JPH02170004A - Three-dimensional position measuring instrument - Google Patents

Three-dimensional position measuring instrument

Info

Publication number
JPH02170004A
JPH02170004A JP63323740A JP32374088A JPH02170004A JP H02170004 A JPH02170004 A JP H02170004A JP 63323740 A JP63323740 A JP 63323740A JP 32374088 A JP32374088 A JP 32374088A JP H02170004 A JPH02170004 A JP H02170004A
Authority
JP
Japan
Prior art keywords
dimensional
light beam
robot
distance measuring
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63323740A
Other languages
Japanese (ja)
Other versions
JP2687154B2 (en
Inventor
Hiroshi Miyata
浩 宮田
Tetsuo Shiyakushi
徹夫 杓子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP63323740A priority Critical patent/JP2687154B2/en
Publication of JPH02170004A publication Critical patent/JPH02170004A/en
Application granted granted Critical
Publication of JP2687154B2 publication Critical patent/JP2687154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Light Receiving Elements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the hand position of a robot accurately and automatically by fitting an optical distance measuring instrument to the movable part of the robot, etc., and emitting a beam to a target which has 1st and 2nd two-dimensional optical position detecting elements which are installed in parallel at a constant distance. CONSTITUTION:The optical distance measuring instrument 1 consisting of a light beam projector 4 and a photodetector 5 is fitted to the hand 3 of the robot 2 detachably. The light beam from the projector 4 passes the reference point P of the optical distance measuring instrument 1 to stroke on a point R on the 1st two-dimensional optical position detecting element 7 of the target 6 and the reflected light is photodetected by the photodetector 5 to measure the distance (d) between points P and R by trigonometry. Further, the position OR of the point R in a reference coordinate system O is found by the 1st two-dimensional optical position detecting element 7 and the position OT of a point T where the light beam transmitted through the position detecting element 7 strikes on a 2nd two-dimensional position detecting element 8 is known; and then an arithmetic unit 9 measures the three-dimensional position of the reference point P at the hand of the robot 2 accurately and speedily without any trouble.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、産業用ロボット等の可動部の所定位置を3次
元的に計測する三次元位置計測装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a three-dimensional position measuring device that three-dimensionally measures a predetermined position of a movable part of an industrial robot or the like.

〔従来の技術〕[Conventional technology]

現在、自動溶接機械等のような産業ロボットにおいては
、機差の問題がクローズアップされてきている。
Currently, in industrial robots such as automatic welding machines, the problem of machine differences is attracting attention.

機差とは、同じ型のロボットにおいても、関節間の長さ
や構造体のねじれ角等のパラメータが製造誤差によって
個々のロボットで異なるために、2台のロボットに同じ
指令を与えても同じ軌跡を描かないということである。
Machine differences are caused by differences in parameters such as the length between joints and the torsion angle of the structure, even for robots of the same type, due to manufacturing errors, so even if two robots are given the same command, they will not follow the same trajectory. This means not drawing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って従来は、同一作業を複数台のロボットを使って行
なう場合でも、同一作業のティーチングをロボットの台
数だけの回数行なわなければならず、またあるロボット
を別のロボットに置き換えたときには、再度同じ作業の
ティーチングを行なわなければならない等の不便があっ
た。
Therefore, in the past, even when multiple robots were used to perform the same task, the same task had to be taught as many times as there were robots, and when one robot was replaced with another robot, the same task had to be taught again. There were some inconveniences, such as having to do some teaching.

そのため、上記パラメータを、個々のロボットについて
正確に求めて補正を加えることによって機差の減少を図
る試みが数多くなされているが、ロボットの手先位置の
計測、例えばダイヤルゲージを用いて手動計測するのに
、多大の工数がかかる点が障害になって普及が妨げられ
ていた。
Therefore, many attempts have been made to reduce machine differences by accurately determining and correcting the above parameters for each robot. However, the fact that it required a large amount of man-hours was an obstacle that hindered its widespread use.

本発明は上記のことにかんがみなされたもので、個々の
ロボットの手先位置を、正確に、素速く、手間をかけず
に自動計測することができるようにした三次元位置計測
装置を提供することを目的とするものである。
The present invention has been made in view of the above, and an object of the present invention is to provide a three-dimensional position measuring device that can automatically measure the hand position of each robot accurately, quickly, and without any effort. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明に係る三次元位置計
測装置は、三角測量の原理を用いたロボット等の可動部
に取付けられる光学式距離計測装置と、この光学式距離
計測装置が発する光ビームの一部をこの光学式距離計測
装置の受光器へ反射し、一部を透過し、かつこの光ビー
ムの重心位置を検出する第1の二次元光位置検出素子と
、この第1の二次元光位置検出素子と一定の距離だけ離
間して平行に設置され、かつ第1の二次元光位置検出素
子を通過してあたった光ビームの重心位置を検出する第
2の二次元位置検出素子とからなり、かつ所定位置に設
置可能にしたターゲットと、上記光学式距離計測装置と
ターゲットを構成する第1、第2の二次元光位置検出素
子からの信号を処理する演算装置とからなる。
In order to achieve the above object, a three-dimensional position measuring device according to the present invention includes an optical distance measuring device that uses the principle of triangulation and is attached to a movable part of a robot, etc., and a light emitted by this optical distance measuring device. a first two-dimensional optical position detection element that reflects a part of the beam to a light receiver of the optical distance measuring device, transmits a part of the beam, and detects the position of the center of gravity of the light beam; a second two-dimensional position detecting element that is installed parallel to and spaced apart from the first two-dimensional optical position detecting element, and detects the position of the center of gravity of the light beam that passes through and hits the first two-dimensional optical position detecting element; and an arithmetic device that processes signals from first and second two-dimensional optical position detection elements that constitute the optical distance measuring device and the target.

〔作 用〕[For production]

例えば第1図に示すように、ロボット2の手先3に配設
された光学式距離計測装置1の発する光ビームがこの光
学式距離計測装置1の基準点Pを通り、第1の二次元光
位置検出素子7に点Rであたると、この第1の二次元光
位置検出素子7によってP−R間の距離dがわかると共
に、第1の二次元光位置検出素子7によって、る。
For example, as shown in FIG. 1, a light beam emitted by an optical distance measuring device 1 disposed on a hand 3 of a robot 2 passes through a reference point P of this optical distance measuring device 1, and a first two-dimensional beam is generated. When the point R hits the position detection element 7, the distance d between PR can be determined by the first two-dimensional optical position detection element 7;

また、第1の二次元位置検出素子7を透過した光ビーム
が第2の二次元光位置検出素子8に従って、ロボットの
手先の基準点Pの三次元位置は より演算装置で求められる。
Further, the light beam transmitted through the first two-dimensional position detecting element 7 follows the second two-dimensional optical position detecting element 8, so that the three-dimensional position of the reference point P of the robot's hand can be determined by a calculation device.

〔実 施 例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図は本発明の概念図であり、図中1はロボット2の
手先3に容易に着脱可能に取付けられる光学式距離計測
装置1(光学式距離センサ)であり、この光学式距離計
測装置1は光ビーム投光器4と受光器5とからなってお
り、投光器4からの光ビームがターゲット6にあたって
反射した光を受光器5にて受光することにより、光学式
距離計測装置1の光ビームが通過する基準位置Pと上記
ターゲット6の表面までの距離dが三角測量の原理に基
づいて計測できるようになっている。
FIG. 1 is a conceptual diagram of the present invention. In the figure, 1 is an optical distance measuring device 1 (optical distance sensor) that can be easily attached to and detached from a hand 3 of a robot 2. 1 consists of a light beam projector 4 and a light receiver 5, and the light beam from the light projector 4 hits a target 6 and receives the reflected light at the receiver 5, so that the light beam of the optical distance measuring device 1 is The distance d between the passing reference position P and the surface of the target 6 can be measured based on the principle of triangulation.

上記ターゲット6は内壁に反射防止加工が施された箱状
になっており、これの上側と下側に、一定の距離だけ離
間して第1、第2の二次元光位置検出素子7.8が配設
されている。この二次元光位置検出素子[以下これをP
 S D (PostLion 5ensiLine 
Device)というコア、8は特開昭59−5057
9号公報に示されたもの、すなわち、P型アモルファス
シリコン層にi型アモルファスシリコン層及びn型アモ
ルファスシリコン層を順次接合してなる半導体層と、こ
の半導体層の両面にそれぞれ接合した透光性導電膜と、
この透光性導電膜に互いに直交する方向に対向配置した
2対の棒状電極とを具えた構成となっており、これに光
ビームをあてたときに、この光ビームがあたった位置座
標を電気的に検出するようになっている。上記側PSD
のうち、上側のPSDは光ビームの一部を上記光学式距
離計測装置1の受光器5へ反射し、一部を透過するよう
になっている。
The target 6 has a box shape with anti-reflection processing applied to the inner wall, and first and second two-dimensional optical position detection elements 7.8 are placed on the upper and lower sides of the target 6, spaced apart by a certain distance. is installed. This two-dimensional optical position detection element [hereinafter referred to as P
S D (PostLion 5ensiLine
8 is Japanese Patent Application Laid-Open No. 59-5057.
What is shown in Publication No. 9 is a semiconductor layer formed by sequentially bonding an i-type amorphous silicon layer and an n-type amorphous silicon layer to a p-type amorphous silicon layer, and a light-transmitting layer bonded to both surfaces of this semiconductor layer, respectively. a conductive film;
This transparent conductive film is equipped with two pairs of rod-shaped electrodes arranged opposite each other in directions orthogonal to each other, and when a light beam is applied to this, the coordinates of the position hit by this light beam can be electrically determined. It is designed to detect Above side PSD
Among them, the upper PSD reflects a portion of the light beam to the light receiver 5 of the optical distance measuring device 1, and transmits a portion of the light beam.

今簡単のため、第2図に示すように、第1、第2のPS
D7.8はそれぞれのy軸、y軸は平行に、Z軸は一致
するようになっているものとする。また上側のPSD7
の上面には光ビーム投光器4の波長以外の波長をカット
するフィルタを付けてもよい。
For simplicity, as shown in Figure 2, the first and second PS
D7.8 assumes that the respective y axes are parallel, and the Z axes are coincident. Also, the upper PSD7
A filter for cutting off wavelengths other than the wavelength of the light beam projector 4 may be attached to the upper surface of the light beam projector 4.

上記光学式距離計測装置1とターゲット6の両PSD7
.8は、これらからの信号を処理する演算装置9に接続
されている。
Both the optical distance measuring device 1 and the target 6 PSD7
.. 8 is connected to an arithmetic unit 9 that processes signals from these.

上記構成における作用を以下に説明する。The operation of the above configuration will be explained below.

光学式距離計測装置1をロボット2の手先3に取付け、
またターゲット6を基準位置に、例えば説明が簡単にな
るようにするために、第2図に示すように、第2のPS
D8の基準位置O0が測定治具の基準座標系Oの原点O
と一致するように設置したとする。
Attach the optical distance measuring device 1 to the hand 3 of the robot 2,
In addition, with the target 6 at the reference position, for example, in order to simplify the explanation, as shown in FIG.
The reference position O0 of D8 is the origin O of the reference coordinate system O of the measuring jig.
Suppose you set it so that it matches.

ロボット2の手先3を移動し、これに取付けた光学式距
離計測装置1の投光器4をターゲット6に向けて光ビー
ムを投光する。この光ビームは光学式距離計測装置1の
基準の位置Pを通り、ターゲット6の上側の第1のPS
D7の点Rにあたる。この光ビームの一部は反射して光
学式距離計測装置1の受光器5に受光され、これにより
PR間の距離dが求まる。
The hand 3 of the robot 2 is moved, and the light projector 4 of the optical distance measuring device 1 attached thereto is directed toward a target 6 to project a light beam. This light beam passes through the reference position P of the optical distance measuring device 1 and reaches the first PS above the target 6.
This corresponds to point R of D7. A part of this light beam is reflected and received by the light receiver 5 of the optical distance measuring device 1, thereby determining the distance d between the PRs.

また光ビームの他の一部は第1のPSD7に吸収されて
、その出力信号を処理して第1のPまた光ビームのさら
に他の一部は第1のPSD7を透過してターゲット6の
下側のPSD80点Tにあたり、これの一部が第2のP
SD8に吸収されて、その出力信号を処理して第2の−
〉 OT間の距離は既知であるから、OTRは三角形o、r
 ORRから、 と求められる。
Further, another part of the light beam is absorbed by the first PSD 7 and its output signal is processed and the other part of the light beam is transmitted through the first PSD 7 to reach the target 6. This corresponds to the PSD 80 point T on the lower side, and a part of this corresponds to the second P
It is absorbed by SD8, and its output signal is processed and sent to the second -
〉 Since the distance between OT is known, OTR is triangle o, r
From ORR, it is required.

従って基準座標OTにおけるロボット2の手−〉 先3の基準点Pの三次元位置OTPは −〉−〉−〉 OT P =OT R+RP より求まる。Therefore, the hand of robot 2 at the reference coordinate OT The three-dimensional position OTP of the third reference point P is −〉−〉−〉 OT P = OT R + RP More sought after.

これらの演算処理は電気回路とコンピュータを用いた演
算装置9にてなされ、これによりロボット2の手先3の
基準点Pが正確に、速く、手間をかけることなく計測で
きる。
These calculation processes are performed by a calculation device 9 using an electric circuit and a computer, and thereby the reference point P of the hand 3 of the robot 2 can be measured accurately, quickly, and without much effort.

実際のロボットで用いる場合、上記基準点Pの計測は作
業空間内の複数個所で行ない、それによって移動軌跡の
関係を求めることが考えられる。
When used in an actual robot, it is conceivable to measure the reference point P at a plurality of locations within the work space, and thereby determine the relationship between the movement trajectories.

この場合、作業空間程度の大きさのタープ・ソトを用い
れば1個のターゲットにて複数個所の計測を行なうこと
ができるが、実際にはそんなに大きなターゲットを作る
のは不可能であるので、位置関係が既知である複数のタ
ーゲットを組合せた治具を用いて計測を行なうことが考
えられる。
In this case, if you use a tarp/soto that is about the size of your work space, you can measure multiple locations with one target, but in reality it is impossible to make such a large target, so It is conceivable to perform measurements using a jig that combines a plurality of targets with known relationships.

上記実施例では、第2のPSD8の基準位置Ooに対す
るロボット2の手先3の基準点Pの→ の基準位置O工を、第1図に示すように、一般の基準座
標系Oの原点Oに置き換えて示すとで示される。
In the above embodiment, the reference position O of → of the reference point P of the hand 3 of the robot 2 with respect to the reference position Oo of the second PSD 8 is set to the origin O of the general reference coordinate system O, as shown in FIG. It is shown by replacing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、三角測量の原理を用いた光学式距離計
測装置1を配設した、例えばロボット2の手先3の、タ
ーゲット6の基準座標系における三次元位置を正確に、
素速く、手間をかけずに計測することができる。
According to the present invention, the three-dimensional position in the reference coordinate system of the target 6 of the hand 3 of the robot 2, for example, which is equipped with the optical distance measuring device 1 using the principle of triangulation, can be accurately determined.
Measurements can be made quickly and without much effort.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念を示す説明図、第2図は本発明の
実施例の概略的な作用説明図である。 1は光学式距離計測装置、2はロボット、3は手先、5
は受光器、6はターゲット、7,8は二次元光位置検出
素子、9は演算装置。
FIG. 1 is an explanatory diagram showing the concept of the present invention, and FIG. 2 is a schematic explanatory diagram of the operation of an embodiment of the present invention. 1 is an optical distance measuring device, 2 is a robot, 3 is a hand, 5
6 is a light receiver, 6 is a target, 7 and 8 are two-dimensional optical position detection elements, and 9 is an arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 三角測量の原理を用いたロボット2等の可動部に取付け
られる光学式距離計測装置1と、この光学式距離計測装
置1が発生する光ビームの一部をこの光学式距離計測装
置1の受光器5へ反射し、一部を透過し、かつこの光ビ
ームの重心位置を検出する第1の二次元光位置検出素子
7と、この第1の二次元光位置検出素子7と一定の距離
だけ離間して平行に設置され、かつ第1の二次元光位置
検出素子7を通過してあたった光ビームの重心位置を検
出する第2の二次元位置検出素子8とからなり、かつ所
定位置に設置可能にしたターゲット6と、上記光学式距
離計測装置1とターゲット6を構成する第1、第2の二
次元光位置検出素子7、8からの信号を処理する演算装
置9とからなることを特徴とする三次元位置計測装置。
An optical distance measuring device 1 that uses the principle of triangulation and is attached to a movable part of a robot 2 or the like, and a part of the light beam generated by this optical distance measuring device 1 is transmitted to a light receiver of this optical distance measuring device 1. A first two-dimensional optical position detecting element 7 that reflects the light beam to 5, transmits a part of it, and detects the center of gravity position of this light beam, and is spaced a certain distance from this first two-dimensional optical position detecting element 7. and a second two-dimensional position detecting element 8 which is installed in parallel with the first two-dimensional optical position detecting element 7 and which detects the position of the center of gravity of the light beam that passes through the first two-dimensional optical position detecting element 7 and is installed at a predetermined position. A computing device 9 that processes signals from the first and second two-dimensional optical position detection elements 7 and 8 that constitute the optical distance measuring device 1 and the target 6. A three-dimensional position measuring device.
JP63323740A 1988-12-23 1988-12-23 3D position measuring device Expired - Lifetime JP2687154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323740A JP2687154B2 (en) 1988-12-23 1988-12-23 3D position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323740A JP2687154B2 (en) 1988-12-23 1988-12-23 3D position measuring device

Publications (2)

Publication Number Publication Date
JPH02170004A true JPH02170004A (en) 1990-06-29
JP2687154B2 JP2687154B2 (en) 1997-12-08

Family

ID=18158087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323740A Expired - Lifetime JP2687154B2 (en) 1988-12-23 1988-12-23 3D position measuring device

Country Status (1)

Country Link
JP (1) JP2687154B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510397A (en) * 2012-12-19 2016-04-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting one or more objects
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
JP2020523784A (en) * 2017-06-06 2020-08-06 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Sensor device and manufacturing method thereof
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286782B (en) * 2013-06-07 2016-06-29 上海发那科机器人有限公司 The flexible tracing-positioning system of a kind of robot and method for tracking and positioning

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
JP2016510397A (en) * 2012-12-19 2016-04-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting one or more objects
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
JP2020523784A (en) * 2017-06-06 2020-08-06 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Sensor device and manufacturing method thereof
US11217619B2 (en) 2017-06-06 2022-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor device and method of manufacturing the same
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object

Also Published As

Publication number Publication date
JP2687154B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JPH02170004A (en) Three-dimensional position measuring instrument
US20170161889A1 (en) Laser projection system and method
KR20170108806A (en) Method and apparatus for automatic calibration of rgbz sensors utilizing epipolar geometry and scanning beam projector
JP2014511480A (en) System for measuring the position and movement of objects
KR102144541B1 (en) Apparatus for sensing distances of two directions
JP2017019072A (en) Position measurement system
JPS6312521B2 (en)
KR20190083661A (en) Measurement system and method of industrial robot
US4627722A (en) Method and apparatus for optically measuring three-dimensional coordinates
US11162776B2 (en) Measuring device
JPH055628B2 (en)
Kanade et al. A noncontact optical proximity sensor for measuring surface shape
JPS61104202A (en) Optical displacement meter
JPS63222202A (en) Apparatus for measuring distance and angle of inclination
JPS5855813A (en) Optical distance measuring meter
JPH0418601B2 (en)
JPH0712893Y2 (en) Non-contact 3D position measuring device
TWI734465B (en) Optical navigation apparatus
JPS61189405A (en) Non-contacting shape measuring instrument
JP2667395B2 (en) Moving body
JPH0259634A (en) Force sensor and detection for force
JPH04523B2 (en)
JPH0360957A (en) Tracer head for non-contact type digitalizer
JPS63127103A (en) Position measuring apparatus
JPS6067807A (en) Controlling method of profiling action in non-contacting pattern measurement