JP2687154B2 - 3D position measuring device - Google Patents

3D position measuring device

Info

Publication number
JP2687154B2
JP2687154B2 JP63323740A JP32374088A JP2687154B2 JP 2687154 B2 JP2687154 B2 JP 2687154B2 JP 63323740 A JP63323740 A JP 63323740A JP 32374088 A JP32374088 A JP 32374088A JP 2687154 B2 JP2687154 B2 JP 2687154B2
Authority
JP
Japan
Prior art keywords
measuring device
dimensional
distance measuring
light
optical distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63323740A
Other languages
Japanese (ja)
Other versions
JPH02170004A (en
Inventor
浩 宮田
徹夫 杓子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP63323740A priority Critical patent/JP2687154B2/en
Publication of JPH02170004A publication Critical patent/JPH02170004A/en
Application granted granted Critical
Publication of JP2687154B2 publication Critical patent/JP2687154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Light Receiving Elements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、産業用のロボット等の可動部の所定位置を
3次元的に計測する三次元位置計測装置に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a three-dimensional position measuring device that three-dimensionally measures a predetermined position of a movable part of an industrial robot or the like.

〔従来の技術〕[Conventional technology]

現在、自動溶接機械等のような産業ロボットにおいて
は、機差の問題がクローズアップされてきている。
At present, in industrial robots such as automatic welding machines, the problem of machine difference has been highlighted.

機差とは、同じ型のロボットにおいても、関節間の長
さや構造体のねじれ角等のパラメータが製造誤差によっ
て個々のロボットで異なるために、2台のロボットに同
じ指令を与えても同じ軌跡を描かないということであ
る。
The machine difference means that even in the same type of robot, the parameters such as the length between joints and the twist angle of the structure are different for each robot due to manufacturing error. Therefore, even if the same command is given to two robots, the same trajectory Is not drawn.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従って従来は、同一作業を複数台のロボットを使って
行なう場合でも、同一作業のティーチングをロボットの
台数だけの回数行なわなければならず、またあるロボッ
トを別のロボットに置き換えたときには、再度同じ作業
のティーチングを行なわなければならない等の不便があ
った。
Therefore, conventionally, even when the same work is performed using a plurality of robots, the same work must be taught as many times as the number of robots, and when one robot is replaced with another robot, the same work is performed again. There was an inconvenience such as having to teach.

そのため、上記パラメータを、個々のロボットについ
て正確に求めて補正を加えることによって機差の減少を
図る試みが数多くなされているが、ロボットの手先位置
の計測、例えばダイヤルゲージを用いて手動計測するの
に、多大の工数がかかる点が障害になって普及が妨げら
れていた。
For this reason, many attempts have been made to reduce the machine difference by accurately obtaining and correcting the above parameters for each robot.However, it is necessary to measure the hand position of the robot, for example, manually using a dial gauge. In addition, the fact that it takes a lot of man-hours has been an obstacle to the spread.

本発明は上記のことにかんがみなされたもので、個々
のロボットの手先位置を、正確に、素速く、手間をかけ
ずに自動計測することができるようにした三次元位置計
測装置を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and provides a three-dimensional position measuring device capable of automatically measuring the hand position of each robot accurately, quickly, and without trouble. The purpose is.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に係る三次元位置
計測装置は、三角測量の原理を用いたロボット等の可動
部に取付けられる光学式距離計測装置と、この光学式距
離計測装置が発する光ビームの一部をこの光学式距離計
測装置の受光器へ反射し、一部を透過し、かつこの光ビ
ームの重心位置を検出する第1の二次元光位置検出素子
と、この第1の二次元光位置検出素子と一定の距離だけ
離間して設置され、かつ第1の二次元光位置検出素子を
通過してあたった光ビームの重心位置を検出する第2の
二次元位置検出素子とからなり、かつ所定位置に設置可
能にしたターゲットと、上記光学式距離計測装置とター
ゲットを構成する第1、第2の二次元光位置検出素子か
らの信号を処理する演算装置とからなる。
In order to achieve the above object, a three-dimensional position measuring device according to the present invention is an optical distance measuring device attached to a movable part such as a robot using the principle of triangulation, and a light emitted by the optical distance measuring device. A first two-dimensional optical position detecting element that reflects a part of the beam to a light receiver of the optical distance measuring device, transmits a part of the beam, and detects the position of the center of gravity of the light beam; A two-dimensional position detecting element which is installed apart from the three-dimensional light position detecting element by a certain distance and which detects the position of the center of gravity of the light beam that has passed through the first two-dimensional light position detecting element. And a target that can be installed at a predetermined position, and an arithmetic unit that processes signals from the optical distance measuring device and the first and second two-dimensional optical position detecting elements that form the target.

〔作 用〕(Operation)

例えば第1図に示すように、ロボット2の手先3に配
設された光学式距離計測装置1の発する光ビームがこの
光学式距離計測装置1の基準点Pを通り、愛1の二次元
光位置検出素子7に点Rであたると、この第1の二次元
光位置検出素子7によってP−R間の距離dがわかると
共に、第1の二次元光位置検出素子7によって、基準座
標系における点Rの位置▲▼が知られる。
For example, as shown in FIG. 1, the light beam emitted by the optical distance measuring device 1 arranged on the hand 3 of the robot 2 passes through the reference point P of the optical distance measuring device 1 and passes through the two-dimensional light of love 1. If the position detection element 7 is at the point R, the distance d between P and R can be known by the first two-dimensional light position detection element 7, and the first two-dimensional light position detection element 7 can be used in the reference coordinate system. The position ▲ ▼ of the point R is known.

また、第1の二次元位置検出素子7を透過した光ビー
ムが第2の二次元光位置検出素子8に点Tで当たると、
点Tの位置▲▼が知られる。
Further, when the light beam transmitted through the first two-dimensional position detecting element 7 hits the second two-dimensional position detecting element 8 at the point T,
The position ▲ ▼ of the point T is known.

従って、ロボットの手先の基準点Pの三次元位置は より演算装置で求められる。Therefore, the three-dimensional position of the reference point P of the hand of the robot is More required by the computing device.

〔実 施 例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の概念図であり、図中1はロボット2
の手先3に容易に着脱可能に取付けられる光学式距離計
測装置1(光学式距離センサ)であり、この光学式距離
計測装置1は光ビーム投光器4と受光器5とからなって
おり、投光器4からの光ビームがターゲット6にあたっ
て反射した光を受光器5にて受光することにより、光学
式距離計測装置1の光ビームが通過する基準位置Pと上
記ターゲット6の表面までの距離dが三角測量の原理に
基づいて計測できるようになっている。
FIG. 1 is a conceptual diagram of the present invention, in which 1 is a robot 2
Is an optical distance measuring device 1 (optical distance sensor) that can be easily and detachably attached to the hand 3 of the hand. The optical distance measuring device 1 includes a light beam projector 4 and a light receiver 5, and the projector 4 By receiving the light reflected by the light beam from the target 6 on the light receiver 5, the reference position P where the light beam of the optical distance measuring device 1 passes and the distance d to the surface of the target 6 are triangulated. It can be measured based on the principle of.

上記ターゲット6は内壁に反射防止加工が施された箱
状になっており、これの上側と下側に、一定の距離だけ
離間して第1、第2の二次元光位置検出素子7,8が配設
されている。この二次元位置検出素子[以下これをPSD
(Position Sensitine Device)という]7,8は特開昭59
−50579号公報に示されたもの、すなわち、P型アモル
ファスシリコン層にi型アモルファスシリコン層及びn
型アモルファスシリコン層を順次接合してなる半導体層
と、この半導体層の両面にそれぞれ接合した透光性導電
膜と、この透光性導電膜に互いに直交する方向に対向配
置した2対の棒状電極とを備えた構成となっており、こ
れに光ビームをあてたときに、この光ビームがあたった
位置座標を電気的に検出するようになっている。上記両
PSD7,8のうち、上側のPSD7は光ビームの一部を上記光学
式距離計測装置1の受光器5へ反射し、一部を透過する
ようになっている。
The target 6 has a box-like shape with an inner wall having an antireflection treatment, and the upper and lower sides of the target 6 are separated by a certain distance from each other, and the first and second two-dimensional optical position detecting elements 7 and 8 are provided. Is provided. This two-dimensional position detecting element [hereinafter this is PSD
(Position Sensitine Device)] 7,8
No. 50579, namely, a P-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer.
Type semiconductor layers formed by sequentially bonding amorphous silicon layers, transparent conductive films bonded to both surfaces of the semiconductor layer, and two pairs of rod-shaped electrodes facing each other in a direction orthogonal to the transparent conductive films. When the light beam is applied to it, the position coordinates of the light beam are electrically detected. Both of the above
Of the PSDs 7 and 8, the upper PSD 7 reflects a part of the light beam to the light receiver 5 of the optical distance measuring device 1 and transmits a part thereof.

今簡単のため、第2図に示すように、第1、第2のPS
D7,8はそれぞれのx軸、y軸は平行に、z軸は一致する
ようになっているものとする。また上側のPSD7の上面に
は光ビーム透光器4の波長以外の波長をカットするフィ
ルタを取付けてもよい。
For the sake of simplicity, as shown in Fig. 2, the first and second PS
It is assumed that D7 and D8 are arranged so that their x-axes and y-axes are parallel and their z-axes are coincident. Further, a filter for cutting wavelengths other than the wavelength of the light beam translucent device 4 may be attached to the upper surface of the upper PSD 7.

上記光学式距離計測装置1とターゲット6の量PSD7,8
は、これらからの信号を処理する演算装置9に接続され
ている。
Amount PSD7,8 of the optical distance measuring device 1 and the target 6
Are connected to an arithmetic unit 9 which processes signals from these.

上記構成における作用を以下に説明する。 The operation of the above configuration will be described below.

光学式距離計測装置1をロボット2の手先3に取付
け、またターゲット6を基準位置に、例えば説明が簡単
になるようにするために、第2図に示すように、第2PSD
8の基準位置OTが測定治具の基準座標系の原点Oと一
致するように設置したとする。
In order to attach the optical distance measuring device 1 to the hand 3 of the robot 2 and set the target 6 at the reference position, for example, in order to simplify the explanation, as shown in FIG.
Reference position O T 8 is an installation were to coincide with the origin O of the reference coordinate system of the measuring jig.

ロボット2の手先3を移動し、これに取付けた光学式
距離計測装置1の投光器4をターゲット6に向けて光ビ
ームを投光する。この光ビームは光学式距離計測装置1
の基準の位置Pを通り、ターゲット6の上側の第1のPS
D7の点Pにあたる。この光ビームの一部は反射して光学
式距離計測装置1の受光器5に受光され、これによりPR
間の距離dが求まる。
The hand 3 of the robot 2 is moved, and the light beam is projected toward the target 6 by the projector 4 of the optical distance measuring device 1 attached thereto. This light beam is an optical distance measuring device 1
The first PS above the target 6 through the reference position P of
It corresponds to point P of D7. A part of this light beam is reflected and received by the light receiver 5 of the optical distance measuring device 1, and the PR
The distance d between them is obtained.

また光ビームの他の一部は第1のPSD7に吸収されて、
その出力信号を処理して第1のPSD7上での座標▲
▼が求まる。
The other part of the light beam is absorbed by the first PSD7,
The output signal is processed and the coordinates on the first PSD7 are ▲
▼ is obtained.

また光ビームのさらに他の一部は第1のPSD7を透過し
てターゲット6の下側のPSD8の点Tにあたり、これの一
部が第2のPSD8に吸収されて、その出力信号を処理して
第2のPSD8での座標▲▼が求まる。またORとOT
の距離は既知であるから、▲▼は三角形OTORRか
ら、 と求められる。
Further, another part of the light beam passes through the first PSD 7 and hits the point T of the PSD 8 below the target 6, and a part of this is absorbed by the second PSD 8 to process its output signal. Then, the coordinates ▲ ▼ on the second PSD8 can be obtained. Also, since the distance between O R and O T is known, ▲ ▼ is a triangle O T O R R Is required.

従って基準座標OTにおけるロボット2の手先3の基準
点Pの三次元位置▲▼は より求まる。
Thus the three-dimensional position of the reference point P of the hand 3 of the robot 2 in the reference coordinate O T ▲ ▼ is Find more.

これらの演算処理は電気回路とコンピュータを用いた
演算装置9にてなされ、これによりロボット2の手先3
の基準点Pが正確に、速く、手間をかけることなく計測
できる。
These arithmetic processes are performed by the arithmetic unit 9 using an electric circuit and a computer, whereby the hand 3 of the robot 2 is processed.
The reference point P can be measured accurately, quickly, and without trouble.

実際のロボットで用いる場合、上記基準点Pの計測は
作業空間内の複数個所で行ない、それによって移動軌跡
の関係を求めることが考えられる。
When used in an actual robot, it is conceivable that the reference point P is measured at a plurality of locations in the work space to obtain the relationship of the movement locus.

この場合、作業空間程度の大きさのターゲットを用い
れば1個のターゲットにて複数個所の計測を行うことが
できるが、実際にはそんなに大きなターゲットを作るの
は不可能であるので、位置関係が既知である複数のター
ゲットを組合せた治具を用いて計測を行なうことが考え
られる。
In this case, if you use a target that is about the size of the working space, you can measure multiple points with one target, but in reality it is impossible to make such a large target, so the positional relationship is It is conceivable to perform the measurement using a known jig that combines a plurality of targets.

上記実施例では、第2のPSD8の基準位置OTに対するロ
ボット2の手先3の基準点Pの三次元位置▲▼を
示したが、第2のPSD8の基準位置OTを、第1図に示すよ
うに、一般の基準座標系Oの原点Oに置き換えて示すと で示される。
In the above embodiment, the three-dimensional position ▲ ▼ of the reference point P of the hand 3 of the robot 2 with respect to the reference position O T of the second PSD 8 is shown, but the reference position O T of the second PSD 8 is shown in FIG. As shown, if replaced with the origin O of the general reference coordinate system O, Indicated by

〔発明の効果〕〔The invention's effect〕

本発明によれば、三角測量の原理を用いた光学式距離
計測装置1を配設した、例えばロボット2の手先3の、
ターゲット6の基準座標系における三次元位置を正確
に、素速く、手間をかけずに計測することができる。
According to the present invention, the optical distance measuring device 1 using the principle of triangulation is provided, for example, the hand 3 of the robot 2,
The three-dimensional position of the target 6 in the reference coordinate system can be measured accurately, quickly, and without any trouble.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の概念を示す説明図、第2図は本発明の
実施例の概略的な作用説明図である。 1は光学式距離計測装置、2はロボット、3は手先、5
は受光器、6はターゲット、7,8は二次元光位置検出素
子、9は演算装置。
FIG. 1 is an explanatory view showing the concept of the present invention, and FIG. 2 is a schematic operation explanatory view of an embodiment of the present invention. 1 is an optical distance measuring device, 2 is a robot, 3 is a hand, 5
Is a light receiver, 6 is a target, 7 and 8 are two-dimensional optical position detecting elements, and 9 is an arithmetic unit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】三角測量の原理を用いたロボット2等の可
動部に取付けられる光学式距離計測装置1と、この光学
式距離計測装置1が発生する光ビームの一部をこの光学
式距離計測装置1の受光器5へ反射し、一部を透過し、
かつこの光ビームの重心位置を検出する第1の二次元光
位置検出素子7と、この第1の二次元光位置検出素子7
と一定の距離だけ離間して設置され、かつ第1の二次元
光位置検出素子7を通過してあたった光ビームの重心位
置を検出する第2の二次元位置検出素子8とからなり、
かつ所定位置に設置可能にしたターゲット6と、上記光
学式距離計測位置1とターゲット6を構成する第1、第
2の二次元光位置検出素子7,8からの信号を処理する演
算装置9とからなることを特徴とする三次元位置計測装
置。
1. An optical distance measuring device 1 attached to a movable part of a robot 2 or the like using the principle of triangulation, and a part of a light beam generated by the optical distance measuring device 1 is measured by the optical distance measuring device 1. The light is reflected by the light receiver 5 of the device 1 and partially transmitted,
Also, the first two-dimensional light position detecting element 7 for detecting the center of gravity of the light beam, and the first two-dimensional light position detecting element 7
And a second two-dimensional position detecting element 8 that is installed at a fixed distance from each other and that detects the position of the center of gravity of the light beam that has passed through the first two-dimensional optical position detecting element 7 and
And a target 6 which can be installed at a predetermined position, and an arithmetic unit 9 which processes signals from the optical distance measuring position 1 and the first and second two-dimensional optical position detecting elements 7 and 8 which constitute the target 6. A three-dimensional position measuring device comprising:
JP63323740A 1988-12-23 1988-12-23 3D position measuring device Expired - Lifetime JP2687154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323740A JP2687154B2 (en) 1988-12-23 1988-12-23 3D position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323740A JP2687154B2 (en) 1988-12-23 1988-12-23 3D position measuring device

Publications (2)

Publication Number Publication Date
JPH02170004A JPH02170004A (en) 1990-06-29
JP2687154B2 true JP2687154B2 (en) 1997-12-08

Family

ID=18158087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323740A Expired - Lifetime JP2687154B2 (en) 1988-12-23 1988-12-23 3D position measuring device

Country Status (1)

Country Link
JP (1) JP2687154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286782A (en) * 2013-06-07 2013-09-11 上海发那科机器人有限公司 Flexible tracking and positioning system and flexible tracking and positioning method of robot

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102088685B1 (en) 2012-12-19 2020-03-13 바스프 에스이 Detector for optically detecting at least one object
CN109521397B (en) 2013-06-13 2023-03-28 巴斯夫欧洲公司 Detector for optically detecting at least one object
KR20160019067A (en) 2013-06-13 2016-02-18 바스프 에스이 Detector for optically detecting an orientation of at least one object
CN105637320B (en) 2013-08-19 2018-12-14 巴斯夫欧洲公司 Fluorescence detector
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
EP3201567A4 (en) 2014-09-29 2018-06-06 Basf Se Detector for optically determining a position of at least one object
CN107003785B (en) 2014-12-09 2020-09-22 巴斯夫欧洲公司 Optical detector
WO2016120392A1 (en) 2015-01-30 2016-08-04 Trinamix Gmbh Detector for an optical detection of at least one object
KR102644439B1 (en) 2015-07-17 2024-03-07 트리나미엑스 게엠베하 Detector for optically detecting one or more objects
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
WO2018019921A1 (en) 2016-07-29 2018-02-01 Trinamix Gmbh Optical sensor and detector for optical detection
CN109891265B (en) 2016-10-25 2023-12-01 特里纳米克斯股份有限公司 Detector for optically detecting at least one object
JP2019532517A (en) 2016-10-25 2019-11-07 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Photodetector for optical detection
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
KR102484739B1 (en) 2016-11-17 2023-01-05 트리나미엑스 게엠베하 Detector for optically detecting at least one object
EP3612805A1 (en) 2017-04-20 2020-02-26 trinamiX GmbH Optical detector
DE102017209498A1 (en) 2017-06-06 2018-12-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor device and method for producing the same
CN110998223B (en) 2017-06-26 2021-10-29 特里纳米克斯股份有限公司 Detector for determining the position of at least one object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286782A (en) * 2013-06-07 2013-09-11 上海发那科机器人有限公司 Flexible tracking and positioning system and flexible tracking and positioning method of robot
CN103286782B (en) * 2013-06-07 2016-06-29 上海发那科机器人有限公司 The flexible tracing-positioning system of a kind of robot and method for tracking and positioning

Also Published As

Publication number Publication date
JPH02170004A (en) 1990-06-29

Similar Documents

Publication Publication Date Title
JP2687154B2 (en) 3D position measuring device
US8352212B2 (en) Manipulable aid for dimensional metrology
US4721388A (en) Method of measuring shape of object in non-contacting manner
CN101738171B (en) Apparatus and method for measuring three-dimensional shape of a wood block
US3898445A (en) Digitizing device
US5031103A (en) Position detector for moving vehicle
JPS586404A (en) Device for detecting physical position and direction of body
JPH01287415A (en) Position controller for self-running vehicle
KR102228835B1 (en) Industrial robot measuring system and method
JPH0344503A (en) Method and device for regulating position of object to be measured
JP4281056B2 (en) Displacement measuring method for long distance object and displacement measuring device for long distance object
JPH03244017A (en) Simultaneous input device for optical system plural two-dimensional coordinates
US11162776B2 (en) Measuring device
JPH0418601B2 (en)
JPS63225109A (en) Distance and inclination measuring instrument
Kanade et al. A noncontact optical proximity sensor for measuring surface shape
JPS63222202A (en) Apparatus for measuring distance and angle of inclination
JPH0712893Y2 (en) Non-contact 3D position measuring device
JP2931770B2 (en) Three-dimensional position detection method using laser displacement sensor
JPS61189405A (en) Non-contacting shape measuring instrument
CN214747763U (en) Industrial robot repeatability and cooperativity measuring device based on PSD
JPH0474642B2 (en)
JP2602064B2 (en) Travel position control device for self-propelled vehicles
JPH0663733B2 (en) Method for detecting multiple holes
Shirinzadeh et al. Dual-position sensitive diode-based orientation measurement in laser-interferometry-based sensing and measurement technique