JPH02197550A - High purity heat-resistant steel - Google Patents

High purity heat-resistant steel

Info

Publication number
JPH02197550A
JPH02197550A JP1628189A JP1628189A JPH02197550A JP H02197550 A JPH02197550 A JP H02197550A JP 1628189 A JP1628189 A JP 1628189A JP 1628189 A JP1628189 A JP 1628189A JP H02197550 A JPH02197550 A JP H02197550A
Authority
JP
Japan
Prior art keywords
resistant steel
toughness
heat
creep rupture
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1628189A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Tanaka
光之 田中
Minoru Yoshida
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP1628189A priority Critical patent/JPH02197550A/en
Publication of JPH02197550A publication Critical patent/JPH02197550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain the high purity heat-resistant steel having excellent high temp. creep rupture strength and toughness by specifying the compsn. of a 12 Cr series heat-resistant steel constituted of C, Cr, Mo, V, W, N, Ni, Co and Fe and extremely reducing inevitable impurities. CONSTITUTION:The compsn. contg., by weight, 0.05 to 0.25% C, 9 to 13% Cr, 0.1 to 2.0% Mo, 0.1 to 0.5% V, 0.5 to 2.5% W and 0.03 to 0.10% N, furthermore contg. one or both of 0.5 to 1.5% Ni and 0.5 to 1.5% Co and the balance Fe with inevitable impurities is formed to obtain the high purity heat-resistant steel combining excellent high temp. creep rupture strength and excellent toughness and used for a turbine rotor shaft of an extra super critical pressure steam turbine or the like. In the above steel, if required, one or both of 0.02 to 0.10% Nb and 0.02 to 0.10% Ta can moreover be incorporated. Furthermore, in the above inevitable impurities, <=0.05% Si, <=0.05% Mn, <=0.005% P and <=0.005% S are preferably regulated as allowable contents.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超々臨界圧蒸気タービンのタービンロータ軸等
に用いられる優れた高温クリープ破断強さと優れた靭性
とを兼ね備えた高純度耐熱鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-purity heat-resistant steel that has both excellent high-temperature creep rupture strength and excellent toughness and is used for turbine rotor shafts of ultra-supercritical pressure steam turbines and the like.

〔従来の技術〕[Conventional technology]

近年、大型火力発電プラントの熱効率の向上のために、
主蒸気温度の上昇を図フた超々臨界圧蒸気タービンが開
発されている。超々臨界圧下で用いられるタービンロー
タ軸等の材料には、高温における優れたクリープ破断強
さと優れた靭性とを兼ね備えていることが要求される。
In recent years, in order to improve the thermal efficiency of large thermal power plants,
Ultra-supercritical pressure steam turbines have been developed to increase the main steam temperature. Materials used for turbine rotor shafts and the like used under ultra-supercritical pressure are required to have both excellent creep rupture strength and toughness at high temperatures.

この要求に沿って種々の材料が開発されているが、例え
ば、特開昭59−2322:IIには高温のクリープ破
断強さが優れるとともに延性及び靭性にも優れた12c
r−Mo−V−Nb (Ta)−N鋼が開示されている
Various materials have been developed in line with this requirement. For example, 12c, which has excellent creep rupture strength at high temperatures as well as ductility and toughness, is disclosed in JP-A-59-2322:II.
An r-Mo-V-Nb (Ta)-N steel is disclosed.

しかしながら、−数的に12cr系耐熱鋼においては、
熱処理を変えたり、合金元素の添加量を変えたりして、
高温クリープ破断強さを上昇させると、逆に、その材料
の室温付近での靭性は損なわれるので、高温クリープ破
断強さと靭性の両特性の優れた12Cr系耐熱鋼を得る
ことは非常に難しく、面記特開昭59−232231に
開示の材料はこの点で充分とは言えず、さらに改良の余
地がある。
However, in numerically 12cr heat-resistant steel,
By changing the heat treatment or changing the amount of alloying elements added,
Increasing the high-temperature creep rupture strength conversely impairs the toughness of the material near room temperature, so it is extremely difficult to obtain a 12Cr heat-resistant steel with excellent properties in both high-temperature creep rupture strength and toughness. The material disclosed in Japanese Patent Publication No. 59-232231 cannot be said to be sufficient in this respect, and there is still room for further improvement.

(発明が解決しようとする課題) 従来の12Gr系耐熱鋼においては、特開昭59−23
2231にも開示されているように、合金元素を適量添
加配合し、適正熱処理を施すことにより靭性及び高温の
クリープ破断強さなどの諸特性の改善が図られてきたが
、すでに類似鋼種が多数開発されている現状においては
、合金元素の適量添加配合及び適正熱処理を行うだけで
は従来鋼の大幅な改良は望めない情況にある。
(Problem to be solved by the invention) In the conventional 12Gr heat-resistant steel,
As disclosed in 2231, various properties such as toughness and creep rupture strength at high temperatures have been improved by adding appropriate amounts of alloying elements and applying appropriate heat treatment, but there are already many similar steel types. At the current state of development, it is difficult to expect significant improvements over conventional steels simply by adding appropriate amounts of alloying elements and performing appropriate heat treatment.

本発明は上記情況に鑑みてなされたもので、従来鋼より
も大幅に優れた高温クリープ破断強さと靭性とを兼ね備
えた新規な12cr、%耐熱鋼を提供することを目的と
するものである。
The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a new 12 Cr,% heat-resistant steel that has both high temperature creep rupture strength and toughness that are significantly superior to conventional steels.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する具体的な手段は、まず、12Cr基
合金へ所要の強度が得られ、かつ優れた靭性と高温クリ
ープ強度を高める合金元素を適量添加配合し、脱酸剤あ
るいは合金元素としてSi、 Mnは添加せず、不可避
不純物として、p、sとともにその含有量を極力低減し
、高純度化を図った。
The specific means for achieving the above objective is to first add and blend an appropriate amount of an alloying element that provides the required strength and improves excellent toughness and high-temperature creep strength to a 12Cr-based alloy, and then incorporates Si as a deoxidizer or alloying element. , Mn was not added, and its content was reduced as much as possible along with p and s as inevitable impurities, in order to achieve high purity.

すなわち、第1の発明は重量%でC0.05〜0.25
%、Cr9〜13%、Mo 0.1〜2.0%、V 0
.1〜0.5%、WO05〜2.5%、N 0.03〜
0.10%を含有し、ざらにNi 0.5〜1.5%、
 Co 0.5〜1.5%の1種又は2種を含有し、残
部がFeと不可避不純物からなる高純度耐熱鋼である。
That is, the first invention has C0.05 to 0.25 in weight%.
%, Cr9-13%, Mo 0.1-2.0%, V0
.. 1~0.5%, WO05~2.5%, N0.03~
Contains 0.10%, roughly Ni 0.5-1.5%,
It is a high-purity heat-resistant steel containing one or two types of Co 0.5 to 1.5%, with the balance consisting of Fe and inevitable impurities.

第2の発明は′:JS1の発明の合金組成に、さらに重
量%でNb0.02〜0.10%、Ta 0.02〜0
.10%の1種又は2種を含有してなる高純度耐熱鋼で
ある。
The second invention is ': In addition to the alloy composition of the JS1 invention, Nb 0.02 to 0.10% and Ta 0.02 to 0% by weight are added.
.. It is a high-purity heat-resistant steel containing 10% of one or two types.

第3の発明は第1又は71g2の発明の高純度耐熱鋼に
含有する不可避不純物のうち、重量%で5iO105%
以下、Mn 0.05%以下、P 0.005%以下、
S 0.005%以下を許容含有叶とする高純度耐熱鋼
である。
The third invention is 5iO105% by weight of the inevitable impurities contained in the high purity heat resistant steel of the first or 71g2 invention.
Below, Mn 0.05% or less, P 0.005% or less,
It is a high-purity heat-resistant steel with an allowable S content of 0.005% or less.

〔作用〕[Effect]

つぎに本発明鋼に含有する各元素の作用と各成分の限定
理由について説明する。
Next, the effects of each element contained in the steel of the present invention and the reasons for limiting each component will be explained.

Cは高温で鉄中に固溶してオーステナイト組織を安定化
させ、急冷によりマルテンサイト変態を促進させて、高
温及び室温における強さを向上させるとともに、Ta、
 Nb、 V 、 M0.胃などの元素と結びついて炭
化物を形成して高温クリープ破断強さを向上させる。
C stabilizes the austenitic structure by forming a solid solution in iron at high temperatures, promotes martensitic transformation by rapid cooling, and improves strength at high temperatures and room temperature.
Nb, V, M0. It combines with elements such as the stomach to form carbides and improves high-temperature creep rupture strength.

その含有量が0.05%未満では訂記作用がほとんど認
められない。一方、0.25%を超えて含有させると、
粗大炭化物の生成や凝集が生じ易く、そのため、高温ク
リープ破断強さが低下するとともに、低温の靭性も悪く
なるので、その含有量を0.05〜0.25%に限定し
た。
If the content is less than 0.05%, almost no annotation effect is observed. On the other hand, if it is contained in excess of 0.25%,
The content is limited to 0.05 to 0.25% because coarse carbides tend to form and agglomerate, resulting in a decrease in high-temperature creep rupture strength and poor low-temperature toughness.

Cr:9〜13% C「は本発明の耐熱鋼の主要構成成分であって鉄中に固
溶し、合金の強度を向上させるとともに、耐酸化性及び
耐食性を向上させるのに必要な元素である。その含有量
が9%未満では充分な強度や耐酸化性を得ることができ
ず、13%を超えて含有させるとデルタフェライト組織
を生成し、低温における延性、靭性および高温における
クリープ破断強さを低下させるので、その含有量を9〜
13%に限定した。
Cr: 9-13% C is a main component of the heat-resistant steel of the present invention, and is a solid solution in iron, and is an element necessary to improve the strength of the alloy as well as oxidation resistance and corrosion resistance. If the content is less than 9%, sufficient strength and oxidation resistance cannot be obtained, and if the content exceeds 13%, a delta ferrite structure is generated, which improves ductility and toughness at low temperatures and creep rupture strength at high temperatures. Since it reduces the
It was limited to 13%.

Mo:  0.1〜2.0% 恥は合金中に固溶し、低温及び高温における強度を向上
させるとともに、焼戻し脆化を抑制するのに必要な元素
である。その含有量が0.1%未満ではその作用効果が
少なく、一方2%を超えて含有させるとデルタフェライ
ト組織を生成し、低温及び高温における強度を低下させ
るので、その含有量を0.1〜2.0%に限定した。
Mo: 0.1 to 2.0% Mo is an element that is dissolved in solid solution in the alloy and is necessary to improve the strength at low and high temperatures and to suppress temper embrittlement. If the content is less than 0.1%, the effect will be small, while if it is more than 2%, a delta ferrite structure will be generated and the strength at low and high temperatures will be reduced. It was limited to 2.0%.

V:0.1〜0.5% ■は高温クリープ強さを向上させるのに必要な元素であ
り、 0.1%未満ではその作用効果が不充分であり、
0.5%を超えて含有させるとデルタフェライト組織を
生成し、高温のクリープ破断強さが低下するので、その
含有量を0.1〜0.5%に限定した。
V: 0.1-0.5% ■ is an element necessary to improve high-temperature creep strength, and if it is less than 0.1%, its effect is insufficient;
If the content exceeds 0.5%, a delta ferrite structure is generated and the high temperature creep rupture strength decreases, so the content was limited to 0.1 to 0.5%.

W  : 0.5〜2.5% Wは合金中に固溶し、低温及び高温における強度を向上
させるのに必要な元素である。その含有量が0.5%未
満ではその作用効果がほとんど認められず、一方2.5
%を超えて含有させると、デルタフェライト組織を生成
して低温及び高温における強度を低下させるので、その
含有量を0.5〜2.5%に限定した。
W: 0.5 to 2.5% W is an element that is dissolved in the alloy and is necessary to improve the strength at low and high temperatures. When its content is less than 0.5%, its effect is hardly recognized;
If the content exceeds 0.5%, a delta ferrite structure is generated and the strength at low and high temperatures decreases, so the content was limited to 0.5 to 2.5%.

N : 0.03〜0.10% Nは高温及び低温における強度を向上させるとともに、
高温クリープ破断強さを向上させる元素である。その含
Kmが0.03%以上になると、その作用効果が顕著に
あられれるが、0.1%を超えて含有させると、鋼塊の
製造が困難となり、かつ熱間加工性が悪くなるので、そ
の含有量を0.03〜0.1%に限定した。
N: 0.03-0.10% N improves strength at high and low temperatures, and
It is an element that improves high-temperature creep rupture strength. When the Km content is 0.03% or more, its effects are noticeable, but when it is added over 0.1%, it becomes difficult to manufacture steel ingots and the hot workability deteriorates. , its content was limited to 0.03-0.1%.

Ni  Co : 0.5〜1.5% Ni及びCOは高温におけるオーステナイト組織を安定
化させ、フェライトの生成を抑制する作用があり、この
作用により低温の靭性及び高温クリープ破断強さが向上
する。MnもNi、 Coと同様の作用があるが、Ni
、 Coはど大きな効果が得られないので、本発明では
Mnに替えてNi、 C。
Ni Co: 0.5-1.5% Ni and CO have the effect of stabilizing the austenite structure at high temperatures and suppressing the formation of ferrite, and this effect improves the low-temperature toughness and high-temperature creep rupture strength. Mn also has the same effect as Ni and Co, but Ni
, Co does not provide any great effect, so in the present invention, Ni and C are used instead of Mn.

を添加し、フェライトの生成を抑制し、靭性及び高温ク
リープ破断強さの向上を図った。
was added to suppress the formation of ferrite and improve toughness and high-temperature creep rupture strength.

なお、それらの含有量が0.5%以下では前記作用が顕
著にあられれず、 1.5%を超えると、クリープ破断
強さが逆に低下する傾向が見られるので、Ni、 Co
の含有量をそれぞれ、0.5〜1.5%に限定した。
It should be noted that if their content is less than 0.5%, the above effect will not be noticeable, and if it exceeds 1.5%, the creep rupture strength will tend to decrease.
The content of each was limited to 0.5 to 1.5%.

Nb、 Ta : 0.02〜0.10%Nb及びTa
は同等の作用を有し、合金中の炭素及び窒素と化合して
炭化物、窒化物及び炭窒化物を生成し、合金の素地中に
微細に析出分散して高温クリープ破断強さを向上させる
とともに、鍛造時及び熱処理時の結晶粒の粗大化を防止
し、低温における靭性を向上させるのに必要な元素で、
少なくとも0.02%含有させる必要がある。
Nb, Ta: 0.02-0.10% Nb and Ta
has the same effect, combining with carbon and nitrogen in the alloy to form carbides, nitrides, and carbonitrides, which are finely precipitated and dispersed in the matrix of the alloy, improving high-temperature creep rupture strength. , an element necessary to prevent coarsening of crystal grains during forging and heat treatment and improve toughness at low temperatures.
It is necessary to contain at least 0.02%.

しかし、これらの元素を0.10%を超えて含有させる
と、デルタフェライト組織を生成せしめ、かつ炭窒化物
量が多くなり過ぎて靭性の低下をもたらすので、その含
有量の上限を0.1%にした。
However, if these elements are contained in an amount exceeding 0.10%, a delta ferrite structure is generated and the amount of carbonitrides becomes too large, resulting in a decrease in toughness. Therefore, the upper limit of the content is set at 0.1%. I made it.

Sf  :  0.05%      Mn:  0.
05%P : 0.005%以 、 S : 0.00
5%Siは通常脱酸剤として使用され、その場合の含有
量は、通常0.30〜0.50%程度であり、真空カー
ボン脱酸法などにより、さらにSi含fffiを低減し
ていくと、マクロ偏析、特に逆V偏析が軽微となり、肉
厚内部における延性及び靭性の不均性が改善される。ま
たSi含有量が高いと、焼戻脆化感受性が極めて大とな
り切欠靭性が損なわれる。したがって、その含有量は可
能な限り少ないことが望ましく、本発明では不可避不純
物とし、その許容含有量を工業的に可能な0.05%以
下に制限した。
Sf: 0.05% Mn: 0.
05%P: 0.005% or more, S: 0.00
5%Si is usually used as a deoxidizing agent, and the content in that case is usually about 0.30 to 0.50%, and if the Si content is further reduced by vacuum carbon deoxidation method etc. , macro-segregation, especially inverted V-segregation, becomes slight, and the non-uniformity of ductility and toughness within the wall thickness is improved. Moreover, when the Si content is high, the susceptibility to temper embrittlement becomes extremely high, and notch toughness is impaired. Therefore, it is desirable that its content be as low as possible, and in the present invention it is treated as an unavoidable impurity, and its permissible content is limited to an industrially possible 0.05% or less.

Mnは溶解時の脱酸、脱硫剤として一般的には必要であ
る。しかし、MnはSと結びついて非金属介在物を形成
し、靭性を低下させる。反面unは高温におけるオース
テナイト組織を安定化させ、高温クリープ破断強さや靭
性に有害なフェライトの生成を抑制する作用を併せ有し
ている。
Mn is generally required as a deoxidizing and desulfurizing agent during dissolution. However, Mn combines with S to form nonmetallic inclusions, reducing toughness. On the other hand, un has the effect of stabilizing the austenite structure at high temperatures and suppressing the formation of ferrite that is harmful to high temperature creep rupture strength and toughness.

したがって、本発明ではMnの作用効果をNiとGOで
代替させ、Mn含有量を工業的に可能な限り低減し、不
可避不純物とし、その許容含有量を0.05%以下に制
限した。
Therefore, in the present invention, the effects of Mn are replaced by Ni and GO, the Mn content is reduced as much as possible industrially, it is treated as an unavoidable impurity, and its permissible content is limited to 0.05% or less.

Pは焼戻脆化感受性を助長する元素であって、経年劣化
の少ない材料を得るためには極力低減することが望まし
く、現状の精錬技術レベルを考慮して、その許容含有量
を0.005%以下に制限した。
P is an element that promotes susceptibility to temper embrittlement, and it is desirable to reduce it as much as possible in order to obtain materials with little aging deterioration. Considering the current level of refining technology, the allowable content is set at 0.005. % or less.

Sは大型鋼塊においては微量の含有でもV状あるいは逆
V状の偏析を発生せしめ、鋼の品質を劣化せしめるので
、極力低減することが望ましく、Pと同様に現状の精錬
技術レベルを考慮して、その許容含有量を0.005%
以下に制限した。
Even a small amount of S in large steel ingots causes V-shaped or inverted V-shaped segregation and deteriorates the quality of the steel, so it is desirable to reduce it as much as possible, and as with P, the current refining technology level should be considered. and its allowable content is 0.005%.
Limited to the following.

なお、上述の不可避不純物の他に鋼質を劣化させる不純
物元素としてCu 、また焼戻脆性を助長する不純物元
素としてAs、 Sb、5口などがあげられるが、これ
らの不純物元素は極力低減することが好ましい。しかし
、これら不純物元素は原材料に付随して不可避的に混入
するものであって、精錬によって除去することは困難で
ある。したがって、原材料の厳選によるところが大きく
、鋼質改屏の見地から、 Cu 0.10%以下、As
 0.008%以下、Sn 0.010%以下、Sb 
0.005%以下に抑えることが望ましい。
In addition to the above-mentioned unavoidable impurities, Cu is an impurity element that deteriorates steel quality, and As, Sb, and other impurity elements that promote temper embrittlement are mentioned, but these impurity elements should be reduced as much as possible. is preferred. However, these impurity elements are unavoidably mixed in with the raw materials, and are difficult to remove by refining. Therefore, it largely depends on the careful selection of raw materials, and from the standpoint of steel quality modification, Cu 0.10% or less, As
0.008% or less, Sn 0.010% or less, Sb
It is desirable to suppress it to 0.005% or less.

〔実施例〕〔Example〕

第1表に示す組成の本発明鋼と比較鋼を真空溶解炉にて
溶解し、50kg鋼塊を溶製した。ついで1200℃に
加熱後鍛造した。これらの鍛造材から試験片素材を切り
出し、実際のロータ軸材の熱処理をシミュレーションし
た熱処理(1050℃に5時間保持後油冷→560℃に
5時間保持後炉冷→660℃に24時間保保持炉冷)を
施し供試材とした。これらの供試材の材料試験結果を第
2表に示す。第2表から明らかなように、本発明鋼は従
来材である比較鋼に較べて、クリープ破断時間が長く破
面遷移温度が低い。これらはそれぞれクリープ破断強さ
が優れていること、靭性が優れていることを示すもので
ある。
The invention steel and comparative steel having the compositions shown in Table 1 were melted in a vacuum melting furnace to produce a 50 kg steel ingot. Then, it was heated to 1200°C and then forged. Test pieces were cut from these forged materials and heat treated to simulate the heat treatment of actual rotor shaft materials (held at 1050°C for 5 hours, then oil cooled → held at 560°C for 5 hours, then furnace cooled → held at 660°C for 24 hours) (furnace cooling) and used as a test material. Table 2 shows the material test results for these test materials. As is clear from Table 2, the steel of the present invention has a longer creep rupture time and a lower fracture surface transition temperature than the comparative steel, which is a conventional material. These indicate that the creep rupture strength and toughness are excellent, respectively.

(発明の効果〕 12cr系耐熱鋼において、合金元素を通ffi添加配
合するとともに不可避不純物を極力低減して高純度化す
ることにより、高温クリープ破断強さと靭性に優れた新
規な高純度耐熱鋼を得ることができた。
(Effects of the invention) A new high-purity heat-resistant steel with excellent high-temperature creep rupture strength and toughness has been created by adding ffi alloying elements to 12CR heat-resistant steel and reducing unavoidable impurities as much as possible to achieve high purity. I was able to get it.

特許出願人 株式会社日本製鋼所Patent applicant: Japan Steel Works, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でC0.05〜0.25%、Cr9〜13
%、Mo0.1〜2.0%、V0.1〜0.5%、W0
.5〜2.5%、N0.03〜0.10%を含有し、さ
らにNi0.5〜1.5%、Co0.5〜1.5%の1
種又は2種を含有し、残部がFeと不可避不純物からな
る高純度耐熱鋼。
(1) C0.05-0.25% by weight, Cr9-13
%, Mo0.1-2.0%, V0.1-0.5%, W0
.. 5-2.5%, N0.03-0.10%, and further contains 0.5-1.5% Ni, 0.5-1.5% Co.
High-purity heat-resistant steel containing one or two species, with the remainder consisting of Fe and unavoidable impurities.
(2)請求項(1)の組成に、さらに重量%でNb0.
02〜0.10%、Ta0.02〜0.10%の1種又
は2種を含有してなる高純度耐熱鋼。
(2) The composition of claim (1) further includes 0.0% by weight of Nb.
A high-purity heat-resistant steel containing one or both of 0.02 to 0.10% and 0.02 to 0.10% of Ta.
(3)不可避不純物のうち、重量%でSi0.05%以
下、Mn0.05%以下、P0.005%以下、S0.
005%以下を許容含有量とする請求項(1)又は(2
)記載の高純度耐熱鋼。
(3) Among the inevitable impurities, Si0.05% or less, Mn0.05% or less, P0.005% or less, S0.
Claim (1) or (2) where the permissible content is 0.005% or less.
) High-purity heat-resistant steel.
JP1628189A 1989-01-27 1989-01-27 High purity heat-resistant steel Pending JPH02197550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1628189A JPH02197550A (en) 1989-01-27 1989-01-27 High purity heat-resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1628189A JPH02197550A (en) 1989-01-27 1989-01-27 High purity heat-resistant steel

Publications (1)

Publication Number Publication Date
JPH02197550A true JPH02197550A (en) 1990-08-06

Family

ID=11912168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1628189A Pending JPH02197550A (en) 1989-01-27 1989-01-27 High purity heat-resistant steel

Country Status (1)

Country Link
JP (1) JPH02197550A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263196A (en) * 1992-03-19 1993-10-12 Nippon Steel Corp Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH05311346A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel having high creep strength
JPH05311345A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH05311342A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel excellent in creep strength
JPH07197208A (en) * 1994-01-06 1995-08-01 Mitsubishi Heavy Ind Ltd High strength high chromium cast steel for high temperature pressure vessel
EP0691416A1 (en) * 1994-06-13 1996-01-10 The Japan Steel Works, Ltd. Heat resisting steels
EP0778356A1 (en) * 1994-07-06 1997-06-11 Morinaga, Masahiko Process for producing ferritic iron-base alloy and ferritic heat-resistant steel
WO2020068578A1 (en) * 2018-09-28 2020-04-02 Corning Incorporated Alloyed metals with an increased austenite transformation temperature and articles including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267113A (en) * 1985-09-20 1987-03-26 Nippon Chiyuutankou Kk Production of heat resisting steel having excellent creep rupture resistance characteristic
JPS62192536A (en) * 1986-02-18 1987-08-24 Nippon Chiyuutankou Kk Manufacture of turbine rotor
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
JPH02145751A (en) * 1988-11-25 1990-06-05 Toshiba Corp Cr alloy steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267113A (en) * 1985-09-20 1987-03-26 Nippon Chiyuutankou Kk Production of heat resisting steel having excellent creep rupture resistance characteristic
JPS62192536A (en) * 1986-02-18 1987-08-24 Nippon Chiyuutankou Kk Manufacture of turbine rotor
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
JPH02145751A (en) * 1988-11-25 1990-06-05 Toshiba Corp Cr alloy steel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263196A (en) * 1992-03-19 1993-10-12 Nippon Steel Corp Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH05311346A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel having high creep strength
JPH05311345A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH05311342A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel excellent in creep strength
JPH07197208A (en) * 1994-01-06 1995-08-01 Mitsubishi Heavy Ind Ltd High strength high chromium cast steel for high temperature pressure vessel
US5560788A (en) * 1994-06-13 1996-10-01 The Japan Steel Works, Ltd. Heat resisting steels
EP0691416A1 (en) * 1994-06-13 1996-01-10 The Japan Steel Works, Ltd. Heat resisting steels
KR100357306B1 (en) * 1994-06-13 2003-01-14 가부시끼가이샤 니혼 세이꼬쇼 Heat-resistant steel
EP0778356A1 (en) * 1994-07-06 1997-06-11 Morinaga, Masahiko Process for producing ferritic iron-base alloy and ferritic heat-resistant steel
EP0778356A4 (en) * 1994-07-06 1997-10-29 Masahiko Morinaga Process for producing ferritic iron-base alloy and ferritic heat-resistant steel
US5888318A (en) * 1994-07-06 1999-03-30 The Kansai Electric Power Co., Inc. Method of producing ferritic iron-base alloys and ferritic heat resistant steels
US6174385B1 (en) * 1994-07-06 2001-01-16 The Kansai Electric Power Co., Inc. Ferritic heat resistant steels
WO2020068578A1 (en) * 2018-09-28 2020-04-02 Corning Incorporated Alloyed metals with an increased austenite transformation temperature and articles including the same
CN113166899A (en) * 2018-09-28 2021-07-23 康宁股份有限公司 Alloy metals having increased austenite transformation temperatures and articles comprising the same
US20220033942A1 (en) * 2018-09-28 2022-02-03 Corning Incorporated Alloyed metals with an increased austenite transformation temperature and articles including the same

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP6078554B2 (en) Austenitic steel material excellent in cryogenic toughness in machinability and weld heat affected zone and method for producing the same
EP0806490B1 (en) Heat resisting steel and steam turbine rotor shaft
JP3358951B2 (en) High strength, high toughness heat-resistant cast steel
JPH0214419B2 (en)
EP0770696B1 (en) High strength and high toughness heat resisting steel and its manufacturing method
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JPH02197550A (en) High purity heat-resistant steel
JP2947913B2 (en) Rotor shaft for high temperature steam turbine and method of manufacturing the same
CN114635077A (en) Super austenitic stainless steel and preparation method thereof
CN113774270A (en) High-strength high-toughness precipitation hardening stainless steel bar and preparation method thereof
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JPH07103447B2 (en) High purity heat resistant steel
JP3576234B2 (en) Cast steel for steam turbine cabin or pressure vessel
JPH021901B2 (en)
KR100268708B1 (en) Method of manufacturing high cr ferritic heat resisting steel for high temperature,high pressure parts
JPH1036944A (en) Martensitic heat resistant steel
JP2948324B2 (en) High-strength, high-toughness heat-resistant steel
JPS609848A (en) Heat resistant co alloy
JPS6121304B2 (en)
JP4271311B2 (en) Ferritic heat resistant steel
JPS61190049A (en) Low alloy steel
JPH10259449A (en) Low alloy heat resistant cast steel and cast steel parts for steam turbine
JPH05195068A (en) Manufacture of high-and low-pressure integrated turbine rotor