JPH0222631A - Detector for frequency multiplex optical communication - Google Patents

Detector for frequency multiplex optical communication

Info

Publication number
JPH0222631A
JPH0222631A JP63170954A JP17095488A JPH0222631A JP H0222631 A JPH0222631 A JP H0222631A JP 63170954 A JP63170954 A JP 63170954A JP 17095488 A JP17095488 A JP 17095488A JP H0222631 A JPH0222631 A JP H0222631A
Authority
JP
Japan
Prior art keywords
frequency
light
resonator
optical communication
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170954A
Other languages
Japanese (ja)
Other versions
JP2875537B2 (en
Inventor
Shinji Sakano
伸治 坂野
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63170954A priority Critical patent/JP2875537B2/en
Publication of JPH0222631A publication Critical patent/JPH0222631A/en
Application granted granted Critical
Publication of JP2875537B2 publication Critical patent/JP2875537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high frequency resolution to cover a wide wavelength range by providing a resonator which has transmission characteristics by positions of plural frequencies whose intervals are different from those of frequencies of plural transmission light. CONSTITUTION:A frequency selecting means which detects the light having a desired frequency from transmission light having plural frequencies is provided with a Fabry-Perot laser 3 which has oscillation characteristics in positions of plural frequencies whose intervals are different from those of frequencies of plural transmission light and a control means which controls this resonator to select the light having a desired frequency. It is preferable that a Fabry-Perot etalon resonator where the resonator length can be controlled spatially or by the change of the refractive index or a resonator where the equivalent resonator length can be controlled is used as this resonator. Thus, a wide wavelength range is covered for frequency multiplex optical communication.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信用の検波装置に係り、特に周波数多重光
通信用として広い波長域をカバーし得る検波装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a detection device for optical communication, and particularly to a detection device capable of covering a wide wavelength range for frequency multiplexed optical communication.

〔従来の技術〕[Conventional technology]

従来の周波数多重光通信の受信系での周波数分離は、(
1)従来の分光器の原理を利用する回折格子による空間
的な分離(昭和61年度電子通信学会総合全国大会10
50 (予稿集4−221頁乃、(2)方向性結合器の
周波数特性を利用した分l!i(昭和62年電子情報通
信学会情報システム部門全国大会330(予稿集2−6
1頁))、(3)単一モード発振している半導体レーザ
を干渉させる方法(電子通信学会技術報告量子エレクト
ロニクス 0QE78−139 (1978年61頁)
)等が考えられていた。
Frequency separation in the receiving system of conventional frequency-division optical communication is (
1) Spatial separation using a diffraction grating using the principle of a conventional spectrometer (1986 IEICE General Conference 10)
50 (Page 4-221 of the Proceedings, (2) I!i using the frequency characteristics of a directional coupler (1985 IEICE Information Systems Division National Conference 330 (Proceedings 2-6)
(1 page)), (3) Method for interfering with single mode oscillating semiconductor lasers (IEICE Technical Report Quantum Electronics 0QE78-139 (1978, p. 61)
) etc. were considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は次のような開運があった。すなわち、上
記(1)及び(2)の従来技術は周波数分解能が悪く、
波長1.5−の光に対し周波数分解能は27GHz以上
(波長分解能約2人)程度であることから周波数密度を
高めることができないという問題があった。また、(2
)の方法では、周期的なフィルタリングの透過帯域と遠
域が同じであることから、特性の異なる分波器を複数個
必要とするという問題があった。(1)の方法では機械
的に回折格子の角度を変えるような構成の煩雑さ、(2
)では、1つの方向性結合器での損失が複数個になると
蓄積され、大きな損失を伴うという問題があった。
The above conventional technology had the following advantages. In other words, the conventional techniques (1) and (2) above have poor frequency resolution;
Since the frequency resolution for light with a wavelength of 1.5 - is approximately 27 GHz or more (wavelength resolution of about 2 people), there is a problem that the frequency density cannot be increased. Also, (2
) has the problem of requiring multiple duplexers with different characteristics because the transmission band of periodic filtering and the far range are the same. In method (1), the configuration is complicated as it involves mechanically changing the angle of the diffraction grating, and (2)
), there is a problem in that the loss in one directional coupler is accumulated in a plurality of directional couplers, resulting in a large loss.

また(3)の従来技術は、上記の問題がないが。Furthermore, the prior art (3) does not have the above problem.

1つの発振光で広い波長域をカバーしなければならない
ため、大きな制御入力が必要であるという問題があった
。これを第2図を用いて説明する。
Since one oscillation light must cover a wide wavelength range, there is a problem in that a large control input is required. This will be explained using FIG.

送信側から周波数間隔Δfの複数の周波数の光に信号が
乗せられて送られる(第2図(a))。これに対し、受
信側では1つの周波数f′の窓を有する(第2図(b)
)、これはコヒーレント光通信では、単一モードの局部
発振レーザになる。この窓の周波数特性を変化させるこ
とにより、例えば。
From the transmitting side, signals are carried on light of a plurality of frequencies with a frequency interval Δf and are sent (FIG. 2(a)). On the other hand, the receiving side has a window of one frequency f' (Fig. 2(b)).
), which in coherent optical communications becomes a single mode local oscillator laser. By changing the frequency characteristics of this window, e.g.

第2図(c)のようにf′をf4に合わせ、f4の周波
数の光を受信したり、第2図(d)のようにf′をf、
に合わせこの周波数の光を受信したりした。実際の装置
としては、温度を変化させ得る局部発振用レーザを用い
たり、特別な波長可変レーザを用いたりしていた。しか
し、このような装置は、周波数領域f1〜fnが広がっ
た場合、受信側の窓をこれに直接追従させることが困難
となった。
As shown in Figure 2(c), f' can be adjusted to f4 to receive light at the frequency of f4, or as shown in Figure 2(d), f' can be adjusted to f4,
It was tuned to receive light at this frequency. In actual equipment, a local oscillation laser that can change the temperature or a special wavelength tunable laser has been used. However, in such a device, when the frequency range f1 to fn widens, it becomes difficult to make the receiving side window directly follow this.

本発明の目的は、高い周波数分解能を有し、広い波長域
をカバーし得る周波数多重光通信用検波装置を提供する
ことにある。
An object of the present invention is to provide a detection device for frequency multiplexed optical communication that has high frequency resolution and can cover a wide wavelength range.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、複数の周波数の光を用いた送信光より所望
の周波数の光を検波する周波数選択手段を有する周波数
多重光通信用検波装置において、上記周波数選択手段は
、上記複数の送信光の周波数の間隔と異なる間隔の複数
の周波数の位置に透過特性を有する共振器と、該共振器
を所望の周波数の光を選択するように制御する制御手段
とを有することを特徴とする周波数多重光通信用検波装
置、又は複数の周波数の光を用いた送信光より所望の周
波数の光を検波する周波数選択手段を有する周波数多重
光通信用検波装置において、上記周波数選択手段は、上
記複数の送信光の周波数の間隔と異なる間隔の複数の周
波数の位置に発振特性を有するファブリペロレーザと、
該共振器を所望の周波数の光を選択するように制御する
制御手段とを有することを特徴とする周波数多重光通信
用検波装置によって達成される。
The above object is a detection device for frequency multiplexing optical communication having a frequency selection means for detecting light of a desired frequency from transmitted light using light of a plurality of frequencies, wherein the frequency selection means detects a frequency of the plurality of transmitted lights. Frequency multiplexed optical communication characterized by having a resonator having transmission characteristics at positions of a plurality of frequencies at intervals different from the interval of , and a control means for controlling the resonator to select light of a desired frequency. or a frequency multiplexing optical communication detection device having frequency selection means for detecting light of a desired frequency from transmitted light using light of a plurality of frequencies, the frequency selection means detecting light of a desired frequency from transmitted light using light of a plurality of frequencies. a Fabry-Perot laser having oscillation characteristics at a plurality of frequency positions at frequency intervals and different intervals;
This is achieved by a detection device for frequency multiplexed optical communication characterized by comprising a control means for controlling the resonator to select light of a desired frequency.

本発明に用いる共振器は、空間的に又は屈折率の変化に
より共振器長が制御できるファブリペロエタロン共振器
又は等測的な共振器長が制御できる共振器であることが
好ましい。
The resonator used in the present invention is preferably a Fabry-Perot etalon resonator whose resonator length can be controlled spatially or by changing the refractive index or a resonator whose isometric resonator length can be controlled.

これらのファブリペロエタロン共振器又はファブリペロ
レーザにおいて、周波数間隔差δfは、送信側周波数間
隔の最小間隔Δflllinを多重された周波数の数m
プラス1で割った値より小さく、かつ、受信側の周波数
特性における透過値の半値全幅又は発振特性の半値全幅
fより広い値とすることが好ましい。このfは、カット
周波数幅で、f72以上中心からずれると著しく特性が
悪くなる。すなわち Δf m;11/ (m + 1 ) )δf〉f/2
の式を満足することが好ましい。
In these Fabry-Perot etalon resonators or Fabry-Perot lasers, the frequency interval difference δf is the number m of multiplexed frequencies with the minimum interval Δfllin of the transmitting side frequency interval
It is preferable that the value is smaller than the value divided by +1 and wider than the full width at half maximum f of the transmission value in the frequency characteristics of the receiving side or the full width at half maximum f of the oscillation characteristics. This f is the cut frequency width, and if it deviates from the center by more than f72, the characteristics will deteriorate significantly. That is, Δf m; 11/ (m + 1) ) δf〉f/2
It is preferable that the following formula is satisfied.

〔作用〕[Effect]

本発明の原理を第1図を用いて説明する。第1図(a)
に示すように送信側からΔfの周波数間隔を置いた複数
の周波数の光に信号が乗せられて送られる。これに対し
、受信側ではこの周波数間隔よりわずかに広いΔf+δ
f(又は狭いΔf−δf)の周波数間隔をΔf′を有す
る透過特性を有するファブリペロエタロン又は発振特性
を有するファブリペロレーザを用意する。この透過率が
高い又は発振する領域を窓と呼ぶ、ファブリペロエタロ
ン共振器の窓の間隔は、エタロンを形成する2個の反射
板の間隔をn1反射板間の屈折率n。
The principle of the present invention will be explained using FIG. Figure 1(a)
As shown in FIG. 2, signals are sent from the transmitting side on light beams of a plurality of frequencies separated by a frequency interval of Δf. On the other hand, on the receiving side, Δf+δ is slightly wider than this frequency interval.
A Fabry-Perot etalon having transmission characteristics or a Fabry-Perot laser having oscillation characteristics having a frequency interval Δf' of f (or a narrow Δf−δf) is prepared. This region with high transmittance or oscillation is called a window.The interval between the windows of the Fabry-Perot etalon resonator is determined by the interval between the two reflecting plates forming the etalon, n1, and the refractive index n between the reflecting plates.

波長をλとすると λ2 差δfは、送信側周波数間隔の最小間隔Δf 1lli
nを多重された周波数の数mプラス1で割った値より小
さく、かつ、受信側の周波数特性における透過値の半値
全幅(窓の半値全幅)、又は発振特性の半値全幅(窓の
半値全幅)Vfより広い値とする。すなわち。
If the wavelength is λ, then λ2 difference δf is the minimum frequency interval Δf 1lli on the transmitting side.
smaller than the value obtained by dividing n by the number of multiplexed frequencies m plus 1, and the full width at half maximum of the transmission value in the frequency characteristics of the receiving side (full width at half maximum of the window) or the full width at half maximum of the oscillation characteristic (full width at half maximum of the window) The value should be wider than Vf. Namely.

Δf man/ (m + 1 ) 〉δf〉V、fと
する(第1図(b))。
Let Δf man/ (m + 1 )〉δf〉V, f (Fig. 1(b)).

このようにすると送信側から送られた複数の信号光に対
し例えば、f4の周波数の光に受信側のf4′の窓を合
わせると、他の送信側の光に一致する受信側の窓がない
ため、受信信号光としてf。
In this way, for multiple signal lights sent from the transmitting side, for example, if the f4' window on the receiving side matches the light of frequency f4, there is no window on the receiving side that matches the light from other transmitting sides. Therefore, the received signal light is f.

の周波数の光のみが得られる(第1図(、))、さらに
、上記の受信側の窓の周波数特性を例えば、光学的にフ
ァブリペロエタロン共振間隔を変えて3δfずらすと、
今度は、f7の光が窓f7/と重なり、受信信号光とし
てf7の光のみが得られる(第1図(d))。
Only light with a frequency of
This time, the light at f7 overlaps with the window f7/, and only the light at f7 is obtained as the received signal light (FIG. 1(d)).

このようにすることにより、従来、f、→f7に受信信
号光を変えたいとき、3Δfの周波数変化を与える制御
入力が必要であったものが、本構成では3δfの変化を
与える信号入力で充分となる。
By doing this, conventionally, when you wanted to change the received signal light from f to f7, you needed a control input that gave a frequency change of 3Δf, but with this configuration, a signal input that gives a frequency change of 3δf is sufficient. becomes.

上記の周波数構成ではΔfの周波数変化を与える制御入
力で、すべての周波域がカバーできる。
In the above frequency configuration, all frequency ranges can be covered by a control input that provides a frequency change of Δf.

このファブリペロエタロンでは、窓の広さとして100
MHz (7,5X10−”nm)程度まで狭めること
が可能である。
In this Fabry-Perot etalon, the width of the window is 100.
It is possible to narrow it down to about MHz (7.5 x 10-'' nm).

本方式を用いれば、本来m×Δfの周波数域をカバーす
る程受信側の窓を動かさなければならないものが、mに
依らず2XAfだけ動かせば充分である。特に1mが大
きくなるときこの方式の効果は顕著になる。
If this method is used, it is sufficient to move the window on the receiving side by 2XAf, regardless of m, although it would normally be necessary to move the window on the receiving side to cover the frequency range of m×Δf. The effect of this method becomes particularly noticeable when the length of 1 m becomes large.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。第3
図(a)に第1の実施例を示す、5種の異なる周波数の
光が伝搬されてきた光ファイバ1からの各々の出射光は
、集束レンズ2を介して受光器4上に焦点を結ぶように
設定しである。集束レンズ2と受光器4の間に反射率が
98%のコーティングを施した反射板3−1と3−2及
び支柱3−3、圧電素子PZT3−4より成るファブリ
ペロエタロン3を挿入する。5種の異なる伝搬光の波長
は〜1.54uImでその周波数間隔は12.6GHz
 (波長間隔で1人)である、これに対し、ファブリペ
ロエタロン3の2枚の反射板3−1.3−2の間隔は1
0.8mmに設定する。これにより、ファブリペロエタ
ロン3の持つ透過特性の窓の周波数間隔が13.9GH
z (波長間隔で1.1人)となる、このときの受信側
の窓の半値全幅は〜100Mfhである。PZTの電圧
に対する受光スペクトルを第3図(b)に示す0周波数
が12.6GHzllれているのであるが上記ファブリ
ペロエタロンの設定では見かけ上1.26GIkの間隔
に縮められて見える。このため、上記構成では、 12
.6GHzに対応するだけの窓を動かす必要はなくδf
1.26GHz分だけ、PZTの電圧を変えればチュー
ニングできるのである。例えば、f4の周波数の光の信
号が入手したい場合、第3図(b)のように3X1,2
6GHz分だけ、すなわち共振器長を0.23.だけ変
えれば良い。本構成であれば波長1.54.の半分の0
.77、の制御を行なうための電圧が印加できれば、す
べての周波域をカバーできる。
An embodiment of the present invention will be described below with reference to the drawings. Third
A first embodiment is shown in Figure (a).Each light emitted from an optical fiber 1 through which light of five different frequencies has been propagated is focused on a light receiver 4 via a focusing lens 2. The settings are as follows. A Fabry-Perot etalon 3 consisting of reflective plates 3-1 and 3-2 coated with a reflectance of 98%, a column 3-3, and a piezoelectric element PZT 3-4 is inserted between the focusing lens 2 and the light receiver 4. The wavelength of the five different propagating lights is ~1.54uIm, and the frequency interval is 12.6GHz
(one person per wavelength interval), whereas the interval between the two reflectors 3-1 and 3-2 of the Fabry-Perot etalon 3 is 1
Set to 0.8mm. As a result, the frequency interval of the transmission characteristic window of Fabry-Perot etalon 3 is 13.9 GH.
z (1.1 people per wavelength interval), the full width at half maximum of the window on the receiving side at this time is ~100 Mfh. The 0 frequency shown in FIG. 3(b) in the received light spectrum with respect to the voltage of PZT is shifted by 12.6 GHz, but with the setting of the Fabry-Perot etalon, the interval appears to be reduced to 1.26 GIk. Therefore, in the above configuration, 12
.. There is no need to move the window that supports 6GHz, and δf
Tuning can be achieved by changing the PZT voltage by 1.26GHz. For example, if you want to obtain an optical signal with a frequency of f4, as shown in Figure 3(b), 3X1,2
6 GHz, that is, the resonator length is 0.23. Just change it. In this configuration, the wavelength is 1.54. half of 0
.. If a voltage for controlling 77 can be applied, all frequency ranges can be covered.

次に第4図を用いて第2の実施例を説明する。Next, a second embodiment will be explained using FIG. 4.

第4(a)に構成を示す。5種の異なる周波数の光が伝
搬されてきた光ファイバ1がら各々の伝搬光は、集束レ
ンズ2を介して外部共振器半導体し−ザ8に焦点が合わ
され、伝搬光は半導体レーザ8に結合する。外部共振器
半導体レーザ8の構成を第4図(b)に示す。構成部品
は無反射コーティング8−3を施した半導体レーザ8−
1とやはり無反射コーティング8−4を施した集束用グ
レイディトレンズ8−2と反射コーティングを施した反
射板8−5及び支持台8−6よりなる。この外部共振器
半導体レーザ8の共振器は半導体レーザ8−1のへき肩
面8−0と反射板8−5により形成される。この共振器
の共振長は、第1の実施例と同じ光路長を持つように設
定した。この半導体レーザ8−1には直流バイアス電流
が直流電源7により加えられる。これにより、光が増幅
される。伝搬光は半導体レーザのへき肩面8−0に結合
する。このとき、外部共振器半導体レーザ8のファブリ
ペロモードに対応する周波数の光のみが強く増幅される
わけであるが、特に結合した光の中のレーザのファブリ
ペロモードに一致した周波数の光は、モードロックをか
け特に強く発光することにある。この現象は1周波数特
性の観点から見るならば、第1図に示した、受信信号光
と同じことになる。第4図の構成で周波数のチューニン
グは、外部共振器半導体レーザ8内の半導体レーザ8−
1の温度をペルチェ素子6に注入する電流を制御回路5
で変え、半導体レーザ8−1内の屈折率を変えることに
より、ファブリペロの共振周波数(増幅周波数)を変え
ることができる。そのときの受光器4で受けた受信信号
を第4図(c)に示す、実施例1と同様に、ペルチェ電
流を変えることにより、第4図(b)に矢印で示したδ
fΣ1.26GHzに対応する間隔で、チューニングが
とれる。
The configuration is shown in 4th (a). Each of the propagating lights through the optical fiber 1 through which lights of five different frequencies have been propagated is focused on the external resonator semiconductor laser 8 via the focusing lens 2, and the propagating lights are coupled to the semiconductor laser 8. . The configuration of the external cavity semiconductor laser 8 is shown in FIG. 4(b). The component is a semiconductor laser 8- with anti-reflection coating 8-3.
1 also includes a focusing gradient lens 8-2 coated with a non-reflective coating 8-4, a reflector plate 8-5 coated with a reflective coating, and a support base 8-6. The resonator of this external cavity semiconductor laser 8 is formed by the cleavage surface 8-0 of the semiconductor laser 8-1 and the reflecting plate 8-5. The resonance length of this resonator was set to have the same optical path length as in the first embodiment. A DC bias current is applied to this semiconductor laser 8-1 by a DC power supply 7. This amplifies the light. The propagating light is coupled to the cleavage surface 8-0 of the semiconductor laser. At this time, only the light with the frequency corresponding to the Fabry-Perot mode of the external cavity semiconductor laser 8 is strongly amplified, but especially the light with the frequency matching the Fabry-Perot mode of the laser in the coupled light is amplified. The purpose is to apply a mode lock and emit particularly strong light. If this phenomenon is viewed from the viewpoint of one frequency characteristic, it is the same as the received signal light shown in FIG. In the configuration shown in FIG. 4, frequency tuning is performed using the semiconductor laser 8-
The control circuit 5 controls the current to inject the temperature of 1 into the Peltier element 6.
By changing the refractive index within the semiconductor laser 8-1, the Fabry-Perot resonance frequency (amplification frequency) can be changed. The received signal received by the light receiver 4 at that time is shown in FIG. 4(c).Similar to Example 1, by changing the Peltier current, δ shown by the arrow in FIG. 4(b)
Tuning can be performed at intervals corresponding to fΣ1.26 GHz.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1周波数多重光通信における受信側の周
波数選択が、周波数多重度nに対し1/n以下の低い制
御入力で行なえるので制御装置の小型化、省エネルギ化
の効果がある。
According to the present invention, frequency selection on the receiving side in single frequency multiplexing optical communication can be performed with a control input as low as 1/n or less with respect to the frequency multiplexing factor n, resulting in miniaturization of the control device and energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための説明図、第2図
は従来の方式を説明するための説明図、第3図は本発明
の第1の実施例の説明図、第4図は本発明の第2の実施
例の説明図である。 1・・・光ファイバ     2・・・集束レンズ3・
・・ファブリペロエタロン 4・・・受光器       5・・・制御回路6・・
・ペルチェ素子    7・・・直流電源8・・・外部
共振器半導体レーザ 3−1.3−2・・・反射板 3−3・・・支柱3−4
・・・P Z T      8−0・・・へき肩面8
−1・・・半導体レーザ 8−2・・・外部共振器用グレイデッドレンズ8−3.
8−4・・・無反射コーティング8−5・・・反射コー
ティング 8−6・・・支持台代理人弁理士  中 村
 純之助 第1図 第 2図 第3図
Fig. 1 is an explanatory diagram for explaining the present invention in detail, Fig. 2 is an explanatory diagram for explaining the conventional system, Fig. 3 is an explanatory diagram of the first embodiment of the invention, Fig. 4 FIG. 2 is an explanatory diagram of a second embodiment of the present invention. 1... Optical fiber 2... Focusing lens 3.
...Fabry-Perot etalon 4...Receiver 5...Control circuit 6...
- Peltier element 7... DC power supply 8... External resonator semiconductor laser 3-1.3-2... Reflector plate 3-3... Support column 3-4
...P Z T 8-0...Shoulder surface 8
-1...Semiconductor laser 8-2...Graded lens for external resonator 8-3.
8-4...Non-reflective coating 8-5...Reflective coating 8-6...Support stand attorney Junnosuke Nakamura Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、複数の周波数の光を用いた送信光より所望の周波数
の光を検波する周波数選択手段を有する周波数多重光通
信用検波装置において、上記周波数選択手段は、上記複
数の送信光の周波数の間隔と異なる間隔の複数の周波数
の位置に透過特性を有する共振器と、該共振器を所望の
周波数の光を選択するように制御する制御手段とを有す
ることを特徴とする周波数多重光通信用検波装置。 2、上記共振器はファブリペロエタロン共振器である請
求項1記載の周波数多重光通信用検波装置。 3、上記送信光の周波数間隔Δfに対し、検波側の共振
器の通過光の周波数間隔とΔfの周波数差δfを周波数
多重度mに対し Δf/(m+1)≧δf>Δf/2とし、ここでΔfは
充分な消光比を得るためのカット周波数幅であり、さら
に光学的な共振器長を制御する手段を有することを特徴
とする請求項1記載の周波数多重光通信用検波装置。 4、複数の周波数の光を用いた送信光より所望の周波数
の光を検波する周波数選択手段を有する周波数多重光通
信用検波装置において、上記周波数選択手段は、上記複
数の送信光の周波数の間隔と異なる間隔の複数の周波数
の位置に発振特性を有するファブリペロレーザと、該レ
ーザを所望の周波数の光を選択するように制御する制御
手段とを有することを特徴とする周波数多重光通信用検
波装置。
[Claims] 1. A detection device for frequency multiplexing optical communication having a frequency selection means for detecting light of a desired frequency from transmitted light using light of a plurality of frequencies, wherein the frequency selection means detects light of a desired frequency from transmitted light using light of a plurality of frequencies. It is characterized by comprising a resonator having transmission characteristics at a plurality of frequency positions at intervals different from the frequency interval of the transmitted light, and a control means for controlling the resonator to select light of a desired frequency. Detection device for frequency multiplexed optical communication. 2. The detection device for frequency multiplexed optical communication according to claim 1, wherein the resonator is a Fabry-Perot etalon resonator. 3. With respect to the frequency interval Δf of the transmitted light, the frequency difference δf between the frequency interval of the light passing through the resonator on the detection side and Δf is set as Δf/(m+1)≧δf>Δf/2 for the frequency multiplicity m, where 2. The detection device for frequency multiplexed optical communication according to claim 1, wherein Δf is a cut frequency width for obtaining a sufficient extinction ratio, and further comprising means for controlling an optical resonator length. 4. In a frequency multiplexing optical communication detection device having a frequency selection means for detecting light of a desired frequency from transmitted light using light of a plurality of frequencies, the frequency selection means selects an interval between the frequencies of the plurality of transmitted lights. Detection for frequency multiplexed optical communication, characterized by comprising a Fabry-Perot laser having oscillation characteristics at a plurality of frequency positions at different intervals, and a control means for controlling the laser to select light of a desired frequency. Device.
JP63170954A 1988-07-11 1988-07-11 Frequency multiplexing optical communication detector Expired - Lifetime JP2875537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170954A JP2875537B2 (en) 1988-07-11 1988-07-11 Frequency multiplexing optical communication detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170954A JP2875537B2 (en) 1988-07-11 1988-07-11 Frequency multiplexing optical communication detector

Publications (2)

Publication Number Publication Date
JPH0222631A true JPH0222631A (en) 1990-01-25
JP2875537B2 JP2875537B2 (en) 1999-03-31

Family

ID=15914458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170954A Expired - Lifetime JP2875537B2 (en) 1988-07-11 1988-07-11 Frequency multiplexing optical communication detector

Country Status (1)

Country Link
JP (1) JP2875537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008873A1 (en) * 2004-07-15 2006-01-26 Nec Corporation External resonator variable wavelength laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110443A (en) * 1979-02-19 1980-08-25 Fujitsu Ltd Selection unit for optical signal
JPS5632785A (en) * 1979-08-25 1981-04-02 Nippon Telegr & Teleph Corp <Ntt> Light amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110443A (en) * 1979-02-19 1980-08-25 Fujitsu Ltd Selection unit for optical signal
JPS5632785A (en) * 1979-08-25 1981-04-02 Nippon Telegr & Teleph Corp <Ntt> Light amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008873A1 (en) * 2004-07-15 2006-01-26 Nec Corporation External resonator variable wavelength laser
JPWO2006008873A1 (en) * 2004-07-15 2008-05-01 日本電気株式会社 External cavity tunable laser
US7656911B2 (en) 2004-07-15 2010-02-02 Nec Corporation External resonator type wavelength-variable laser
JP4756379B2 (en) * 2004-07-15 2011-08-24 日本電気株式会社 External cavity tunable laser

Also Published As

Publication number Publication date
JP2875537B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US4852960A (en) Narrow-linewidth resonant optical device, transmitter, system, and method
US5263037A (en) Optical oscillator sweeper
US7257142B2 (en) Semi-integrated designs for external cavity tunable lasers
US7477851B2 (en) Power source for a dispersion compensation fiber optic system
US7389053B1 (en) Tunable filtering of RF or microwave signals based on optical filtering in Mach-Zehnder configuration
KR100600935B1 (en) Wavelength control using dither modulation and feedback
US20020054614A1 (en) Wavelength discretely tunable semiconductor laser
US20050123306A1 (en) Tunable balanced opto-electronic filters and applications in opto-electronic oscillators
US20080247765A1 (en) Power source for a dispersion compensation fiber optic system
US6959028B2 (en) External cavity, widely tunable lasers and methods of tuning the same
JPH08237203A (en) Optical filter array, optical transmitter and optical transmission system
JPH05218385A (en) Optical semiconductor device, method of its driving and method of optical transmission
US4707061A (en) Optical communication system employing frequency reference
JP3460724B2 (en) Optical oscillator
US6816517B2 (en) Micro-electromechanical devices for wavelength tunable lasers
US6434294B1 (en) Photonic local oscillator signal generator and method for generating a local oscillator signal
CN105281199A (en) Continuously adjustable frequency interval V-shaped coupled cavity double-wavelength semiconductor laser
JPH06318753A (en) Optical microwave generator
JP2564622B2 (en) Method and apparatus for stabilizing oscillation frequency of semiconductor laser
JPH0222631A (en) Detector for frequency multiplex optical communication
EP0282237A1 (en) Narrow-linewidth resonant optical device
JPH02184827A (en) Optical modulating wave demodulating device
US6959023B1 (en) Laser with reflective etalon tuning element
JP2021096367A (en) Optical resonator, optical modulator, optical frequency comb generator, optical oscillator, and production method for optical resonator and optical modulator
JPS63299291A (en) Semiconductor laser