JPH0225427B2 - - Google Patents

Info

Publication number
JPH0225427B2
JPH0225427B2 JP59060207A JP6020784A JPH0225427B2 JP H0225427 B2 JPH0225427 B2 JP H0225427B2 JP 59060207 A JP59060207 A JP 59060207A JP 6020784 A JP6020784 A JP 6020784A JP H0225427 B2 JPH0225427 B2 JP H0225427B2
Authority
JP
Japan
Prior art keywords
gas
target
film
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59060207A
Other languages
Japanese (ja)
Other versions
JPS60204877A (en
Inventor
Katsutaro Ichihara
Yoshiaki Terajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6020784A priority Critical patent/JPS60204877A/en
Publication of JPS60204877A publication Critical patent/JPS60204877A/en
Publication of JPH0225427B2 publication Critical patent/JPH0225427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、スパツタリングを利用して金属や金
属化合物等の薄膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of forming a thin film of metal, metal compound, etc. using sputtering.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

スパツタリング現象を利用して薄膜を形成する
技術として、Ar、Kr、Xeなどの希ガスをグロー
放電して生成されるガスイオンをターゲツト近傍
に形成される強電界領域において加速し、このガ
スイオンによりターゲツト物質をスパツタリング
により放出して、これをターゲツトに対向する基
板上に被着させる技術が知られている。このスパ
ツタリングは、簡単な装置構成で大面積の基板に
金属や金属化合物を形成することができるため、
耐蝕用、装飾用、その他機能性薄膜のコーテイン
グなど、幅広い分野で実用されている。
As a technology for forming thin films using the sputtering phenomenon, gas ions generated by glow discharge of a rare gas such as Ar, Kr, or Xe are accelerated in a strong electric field region formed near a target, and the gas ions are Techniques are known in which a target material is sputtered and deposited on a substrate opposite the target. This sputtering can form metals and metal compounds on large-area substrates with a simple equipment configuration.
It is used in a wide range of fields, including corrosion-resistant, decorative, and other functional thin film coatings.

しかしながら、スパツタリング法で形成された
薄膜の品質は、ターゲツト物質のみならずグロー
放電のパラメータに大きく依存するものであり、
実用レベルにおいても放電パラメータの不備によ
る事故(低品質、再現性の欠如等)を招いている
のが現状である。
However, the quality of thin films formed by sputtering depends not only on the target material but also on the parameters of the glow discharge.
The current situation is that even at a practical level, accidents (low quality, lack of reproducibility, etc.) are caused by inadequate discharge parameters.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した点に鑑み、グロー放電条件
を規定する事により、不純物の取込みやダメージ
が少なく、かつ、緻密な高品質薄膜を大面積に亙
つて一様に形成することを可能とした薄膜形成方
法を提供することを目的とする。
In view of the above-mentioned points, the present invention makes it possible to uniformly form a dense, high-quality thin film over a large area with less incorporation of impurities and damage by specifying glow discharge conditions. The purpose of the present invention is to provide a method for forming a thin film.

〔発明の概要〕[Summary of the invention]

本発明は、第1に、スパツタリング容器内の供
給ガス圧力P[torr]を0.5×10-3以上、20×10-3
以下とする。下限はダメージの少ない薄膜を得る
ために必要であり、上限は大面積に亙り均一な薄
膜を得るために必要な条件である。第2に、供給
ガス流量をQ[SCCM]としたとき、P/Qの値
を2×10-3以下とする。これは、形成される薄膜
への不純物の取込みを十分に小さくする上で重要
な条件である。第3に、ターゲツトの原子量を
MT、供給ガスの原子量をMG、ターゲツトと基板
の間の距離をd[cm]としたとき、 Pd≦(MG+MT2/20MGMT なる条件に設定する。これは、緻密な薄膜を得る
上で重要である。ただし、Pdが余り小さいと放
電が不安定になるので、下限は0.001とする。ま
た、供給ガスが多成分ガスの場合、MGは各元素
の原子量×原子成分比の和とし、ターゲツトが多
成分の場合のMTも同様とする。
The present invention firstly reduces the supply gas pressure P [torr] in the sputtering container to 0.5×10 -3 or more, 20×10 -3
The following shall apply. The lower limit is necessary to obtain a thin film with little damage, and the upper limit is a necessary condition to obtain a uniform thin film over a large area. Second, when the supply gas flow rate is Q [SCCM], the value of P/Q is set to 2×10 −3 or less. This is an important condition for sufficiently reducing the incorporation of impurities into the formed thin film. Third, the atomic mass of the target
When M T is the atomic weight of the supplied gas, M G is the atomic weight of the supplied gas, and d [cm] is the distance between the target and the substrate, the conditions are set such that Pd≦(M G +M T ) 2 /20 M G M T. This is important in obtaining a dense thin film. However, if Pd is too small, the discharge will become unstable, so the lower limit is set to 0.001. Furthermore, when the supplied gas is a multi-component gas, M G is the sum of the atomic weight of each element x the atomic component ratio, and the same applies to M T when the target is multi-component.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、グロー放電の条件を最適設計
することにより、スパツタリングにより得られる
薄膜への不純物の取込みやダメージが少なく、緻
密で高品質かつ大面積に亙つて均一な薄膜を得る
ことができる。
According to the present invention, by optimally designing glow discharge conditions, it is possible to obtain a dense, high-quality, and uniform thin film over a large area with less incorporation of impurities and damage to the thin film obtained by sputtering. .

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の詳細を説明す
る。第1図は、本発明の実施に用いた平行平板型
スパツタ装置の概略構成図である。図において、
1は薄膜形成容器、2は8インチφのターゲツ
ト、3は120mφの基板、4はRF電源、5はガス
供給系、6は排気系である。以上の構成により、
容器1を真空排気した後、ガス供給系を操作して
容器1内にガスを一定流量で導入し、容器1内の
ガス圧力を一定に保つた後、電源4を投入してタ
ーゲツト2に電力を印加する。これにより、ター
ゲツト2と基板3との間にガスのグロー放電が励
起され、ターゲツト近傍には陰極暗部と称される
高電界領域が形成される。グロー放電中のガスイ
オンはこの高電界領域でターゲツト2方向に加速
され、ターゲツト2に衝突してターゲツト物質を
スパツタリング放出し、この放出粒子がターゲツ
ト2に対向して配置された基板3の上に薄膜とし
て被着されることになる。
Hereinafter, details of the present invention will be explained with reference to the drawings. FIG. 1 is a schematic diagram of a parallel plate type sputtering apparatus used in carrying out the present invention. In the figure,
1 is a thin film forming container, 2 is an 8 inch diameter target, 3 is a 120 m diameter substrate, 4 is an RF power source, 5 is a gas supply system, and 6 is an exhaust system. With the above configuration,
After evacuating the container 1, operate the gas supply system to introduce gas into the container 1 at a constant flow rate, keep the gas pressure inside the container 1 constant, and then turn on the power source 4 to supply power to the target 2. Apply. As a result, a gas glow discharge is excited between the target 2 and the substrate 3, and a high electric field region called a cathode dark region is formed near the target. Gas ions during the glow discharge are accelerated in the direction of the target 2 in this high electric field region, collide with the target 2, sputter and release the target material, and the released particles are deposited on the substrate 3 placed opposite the target 2. It will be deposited as a thin film.

以上の装置構成を用いて、ターゲツト2として
FeとTbの二種類を、供給ガスとしてArガスと
Xeガスの二種類を使用して、供給ガスの圧力P、
流量Q、ターゲツト2と基板3間の間隔dを変化
させて薄膜を形成する実験を行なつた。以下、そ
の実験データを参照して本発明の有用性を明らか
にする。
Using the above device configuration, as target 2
Two types of Fe and Tb are used with Ar gas as the supply gas.
Using two types of Xe gas, the pressure of the supply gas P,
An experiment was conducted in which a thin film was formed by varying the flow rate Q and the distance d between the target 2 and the substrate 3. Hereinafter, the usefulness of the present invention will be clarified with reference to the experimental data.

第2図は、形成された薄膜の膜厚の分布を測定
したデータである。これは、FeターゲツトとAr
ガスを使用し、ガス流量Qを24[SCCM]、RFパ
ワーを300[W]、ターゲツト−基板間隔をdを75
[mm]とし、ガス圧力が2[mtorr]と50[mtorr]
の二種類の場合について10分間のスパツタリング
をおこなつて試料を形成し、基板上の半径3[cm]
〜6[cm]の範囲で膜厚を測定した結果である。
第2図の縦軸は膜堆積速度(膜厚をスパツタ時間
で除した値)であり、横軸は基板中心からの距離
である。図から明らかなように、膜堆積速度はガ
ス圧力50[mtorr]の場合の方が2[mtorr]の場
合より大きいが、50[mtorr]では膜厚が著しく
不均一である。第3図は堆積速度勾配とArガス
圧力の関係を示すデータである。第3図の縦軸は
第2図のプロツト点を結ぶ直線の傾斜で示してあ
り、第3図の数値が小さい程、膜厚の均一性が良
い。
FIG. 2 shows data obtained by measuring the thickness distribution of the formed thin film. This is a combination of Fe target and Ar
Using gas, the gas flow rate Q is 24 [SCCM], the RF power is 300 [W], and the target-substrate distance d is 75.
[mm] and the gas pressure is 2 [mtorr] and 50 [mtorr]
Sputtering was performed for 10 minutes for two types of cases, and samples were formed with a radius of 3 [cm] on the substrate.
This is the result of measuring film thickness in the range of ~6 [cm].
The vertical axis in FIG. 2 is the film deposition rate (the value obtained by dividing the film thickness by the sputtering time), and the horizontal axis is the distance from the center of the substrate. As is clear from the figure, the film deposition rate is higher when the gas pressure is 50 [mtorr] than when it is 2 [mtorr], but the film thickness is significantly non-uniform at 50 [mtorr]. FIG. 3 shows data showing the relationship between deposition rate gradient and Ar gas pressure. The vertical axis in FIG. 3 is indicated by the slope of the straight line connecting the plot points in FIG. 2, and the smaller the numerical value in FIG. 3, the better the uniformity of the film thickness.

薄膜の用途によつては膜厚の均一性に余り拘ら
ない場合もあるが、例えば、平均膜厚1000[Å]
の膜で半径5[cm]の基板上に±250[Å]以内の
膜厚分布が許されるような緩い仕様の場合でも、
ガス圧力は20[mtorr]以下に抑えなければなら
ないことが第3図より明らかである。ガス圧力が
高いと膜厚が不均一になる理由は、グロー放電中
のガスイオン密度の分布がガス圧力の増加に従つ
て放電の中心軸近傍に偏つてくるためである。
Depending on the application of the thin film, the uniformity of the film thickness may not be so important, but for example, an average film thickness of 1000 [Å]
Even in the case of loose specifications such as allowing a film thickness distribution within ±250 [Å] on a substrate with a radius of 5 [cm],
It is clear from Figure 3 that the gas pressure must be kept below 20 [mtorr]. The reason why the film thickness becomes non-uniform when the gas pressure is high is that the distribution of gas ion density during glow discharge becomes biased toward the vicinity of the central axis of the discharge as the gas pressure increases.

一方、ガス圧力が余り低すぎると、前記したよ
うに膜堆積速度が低下してしまう。例えば、ガス
圧力以外は第2図と同じ条件では、ガス圧力0.5
mtorrの場合、堆積速度は50[Å/min]であり、
2[mtorr]の場合に対して約1/2に低下する。
また、より低ガス圧では膜面へ入射するガスイオ
ンのエネルギーが過剰に増加し、膜の受けるダメ
ージが大きくなる。
On the other hand, if the gas pressure is too low, the film deposition rate will decrease as described above. For example, under the same conditions as in Figure 2 except for the gas pressure, the gas pressure is 0.5
In the case of mtorr, the deposition rate is 50 [Å/min],
It is reduced to about 1/2 compared to the case of 2 [mtorr].
Furthermore, at lower gas pressures, the energy of gas ions incident on the membrane surface increases excessively, resulting in greater damage to the membrane.

以上に述べた理由から、ガス圧は、大面積基板
に均一な膜厚で薄膜を形成するために20[mtorr]
以下に押えられるべきであり、また、膜を迅速に
形成するためには0/5[mtorr]以上に設定さ
れるべきである。
For the reasons stated above, the gas pressure is set at 20 [mtorr] in order to form a thin film with a uniform thickness on a large area substrate.
In addition, in order to quickly form a film, it should be set to 0/5 [mtorr] or more.

次に、ガス圧Pとガス流量Qの関係について説
明する。通常の薄膜形成方法の容器のリーク量は
10-3[mtorr・1/sec]程度であり、これを
SCCM単位に換算すると、7.9×10-5[SCCM]と
なる。この程度の真空漏れを有する容器にプロセ
ス用ガス(本発明の場合、Ar、Kr、Keなど)を
Q[SCCM]流し、容器内の圧力をP[torr]に保
持した場合、不純物ガス分圧Pc[torr]は、(Q≫
7/9×10-5とすると)、 Pc=7.9×10-5P/Q[torr] で与えられ、基板の単位面積当りに毎秒入射する
不純物ガス粒子密度nC[cm-2sec-1]は、 nC≒3.54×1020×Pc=2.8×1015P/Q となる。一方、基板の単位面積当りに毎秒入射す
るターゲツト粒子密度nT[cm-2sec-1]は、膜の堆
積速度をD[Åsec-1]、ターゲツト粒子の原子直
径をa[Å]とすると、 nT≒D×1016/a3 で与えられる。a≒3[Å]であり、D≒2[Å
sec-1]とすると、nT≒7.4×1014となる。不純物
の少ない膜を得るためには、nT≫nCでなければな
らない。ガスとしてAr、ターゲツトとしてTbと
Feの混合ターゲツト(Tb30%)を使用し、RFパ
ワー300[W]でP/Qを変化してTbFe膜を形成
した。そ結果、P/Q≦2×10-3[torr/SCCM]
(NC≧1.1×10-2nT)の範囲で垂直磁化膜が得られ
たのに対し、P/Q≧3×10-3[torr/SCCM]
(nC≧1.1×10-2nT)の範囲では不純物の影響が大
きく面内磁化膜となつた。膜内に含有する不純物
の許容量は膜の用途によつて異なるが、上記実施
例結果によれば、プロセス用ガス圧力Pとガス流
量Qの比P/Qは2×10-3[torr/SCCM]以下
に設定されるべきである。
Next, the relationship between gas pressure P and gas flow rate Q will be explained. The amount of leakage from the container in the normal thin film formation method is
10 -3 [mtorr・1/sec], which is
When converted to SCCM units, it becomes 7.9×10 -5 [SCCM]. When a process gas (in the case of the present invention, Ar, Kr, Ke, etc.) is flowed Q [SCCM] into a container with this degree of vacuum leakage and the pressure inside the container is maintained at P [torr], the impurity gas partial pressure Pc[torr] is (Q≫
7/9×10 -5 ), Pc=7.9×10 -5 P/Q [torr], and impurity gas particle density n C [cm -2 sec -1 that is incident per second per unit area of the substrate] ] is n C ≒3.54×10 20 ×Pc=2.8×10 15 P/Q. On the other hand, the density of target particles incident per second per unit area of the substrate, n T [cm -2 sec -1 ], is given by D [Åsec -1 ] for the film deposition rate and a [Å] for the atomic diameter of the target particles. , n T ≈D×10 16 /a 3 . a≒3[Å] and D≒2[Å]
sec -1 ], then n T ≒7.4×10 14 . In order to obtain a film with few impurities, n T ≫ n C must be satisfied. Ar as gas, Tb as target
A TbFe film was formed using a Fe mixed target (30% Tb) and changing P/Q with RF power of 300 [W]. As a result, P/Q≦2×10 -3 [torr/SCCM]
(N C ≧1.1×10 -2 n T ), whereas a perpendicularly magnetized film was obtained in the range of P/Q≧3×10 -3 [torr/SCCM]
In the range of (n C ≧1.1×10 -2 n T ), the influence of impurities was large and the film became an in-plane magnetized film. The allowable amount of impurities contained in the membrane varies depending on the use of the membrane, but according to the results of the above examples, the ratio P/Q of the process gas pressure P and the gas flow rate Q is 2×10 -3 [torr/ SCCM] or below.

第4図は、膜の原子数密度(膜の緻密さに対
応)の実測データを示す図である。ガスはArと
Xeの二種類を、ターゲツトはFeとTbの二種類を
使用し、RFパワー300[W]、ガス流量[SCCM]、
ターゲツト−基板間隔75[mm]でサンプルを形成
し、誘導結合プラズマを用いた発光分光法により
膜の質量を測定し、それを膜の体積で除して原子
数密度を算出した。膜厚勾配によるエラーを避け
るため、サンプルの形状は基板ホルダーと同心の
円環とした。Arガス−Feターゲツトの組合わせ
では、ガス圧10[mtorr]以下では膜の原子数密
度はバルクの体心立方晶のFeの密度8.5×1022[cm
-3]に近い値を示すが、10[mtorr]以上では膜
の緻密性が減少している。Arガス−Tb−ターゲ
ツトの組合わせでは、ガス圧30[mtorr]以下の
範囲で、膜電子数密度はバルクの六方晶のTbの
密度である3.1×1022に近い値に維持される。Xe
ガス−Tbターゲツトの組合わせでは、ガス圧10
[mtorr]以上で膜の緻密性が減少している。
FIG. 4 is a diagram showing actually measured data of the atomic number density of the film (corresponding to the density of the film). Gas is Ar
Two types of Xe were used, two types of targets were Fe and Tb, RF power was 300 [W], gas flow rate [SCCM],
A sample was formed with a target-substrate distance of 75 [mm], the mass of the film was measured by emission spectroscopy using inductively coupled plasma, and the atomic number density was calculated by dividing the mass by the volume of the film. To avoid errors due to film thickness gradients, the shape of the sample was a ring concentric with the substrate holder. In the combination of Ar gas and Fe target, the atomic number density of the film is 8.5×10 22 [cm
-3 ], but the density of the film decreases above 10 [mtorr]. In the Ar gas-Tb-target combination, the film electron number density is maintained at a value close to 3.1×10 22 which is the density of bulk hexagonal Tb in a gas pressure range of 30 [mtorr] or less. Xe
For gas-Tb target combinations, gas pressure 10
The density of the film decreases above [mtorr].

基板面へ入射する粒子は、ターゲツト粒子の他
にスパツタガス粒子や不純物ガス粒子があるが、
これらのうち最も入射頻度が高いのは、スパツタ
ガス粒子である。膜がち密であるためには、基板
面のターゲツト粒子の被着の際に基板面或いは膜
面に物理吸収したスパツタガス粒子層をターゲツ
ト粒子がはじきとばして膜構成因子となることが
必要であり、そのためにはターゲツト粒子がある
程度のエネルギーを持つていることが必要であ
る。ターゲツト面からスパツタリング放出される
際のターゲツト粒子のエネルギーは平均的に10
[eV]程度と十分に大きいが、スパツタ放出した
粒子は基板面へ被着する前に気相中においてガス
粒子と衝突してエネルギーを失う。スパツタ放出
してから基板へ入射する迄に失うエネルギーは、
衝突の回数と一回の衝突で失うエネルギーの積で
与えられる。一回の衝突で失うエネルギー係数
は、ターゲツト粒子の原子量MTとガス粒子の原
子量MGを用いて、2MGMT/(MG+MT2で与え
られ、衝突の回数はガス圧力Pとターゲツト−基
板間隔dの積Pdに比例する。故にち密な膜を得
るためには、 Pd×2MGMT/(MG+MT2 がある値より小さくなければならず、前記のデー
タから、 Pd≦(MG+MT2/20MGMT であれば、膜の緻密性はバルクの約90%以上に保
たれることがわかる。
In addition to target particles, particles that enter the substrate surface include sputter gas particles and impurity gas particles.
Among these, sputter gas particles have the highest incidence frequency. In order for the film to be dense, it is necessary for the target particles to repel the layer of sputter gas particles physically absorbed on the substrate surface or film surface when the target particles are deposited on the substrate surface, and to become a film constituent factor. For this purpose, it is necessary that the target particle has a certain amount of energy. The average energy of target particles when sputtering from the target surface is 10
[eV] is sufficiently large, but the sputtered particles collide with gas particles in the gas phase and lose energy before adhering to the substrate surface. The energy lost from spatter emission to the time it hits the substrate is:
It is given by the product of the number of collisions and the energy lost in one collision. The coefficient of energy lost in one collision is given by 2M G M T /(M G + M T ) 2 using the atomic mass M T of the target particle and the atomic mass M G of the gas particle, and the number of collisions is given by the gas pressure P and the target-substrate distance d, Pd. Therefore, in order to obtain a dense film, Pd×2M G M T /(M G +M T ) 2 must be smaller than a certain value, and from the above data, Pd≦(M G +M T ) 2 /20M It can be seen that with GMT , the density of the film is maintained at about 90% or more of the bulk.

一方、Pdが余り小さいと、放電開始時間が上
昇する、放電が不安定になる、などの不都合が生
じるので、Pdの下限としては、0.001[torr・cm]
程度が適当である。
On the other hand, if Pd is too small, disadvantages such as increased discharge start time and unstable discharge will occur, so the lower limit of Pd is 0.001 [torr cm]
The degree is appropriate.

以上のように本発明の設定条件に従つてスパツ
タリングすれば、ダメージや不純物取込みが少な
く、かつ緻密な薄膜を大面積に亙つて均一に形成
することができる。
As described above, by sputtering according to the set conditions of the present invention, it is possible to uniformly form a dense thin film over a large area with little damage or impurity incorporation.

なお本発明は実施例に記載した平行平均板型
RFスパツタ装置を用いた薄膜形成方法に限られ
るものではなく、DCスパツタ法、マグネトロン
スパツタ法、同軸スパツタ法、多極スパツタ法、
反応性スパツタ法等、全てのスパツタリング現象
を利用した薄膜形成方法に適用することができ
る。
Note that the present invention is based on the parallel average plate type described in the Examples.
Thin film forming methods are not limited to those using RF sputtering equipment, but include DC sputtering, magnetron sputtering, coaxial sputtering, multipolar sputtering,
It can be applied to all thin film forming methods that utilize sputtering phenomena, such as reactive sputtering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのス
パツタ装置を示す図、第2図は形成された薄膜の
膜堆積速度分布を示す図、第3図は同じく膜堆積
速度勾配とガス圧の関係を示す図、第4図は同じ
く形成された膜の原子数密度とガス圧の関係を示
す図である。 1……薄膜形成容器、2……ターゲツト、3…
…基板、4……RF電源、5……ガス供給系、6
……排気系。
FIG. 1 is a diagram showing a sputtering apparatus for explaining an embodiment of the present invention, FIG. 2 is a diagram showing the film deposition rate distribution of the formed thin film, and FIG. 3 is a diagram showing the film deposition rate gradient and gas pressure. FIG. 4 is a diagram showing the relationship between the atomic number density and gas pressure of a similarly formed film. 1...Thin film forming container, 2...Target, 3...
...Substrate, 4...RF power supply, 5...Gas supply system, 6
...exhaust system.

Claims (1)

【特許請求の範囲】 1 ガス供給系及び排気系を有する容器内にター
ゲツトとこれに対向する基板を配置して、供給ガ
スのグロー放電により生成されたガスイオンによ
りターゲツトをスパツタリングして前記基板上に
所定の薄膜を形成する方法において、供給ガスの
流量をQ[SCCM]、このガスの原子量をMG、容
器内の圧力をP[torr]、ターゲツトの原子量を
MT、ターゲツトと基板の間隔をd[cm]としたと
き、 0.5×10-3≦P≦20×10-3 P/Q≦2×10-3 0.001≦Pd、かつ、 Pd≦(MG+MT2/20MGMT なる条件を満たすことを特徴とする薄膜形成方
法。
[Claims] 1. A target and a substrate facing the target are placed in a container having a gas supply system and an exhaust system, and the target is sputtered onto the substrate by gas ions generated by glow discharge of the supply gas. In the method of forming a predetermined thin film in
M T , when the distance between the target and the substrate is d [cm], 0.5×10 -3 ≦P≦20×10 -3 P/Q≦2×10 -3 0.001≦Pd, and Pd≦(M G +M T ) 2 /20M G M T A thin film forming method characterized by satisfying the following conditions.
JP6020784A 1984-03-28 1984-03-28 Formation of thin film Granted JPS60204877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6020784A JPS60204877A (en) 1984-03-28 1984-03-28 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6020784A JPS60204877A (en) 1984-03-28 1984-03-28 Formation of thin film

Publications (2)

Publication Number Publication Date
JPS60204877A JPS60204877A (en) 1985-10-16
JPH0225427B2 true JPH0225427B2 (en) 1990-06-04

Family

ID=13135467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6020784A Granted JPS60204877A (en) 1984-03-28 1984-03-28 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS60204877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853232B2 (en) 2007-03-29 2014-10-07 Wyeth Llc Peripheral opioid receptor antagonists and uses thereof
US8916706B2 (en) 2008-02-06 2014-12-23 Progenics Pharmaceuticals, Inc. Preparation and use of (R),(R)-2,2′-bis-methylnaltrexone
US8916581B2 (en) 2005-05-25 2014-12-23 Progenics Pharmaceuticals, Inc. (S)-N-methylnaltrexone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817987B (en) * 2020-06-19 2023-04-18 华为技术有限公司 Electronic equipment and processing method of rear cover of electronic equipment

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS=1981 *
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY=1982 *
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY=1983 *
THIN SOLID FILMS=1979 *
THIN SOLID FILMS=1983 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916581B2 (en) 2005-05-25 2014-12-23 Progenics Pharmaceuticals, Inc. (S)-N-methylnaltrexone
US8853232B2 (en) 2007-03-29 2014-10-07 Wyeth Llc Peripheral opioid receptor antagonists and uses thereof
US8916706B2 (en) 2008-02-06 2014-12-23 Progenics Pharmaceuticals, Inc. Preparation and use of (R),(R)-2,2′-bis-methylnaltrexone

Also Published As

Publication number Publication date
JPS60204877A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
US5707498A (en) Avoiding contamination from induction coil in ionized sputtering
Tarng et al. Auger electron spectroscopy studies of sputter deposition and sputter removal of Mo from various metal surfaces
JP3343620B2 (en) Method and apparatus for forming a thin film by magnetron sputtering
EP1184483B1 (en) Thin-film formation system and thin-film formation process
Maniv et al. Oxidation of an aluminum magnetron sputtering target in Ar/O2 mixtures
JPH0521347A (en) Sputtering device
CN102492924A (en) Autologous ion bombardment assisted electron beam evaporation device, and method for coating film by using same
US6153068A (en) Parallel plate sputtering device with RF powered auxiliary electrodes and applied external magnetic field
JPH0225427B2 (en)
US5637199A (en) Sputtering shields and method of manufacture
JPS61235560A (en) Magnetron sputtering device
Kaltofen et al. Influence of low-energy bombardment of an RF magnetron sputtering discharge on texture formation and stress in ZnO films
JPS6277477A (en) Thin film forming device
JPH06272037A (en) Formation of thin film and apparatus therefor
JPH0867981A (en) Sputtering device
JPS6176662A (en) Method and device for forming thin film
Nyaiesh et al. The effects of gas composition on discharge and deposition characteristics when magnetron sputtering aluminium
JPH0967671A (en) Production of titanium nitride film
EP0790328A1 (en) Thin film deposition
Manova et al. Evolution of local texture and grain morphology in metal plasma immersion ion implantation & deposition of TiN
Nenadović et al. Diffusion in Au-Ni thin films
Chen et al. Performance of a planar magnetron sputtering apparatus with complex targets
Rudeck et al. The angular dependence of preferential sputtering and composition in aluminum–copper thin films
Reineck et al. Optimized process parameters for high volume wafer metallization
Ishii et al. Deposition of ferromagnetic metal thin films by ion beam sputtering

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term