JPH02271653A - Manufacture of substrate for mounting semiconductor - Google Patents

Manufacture of substrate for mounting semiconductor

Info

Publication number
JPH02271653A
JPH02271653A JP1091911A JP9191189A JPH02271653A JP H02271653 A JPH02271653 A JP H02271653A JP 1091911 A JP1091911 A JP 1091911A JP 9191189 A JP9191189 A JP 9191189A JP H02271653 A JPH02271653 A JP H02271653A
Authority
JP
Japan
Prior art keywords
board
substrate
plating
sided copper
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1091911A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
鈴木 丈士
Yasuo Matsui
松井 泰雄
Toshinaga Endo
遠藤 歳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP1091911A priority Critical patent/JPH02271653A/en
Publication of JPH02271653A publication Critical patent/JPH02271653A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To solve problems related to reliability such as thinning of a circuit, disconnection, and short-circuiting by making wiring of a substrate in multilayer structure and wiring signal lines over two layers. CONSTITUTION:A device hole 14 which is greater than a recessed part 15 of a substrate is formed on the surface for forming the substrate and a desired circuit is formed at a desired position. Then, a solder resist 17 is formed at a specified part and a single-surface copper-clad laminated plate 11' provided with nickel and gold plating is laminated at the part of a conductor 18 being exposed through adhesion sheets 12' and 12'' in sequence. Then, a single-surface copper clad laminated plate 11'' where only a device hole is formed is laminated into one piece. Then, a through-hole 20 for connecting each conductor layer is formed at a desired position of the substrate, panel plating is performed to the entire substrate, a circuit is formed on both surfaces of the outermost layer of the substrate, and then a solder resist 17'' is printed on both surfaces. After that, nickel and gold plating are performed at a conductor part being exposed. Therefore, a semiconductor substrate with improved reliability can be obtained without any problems of disconnection and thinning.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体搭載用基板の製造方法に関し、より詳し
くは、より高密度化が可能なPPGA(Plastic
 Pin Grid Arrray)用基板の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a substrate for mounting a semiconductor, and more specifically, the present invention relates to a method of manufacturing a substrate for mounting a semiconductor, and more particularly, it relates to a method of manufacturing a substrate for mounting a semiconductor, and more specifically, it relates to a method of manufacturing a substrate for mounting a semiconductor.
The present invention relates to a method of manufacturing a substrate for a pin grid array.

〔従来の技術〕[Conventional technology]

半導体搭載用基板の製造方法は、その構造によって種々
の方法が採用されているが、近年半導体技術の進展に伴
い、薄型高密度を十分満足させる構造である、座グリ部
を有する両面回路基板がその主流を占めている。一つは
、通常の両面スルーホール回路基板を作成した後、半導
体搭載部分を座ぐる方法であり、他の一つは、両面銅張
積層板を用いてスルーホール穴あけ・座ぐり加工をした
後、パネルメッキを経て半田メッキ等によって回路を形
成し、さらにレジストを印刷した後メッキを行なう方法
である。後者の方法は座ぐり部分にもメッキを形成する
ものであり、前者の方法と比較して、耐湿性、耐熱衝撃
性等、半導体の特性保持・信組性のより優れた構造と考
えられている。
Various methods are used to manufacture semiconductor mounting boards depending on their structure, but in recent years, with the advancement of semiconductor technology, double-sided circuit boards with counterbore parts, which have a structure that fully satisfies thinness and high density, have been developed. It occupies the mainstream. One method is to create a normal double-sided through-hole circuit board and then spot-bore the semiconductor mounting part.The other method is to drill and counter-bore the through-holes using a double-sided copper-clad laminate. In this method, a circuit is formed by panel plating, solder plating, etc., and then plating is performed after printing a resist. The latter method also forms plating on the counterbore area, and is considered to have a structure that retains semiconductor properties such as moisture resistance and thermal shock resistance and is more reliable than the former method. .

の2層(両面)構造では対応しきれず、回路を3層構造
、さらにはそれ以上の多層構造にして、ポンディングパ
ッド部を2段構造さらには多段構造とした基板に対する
要求が高まってきており、しかも信組性に対する要求も
年々その厳しさを増してきている0例えば、2層構造で
200ピン程度のピングリッドアレーであれば、信号線
パターンは半導体搭載面と同じ側に配線されており、ビ
ン間に5〜10本の信号線パターンが通り、線巾/線間
は0.1210.12mm程度であるが、同じ2層構造
で300ピン以上になると、ピン間に7〜14本以上の
信号線パターンを通すことが必要となり、線巾/線間は
0.0810.08m程度になるため、回路加工時にお
ける回路の断線、シッート等の不良が発生しやすく、ま
た、回路の細り等による配線抵抗の増加、耐湿耐衝撃の
信組性の低下等の問題があった。
The two-layer (both-sided) structure cannot meet the requirements, and there is an increasing demand for circuit boards with three-layer or even more multi-layer structures, and with two-layer or even multi-layer bonding pad structures. Moreover, the requirements for reliability are becoming stricter year by year.For example, in a pin grid array with a two-layer structure and about 200 pins, the signal line pattern is routed on the same side as the semiconductor mounting surface. 5 to 10 signal line patterns pass between the bins, and the line width/line distance is about 0.1210.12 mm, but if the same two-layer structure has more than 300 pins, there will be 7 to 14 or more signal lines between the pins. It is necessary to pass the signal line pattern, and the line width/line spacing is approximately 0.0810.08 m, so defects such as circuit breakage and sheeting are likely to occur during circuit processing, and due to thinning of the circuit, etc. There were problems such as an increase in wiring resistance and a decrease in moisture and shock resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、多ピン化の進展に伴い、高密度化と高信幀性
が要求される半導体耐搭載用基板に関するものであり、
これらの要求に応えるための基板の配線を多層構造にし
、信号線を2層以上にわたって配線することにより回路
の細りゃ断線、シジート等信鯨性に関係する諸問題を解
決した半導体搭載用基板を提供することを目的としたも
のである。
The present invention relates to a semiconductor mounting board that is required to have high density and high reliability as the number of pins increases.
In order to meet these demands, we have developed a multi-layer wiring structure for the board, and by wiring signal lines over two or more layers, we have created a semiconductor mounting board that solves problems related to thin circuits, disconnections, wire breaks, etc. It is intended to provide.

〔課題を解決するための手段〕[Means to solve the problem]

即ち本発明は、所望の位置にデバイスホールを形成した
片面銅張積層板と、他の片面銅張積層板とを互いに銅箔
面が外側になるように接着シートにて積層一体化した基
板、もしくは両面銅張積層板の所望の位置に座ぐり加工
して半導体搭載部となる凹部を形成した基板に、全面パ
ネルメッキを施し、凹部が形成された側の面に通常のサ
ブトラクト法により所望の回路形成し、所定の部分にソ
ルダーレジストを形成した後、露出している導体部分に
ニッケル・金メッキを施す第1の工程、第1の工程で得
られた基板の回路形成面上に、前記基板の凹部より大き
いデバイスホールおよび所望の位置に所望の回路を形成
し、所定の部分にソルダーレジストを形成後、露出して
いる導体部分にニッケル・金メッキを施した1枚もしく
は複数枚の片面銅張積N板を、接着シートを介して順次
積層し、次いで、最外層にデバイスホールのみを形成し
た片面銅張積層板を積層一体化する第2の工程、第2の
工程で得られた基板の所望の位置に各導体層間を接続す
るためのスルーホールを形成し、基板全体にパネルメッ
キを施し、基板の最外層両面にサブトラクト法にて回路
を形成する第3の工程、および、該基板の最外層両面に
ソルダーレジストを印刷した後、露出している導体部分
にニッケル・金メッキを施す第4の工程からなることを
特徴とする多層構造の半導体搭載用基板の製造方法であ
る。
That is, the present invention provides a substrate in which a single-sided copper-clad laminate with device holes formed at desired positions and another single-sided copper-clad laminate are laminated together with an adhesive sheet so that the copper foil side faces outward; Alternatively, a double-sided copper-clad laminate is counterboiled at the desired position to form a recess that will serve as a semiconductor mounting area, then full panel plating is applied to the board, and the surface on which the recess is formed is plated with the desired shape using a normal subtract method. After forming a circuit and forming a solder resist on a predetermined portion, the exposed conductor portion is plated with nickel and gold. After forming a device hole larger than the concave part and the desired circuit at the desired position, and forming a solder resist in the designated area, one or more single-sided copper-clad sheets with nickel and gold plating applied to the exposed conductor parts are formed. The second step is to sequentially laminate the N-laminated boards via adhesive sheets, and then to integrate the single-sided copper-clad laminate with only device holes formed in the outermost layer. A third step is to form through holes to connect the conductor layers at desired positions, apply panel plating to the entire board, and form circuits on both sides of the outermost layer of the board by the subtract method; This is a method for manufacturing a semiconductor mounting board having a multilayer structure, which comprises a fourth step of printing solder resist on both sides of the outermost layer and then plating exposed conductor parts with nickel and gold.

以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明による半導体搭載用基板の一実施例を示
す断面図で、第2図は本発明による半導体搭載用基板の
製造工程を示す図である。
FIG. 1 is a sectional view showing an embodiment of a semiconductor mounting substrate according to the present invention, and FIG. 2 is a diagram showing a manufacturing process of the semiconductor mounting substrate according to the present invention.

先ず、第2図(a)に示したように、片面銅張積層板(
11)の上に接着シー) (12)を載せ、所望の位置
に所望の大きさでルータ−加工、金型打抜、パンチング
等でデバイスホール(14)を形成した片面銅張積層板
(13)を載せ、銅箔面が互いに外側になるようにし、
必要に応じて加熱、加圧し積層一体化して、第2図(b
)のように半導体搭載用の凹部(15)を形成する。こ
こで、両面銅積層層板を用いて、所望の位置に所望の大
きさの座ぐり加工を行なって、同様に半導体搭載用の凹
部(15)を形成する方法も可能である。続いて、前記
により凹部(15)を形成した基板全体に銅パネルメッ
キを施す、w4パネルメッキは、無電解銅メッキを施し
た後、所望の厚さ、好ましくは約15〜20μmの厚み
の電解銅メッキを施すものである。さらに、基板の凹部
(15)を形成した側の面の導体層(18)に所望の回
路パターンとは逆のパターンレジストを施し、露出して
いる(レジストの付いていない)銅箔部分に半田メッキ
を施し、レジストを剥離した後、露出した銅箔をエツチ
ング加工して除去し、さらに先にメッキした半田を剥離
させる、謂る半田レジスト法により回路加工を行ない導
体層(18)に回路パターン(16)を形成させる。続
いて、得られた基板の導体層(1日)側にソルダーレジ
スト(17)を施して、半導体搭載用の凹部(15) 
、ポンディングパッド部(19)のレジストの付いてい
ない露出している導体部分に、ニッケル・金メッキを施
す。
First, as shown in Fig. 2(a), a single-sided copper-clad laminate (
Place adhesive sheet (12) on top of 11), and form a single-sided copper-clad laminate (13) with a device hole (14) in a desired size at a desired position by router processing, die cutting, punching, etc. ), and place the copper foil sides on the outside of each other.
If necessary, heat and pressurize to integrate the layers to form the structure shown in Figure 2 (b).
) A recess (15) for mounting the semiconductor is formed. Here, it is also possible to similarly form a recess (15) for mounting a semiconductor by using a double-sided copper laminate plate and performing counterbore processing of a desired size at a desired position. Next, copper panel plating is applied to the entire board in which the recesses (15) have been formed as described above.W4 panel plating is performed by applying electroless copper plating to a desired thickness, preferably about 15 to 20 μm. Copper plating is applied. Furthermore, a pattern resist opposite to the desired circuit pattern is applied to the conductor layer (18) on the side where the recess (15) is formed, and solder is applied to the exposed (no resist) copper foil portion. After plating is applied and the resist is peeled off, the exposed copper foil is etched and removed, and the plated solder is removed first. Circuit processing is performed using the so-called solder resist method to form a circuit pattern on the conductor layer (18). (16) is formed. Next, a solder resist (17) is applied to the conductor layer (1st) side of the obtained board to form a recess (15) for mounting a semiconductor.
, Nickel/gold plating is applied to the exposed conductor portion of the bonding pad portion (19) that is not coated with resist.

次に、第2図(c)に示したように、前記第1の工程に
て得られた基板の導体層(1日)の上に、接着シート(
12’)を介して片面銅張積層板(11’)を積層する
0片面銅積層層板(11’)は、直接積層される下側の
基板の凹部(15)の周囲にあるボンディングパット部
(19)が露出できる大きさのデバイスホール(14’
)を持ち、かつ導体層(18’)に所望の回路パターン
(16’)をフォトエツチング等のサブトラクト法で回
路形成を行ない、前記第1の工程と同様にしてソルダー
レジスト(17°)を施した後、露出している導体部分
であるポンディングパッド部(19°)に、ニッケル・
金メッキを施したものである。このような接着シート(
12′)と片面銅張積層板(11′)の組合せを、必要
に応じて1組もしくは複数組積層するが、2組以上用い
る場合は、上側に積層する銅張積層板には、下側に積層
される銅張積層板のデバイスホールより大きいデバイス
ホールを設けて、下側の導体層のボンディングバット部
がそれぞれ露出できるようにする。
Next, as shown in FIG. 2(c), an adhesive sheet (
The single-sided copper laminate laminate (11') is laminated with the single-sided copper clad laminate (11') via the bonding pad part around the recess (15) of the lower board to be directly laminated. (19) is large enough to expose the device hole (14'
), and a desired circuit pattern (16') is formed on the conductor layer (18') by a subtracting method such as photoetching, and a solder resist (17°) is applied in the same manner as in the first step. After that, apply nickel to the exposed conductor part (19°) of the bonding pad.
It is gold plated. Adhesive sheet like this (
12') and single-sided copper-clad laminates (11') are laminated as needed. However, when using two or more sets, the copper-clad laminates laminated on the upper side must be laminated on the lower side. A device hole larger than that of the copper-clad laminate to be laminated is provided so that the bonding butt portions of the lower conductor layer can be exposed.

さらに、片面W4張積層板(11°)の導体層(18°
)の上に、最外層となるデバイスホールのみを形成した
片面銅張積層板(11”)を、接着シー) (12”)
を介して載置し、必要に応じて加熱、加圧して全体を積
層一体化する。このようにして、4層以上の導体層を有
する基板が得られる。
Furthermore, a conductor layer (18°) of a single-sided W4 clad laminate (11°)
) on which a single-sided copper-clad laminate (11") with only the device holes formed as the outermost layer is glued onto the adhesive sheet (12")
The whole is laminated and integrated by heating and pressurizing as necessary. In this way, a substrate having four or more conductor layers is obtained.

次に、第2図(d)に示したように、前記第2の工程で
得られた基板の所望の箇所に、ピン(3)を挿入し各導
体層間を電気的に接続するためのスルーホール(20)
を形成する孔あけ加工を行なう。
Next, as shown in FIG. 2(d), pins (3) are inserted into desired locations on the substrate obtained in the second step to form through holes for electrically connecting each conductor layer. Hall (20)
Drilling is performed to form a hole.

続いて、スルーホール(20)の内部および基板全体に
銅パネルメッキを施す。銅メッキは、無電解銅メッキを
施した後、所望の厚み、好ましくは約15〜20μmの
厚みの電気銅メッキを施すものである。
Subsequently, copper panel plating is applied to the inside of the through hole (20) and the entire board. Copper plating is performed by applying electroless copper plating and then applying electrolytic copper plating to a desired thickness, preferably about 15 to 20 μm.

続いて、得られた基板の最外層となる上下両面の導体層
(18”、18”’)にフォトエツチング等のサブトラ
クト法によって回路を加工し、所望の回路パターンを形
成させる。
Subsequently, circuits are processed on the upper and lower conductive layers (18'', 18'''), which are the outermost layers of the obtained substrate, by a subtracting method such as photoetching to form a desired circuit pattern.

最後に、基板の上下両面の導体層(18”、18”’)
に、ソルダーレジスト(17″)を施し、凹部(15)
、半導体ポンディングパッド部(19,19’ 、19
”)、およびスルーホール部分(20)の露出している
導体部分にニッケル・金メッキを施す。このとき、各片
面銅張積層板のデバイスホールの内周面に相当する垂直
部分(21)は、ニッケル・金メッキを施されることな
く露出状態で残される。
Finally, conductor layers (18", 18"') on both the top and bottom of the board.
Apply solder resist (17″) to the recess (15).
, semiconductor bonding pad section (19, 19', 19
”) and the exposed conductor portions of the through-hole portions (20) are plated with nickel and gold.At this time, the vertical portions (21) corresponding to the inner peripheral surfaces of the device holes of each single-sided copper-clad laminate are plated with nickel and gold. It is left exposed without being plated with nickel or gold.

〔発明の効果〕〔Effect of the invention〕

本発明により、従来の2層構造の回路基板では困難であ
った300ピン以上の多ピン半導体搭載用基板の製造が
可能になり、回路パターンを2層以上にわたって引き廻
す事により生ずる断線・細り等の問題もなく、さらには
、半導体搭載部分のに優れた構造であり、また、各導体
層間の垂直部分(21)で、半導体と基板のポンディン
グパッド部を接続しているボンディングワイヤーが凹部
のエツジに接触してショート等の不良を発生することの
ない構造である、高信頼性のある半導体搭載用基板を提
供するものとしてきわめて有用である。
The present invention makes it possible to manufacture multi-pin semiconductor mounting boards with 300 pins or more, which was difficult with conventional two-layer circuit boards. There were no problems, and furthermore, the structure of the semiconductor mounting part was excellent, and the bonding wire connecting the semiconductor and the bonding pad part of the board in the vertical part (21) between each conductor layer was inserted into the recess. It is extremely useful for providing a highly reliable semiconductor mounting substrate that has a structure that does not cause defects such as short circuits due to contact with edges.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体搭載用基板の概念を示す断
面図で、第2図は本発明の半導体搭載用基板の製造工程
の一実施例を示す図である。
FIG. 1 is a sectional view showing the concept of a semiconductor mounting substrate according to the present invention, and FIG. 2 is a diagram showing an embodiment of the manufacturing process of the semiconductor mounting substrate according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1) デバイスホールを形成した片面銅張積層板と他
の片面銅張積層板とを互いに銅箔面が外側になるように
接着シートにて積層一体化した基板、もしくは両面銅張
積層板に座ぐり加工して半導体搭載部となる凹部を形成
した基板に、全面パネルメッキを施し、凹部が形成され
た側の面にサブトラクト法により回路を形成し、ソルダ
ーレジストを形成した後、露出している導体部分にニッ
ケル・金メッキを施す第1の工程、 前記基板の凹部より大きいデバイスホールおよび回路を
形成し、ソルダーレジストを形成し、露出している導体
部分にニッケル・金メッキを施した1枚もしくは複数枚
の片面銅張積層板を、前記基板の回路形成面上に接着シ
ートを介して順次積層し、次いで、最外層にデバイスホ
ールのみを形成した片面銅張積層板を積層一体化する第
2の工程、 第2の工程で得られた基板の各導体層間を接続するため
のスルーホールを形成し、基板全体にパネルメッキを施
し、基板の最外層両面にサブトラクト法にて回路を形成
する第3の工程、および、基板の最外層両面にソルダー
レジストを印刷した後、露出している導体部分にニッケ
ル・金メッキを施す第4の工程 から成ることを特徴とする多層構造の半導体搭載用基板
の製造方法。
(1) A board in which a single-sided copper-clad laminate with a device hole formed therein and another single-sided copper-clad laminate are laminated together using an adhesive sheet with the copper foil side facing outward, or a double-sided copper-clad laminate is used. A board on which a concave portion that will become the semiconductor mounting area is formed by counterbore processing is subjected to full panel plating, a circuit is formed on the side where the concave portion is formed by the subtract method, and a solder resist is formed. The first step is to apply nickel/gold plating to the exposed conductor parts, form device holes and circuits larger than the recesses of the board, form a solder resist, and apply nickel/gold plating to the exposed conductor parts. A second step in which a plurality of single-sided copper-clad laminates are sequentially laminated on the circuit forming surface of the board via an adhesive sheet, and then a single-sided copper-clad laminate having only device holes formed in the outermost layer is laminated and integrated. The second step is to form through holes to connect the conductor layers of the board obtained in the second step, apply panel plating to the entire board, and form circuits on both sides of the outermost layer of the board by the subtract method. 3, and a fourth step of printing solder resist on both sides of the outermost layer of the board, and then plating exposed conductor parts with nickel and gold. Production method.
JP1091911A 1989-04-13 1989-04-13 Manufacture of substrate for mounting semiconductor Pending JPH02271653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091911A JPH02271653A (en) 1989-04-13 1989-04-13 Manufacture of substrate for mounting semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091911A JPH02271653A (en) 1989-04-13 1989-04-13 Manufacture of substrate for mounting semiconductor

Publications (1)

Publication Number Publication Date
JPH02271653A true JPH02271653A (en) 1990-11-06

Family

ID=14039765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091911A Pending JPH02271653A (en) 1989-04-13 1989-04-13 Manufacture of substrate for mounting semiconductor

Country Status (1)

Country Link
JP (1) JPH02271653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216539A (en) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd Printed wiring board nad semiconductor device
KR100285116B1 (en) * 1997-02-12 2001-06-01 모기 쥰이찌 Manufacturing method of semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216539A (en) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd Printed wiring board nad semiconductor device
KR100285116B1 (en) * 1997-02-12 2001-06-01 모기 쥰이찌 Manufacturing method of semiconductor package

Similar Documents

Publication Publication Date Title
EP1601053A1 (en) Wired circuit board and connection structure of wired circuit board
US20080128288A1 (en) Method of manufacturing a multi-layer wiring board using a metal member having a rough surface
TWI223972B (en) Double-sided printed circuit board without via holes and method of fabricating the same
JPH0221672B2 (en)
JPH04282843A (en) Interconnection device and manufacture thereof
EP1802187A2 (en) Printed circuit board and manufacturing method thereof
KR20040078558A (en) Flexible wired circuit board
JP3155565B2 (en) Manufacturing method of printed wiring board
JPH09172261A (en) Manufacture of multilayered printed wiring board
JPS59175796A (en) Method of producing multilayer printed circuit board
JPH02271653A (en) Manufacture of substrate for mounting semiconductor
JP3575783B2 (en) Printed wiring board and method of manufacturing the same
JPH02237142A (en) Manufacture of board for semiconductor mounting use
JPH0412702Y2 (en)
JPH05327227A (en) Blind hole and its production
JPS63137498A (en) Manufacture of through-hole printed board
JP2004214393A (en) Method for producing multilayer wiring board
JPS5987896A (en) Multilayer printed board
JP3165617B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP4176283B2 (en) Manufacturing method of flexible fine multilayer circuit board
JPH03138970A (en) Manufacture of board for mounting semiconductor
JPS62186595A (en) Multilayer printed wiring board and manufacture of the same
JPH0329347A (en) Manufacture of board for semiconductor mounting use
JPH10163631A (en) Multi-layer printed circuit board and its manufacturing method
JP2629917B2 (en) Multilayer printed wiring board and method of manufacturing the same