JPH0196943A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0196943A
JPH0196943A JP25499287A JP25499287A JPH0196943A JP H0196943 A JPH0196943 A JP H0196943A JP 25499287 A JP25499287 A JP 25499287A JP 25499287 A JP25499287 A JP 25499287A JP H0196943 A JPH0196943 A JP H0196943A
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit chip
resin film
capacitor
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25499287A
Other languages
Japanese (ja)
Inventor
Toshio Sudo
須藤 俊夫
Tomoaki Takubo
知章 田窪
Kazuyoshi Saito
和敬 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25499287A priority Critical patent/JPH0196943A/en
Publication of JPH0196943A publication Critical patent/JPH0196943A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To stabilize power supply voltage effectively by adopting the film carrier system and by arranging a capacitor for decoupling of comb-type electrode near the position where integrated circuit chip is mounted. CONSTITUTION:In the TAB substrate, a lead wire was formed on a resin film 1 such as polyimide by photo etching. A capacitor for decoupling with a pattern where comb-type electrodes 61 and 62 are engaged by etching is formed at the tip of an inner lead part 3 where integrated circuit chip is mounted. One of the electrodes 61 and 62 is connected to the power supply potential and the other is connected to the grounding potential. An integrated circuit chip 2 is arranged on the surface which is opposite to the one where lead wiring is formed and the inner lead part 3 is connected to a protruded electrode 8 through a through wiring 7. The through wiring 7 should be formed before applying the Cu film to the resin film 1. And the integrated circuit chip 2 and capacitor are arranged to a position where they nearly overlap. Since a rush current flows to the power supply line in the integrated circuit chip, the capacitor for decoupling should be placed closer to the integrated circuit chip.

Description

【発明の詳細な説明】 [発明の目的]  − (産業上の利用分野) 本発明は半導体集積回路装置に係り、特にGaAs集積
回路に代表される高速動作の集積回路の実装構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] - (Industrial Application Field) The present invention relates to a semiconductor integrated circuit device, and particularly to a mounting structure of a high-speed operation integrated circuit typified by a GaAs integrated circuit.

(従来の技術) 高速論理動作を行う半導体集積回路としてGaAs集積
回路が知られている。近年、G a A s M E 
S F E Tを集積して、スイッチング速度100 
p see程度の高速動作を実現したものが得られてい
る。しかしこの様な高速動作を行う集積回路チップを従
来のパッケージに搭載した場合、チップ単体で得られる
高速性能が引出されないという問題がある。その性能劣
化の原因の一つとして、集積回路チップ内の論理素子が
高速スイッチング動作を行なう際に電源線に急峻な過渡
電流が流れ、インダクタンス成分の影響で電源電位の低
下をもたらすことが挙げられる。電源線のインダクタン
スは、パッケージ内の配線部のインダクタンス分と、集
積回路チップと配線部を接続するボンディング・ワイヤ
のインダクタンス分がある。ボンディング・ワイヤのイ
ンダクタンスは通常、1朋当り0.5〜1nHという値
であり、ワイヤ長を1〜2m14とすると1〜2nHと
なる。パッケージ内電源配線のインダクタンス成分を合
せて仮に、2nHとし、スイッチング時間100 p 
seeの間に流れる電流を10mAとすると、このとき
電源電圧降下は、L−di/dtにより計算して約20
0mVとなる。
(Prior Art) GaAs integrated circuits are known as semiconductor integrated circuits that perform high-speed logic operations. In recent years, Ga As M E
By integrating SFET, the switching speed is 100
A device that achieves high-speed operation on the order of psee has been obtained. However, when such an integrated circuit chip that operates at high speed is mounted in a conventional package, there is a problem that the high-speed performance obtained by the chip alone cannot be brought out. One of the causes of performance deterioration is that when the logic elements in the integrated circuit chip perform high-speed switching operations, a sharp transient current flows through the power supply line, causing a drop in the power supply potential due to the influence of the inductance component. . The inductance of the power supply line includes the inductance of the wiring section within the package and the inductance of the bonding wire that connects the integrated circuit chip and the wiring section. The inductance of the bonding wire is usually 0.5 to 1 nH per wire, and when the wire length is 1 to 2 m14, it is 1 to 2 nH. Let's assume that the total inductance component of the power supply wiring inside the package is 2nH, and the switching time is 100p.
If the current flowing during see is 10mA, then the power supply voltage drop is approximately 20mA calculated by L-di/dt.
It becomes 0mV.

G a A s M E S F E Tを用いた論理
回路はノイズマージンが小さいため、この程度の電源変
動でも動作が不安定になる。
Since a logic circuit using GaAs MESFET has a small noise margin, even a power supply fluctuation of this magnitude makes the operation unstable.

従来一般にこの様な電源電圧変動に対しては、パッケー
ジ外部に電源線と接地線間にデカップリング用コンデン
サを設けることが行われている。
Conventionally, in order to cope with such power supply voltage fluctuations, a decoupling capacitor has been generally provided between the power supply line and the ground line outside the package.

しかし、GaAs論理回路その他の高速集積回路では、
パッケージ外部にコンデンサを接続しても、パッケージ
内部の電源線の持つインダクタンスの影響を充分補償す
ることができない。
However, in GaAs logic circuits and other high-speed integrated circuits,
Even if a capacitor is connected outside the package, it is not possible to sufficiently compensate for the influence of the inductance of the power supply line inside the package.

(発明が解決しようとする問題点) 以上のように高速動作を行なう集積回路では、電源線の
インダクタンスによりその本来持っている高速性を充分
に発揮させることができない、という問題があった。
(Problems to be Solved by the Invention) As described above, integrated circuits that operate at high speeds have a problem in that they cannot fully utilize their inherent high speeds due to the inductance of the power supply line.

本発明はこの様な問題を解決した半導体集積回路装置を
提供することを目的とする。
An object of the present invention is to provide a semiconductor integrated circuit device that solves these problems.

[発明の構成コ (問題点を解決するための手段) 本発明では、半導体集積回路チップの実装にT A B
 (T ape  A utomated  B on
ding)方式を採用する。TAB基板は、テープ状の
樹脂フィルムに集積回路チップの載置部と、集積回路チ
ップと接続される金属箔からなるリード配線が形成され
たものである。この実装方式は、フィルムキャリア等と
も称される。この様なTAB方式の集積回路構造におい
て本発明は、樹脂フィルム上に櫛形電極によるデカップ
リング用コンデンサを搭載したことを特徴とする。
[Configuration of the Invention (Means for Solving Problems) In the present invention, T A B is used for mounting a semiconductor integrated circuit chip.
(Tape Automated B on
ding) method will be adopted. The TAB substrate is a tape-shaped resin film on which a mounting portion for an integrated circuit chip and lead wiring made of metal foil to be connected to the integrated circuit chip are formed. This mounting method is also called a film carrier or the like. In such a TAB type integrated circuit structure, the present invention is characterized in that a decoupling capacitor using a comb-shaped electrode is mounted on a resin film.

(作用) この様にTAB基板(フィルムキャリア)を用いれば、
基板上のリード配線と集積回路チップ間の接続は突起電
極により行われるためにインダクタンス成分が小さくな
り、またデカップリング用コンデンサを集積回路チップ
の近傍に配置することにって、樹脂フィルム上のリード
配線のインダクタンス成分の影響も非常に少なくするこ
とができる。
(Function) If the TAB substrate (film carrier) is used in this way,
The connection between the lead wires on the board and the integrated circuit chip is made by protruding electrodes, which reduces the inductance component, and by placing the decoupling capacitor near the integrated circuit chip, the lead wires on the resin film can be easily connected. The influence of the inductance component of the wiring can also be greatly reduced.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図(a)(b)は、本発明の一実 施例のGaAs集積回路実装構造を示す平面図である。Figures 1(a) and 1(b) are examples of the present invention. FIG. 2 is a plan view showing an example GaAs integrated circuit mounting structure.

GaAs集積回路は例えば、GaAsMESFETを用
いた、スイッチング速度10 p see以下の高速動
作をおこなうマルチプレクサである。TAB基板は、ポ
リイミド或いはガラスエポキシ等の樹脂フィルム1に、
フォト・エツチングを利用してリード配線を形成したも
のである。通常長尺のテープ状フィルムに繰返し配線パ
ターンが形成されており、これに集積回路チップが次々
に搭載される。第1図ではその1チツプ搭載部とその周
辺のリード配線部を示している。
The GaAs integrated circuit is, for example, a multiplexer that uses GaAs MESFETs and operates at high speed with a switching speed of 10 psee or less. The TAB substrate is made of a resin film 1 made of polyimide or glass epoxy, etc.
Lead wiring is formed using photo-etching. Usually, a long tape-like film has a repeated wiring pattern formed thereon, and integrated circuit chips are mounted one after another on this. FIG. 1 shows the one-chip mounting area and the lead wiring area around it.

配線は、最終的に集積回路としてキャリアから切離され
る領域(−点鎖線で示す)内部のインナー・リード部3
、外部のアウター・リード部及び測定用パッド部5から
なる。インナー・リード部3の先端の集積回路チップ載
置部に、櫛形電極61゜6□を噛合わせたパターンのデ
カップリング用コンデンサが構成されている。電極6.
.62の一方は電源電位に、他方は接地電位に接続され
る。
The wiring is connected to the inner lead portion 3 inside the area (indicated by the dashed line) which will be ultimately separated from the carrier as an integrated circuit.
, an external outer lead section, and a measurement pad section 5. A decoupling capacitor having a pattern of interlocking comb-shaped electrodes 61°6□ is formed on the integrated circuit chip mounting portion at the tip of the inner lead portion 3. Electrode 6.
.. One side of 62 is connected to the power supply potential, and the other side is connected to the ground potential.

これらリード配線及びコンデンサを構成する櫛形電極6
1.62は、樹脂フィルム1上に貼り付けたCu膜をエ
ツチングして得られる。
Comb-shaped electrodes 6 that constitute these lead wiring and capacitors
1.62 is obtained by etching a Cu film stuck on the resin film 1.

第2図は第1図の要部を拡大して示す平面図であり、第
3図(a)(b)はそのA−A’及びB−B’断面図で
ある。集積回路チップ2は第3図に明らかなように、樹
脂フィルム1のリード配線形成面と反対側の面に配置さ
れ、インナー・リード部3は、樹脂フィルム1に形成さ
れたスルー配線7を介して、チップ2上の突起電極8に
接続されている。スルー配線7は、樹脂フィルム1にC
u膜を貼る前に予め形成しておく。突起電極8は集積回
路チップ2上ではなく、樹脂フィルム1上に形成してお
いてもよく、その構造もAuバンブやハンダバンプなど
、如何なるものでもよい。
FIG. 2 is an enlarged plan view showing the main part of FIG. 1, and FIGS. 3(a) and 3(b) are sectional views taken along line AA' and line BB'. As is clear from FIG. 3, the integrated circuit chip 2 is arranged on the surface of the resin film 1 opposite to the surface on which the lead wiring is formed, and the inner lead portion 3 is connected to the resin film 1 through the through wiring 7 formed on the resin film 1. and is connected to the protruding electrode 8 on the chip 2. The through wiring 7 is connected to the resin film 1 by C.
Form in advance before pasting the u film. The protruding electrode 8 may be formed on the resin film 1 instead of on the integrated circuit chip 2, and its structure may be of any type, such as an Au bump or a solder bump.

例えば、集積回路チップ2上に形成する場合には、Tj
 −Pt −Au 、Cr −Cu−Auなどのバリア
金属層を介してAuメツキを行なって、突起電極8が得
られる。この突起電極8と接する部分の樹脂フィルム1
には、SnメツキあるいはAuメツキを施しておく。集
積回路チップ2と樹脂フィルム1の接合は、熱せられた
ツールを樹脂フィルム上面から押し当てることにより行
われる。ツールの熱は、スレー配線7を通し突起電極8
までよく伝わり、良好な接合が行われる。
For example, when forming on the integrated circuit chip 2, Tj
The protruding electrode 8 is obtained by performing Au plating through a barrier metal layer such as -Pt-Au or Cr-Cu-Au. Resin film 1 in the part that comes into contact with this protruding electrode 8
is coated with Sn plating or Au plating. The integrated circuit chip 2 and the resin film 1 are bonded by pressing a heated tool against the resin film from above. The heat of the tool passes through the slay wiring 7 to the protruding electrode 8.
The contact is transmitted well, and a good bond is achieved.

デカップリング用コンデンサの電極61.62は前述の
ようにそれぞれ電源線、接地線に接続される。そして集
積回路チップ2とコンデンサはほぼ重なる位置に配置さ
れる。集積回路チップでは電源線に急峻な電流が流れる
ため、デカップリング用コンデンサはできるだけ集積回
路チップに近い位置に配置することが望ましいが、この
実施例でこれが実現されている。
The electrodes 61 and 62 of the decoupling capacitor are connected to the power supply line and the ground line, respectively, as described above. The integrated circuit chip 2 and the capacitor are arranged at substantially overlapping positions. Since a steep current flows through the power supply line in an integrated circuit chip, it is desirable to place the decoupling capacitor as close to the integrated circuit chip as possible, and this is achieved in this embodiment.

第4図は、この実施例による集積回路の等価回路である
。図示のように、集積回路チップ2の電源Pと接地線Q
の間にデカップリング用コンデンサCが接続された形に
なる。
FIG. 4 is an equivalent circuit of the integrated circuit according to this embodiment. As shown, the power supply P and ground line Q of the integrated circuit chip 2
A decoupling capacitor C is connected between them.

以上のようにこの実施例では、TAB方式を用いてその
樹脂フィルム上に櫛形電極によるデカップリング用のコ
ンデンサを形成している。従ってリード配線のインダク
タンス成分の影響を除去し、電源電圧の安定化によって
集積回路チップの高速性を充分に発揮させることができ
る。特にこの実施例ではデカップリング用コンデンサは
、集積回路チップ搭載領域内に形成されているので、樹
脂フィルム上で格別の面積を占有する訳ではなく、リー
ド配線の高密度化を損うこともない。
As described above, in this embodiment, a decoupling capacitor using a comb-shaped electrode is formed on the resin film using the TAB method. Therefore, the influence of the inductance component of the lead wires is removed, and the power supply voltage is stabilized, thereby making it possible to fully utilize the high speed performance of the integrated circuit chip. In particular, in this embodiment, the decoupling capacitor is formed within the integrated circuit chip mounting area, so it does not occupy a particular area on the resin film and does not impair the high density of the lead wiring. .

本発明は、樹脂フィルムの両面にデカップリング用コン
デンサを形成することも有効である。その実施例の構造
を第5図(a)(b)に示す。第5図(a)(b)はそ
れぞれ、先の実施例の第2図(a)(b)に対応する断
面図である。先の実施例と同様に樹脂フィルム1の上面
に櫛形電極6、.62によりデカップリング用コンデン
サを形成すると同時に、これと対向させて樹脂フィルム
1の下面にも櫛形電極61 ’ +  62′ による
デカップリング用コンデンサを形成している。この場合
より厳密には、上面の電源線に接続される電極61と下
面の接地線に接続される電極6□′とが対向し、上面の
接地線に接続される電極62と下面の電源線に接続され
る電極61′が対向するように、両面の櫛形電極パター
ンを重ね合せる。
In the present invention, it is also effective to form decoupling capacitors on both sides of the resin film. The structure of this embodiment is shown in FIGS. 5(a) and 5(b). FIGS. 5(a) and 5(b) are sectional views corresponding to FIGS. 2(a) and 2(b) of the previous embodiment, respectively. As in the previous embodiment, comb-shaped electrodes 6, . A decoupling capacitor is formed by 62, and at the same time, a decoupling capacitor is formed by comb-shaped electrodes 61'+62' on the lower surface of the resin film 1 opposite to this. More precisely, in this case, the electrode 61 connected to the power line on the top surface and the electrode 6□' connected to the ground wire on the bottom surface face each other, and the electrode 62 connected to the ground wire on the top surface and the power line on the bottom surface face each other. The comb-shaped electrode patterns on both sides are overlapped so that the electrodes 61' connected to the electrodes 61' face each other.

この実施例によっても先の実施例と同様の効果が得られ
る。特にこの実施例では、上面の電極と下面の電極とは
互いに異なる電位に設定されるもの同士が対向するよう
にパターン設計することによって、樹脂フィルム1の厚
みが容量として入るため、先の実施例に比べて2倍以上
の大きい容量を得ることができる。
This embodiment also provides the same effects as the previous embodiment. In particular, in this embodiment, the thickness of the resin film 1 is included as a capacitance by designing the pattern so that the electrodes on the upper surface and the electrodes on the lower surface are set at different potentials and face each other, so that the thickness of the resin film 1 is included as the capacitance. It is possible to obtain a capacity that is more than twice as large as that of the previous one.

第6図は、他の実施例の平面図を第1図に対応させて示
す。この実施例では、樹脂フィルム1の集積回路チップ
載5!2Hに孔を有し、この部分にリード配線の先端が
舌片として突出している。このリード配線の舌片を集積
回路チップの突起電極に接続するように、集積回路チッ
プ5が載置される。
FIG. 6 shows a plan view of another embodiment corresponding to FIG. In this embodiment, a hole is provided in the integrated circuit chip mounting portion 5!2H of the resin film 1, and the tip of the lead wiring protrudes from this portion as a tongue piece. The integrated circuit chip 5 is placed so that the tongues of the lead wires are connected to the protruding electrodes of the integrated circuit chip.

この様な構成において、デカップリング用のコンデンサ
は、孔が開いた集積回路チップ載置部の4隅に、櫛形電
極61,6□により形成されている。
In this configuration, decoupling capacitors are formed by comb-shaped electrodes 61, 6□ at the four corners of the perforated integrated circuit chip mounting portion.

・この実施例によっても先の実施例と同様の効果が得ら
れる。
- This embodiment also provides the same effects as the previous embodiment.

第7図は、更に他の実施例の第2図(a)に対応する断
面図である。この実施例では、第1図の実施例に加えて
、櫛形電極61+62の領域上に誘電体膜9を形成して
いる。誘電体膜9は例えば、Ba ”rt 03 、T
a 205 、T102等の高誘電率の酸化物膜をスパ
ッタにより形成する。このとき、櫛形電極パターン領域
上に選択的に誘電体膜9を形成するために、例えばメタ
ルマスクを用いる。櫛形電極パターンの形成領域を例え
ば8 mm角とし、電極の幅W−50μm、スペース5
−50μ辺とすると、約40対の電極パターンをこの領
域に形成できる。そしてこの上に誘電体膜を被覆するこ
とにより、大きい容量を得ることができる。
FIG. 7 is a sectional view corresponding to FIG. 2(a) of still another embodiment. In this embodiment, in addition to the embodiment shown in FIG. 1, a dielectric film 9 is formed on the area of the comb-shaped electrodes 61+62. The dielectric film 9 is made of, for example, Ba ``rt 03 , T
A high dielectric constant oxide film such as a 205 and T102 is formed by sputtering. At this time, a metal mask, for example, is used to selectively form the dielectric film 9 on the comb-shaped electrode pattern region. For example, the formation area of the comb-shaped electrode pattern is 8 mm square, the electrode width W-50 μm, and the space 5.
If the side is -50μ, approximately 40 pairs of electrode patterns can be formed in this area. By covering this with a dielectric film, a large capacity can be obtained.

第8図はこの実施例において、誘電体膜9としてTa2
05膜を用いた場合の、その膜厚と容量の関係を示した
ものである。これから、適当な膜厚の誘電体膜を重ねる
ことにより大きい容量が得られることがわかる。誘電体
膜9は、厚膜により形成してもよい。
FIG. 8 shows that Ta2 is used as the dielectric film 9 in this embodiment.
This figure shows the relationship between the film thickness and capacity when a 05 film is used. It can be seen from this that a large capacitance can be obtained by stacking dielectric films of appropriate thickness. The dielectric film 9 may be formed of a thick film.

第9図は更に他の実施例である。電極パターンは若干具
なるが、基本的に第3図の構造をベースとし、その4隅
のデカップリング用コンデンサ上に先の実施例と同様に
誘電体膜9を形成したちのである。
FIG. 9 shows yet another embodiment. Although the electrode pattern is slightly different, the structure is basically based on the structure shown in FIG. 3, and the dielectric film 9 is formed on the decoupling capacitors at the four corners as in the previous embodiment.

この実施例によっても、先の実施例と同様の効果が得ら
れる。
This embodiment also provides the same effects as the previous embodiment.

[発明の効果コ 以上述べたように本発明によれば、TAB方式を採用し
てその集積回路チップ載置位置近傍に櫛形電極によるデ
カップリング用コンデンサを配置することにより、効果
的に電源電圧の安定化が図られ、集積回路チップのもつ
高速性能を充分に発揮させることができる。
[Effects of the Invention] As described above, according to the present invention, the power supply voltage can be effectively reduced by adopting the TAB method and arranging a decoupling capacitor with a comb-shaped electrode near the integrated circuit chip mounting position. Stabilization is achieved, and the high-speed performance of the integrated circuit chip can be fully demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のGaAs論理集積回路の構
成を示す平面図、第2図はその要部の拡大平面図、第3
図(a)、(b)はそれぞれ第2図のA−A’、B−B
’断面図、第4図は本発明の詳細な説明するための等価
回路図、第5図(a)、(b)は他の実施例の集積回路
を示す。 それぞれ第3図(a)、(b)に対応する断面図、第6
図は他の実施例の集積回路を示す平面図、第7図は更に
他の実施例の集積回路を示す断面図、第8図は誘電体膜
被覆の効果を示す特性図、第9図は更に他の実施例の集
積回路を示す平面図である。 1・・・樹脂フィルム、2・・・集積回路チップ、3゜
4.5・・・リード配線、61+62・・・櫛形電極、
61 ’ +  62′・・・櫛形電極、7・・・スル
ー配線、8・・・突起電極、9・・・誘電体膜。 出願人代理人 弁理士 鈴江武彦 り 第4図 第7図 版/S H(Pm) 第8 図 第9ffl
FIG. 1 is a plan view showing the configuration of a GaAs logic integrated circuit according to an embodiment of the present invention, FIG. 2 is an enlarged plan view of the main parts thereof, and FIG.
Figures (a) and (b) are A-A' and B-B in Figure 2, respectively.
4 is an equivalent circuit diagram for explaining the present invention in detail, and FIGS. 5(a) and 5(b) show integrated circuits of other embodiments. Cross-sectional views corresponding to FIGS. 3(a) and 6(b), respectively.
The figure is a plan view showing an integrated circuit of another embodiment, FIG. 7 is a cross-sectional view showing an integrated circuit of still another embodiment, FIG. 8 is a characteristic diagram showing the effect of dielectric film coating, and FIG. FIG. 7 is a plan view showing an integrated circuit according to still another embodiment. DESCRIPTION OF SYMBOLS 1...Resin film, 2...Integrated circuit chip, 3°4.5...Lead wiring, 61+62...Comb-shaped electrode,
61' + 62'...Comb-shaped electrode, 7...Through wiring, 8...Protruding electrode, 9...Dielectric film. Applicant's agent Patent attorney Takehiko Suzue Figure 4 Figure 7 plate/S H (Pm) Figure 8 Figure 9ffl

Claims (5)

【特許請求の範囲】[Claims] (1)集積回路チップ載置部を有する、複数のリード配
線が形成された樹脂フィルムと、この樹脂フィルムの前
記チップ載置部に載置された半導体集積回路チップとを
備えた半導体集積回路装置において、前記樹脂フィルム
上に櫛形状電極によるデカップリング用コンデンサを配
設したことを特徴とする半導体集積回路装置。
(1) A semiconductor integrated circuit device comprising a resin film having an integrated circuit chip mounting portion and on which a plurality of lead wires are formed, and a semiconductor integrated circuit chip placed on the chip mounting portion of the resin film. 2. A semiconductor integrated circuit device according to claim 1, wherein a decoupling capacitor having a comb-shaped electrode is disposed on the resin film.
(2)前記コンデンサは、前記樹脂フィルムの前記リー
ド配線と同じ面に形成され、前記集積回路チップは前記
リード配線と反対側の面に載置される特許請求の範囲第
1項記載の半導体集積回路装置。
(2) The semiconductor integrated circuit according to claim 1, wherein the capacitor is formed on the same side of the resin film as the lead wiring, and the integrated circuit chip is placed on the opposite side of the lead wiring. circuit device.
(3)前記コンデンサは、前記樹脂フィルムの両面に、
互いに異なる電位に設定される電極が対向するように配
設される特許請求の範囲第1項記載の半導体集積回路装
置。
(3) The capacitor includes on both sides of the resin film,
The semiconductor integrated circuit device according to claim 1, wherein the electrodes set to different potentials are arranged to face each other.
(4)前記コンデンサは、前記集積回路チップ載置部の
周辺4隅に配置される特許請求の範囲第1項記載の半導
体集積回路装置。
(4) The semiconductor integrated circuit device according to claim 1, wherein the capacitors are arranged at four peripheral corners of the integrated circuit chip mounting section.
(5)前記コンデンサは、櫛形上電極上に誘電体膜が被
覆されている特許請求の範囲第1項記載の半導体集積回
路装置。
(5) The semiconductor integrated circuit device according to claim 1, wherein the capacitor has a comb-shaped upper electrode covered with a dielectric film.
JP25499287A 1987-10-09 1987-10-09 Semiconductor integrated circuit device Pending JPH0196943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25499287A JPH0196943A (en) 1987-10-09 1987-10-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25499287A JPH0196943A (en) 1987-10-09 1987-10-09 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0196943A true JPH0196943A (en) 1989-04-14

Family

ID=17272706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25499287A Pending JPH0196943A (en) 1987-10-09 1987-10-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0196943A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784050B1 (en) 2000-09-05 2004-08-31 Marvell International Ltd. Fringing capacitor structure
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7906424B2 (en) 2007-08-01 2011-03-15 Advanced Micro Devices, Inc. Conductor bump method and apparatus
US8314474B2 (en) 2008-07-25 2012-11-20 Ati Technologies Ulc Under bump metallization for on-die capacitor
US8941974B2 (en) 2011-09-09 2015-01-27 Xilinx, Inc. Interdigitated capacitor having digits of varying width
US9270247B2 (en) 2013-11-27 2016-02-23 Xilinx, Inc. High quality factor inductive and capacitive circuit structure
US9524964B2 (en) 2014-08-14 2016-12-20 Xilinx, Inc. Capacitor structure in an integrated circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885543B1 (en) 2000-09-05 2005-04-26 Marvell International, Ltd. Fringing capacitor structure
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US6784050B1 (en) 2000-09-05 2004-08-31 Marvell International Ltd. Fringing capacitor structure
US9017427B1 (en) 2001-01-18 2015-04-28 Marvell International Ltd. Method of creating capacitor structure in a semiconductor device
US8537524B1 (en) 2004-06-16 2013-09-17 Marvell International Ltd. Capacitor structure in a semiconductor device
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7116544B1 (en) 2004-06-16 2006-10-03 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7578858B1 (en) 2004-06-16 2009-08-25 Marvell International Ltd. Making capacitor structure in a semiconductor device
US7988744B1 (en) 2004-06-16 2011-08-02 Marvell International Ltd. Method of producing capacitor structure in a semiconductor device
US7906424B2 (en) 2007-08-01 2011-03-15 Advanced Micro Devices, Inc. Conductor bump method and apparatus
US8294266B2 (en) 2007-08-01 2012-10-23 Advanced Micro Devices, Inc. Conductor bump method and apparatus
US8314474B2 (en) 2008-07-25 2012-11-20 Ati Technologies Ulc Under bump metallization for on-die capacitor
US8941974B2 (en) 2011-09-09 2015-01-27 Xilinx, Inc. Interdigitated capacitor having digits of varying width
US9270247B2 (en) 2013-11-27 2016-02-23 Xilinx, Inc. High quality factor inductive and capacitive circuit structure
US9524964B2 (en) 2014-08-14 2016-12-20 Xilinx, Inc. Capacitor structure in an integrated circuit

Similar Documents

Publication Publication Date Title
JP3351706B2 (en) Semiconductor device and method of manufacturing the same
EP1020903B1 (en) A semiconductor device using a lead frame and its manufacturing method
US6252298B1 (en) Semiconductor chip package using flexible circuit board with central opening
US20020135049A1 (en) Electronic package with surface-mountable device built therein
US6340839B1 (en) Hybrid integrated circuit
JPH0196943A (en) Semiconductor integrated circuit device
JPS58219757A (en) Semiconductor device
JPH0357248A (en) Resin-sealed semiconductor device according to tape carrier system
JP2507475B2 (en) Semiconductor integrated circuit device using film carrier
JP2971624B2 (en) Semiconductor integrated circuit device and semiconductor device using the same
JP2917932B2 (en) Semiconductor package
JP2784209B2 (en) Semiconductor device
JP3057194B2 (en) Semiconductor package manufacturing method
KR100246848B1 (en) Land grid array and a semiconductor package having a same
JP2877122B2 (en) Semiconductor device and lead frame
JP2882378B2 (en) Semiconductor package and lead frame
KR20050079324A (en) Stacked chip package
KR100206861B1 (en) Structure of high-density semiconductor package
JPH0547847A (en) Semiconductor device
JPH0831500B2 (en) Film carrier tape
JPS62291128A (en) Hybrid integrated circuit device
KR19990006189A (en) Pattern film and laminated package using same
JPS6262465B2 (en)
JPS60220992A (en) Thick film circuit board
JPH03291948A (en) Semiconductor device