced into an absorption type water cooler/heater 4, and the thermal energy of the exhaust gas is utilized. It produces cold and hot water and uses it for air conditioning and heating 4a. This combined heat and power generation device is more efficient than generating electricity and thermal energy separately when electrical loads and thermal loads are required at the same time, such as in offices, buildings, department stores, hospitals, and residences, with a thermal efficiency of 80%. ~85%, making a large contribution to energy conservation.

(発明が解決しようとする課題) しかし、吸収式の冷温水器4では内燃機関1の
排気ガスの熱エネルギーの内、500−150℃の範囲
でしか使用できない。すなわち、排気ガス放出温
度を150℃以下とするためには吸収式の冷温水器
4を大形化しなければならず、価格的にも不利と
なるため、最大限上述した温度範囲しか使用でき
ず、通常、250℃以下100℃以上の中温の熱は未利
用のため捨てられている。
(Problems to be Solved by the Invention) However, the absorption type water cooler/heater 4 can only use the thermal energy of the exhaust gas of the internal combustion engine 1 in the range of 500-150°C. In other words, in order to reduce the exhaust gas emission temperature to 150°C or less, the absorption type water cooler/heater 4 must be made larger, which is also disadvantageous in terms of cost, so it can only be used within the above-mentioned temperature range. , Normally, medium-temperature heat below 250°C and above 100°C is discarded because it is unused.

本発明の目的は、設備の大形化等を伴うことな
く、内燃機関の排ガスにおける中温排熱を有効に
利用し、かつ内燃機関の冷却水を低温熱源として
用いることによりシステム全体の高効率化、省エ
ネルギー化を計つた発電装置を提供することにあ
る。
The purpose of the present invention is to improve the efficiency of the entire system by effectively utilizing medium-temperature waste heat in the exhaust gas of an internal combustion engine and using the cooling water of the internal combustion engine as a low-temperature heat source without increasing the size of equipment. The purpose of the present invention is to provide a power generation device designed to save energy.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明による発電装置は、第2図で示すよう
に、作動媒体を一定圧力下で予熱しかつ蒸発させ
る蒸発器6と、この蒸発器6により蒸発され気化
した作動媒体の断熱膨張エネルギーにより駆動さ
れるタービン8と、このタービン8を駆動した作
動媒体を低温熱源3bにより等圧力下で冷却し液
化させる凝縮器5と、この液化した作動媒体を前
記蒸発器6に圧送するポンプ7とにより、ランキ
ンサイクルによる閉ループ系を構成し、前記ター
ビン8により発電機9を駆動するもので、前記蒸
発器6に、高温回収済の中温となつた内燃機関の
排ガスを中温熱源4bとして導入し、そのガス熱
により前記作動媒体を予熱し蒸発させると共に、
前記凝縮器5を、第4図で示すように上記内燃機
関1の冷却水循環系における熱交換器3の後段側
に設け、この熱交換器により熱回収され低温とな
つた冷却水を凝縮器5における前記低温熱源3b
として用いたことを特徴とする。
(Means for Solving the Problems) As shown in FIG. 2, the power generation device according to the present invention includes an evaporator 6 that preheats and evaporates a working medium under constant pressure, and an evaporator 6 that preheats and evaporates a working medium. A turbine 8 driven by the adiabatic expansion energy of a working medium, a condenser 5 that cools and liquefies the working medium that drove the turbine 8 under equal pressure by a low-temperature heat source 3b, and a condenser 5 that liquefies the liquefied working medium into the evaporator 6. The turbine 8 drives a generator 9, and the evaporator 6 is fed with medium-temperature exhaust gas from the internal combustion engine that has been recovered at high temperature. Introduced as a heat source 4b, the working medium is preheated and evaporated by the gas heat, and
The condenser 5 is provided downstream of the heat exchanger 3 in the cooling water circulation system of the internal combustion engine 1, as shown in FIG. The low temperature heat source 3b in
It is characterized by being used as

(作用) 本発明では、内燃機関の排ガスから、比較的回
収の容易な高温を回収した後、中温となつた排ガ
スをランキンサイクルにおける蒸発器の熱源とし
て直接用いるので、設備の大形化を伴うことなく
排ガスの中温を利用することができる。また、ラ
ンキンサイクルにおける凝縮器は、多量の低温熱
源を必要とするが、循環使用される内燃機関の冷
却水を用いるので、低温熱源を別に用意する必要
はなく、このことも省エネルギーに大きく寄与す
る。
(Function) In the present invention, after recovering high-temperature gas, which is relatively easy to recover, from the exhaust gas of an internal combustion engine, the intermediate-temperature exhaust gas is directly used as a heat source for the evaporator in the Rankine cycle. The medium temperature of the exhaust gas can be used without Additionally, the condenser in the Rankine cycle requires a large amount of low-temperature heat source, but since it uses the circulating cooling water of the internal combustion engine, there is no need to prepare a separate low-temperature heat source, which also contributes greatly to energy savings. .

本発明は、上述のように、内燃機関の中温の排
ガス熱と冷却水との温度差を利用して発電しよう
とするものであり、第2図及び第3図に示すよう
なクローズドサイクルシステムを利用する。この
クローズドサイクルシステムでは、例えばアンモ
ニア、R−22などの作動媒体を用いる。
As mentioned above, the present invention attempts to generate electricity by utilizing the temperature difference between the heat of medium-temperature exhaust gas of an internal combustion engine and the cooling water, and uses a closed cycle system as shown in Figs. 2 and 3. Make use of it. This closed cycle system uses a working medium such as ammonia, R-22, etc.

このシステムの作動を第3図と共に説明する。
蒸発器6にて、中温の排ガス4bから熱を取り入
れて、一定圧力のもとに作動媒体の予熱11(第
3図の点D)および蒸発12を行い、点Aで気化
した作動媒体をタービン8に導入してタービン8
の内部で断熱膨張13をさせる。このタービン8
の内部での断熱膨張13のエネルギーがタービン
8の図示しない羽根車を回し、軸8aを介して発
電機9を駆動する。タービン8で断熱膨張13し
た作動媒体は点Bから点Cへ、凝縮器5にて低温
の熱源3bにより等圧下で冷却され凝縮14し液
化する。点Cでは媒体は液化している。この液化
媒体はポンプ7で点Eまで断熱加圧15され、再
び蒸発器6に戻されてランキンサイクルを構成す
る。
The operation of this system will be explained with reference to FIG.
In the evaporator 6, heat is taken in from the medium-temperature exhaust gas 4b, and the working medium is preheated 11 (point D in Fig. 3) and evaporated 12 under constant pressure, and the working medium vaporized at point A is transferred to the turbine. 8 and turbine 8
Adiabatic expansion 13 occurs inside the . This turbine 8
The energy of the adiabatic expansion 13 inside the turbine rotates an impeller (not shown) of the turbine 8, and drives the generator 9 via the shaft 8a. The working medium that has undergone adiabatic expansion 13 in the turbine 8 is cooled from point B to point C in the condenser 5 under equal pressure by the low-temperature heat source 3b, and is condensed 14 and liquefied. At point C the medium has liquefied. This liquefied medium is adiabatically pressurized 15 to point E by the pump 7 and returned to the evaporator 6 to form a Rankine cycle.

(実施例) 次にこのランキンサイクルによるクローズドサ
イクルシステムを利用した本発明一実施例を第4
図により説明する。内燃機関1の約500℃排ガス
1aは吸収式の冷温水器4で熱エネルギーの一部
を利用されたあと150℃程度の中温熱源(排ガス)
4bとなり、蒸発器6に導入されたあと、大気に
放出される。一方、内燃機関1の冷却水1bは約
80℃程度であるが、給湯用等の熱交換器3で熱交
換され、約65℃程度の低温熱源3bとなる。この
低温熱源3bはポンプ10により凝縮器5に供給
され、ここで凝縮熱を吸収した後、内燃機関1の
冷却用として循環使用される。すなわち、クロー
ズドサイクルシステム内では排ガスである中温熱
源4bの温度150℃と冷却水である低温熱源3b
の温度65℃の温度差により、ランキンサイクルが
行なわれ、作動媒体はタービン8を作動させ、温
度差エネルギーを発電機9により電気エネルギー
に変換する。発電機2と9とは図示しない装置に
より並列運転される。
(Example) Next, a fourth example of the present invention using the closed cycle system based on the Rankine cycle will be described.
This will be explained using figures. Approximately 500℃ exhaust gas 1a from internal combustion engine 1 is used as a medium-temperature heat source (exhaust gas) at approximately 150℃ after a part of the thermal energy is utilized in absorption type water cooler/heater 4.
4b, which is introduced into the evaporator 6 and then released into the atmosphere. On the other hand, the cooling water 1b of the internal combustion engine 1 is approximately
Although the temperature is about 80°C, heat is exchanged with a heat exchanger 3 for hot water supply, etc., and it becomes a low-temperature heat source 3b of about 65°C. This low-temperature heat source 3b is supplied to the condenser 5 by a pump 10, absorbs condensation heat there, and is then circulated and used for cooling the internal combustion engine 1. That is, in a closed cycle system, the temperature of the medium temperature heat source 4b which is exhaust gas is 150°C, and the low temperature heat source 3b which is cooling water.
A Rankine cycle is performed due to the temperature difference of 65° C., the working medium operates the turbine 8, and the temperature difference energy is converted into electrical energy by the generator 9. The generators 2 and 9 are operated in parallel by a device not shown.

なお、凝縮器5を通過したことにより冷却水3
cの温度は65℃より多少上昇するか、内燃機関1
の運転上、特に問題とはならない。
Note that the cooling water 3 has passed through the condenser 5.
The temperature of c will rise slightly above 65℃, or internal combustion engine 1
This does not pose any particular problem when driving.

このように、第4図のシステムでは、低温熱源
3bとして内燃機関1の冷却水を使用するので外
部から供給する必要がなく、既設の冷却水循環系
をそのまま適用できるので、設備の有効利用の点
で効果的であり、省エネルギーにもなる。
In this way, in the system shown in Fig. 4, since the cooling water of the internal combustion engine 1 is used as the low-temperature heat source 3b, there is no need to supply it from the outside, and the existing cooling water circulation system can be applied as is, which improves the effective use of equipment. It is effective and saves energy.

蒸発器6を通過したあとの排ガス4cは約80℃
程度の温度であり、更に有効利用することも可能
である。この場合第5図で示すように、蒸発器6
から出た約80℃の温熱源を別のランキンサイクル
の蒸発器6aに導入し、凝縮器5aにはこの温熱
源より低い温度例えば20〜30℃の水をポンプ10
aにより供給する。この結果タービン8bと発電
機9aにより更に排熱回収が出来る。
The exhaust gas 4c after passing through the evaporator 6 has a temperature of approximately 80℃
It is also possible to use it more effectively. In this case, as shown in FIG.
A heat source of about 80°C emitted from the heat source is introduced into another Rankine cycle evaporator 6a, and water at a temperature lower than this heat source, for example, 20 to 30°C, is introduced into the condenser 5a by a pump 10.
supplied by a. As a result, further exhaust heat can be recovered by the turbine 8b and the generator 9a.

すなわち、従来、内燃機関を使用した発電設備
では、一次エネルギーの約35%が電力に変換され
るが、残りの65%が無駄に捨てられていたが、前
述のように排熱を有効に利用することにより、一
次エネルギーの節減に大きく貢献することができ
る。
In other words, in conventional power generation equipment that uses an internal combustion engine, approximately 35% of the primary energy is converted into electricity, but the remaining 65% is wasted, but as mentioned above, waste heat can be used effectively. By doing so, it can greatly contribute to saving primary energy.

〔発明の効果〕 以上のように本発明によれば、内燃機関の排ガ
ス熱を設備の大形化を要することなく、中温領域
まで利用することができ、かつ凝縮器にも、循環
使用される内燃機関の冷却水を用いたので、別の
低温熱源を設ける必要はなく、システム全体とし
ての熱効率を向上させ、省エネルギー化に大きく
貢献することができる。
[Effects of the Invention] As described above, according to the present invention, exhaust gas heat from an internal combustion engine can be used up to a medium temperature range without the need to increase the size of equipment, and it can also be used for circulation in the condenser. Since the cooling water of the internal combustion engine is used, there is no need to provide a separate low-temperature heat source, which improves the thermal efficiency of the entire system and greatly contributes to energy savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は内燃機関を利用した一般的な電力・熱
併給発電装置のブロツク説明図、第2図は本発明
による温度差を利用した発電装置の概念を説明す
るフロー説明図、第3図は第2図を説明するため
の曲線図、第4図は本発明の一実施例を示すブロ
ツク説明図、第5図は本発明の他の実施例を示す
ブロツク説明図である。 1……内燃機関、2……発電機、3……熱交換
器、3b……低温熱源、4b……中温の排ガス、
5……凝縮器、6……蒸発器、7……ポンプ、8
……タービン、9……発電機。
Fig. 1 is a block diagram of a general power/heat cogeneration system using an internal combustion engine, Fig. 2 is a flow diagram illustrating the concept of a power generation system using a temperature difference according to the present invention, and Fig. FIG. 2 is a curve diagram for explaining, FIG. 4 is a block explanatory diagram showing one embodiment of the present invention, and FIG. 5 is a block explanatory diagram showing another embodiment of the present invention. 1... Internal combustion engine, 2... Generator, 3... Heat exchanger, 3b... Low temperature heat source, 4b... Medium temperature exhaust gas,
5... Condenser, 6... Evaporator, 7... Pump, 8
...turbine, 9...generator.

Claims (1)

【特許請求の範囲】 1 作動媒体を一定圧力下で予熱しかつ蒸発させ
る蒸発器と、この蒸発器により蒸発され気化した
作動媒体の断熱膨張エネルギーにより駆動される
タービンと、このタービンを駆動した作動媒体を
低温熱源により等圧力下で冷却し液化させる凝縮
器と、この液化した作動媒体を前記蒸発器に圧送
するポンプとにより、ランキンサイクルによる閉
ループ系を構成し、前記タービンにより発電機を
駆動する発電装置において、 前記蒸発器に、高温回収済の中温となつた内燃
機関の排ガスを導入し、そのガス熱により前記作
動媒体を予熱し蒸発させると共に、前記凝縮器
を、上記内燃機関の冷却水循環系における熱交換
器の後段側に設け、この熱交換器により熱回収さ
れ低温となつた冷却水を凝縮器における前記低温
熱源として用いたことを特徴とする発電装置。
[Scope of Claims] 1. An evaporator that preheats and evaporates a working medium under constant pressure, a turbine that is driven by the adiabatic expansion energy of the vaporized working medium that is evaporated by the evaporator, and an operation that drives this turbine. A closed loop system based on the Rankine cycle is configured by a condenser that cools and liquefies the medium under constant pressure using a low-temperature heat source and a pump that pumps the liquefied working medium to the evaporator, and the turbine drives the generator. In the power generation device, the exhaust gas of the internal combustion engine that has been recovered at high temperature and has become intermediate temperature is introduced into the evaporator, and the working medium is preheated and evaporated by the heat of the gas, and the condenser is connected to the cooling water circulation of the internal combustion engine. 1. A power generating apparatus, characterized in that the power generating apparatus is provided at a downstream side of a heat exchanger in the system, and uses cooling water whose temperature has been reduced by recovering heat by the heat exchanger as the low-temperature heat source in the condenser.
JP1893382A 1982-02-10 1982-02-10 Power generation device Granted JPS58138213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1893382A JPS58138213A (en) 1982-02-10 1982-02-10 Power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1893382A JPS58138213A (en) 1982-02-10 1982-02-10 Power generation device

Publications (2)

Publication Number Publication Date
JPS58138213A JPS58138213A (en) 1983-08-17
JPH0231764B2 true JPH0231764B2 (en) 1990-07-16

Family

ID=11985433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1893382A Granted JPS58138213A (en) 1982-02-10 1982-02-10 Power generation device

Country Status (1)

Country Link
JP (1) JPS58138213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159138A1 (en) 2016-03-18 2017-09-21 パナソニック株式会社 Cogeneration device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444936A (en) * 2006-11-23 2008-06-25 Yao-Chang Lin Internal combustion and steam turbine engines
SE537266C2 (en) 2011-05-10 2015-03-17 Revent Int Ab Device for adjusting the height of a carrier in an oven
JP5843391B2 (en) * 2011-12-14 2016-01-13 株式会社タクマ Waste power generation system
FI20126065A (en) * 2012-10-11 2013-12-02 Waertsilae Finland Oy Cooling arrangement for a combination piston engine power plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149844A (en) * 1974-05-27 1975-12-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149844A (en) * 1974-05-27 1975-12-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159138A1 (en) 2016-03-18 2017-09-21 パナソニック株式会社 Cogeneration device

Also Published As

Publication number Publication date
JPS58138213A (en) 1983-08-17

Similar Documents

Publication Publication Date Title
US7658072B2 (en) Highly efficient heat cycle device
US4380909A (en) Method and apparatus for co-generation of electrical power and absorption-type heat pump air conditioning
US6745574B1 (en) Microturbine direct fired absorption chiller
TWI468629B (en) Air Energy Energy Saving Air Conditioning Power Generation System
JP2010540837A (en) Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
US9869495B2 (en) Multi-cycle power generator
KR102538228B1 (en) Energy saving system of encune by using waste heat and ocean construction comprising the same
JPH0231764B2 (en)
CN106050424A (en) Efficient intake air cooling and heating system for gas turbine
JP2014005776A (en) Air conditioning power generation system
JP3520927B2 (en) Power generator
JPS6228357B2 (en)
JP3044386U (en) Power generator
JPH02146208A (en) Compound heat utilizing plant
JP3176755B2 (en) Gas turbine equipment
WO2023040188A1 (en) Zero-carbon cold power generator and power generation method therefor
CN208688023U (en) A kind of afterheat utilizing system of biomass water-cooled grate cooling water
US10794369B1 (en) Solar powered closed loop system and method for powering a cooling device
CN211397676U (en) Heat pipe type refrigeration power generation equipment
JPS5865917A (en) Power generating device of exhaust heat recovery in diesel engine
KR100658321B1 (en) Power generation system of heat-absorption type
RU2127815C1 (en) Heat power plant with cooler
JPH0512603U (en) Combined generator
JPS6128742A (en) Heat and power generating device
CN117108380A (en) ORC system for recovering waste heat of combined cycle unit combustion engine TCA/FGH