JPH02283848A - Exhaust gas recirculation control device for engine - Google Patents

Exhaust gas recirculation control device for engine

Info

Publication number
JPH02283848A
JPH02283848A JP1101738A JP10173889A JPH02283848A JP H02283848 A JPH02283848 A JP H02283848A JP 1101738 A JP1101738 A JP 1101738A JP 10173889 A JP10173889 A JP 10173889A JP H02283848 A JPH02283848 A JP H02283848A
Authority
JP
Japan
Prior art keywords
egr
exhaust
oxygen sensor
cylinder
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1101738A
Other languages
Japanese (ja)
Other versions
JP2663297B2 (en
Inventor
Yasuyuki Terasawa
保幸 寺沢
Masatsugu Sakimoto
崎本 正嗣
Masaaki Kashimoto
正章 樫本
Katsuhiro Yokomizo
横溝 克広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1101738A priority Critical patent/JP2663297B2/en
Publication of JPH02283848A publication Critical patent/JPH02283848A/en
Application granted granted Critical
Publication of JP2663297B2 publication Critical patent/JP2663297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To improve reliability by a method wherein the combustion state of each cylinder is monitored by an oxygen sensor, optimum EGR control responding to unevenness in the combustion state of each cylinder is practicable, and during failure in operation of one oxygen sensor, EGR control is practicable based on an output from other sensor. CONSTITUTION:First and second suction manifold passages 5a and 5b, through which two cylinders wherein a suction stroke and an exhaust stroke are not adjoined to each other are connected to each other, and first and second exhaust manifold passages 8a and 8b are interconnected through EGR passages 10a and 10b in which EGR valves 11 (11a and 11b) are located. Each EGR valve 11 controls a lift amount by applying the negative pressure of a vacuum pump 13, controlled by negative pressure control valves 12a and 12b, on the negative pressure chamber of the EGR valve. In this case, oxygen sensors 15 (15a, 15b) are located in the exhaust manifold passages 8a and 8b, respectively, and each EGR valve 11 is controlled according to outputs from the oxygen sensors. When the one oxygen sensor 15 is failed in operation, each EGR valve 11 is controlled based on an output from the other normal oxygen sensor 15.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多気筒ディーゼルエンジンの排気ガス還流(E
GR)量を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to exhaust gas recirculation (E
GR) relates to a device for controlling quantity.

(従来技術) ディーゼルエンジンの排気ガス還流制御2m装置では、
エンジンの排気通路と吸気通路とを連通ずる排気ガス還
流通路に排気ガス還流量制御弁(EGR弁)を設け、こ
のEGR弁リフト量をエンジンの運転状態に応じて制御
することにより、EGRIを変え、これによりNOlお
よびスモークの低減を図っている。その場合、出力値が
直線的に変化する酸素センサ(リニア0.センサ)を排
気通路に設けるとともに、エンジン回転数とエンジン負
荷とによって定まるエンジンの運転状態に応じた目標酸
素濃度をあられすマツプを用意し、このマツプから読み
出される目標酸素濃度と上記酸素センサの出力から求め
られる実酸素濃度との比較に基づいてEGR弁のリフト
量を決定し、EGR量を制御するものが知られている(
特開昭63−94061号、特開昭63−201356
号公報参照)。
(Prior art) In a 2m exhaust gas recirculation control device for a diesel engine,
An exhaust gas recirculation flow control valve (EGR valve) is provided in the exhaust gas recirculation passage that communicates the engine exhaust passage and intake passage, and the EGR valve lift amount is controlled according to the engine operating condition to change the EGRI. , thereby reducing NOl and smoke. In that case, an oxygen sensor whose output value changes linearly (linear 0. sensor) is installed in the exhaust passage, and a map is installed to determine the target oxygen concentration according to the engine operating condition determined by the engine speed and engine load. There is a known method that controls the EGR amount by determining the lift amount of the EGR valve based on a comparison between the target oxygen concentration read from this map and the actual oxygen concentration determined from the output of the oxygen sensor.
JP-A-63-94061, JP-A-63-201356
(see publication).

ところで、従来の多気筒ディーゼルエンジンのE G 
R1lllJ御においては、ある1つの気筒の排気中の
酸素濃度を上記酸素センサで測定してすべての気筒のE
GR量を制御するようにしているので、燃料噴射ノズル
および燃料噴射ポンプの特性のばらつき、気筒毎の燃料
噴射ノズルの劣化度合のばらつき、燃焼室内のスワール
強度のばらつき、あるいは吸入空気量のばらつき等の要
因によって、気筒間に燃焼状態のばらつきが生じ、要求
されるEGR量が気筒によって異なることになる。した
がって従来のように1個の酸素センサの出力に基づいて
EGRlllJJを行なった場合、運転性が低下し、騒
音および振動が増大されるという問題があった。
By the way, the EG of a conventional multi-cylinder diesel engine
In R1lllJ control, the oxygen concentration in the exhaust gas of one cylinder is measured using the oxygen sensor, and the E of all cylinders is measured.
Since the amount of GR is controlled, variations in the characteristics of the fuel injection nozzle and fuel injection pump, variations in the degree of deterioration of the fuel injection nozzle for each cylinder, variations in the swirl strength in the combustion chamber, variations in the amount of intake air, etc. Due to these factors, combustion conditions vary between cylinders, and the required EGR amount differs depending on the cylinder. Therefore, when EGRlllJJ is performed based on the output of one oxygen sensor as in the past, there are problems in that drivability is reduced and noise and vibration are increased.

(発明の目的) そこで本発明は、各気筒の燃焼状態に応じた最適のEG
RiIillmを行なうことが可能であり、かつ酸素セ
ンサが故障した場合のフューエルセーフ機構を備えた排
気ガス還流制御装置を提供することを目的とする。
(Object of the invention) Therefore, the present invention aims to optimize the EG according to the combustion state of each cylinder.
It is an object of the present invention to provide an exhaust gas recirculation control device that is capable of performing RiIillm and is equipped with a fuel safety mechanism in case an oxygen sensor fails.

(発明の構成) 本発明によるエンジンの排気ガス還流制御装置では、排
気行程が隣り合わない気筒の排気通路同士をそれぞれ接
続して形成した複数の集合排気通路の各々に酸素センサ
を配置し、すなわち例えば爆発順序を1−3−4−2と
する直列4気筒エンジンの場合、排気行程の隣り合わな
い第1気筒と第4気筒とを第1グループとしてそれらの
排気通路同士を接続して形成した第1集合排気通路およ
び同じく排気行程の隣り合わない第2気筒と第3気筒と
を第2グループとしてそれらの排気通路同士を接続して
形成した第2集合排気通路にそれぞれ酸素センサを配置
し、かつ上記複数の集合排気通路からそれぞれEGR通
路を導出して、これらEGR通路にそれぞれEGR弁を
配置してグループ毎にEGR制2Tjを行なうとともに
、1つの酸素センサが故障した場合は他の正常な酸素セ
ンサの出力に基づいて複数のEGR弁の作動制御を行な
うようにしたことを特徴とする。
(Structure of the Invention) In the exhaust gas recirculation control device for an engine according to the present invention, an oxygen sensor is disposed in each of a plurality of collective exhaust passages formed by connecting exhaust passages of cylinders whose exhaust strokes are not adjacent to each other. For example, in the case of an in-line four-cylinder engine with an explosion order of 1-3-4-2, the first and fourth cylinders, which have non-adjacent exhaust strokes, form the first group by connecting their exhaust passages. An oxygen sensor is disposed in each of the first collective exhaust passage and the second collective exhaust passage formed by connecting the second and third cylinders, which are not adjacent to each other in their exhaust strokes, as a second group; In addition, EGR passages are led out from the plurality of collective exhaust passages, and EGR valves are placed in each of these EGR passages to perform EGR control 2Tj for each group, and if one oxygen sensor fails, other normal The present invention is characterized in that the operation of a plurality of EGR valves is controlled based on the output of the oxygen sensor.

(発明の効果) 本発明によれば、気筒毎の燃焼状態を酸素センサによっ
て監視することが可能になり、各気筒の燃焼状態のばら
つきに応じた最適のEGR制御を最小限の数の酸素セン
サを用いて行なうことができるから、エンジンの騒音お
よび振動が低減する。
(Effects of the Invention) According to the present invention, it is possible to monitor the combustion state of each cylinder using an oxygen sensor, and to perform optimal EGR control according to variations in the combustion state of each cylinder using a minimum number of oxygen sensors. Since this can be done using the same engine, noise and vibration of the engine are reduced.

また、1つの酸素センサが故障した場合、他の正常な酸
素センサの出力に基づいて複数のEGR弁を制御するよ
うにしているので、エンジンの信頼性を向上させること
ができる。
Furthermore, if one oxygen sensor fails, a plurality of EGR valves are controlled based on the outputs of other normal oxygen sensors, so engine reliability can be improved.

(実 施 例) 以下、図面を参照して本発明の実施例について詳細に説
明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係るEGR制御装置の概略的構成を示
し、!は第1〜第4気筒2a〜2dを備えかつ排気行程
順序(爆発順序)を1−3−4−2とする直列4気筒デ
イーゼルエンジンの本体、3a〜3dは各気筒2a〜2
d毎に独立して設けられた吸気通路、4a〜4dは各気
筒2a〜2d毎に独立して設けられた排気通路である。
FIG. 1 shows a schematic configuration of an EGR control device according to the present invention. 3a to 3d are the main bodies of an in-line four-cylinder diesel engine that includes the first to fourth cylinders 2a to 2d and has an exhaust stroke order (explosion order) of 1-3-4-2;
Intake passages 4a to 4d are independently provided for each cylinder d, and exhaust passages 4a to 4d are independently provided to each cylinder 2a to 2d.

そして位相が3606異なる気筒同士、すなわち排気行
程の隣り合わない第1気筒2aと第4気筒2dの吸気通
路3a、3d同士がそれらの上流側で互いに接続されて
第1集合吸気通路5aを形成し、同様に排気行程の隣り
合わない第2気筒2bと第3気筒2Cの吸気通路3b、
3C同士がそれらの上流側で互いに接続されて第2集合
吸気通路5bを形成し、さらにこれら2本の集合吸気通
路5a、5bが、それらの上流側で互いに接続されて、
エアクリーナ6を備えた共通吸気通路7を形成している
Then, the intake passages 3a and 3d of the first cylinder 2a and the fourth cylinder 2d whose exhaust strokes are not adjacent to each other are connected to each other on their upstream sides to form a first collective intake passage 5a. , Similarly, the intake passages 3b of the second cylinder 2b and the third cylinder 2C whose exhaust strokes are not adjacent to each other,
3C are connected to each other on their upstream sides to form a second collective intake passage 5b, and further these two collective intake passages 5a and 5b are connected to each other on their upstream sides,
A common intake passage 7 including an air cleaner 6 is formed.

一方、排気行程の隣り合わない第1気*2aと第4気筒
2dの排気通路4a、4d同士もそれらの下流側で互い
に接続されて第1集合排気通路8aを形成し、同様に排
気行程の隣り合わない第2気筒2bと第3気筒2Cの排
気通路4b、4C同士もそれらの下流側で互いに接続さ
れて第2集合排気通路8bを形成し、さらにこれら2本
の集合排気通路8a、8bが、それらの下流側で互いに
接続されて共通排気通路9を形成している。
On the other hand, the exhaust passages 4a and 4d of the first cylinder *2a and the fourth cylinder 2d, which are not adjacent to each other in the exhaust stroke, are also connected to each other on their downstream sides to form a first collective exhaust passage 8a, and similarly The exhaust passages 4b and 4C of the second cylinder 2b and third cylinder 2C which are not adjacent to each other are also connected to each other on their downstream sides to form a second collective exhaust passage 8b, and these two collective exhaust passages 8a and 8b are also connected to each other on their downstream sides to form a second collective exhaust passage 8b. are connected to each other on their downstream sides to form a common exhaust passage 9.

第1集合排気通路8aと第1集合吸気通路5aとは、排
気ガス還流通路(EGRijl路>102を通じて連通
され、この通路10aに排気ガス還流1(EGRI)を
制御するダイヤフラム式EGR弁11aが配設されてい
る。同様に、第2集合排気通路8bと第2集合吸気通路
5bとは、EGR迩路10bを通じて連通され、この通
路lObにダイヤフラム式EGR弁11bが配設されて
いる。
The first collective exhaust passage 8a and the first collective intake passage 5a are communicated through an exhaust gas recirculation passage (EGRijl path>102), and a diaphragm type EGR valve 11a for controlling exhaust gas recirculation 1 (EGRI) is disposed in this passage 10a. Similarly, the second collective exhaust passage 8b and the second collective intake passage 5b are communicated through an EGR passage 10b, and a diaphragm type EGR valve 11b is disposed in this passage lOb.

EGR弁11a、llbの負圧室(図示は省略)には、
tiffソレノイド弁よりなる負圧制御弁12a、12
bによってそれぞれ制御されるバキュームポンプ13の
負圧が、負圧通路14a、14bを通じてそれぞれ印加
され、これによってEGR弁11a、llbのリフト量
が制御される。また集合排気通路8a、8bには、排気
ガス中の酸素濃度を検出するための酸素センサ15a、
15bがそれぞれ設けられている。16はコントローラ
で、燃料噴射ポンプ17が備えている回転数センサ18
、アクセル開度センサ19(噴射ポンプ17のレバー開
度を検出するポテンショメータ)の出力、および酸素セ
ンサ15a、15bの出力その他が入力される。またE
GR弁11a、llbにはそれらのリフト量を検出する
ポテンショメータよりなるEGR弁リフト量センサ20
a、20bがそれぞれ設けられており、これらセンサ2
Qa、20bの出力もコントローラ16に入力される。
In the negative pressure chambers (not shown) of the EGR valves 11a and llb,
Negative pressure control valves 12a, 12 consisting of tiff solenoid valves
The negative pressure of the vacuum pump 13 controlled by the EGR valves 11a and 14b is applied through the negative pressure passages 14a and 14b, respectively, thereby controlling the lift amount of the EGR valves 11a and 11b. Further, in the collective exhaust passages 8a and 8b, an oxygen sensor 15a for detecting the oxygen concentration in the exhaust gas,
15b are provided respectively. 16 is a controller, and a rotation speed sensor 18 with which the fuel injection pump 17 is provided.
, the output of the accelerator opening sensor 19 (a potentiometer that detects the lever opening of the injection pump 17), the outputs of the oxygen sensors 15a and 15b, and others are input. Also E
The GR valves 11a and llb are equipped with an EGR valve lift amount sensor 20 consisting of a potentiometer that detects their lift amounts.
a, 20b are provided respectively, and these sensors 2
The outputs of Qa and 20b are also input to the controller 16.

コントローラ16は、酸素センサ15aの出力に基づい
て、負圧制御弁12aをデユーティ制御してEGR弁1
1aのリフト量を制御し、これにより第1気筒2aおよ
び第4気筒2dに対するEGR制御を行なっている。ま
たコントローラ16は、酸素センサ15bの出力に基づ
いて、負圧制御弁12bをデユーティ制御してEGR弁
11bのリフト量を制御し、これにより第2気筒2bお
よび第3気筒2Cに対するEGRj#制御を行なってい
る。
The controller 16 duty-controls the negative pressure control valve 12a based on the output of the oxygen sensor 15a, and controls the EGR valve 1.
The lift amount of cylinder 1a is controlled, thereby performing EGR control for first cylinder 2a and fourth cylinder 2d. Further, the controller 16 performs duty control on the negative pressure control valve 12b based on the output of the oxygen sensor 15b to control the lift amount of the EGR valve 11b, thereby controlling EGRj# for the second cylinder 2b and the third cylinder 2C. I am doing it.

コントローラ16のメモリには、第2図に示すように、
エンジン回転数NBとアクセル開度ACCに応じた目標
酸素濃度VO!(M)をあられすマツプが格納されてお
り、このマツプ値と、酸素センサ15a、15bの出力
であられされる実酸素濃度vO,(R)との比較に基づ
いてEGR制御が行なわれるようになっている。
In the memory of the controller 16, as shown in FIG.
Target oxygen concentration VO according to engine speed NB and accelerator opening ACC! (M) is stored, and EGR control is performed based on a comparison between this map value and the actual oxygen concentration vO, (R) detected by the outputs of the oxygen sensors 15a and 15b. It has become.

このように本実施例においては、4つの気筒4a〜4d
を2グループに区分け、各グループ毎にEGR制御を行
なっているが、その場合、排気行程の隣り合わない2つ
の気筒、例えば第1気M2aと第4気筒2dの吸気期間
および排気期間を見ると、第3図に示すように一方の気
筒の吸気行程と他方の気筒の排気行程とがオーバーラツ
プする期間が生じる。したがって予めエンジンの回転数
に応じたEGR弁リフト信号の遅れ量を設定しておくこ
とにより、各1個の酸素センサ15aまたは15bによ
って各気筒の燃焼状況を独立的に監視して各気筒別にE
GRIを制御することが可能になる。
In this way, in this embodiment, four cylinders 4a to 4d
are divided into two groups and EGR control is performed for each group. In this case, if we look at the intake period and exhaust period of two cylinders whose exhaust strokes are not adjacent, for example, the first cylinder M2a and the fourth cylinder 2d, As shown in FIG. 3, there occurs a period in which the intake stroke of one cylinder and the exhaust stroke of the other cylinder overlap. Therefore, by setting the delay amount of the EGR valve lift signal according to the engine speed in advance, the combustion status of each cylinder can be independently monitored by each oxygen sensor 15a or 15b.
It becomes possible to control GRI.

一方、酸素センサ(リニア0.センサ) 15a、15
、bには、初期の品質のばらつきがあり、また劣化度合
に固体差が生じるために、2本の酸素センサ15a、1
5bの出力を補正する必要がある。
On the other hand, oxygen sensor (linear 0. sensor) 15a, 15
,b have variations in initial quality and also have individual differences in the degree of deterioration, so the two oxygen sensors 15a, 1
It is necessary to correct the output of 5b.

また酸素センサ15a、15bの何れが一方または双方
が故障する場合がある0本実施例では、そのような場合
でもEcR1ll?iを可能とするために第4図のフロ
ーチャートに示すような制411を実行している。
Further, in this embodiment, there is a possibility that one or both of the oxygen sensors 15a and 15b may fail.Even in such a case, EcR1ll? In order to enable i, a control 411 as shown in the flowchart of FIG. 4 is executed.

すなわち、まず燃料カット時(減速時)か否かを判定し
くステップS1)、燃料カット時においては、 (1)  酸素センサ15a、15bの出力が、2本と
も第5図に示すような設定範囲内にある場合には(ステ
ップS2)、酸素センサ15a、tsbの出力を設定値
に補正して(ステップS3)、通常制御を行なう(ステ
ップS4)。
That is, first, it is determined whether or not it is the time of fuel cut (during deceleration) (step S1), and when the fuel is cut, (1) the outputs of the oxygen sensors 15a and 15b are both within the setting range shown in FIG. If it is within (step S2), the outputs of the oxygen sensors 15a and tsb are corrected to the set values (step S3), and normal control is performed (step S4).

(2)  酸素センサ15aS 15bのうち、一方の
出力は設定範囲内にあるが、他方の出力が設定範囲から
外れた場合、出力が設定範囲内にある酸素センサの出力
を設定値に補正して、この補正した酸素センサの出力で
2系統のEGRtを制御する(ステ、プS5〜ステップ
S7)。
(2) If the output of one of the oxygen sensors 15aS and 15b is within the set range but the output of the other is outside the set range, the output of the oxygen sensor whose output is within the set range is corrected to the set value. The two systems of EGRt are controlled using the corrected output of the oxygen sensor (steps S5 to S7).

(3)酸素センサ15a、15bの双方の出力が設定範
囲から外れた場合は、第6図に示すような、エンジン回
転数NBとアクセル開度ACCに応じた目標EGR弁リ
フト置装L(M)を設定したマツプを使用し、このマツ
プ値と、リフト量センサ20a、20bの出力であられ
される実EGR弁リフト量V L (R)との比較に基
づいてEGR制御を行なう(ステップS8)。
(3) If the outputs of both oxygen sensors 15a and 15b are out of the set range, the target EGR valve lift device L (M ), and performs EGR control based on a comparison between this map value and the actual EGR valve lift amount V L (R) determined by the output of the lift amount sensors 20a and 20b (step S8). .

(4)燃料カット時以外では通常制?Bを行なう(ステ
ップS9)。
(4) Normal system except during fuel cut? B is performed (step S9).

なお、ディーゼルエンジンは燃焼室内で燃料が層状化を
しているため、排気弁が開いている間の酸素センサ15
a、15bの出力は変化する。しかしながら、エンジン
側の要求としては、1行程中のEGRIが正しく制御で
きさえすればよく、クランク角度に応じてEGR@−t
−制御する必要はない、したがって、EGR弁11a、
llbのばらつきを防止するために、360°分の酸素
センサ出力の平均値で、次の360°分のEGR弁開度
を設定してもよい。
Note that in a diesel engine, fuel is stratified in the combustion chamber, so the oxygen sensor 15 is not activated while the exhaust valve is open.
The outputs of a and 15b change. However, as a requirement on the engine side, it is only necessary that EGRI during one stroke can be controlled correctly, and EGR@-t
- does not need to be controlled, therefore the EGR valve 11a,
In order to prevent variations in Ilb, the EGR valve opening degree for the next 360° may be set based on the average value of the oxygen sensor output for 360°.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略的構成図、第2図
は目標酸素濃度マツプ、第3図は第1気筒と第4気筒の
吸気期間と排気期間とを示すタイミングチャート、第4
図は制御のフローチャート、第5図は酸素濃度に対する
酸素センサの出力の関係を示すグラフ、第6図は目標E
GR弁リフト量マツプである。 l−・・エンジン本体   2a、2d−気筒3a〜3
d・・−吸気通路 4a〜4d−排気通路5a、5b・
−・集合吸気通路 8a、Bb−集合排気通路 10a、10 b−・EGR通路 11 a、 I l b・・・EGR弁12a、12b
−・−負圧制御弁 13・−・バキュームポンプ 16・・・コントローラ 17−・・燃料噴射ポンプ
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 2 is a target oxygen concentration map, FIG. 3 is a timing chart showing the intake period and exhaust period of the first and fourth cylinders, and FIG. 4
The figure is a control flowchart, Figure 5 is a graph showing the relationship between the oxygen sensor output and the oxygen concentration, and Figure 6 is the target E.
This is a GR valve lift amount map. l--Engine body 2a, 2d-Cylinder 3a-3
d...-Intake passage 4a to 4d-Exhaust passage 5a, 5b.
- Collective intake passage 8a, Bb - Collective exhaust passage 10 a, 10 b - EGR passage 11 a, I l b... EGR valve 12 a, 12 b
--- Negative pressure control valve 13 --- Vacuum pump 16 --- Controller 17 --- Fuel injection pump

Claims (1)

【特許請求の範囲】 排気通路に設けた酸素センサの出力に基づいて排気ガス
還流制御を行なう多気筒エンジンにおいて、 上記多気筒エンジンの排気行程が隣り合わない気筒の排
気通路同士をそれぞれ接続して形成した複数の集合排気
通路の各々に配置された酸素センサと、 上記複数の集合排気通路からそれぞれ導出された排気ガ
ス還流通路と、 これら排気ガス還流通路にそれぞれ配置された排気ガス
還流量制御弁と、 1つの酸素センサの故障時には他の正常な酸素センサの
出力に基づいて上記複数の排気ガス還流量制御弁を作動
させる制御手段と を備えていることを特徴とするエンジンの排気ガス還流
制御装置。
[Claims] In a multi-cylinder engine that performs exhaust gas recirculation control based on the output of an oxygen sensor installed in an exhaust passage, the exhaust passages of cylinders in which exhaust strokes of the multi-cylinder engine are not adjacent are connected to each other. an oxygen sensor disposed in each of the formed plurality of collective exhaust passages, an exhaust gas recirculation passage led out from each of the plurality of collective exhaust passages, and an exhaust gas recirculation amount control valve disposed in each of these exhaust gas recirculation passages. and a control means for operating the plurality of exhaust gas recirculation amount control valves based on the output of other normal oxygen sensors when one oxygen sensor fails. Device.
JP1101738A 1989-04-24 1989-04-24 Engine exhaust gas recirculation control device Expired - Lifetime JP2663297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1101738A JP2663297B2 (en) 1989-04-24 1989-04-24 Engine exhaust gas recirculation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1101738A JP2663297B2 (en) 1989-04-24 1989-04-24 Engine exhaust gas recirculation control device

Publications (2)

Publication Number Publication Date
JPH02283848A true JPH02283848A (en) 1990-11-21
JP2663297B2 JP2663297B2 (en) 1997-10-15

Family

ID=14308598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1101738A Expired - Lifetime JP2663297B2 (en) 1989-04-24 1989-04-24 Engine exhaust gas recirculation control device

Country Status (1)

Country Link
JP (1) JP2663297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097366A1 (en) * 2005-03-18 2006-09-21 Siemens Vdo Automotive Ag Method for recirculating a sub-stream of exhaust gas to an internal combustion engine of a motor vehicle
US10590872B2 (en) * 2018-02-13 2020-03-17 Ford Global Technologies, Llc Cylinder exhaust gas recirculation distribution measurement systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523905B2 (en) * 2005-11-02 2010-08-11 三菱重工業株式会社 4-cycle engine with internal EGR system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097366A1 (en) * 2005-03-18 2006-09-21 Siemens Vdo Automotive Ag Method for recirculating a sub-stream of exhaust gas to an internal combustion engine of a motor vehicle
US10590872B2 (en) * 2018-02-13 2020-03-17 Ford Global Technologies, Llc Cylinder exhaust gas recirculation distribution measurement systems and methods

Also Published As

Publication number Publication date
JP2663297B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP4070961B2 (en) Failure determination device for variable cylinder internal combustion engine
US4337740A (en) Internal combustion engine
KR930007613Y1 (en) Control apparatus for internal combustion engine
US9188075B2 (en) Diagnostic for engine cam profile switching system
US6880524B2 (en) Diesel EGR control
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
CN1333162C (en) Air valve correct timing control device and method for internal combustion engine
JPH05187240A (en) Air intake control device for internal combustion engine
JPH02283848A (en) Exhaust gas recirculation control device for engine
JP3273174B2 (en) Engine control device
US8989988B2 (en) Control apparatus for internal combustion engine
JPS61118538A (en) Air-fuel ratio control of internal-combustion engine
JPH0849577A (en) Intake air controller of internal combustion engine
JP3912488B2 (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
JPS6079135A (en) Fuel injection quantity controller for engine
JPH0385361A (en) Exhaust gas circulator of diesel engine
JP4854796B2 (en) Abnormality detection device for internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JPH10274108A (en) Evaporated fuel purging device for engine
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JPH0460135A (en) Control device of engine
JPH11229904A (en) Engine control device
JPH01203634A (en) Air-fuel ratio control device for engine
JPH02275055A (en) Exhaust gas recirculation controller for engine
JPH0437236Y2 (en)