JPH01312378A - Frost sensor for heat exchanger - Google Patents

Frost sensor for heat exchanger

Info

Publication number
JPH01312378A
JPH01312378A JP14159488A JP14159488A JPH01312378A JP H01312378 A JPH01312378 A JP H01312378A JP 14159488 A JP14159488 A JP 14159488A JP 14159488 A JP14159488 A JP 14159488A JP H01312378 A JPH01312378 A JP H01312378A
Authority
JP
Japan
Prior art keywords
defrosting
heater
heat exchanger
thermistor
frost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14159488A
Other languages
Japanese (ja)
Inventor
Satoru Sunada
砂田 悟
Masanori Niwa
丹羽 雅徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba Audio Video Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Audio Video Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP14159488A priority Critical patent/JPH01312378A/en
Publication of JPH01312378A publication Critical patent/JPH01312378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE:To enable accurate detection of a frosted condition and contrive rationalization of control of the start and end of defrosting by providing a temperature sensing element in proximity to a heat exchanger, heating the element and comparing the rate of change in resistance. CONSTITUTION:A frost sensor 4 provided between cooling fins in proximity to the fin comprises a thermistor 8 as a temperature sensing element and a heater 9, and is connected to plus and minus terminals of a comparator 13 through resistances 10, 11 and 12. When the heater 9 is energized in an unfrosted condition, the resistance of the thermistor 8 is lowered, whereas when the heater 9 is energized in a frosted condition, the resistance is raised. It is thus possible to energize the heater 9 for, for instance, 5sec, detect the rate and amount of change in the resistance of the thermistor 8 and check whether the rate of change is higher or lower than a preset threshold. It is thereby possible to detect directly whether the degree of frosting is at such a level as to require defrosting, and to control accurately the timing for starting and ending the defrosting.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は冷蔵庫等の熱交換器の自動除霜装置の霜センサ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a frost sensor for an automatic defrosting device for a heat exchanger such as a refrigerator.

(従来の技術) 従来、冷蔵庫の自動除霜はコンプレッサーの運転積算時
間が所定の時間に達すると除霜ヒータに通電し除霜を行
い、また除霜運転の終了も同様に所定時間の経過の後に
除霜ヒータへの通電を終了するものが一般に知られてい
る。この方法によると、除霜の開始は時間によって制御
されるが、実際の着霜状態は冷蔵庫の使用状況、例えば
冷蔵庫周囲の温度、湿度、扉の開閉頻度、冷却されるべ
き物体の発熱および熱容量等の様々な違いKより、単に
時間だけで除霜を制御することはできない。また、この
方法は実際の着霜状態を直接検知していないため、未着
箱の状態であっても除霜動作が行なわれ、また過着躇の
状態であっても除霜動作が行なわれないといった状況が
起こる。更に除霜動作の終了においても必要以上に除霜
ヒータに通電し続けたり、霜が残っている状態でも除霜
ヒータへの通電が終了してしまい、効率の悪い除霜運転
を行ってしまう。
(Prior art) Conventionally, automatic defrosting of a refrigerator is performed by energizing the defrosting heater to defrost when the accumulated operating time of the compressor reaches a predetermined time, and the defrosting operation is similarly terminated after the elapse of a predetermined time. It is generally known that power supply to the defrosting heater is later terminated. According to this method, the start of defrosting is controlled by time, but the actual frosting state depends on the usage conditions of the refrigerator, such as the temperature around the refrigerator, humidity, frequency of opening and closing of the door, heat generation and heat capacity of the object to be cooled. Due to the various differences K, etc., defrosting cannot be controlled simply by time. In addition, since this method does not directly detect the actual frosting state, defrosting is performed even if there are no boxes, and defrosting is not performed even if there is excessive frosting. There will be situations where there is no such thing. Further, even at the end of the defrosting operation, the defrosting heater continues to be energized more than necessary, or even when frost remains, the defrosting heater is no longer energized, resulting in an inefficient defrosting operation.

そこで、特公昭42−4181号公報に記載されている
自動除霜装置が一般に使用されている。この自動除霜装
置は第8図および第9図に示すように1熱交換器である
蒸発器100であり、この蒸発器100に着く霜101
で埋れる位置Kv置した感温抵抗素子102と、上記j
ll OIK接触しない位置に設置した他の感温抵抗素
子103で構成され、感温抵抗素子102および感温抵
抗素子103はそれぞれが検知回路104および105
に接続されている。
Therefore, an automatic defrosting device described in Japanese Patent Publication No. 42-4181 is generally used. As shown in FIGS. 8 and 9, this automatic defrosting device has an evaporator 100 which is one heat exchanger, and the frost 101 that forms on this evaporator 100
The temperature-sensitive resistance element 102 is placed at a position Kv buried in the j
ll The temperature-sensitive resistance element 102 and the temperature-sensitive resistance element 103 are configured with the other temperature-sensitive resistance element 103 installed in a position where they do not come into contact with OIK.
It is connected to the.

第9図において感温抵抗素子102および103は電橋
回路の二つの辺を構成しており、他の二辺は抵抗106
および107で構成されている。この電橋回路には除霜
制御装置(図示せず)を石型する制御回路108と、電
橋回路に間歇的罠電王を印加するタイマー回路109が
設置されている。
In FIG. 9, temperature-sensitive resistance elements 102 and 103 constitute two sides of the bridge circuit, and the other two sides are resistors 106.
and 107. This electric bridge circuit is equipped with a control circuit 108 that controls a defrosting control device (not shown), and a timer circuit 109 that applies an intermittent trap voltage to the electric bridge circuit.

110は電源である。110 is a power source.

上記構成による自動除霜装置は、感温抵抗素子102お
よび103に電圧を印加すると霜101が生成されてい
ないときは画素子の内部温度の相対差がなく、電橋回路
はバランスが保たれるので制御回路108には電流は流
れず除n装置は作動しない。しかし、蒸発器100に生
成されるn101が増加し感温抵抗素子102が霜10
1に埋れた状態になったときに画素子に電圧を印加する
と霜101に埋れた素子102はnの融解により熱が失
われて温度が上昇せず、抵抗値が高く電橋回路102−
106辺の素子102と抵抗106の分圧比は大きく変
らないが、素子103は印加電圧により温度が上昇し、
抵抗値が低下して更に電流が増加する自己加熱状態とな
り、電橋回路103−107辺の素子103と抵抗10
7の分圧比が著しく変化し、電橋回路のバランスがくず
れ制御回路108に検知電流が流れ除霜装置を作動し、
除霜を行うものである。
In the automatic defrosting device configured as described above, when a voltage is applied to the temperature-sensitive resistance elements 102 and 103, when frost 101 is not generated, there is no relative difference in the internal temperature of the pixel elements, and the electric bridge circuit maintains a balance. Therefore, no current flows through the control circuit 108 and the n removal device does not operate. However, n101 generated in the evaporator 100 increases and the temperature-sensitive resistance element 102 becomes frost 10.
When a voltage is applied to the pixel element when the pixel element 102 is buried in frost 101, the element 102 buried in the frost 101 loses heat due to the melting of n, so the temperature does not rise, and the resistance value is high and the electric bridge circuit 102-
Although the voltage division ratio between the element 102 and the resistor 106 on the 106th side does not change significantly, the temperature of the element 103 increases due to the applied voltage.
A self-heating state occurs in which the resistance value decreases and the current further increases, and the element 103 and the resistor 10 on the bridge circuit 103-107 side
7 changes significantly, the balance of the electric bridge circuit collapses, and a detection current flows to the control circuit 108, activating the defrosting device.
It defrosts the air.

しかしこの除霜装置は、一方の素子へのゴミ等の付着に
よって素子に温度差を生じ電橋回路のバランスをくずし
てしまい、除霜装置を誤動作を生じてしまい、蒸発器の
効率を低下させることがある。
However, with this defrosting device, dust and other particles adhere to one of the elements, which creates a temperature difference between the elements and upsets the balance of the electric bridge circuit, causing the defrosting device to malfunction and reducing the efficiency of the evaporator. Sometimes.

(発明が解決しようとする課題) このように従来の熱交換器の除霜装置は、感温抵抗素子
へのゴミ等の付着によって除霜装置を誤動作させてしま
い、熱交換器の冷却効率を低下させてしまう。
(Problem to be Solved by the Invention) As described above, in the conventional defrosting device for a heat exchanger, the defrosting device malfunctions due to dust etc. adhering to the temperature-sensitive resistance element, reducing the cooling efficiency of the heat exchanger. It will lower it.

本発明は上記事情に@みてなされたもので、直接的に霜
の有無を検知し、適切な時間除霜運転を行え、熱交換器
の冷却効率を高めることのできる熱交換器の箱センサを
提供することを目的とする。
The present invention was made in view of the above circumstances, and provides a heat exchanger box sensor that can directly detect the presence or absence of frost, perform defrosting operation for an appropriate time, and increase the cooling efficiency of the heat exchanger. The purpose is to provide.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成す為ために本発明の熱交換器の霜センサ
は、熱交換器に近接して設けた感温素子と、この感温素
子を加熱する前記感温素子に近接して設けた加熱手段と
、前記感温素子の抵抗値を検出し、この検出量により前
記熱交換器の除霜手段を制御する制御手段とを具備し、
この制御手段は、前記感温素子の検出した抵抗値が所定
値以内のとき前記除霜手段を作物し、抵抗値が所定値以
上のとき前記除霜手段を停止することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the frost sensor for a heat exchanger of the present invention includes a temperature sensing element provided close to the heat exchanger, and a frost sensor for heating the temperature sensing element. comprising a heating means provided close to the temperature sensing element, and a control means for detecting the resistance value of the temperature sensing element and controlling the defrosting means of the heat exchanger according to the detected amount,
This control means is characterized in that it turns on the defrosting means when the resistance value detected by the temperature sensing element is within a predetermined value, and stops the defrosting means when the resistance value is greater than or equal to a predetermined value.

(作用) この上うに構成されたものにおいては、熱交換器に霜が
付いてない時は加熱手段の熱を受けて感温素子のサーミ
スタの抵抗値は大きく急激に変化する。これに対し霜が
付着した状態では加熱手段の熱をffK吸収され感温素
子のサーミスタの抵抗値の変化は小さい。この変化率の
違いに一定の閾値を設定し、検出された値と閾値とを比
較して検出された値が閾値の上下どちらにあるかによっ
て、霜が除霜必要レベル以上にあるか否かを直接検知で
き、除霜開始、終了時期を正確に制御することができる
(Function) In the device configured as described above, when there is no frost on the heat exchanger, the resistance value of the thermistor of the temperature sensing element changes greatly and rapidly due to the heat of the heating means. On the other hand, in a state where frost is attached, the heat from the heating means is absorbed by ffK, and the change in the resistance value of the thermistor of the temperature sensing element is small. A certain threshold value is set for the difference in this rate of change, and the detected value is compared with the threshold value. Depending on whether the detected value is above or below the threshold value, it is determined whether the frost is above the level required for defrosting. It is possible to directly detect defrosting and accurately control when defrosting starts and ends.

(実施例) 以下本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る熱交換器の霜センサを取り付けた
冷藏庫内の概略図である。図において、冷蔵庫本体1内
には熱交換器である蒸発器2と除霜手段である除霜ヒー
タ3が設置されている。鰭センサ4は前記蒸発器2の冷
却フィンに近接して設けられている。
FIG. 1 is a schematic diagram of the interior of a refrigerator equipped with a frost sensor of a heat exchanger according to the present invention. In the figure, an evaporator 2 which is a heat exchanger and a defrosting heater 3 which is a defrosting means are installed in a refrigerator main body 1. The fin sensor 4 is provided close to the cooling fin of the evaporator 2.

この霜センサ4は第2図および第3図の本発明に係る熱
交換器の霜センサの概略図に示すように、蒸発器2の蒸
発バイ15に霜センサ取り付はステイ6を介して冷却フ
ィン7の間に近接して設けられている。この霜センサ4
は感温素子であるサーミスタ8とこのサーミスタ8に近
接して設けた加熱手段である加熱ヒータ9で構成されて
いる。
As shown in the schematic diagrams of the frost sensor of the heat exchanger according to the present invention in FIG. 2 and FIG. It is provided closely between the fins 7. This frost sensor 4
It is composed of a thermistor 8 which is a temperature sensing element and a heater 9 which is a heating means provided close to the thermistor 8.

前記感温素子のサーミスタ8と加熱手段の加熱ヒータ9
は除霜手段である除霜ヒータ3を制御する制御手段に接
続されている。この制御手段は第4図の本発明に係る熱
交換器の箱センサの制御手段を示す回路図に示すように
構成されている。図において、サーミスタ8と加熱ヒー
タ9で構成された霜センサ4は、抵抗10、抵抗11、
抵抗12を介してコンパレータ13のプラス端子および
マイナス端子に接続されている。
The thermistor 8 of the temperature sensing element and the heater 9 of the heating means
is connected to a control means for controlling a defrosting heater 3 which is a defrosting means. This control means is constructed as shown in the circuit diagram of FIG. 4 which shows the control means for the box sensor of the heat exchanger according to the present invention. In the figure, the frost sensor 4 composed of a thermistor 8 and a heater 9 includes a resistor 10, a resistor 11,
It is connected to a plus terminal and a minus terminal of a comparator 13 via a resistor 12.

発振器14は周期がたとえば30分で0.1秒幅の出力
を送出し、この出力はフリップフロップ15のトリが入
力へ入る。発振器14の出力が7リツプフロツプ15の
トリが入力へ入ると7リツプフロツプ15の出力Qが抵
抗16を通りトランジスタ17をONして、加熱ヒータ
9に電流を流すよう構成されている。また、同時に7リ
ツプフロツプ15の出力qはインバータ18を通り、A
NDゲート19の一方の入力へ入る。ANDゲート19
の他方への入力は、周期がたとえば0.5秒幅の発tM
 器20の出力が入力されANDゲート19が開いた時
にカウンタ21ヘカウントされるように構成されている
The oscillator 14 sends out an output having a period of, for example, 30 minutes and a width of 0.1 seconds, and this output is input to the input of the flip-flop 15. When the output of the oscillator 14 enters the input of the 7 lip-flop 15, the output Q of the 7-lip flop 15 passes through the resistor 16, turns on the transistor 17, and causes current to flow through the heater 9. At the same time, the output q of the 7-lip flop 15 passes through the inverter 18,
It enters one input of the ND gate 19. AND gate 19
The input to the other side of
The counter 21 is configured to count the output of the counter 20 when the AND gate 19 is opened.

加熱ヒータ9に近接させて設けた(5mm程度の間隔)
サーミスタ8が加熱ヒータ9により加熱され、抵抗値が
下がると、電源電圧をサーミスタ8と抵抗10とKより
分圧されて、コンパレータ13のマイナス端子に入力さ
れ電圧が下がってくる。
Provided close to the heater 9 (at an interval of about 5 mm)
When the thermistor 8 is heated by the heater 9 and its resistance value decreases, the power supply voltage is divided by the thermistor 8, the resistor 10, and K, and is input to the negative terminal of the comparator 13, and the voltage decreases.

この電圧が電源電圧を抵抗11および抵抗12で分圧し
てコンパレータ13のプラス端子に入力される電圧より
下がると、コンパレータ13の出力がLoWとなりフリ
ップフロップ15をクリアさせる。
When this voltage becomes lower than the voltage that is input to the positive terminal of the comparator 13 by dividing the power supply voltage by the resistor 11 and the resistor 12, the output of the comparator 13 becomes Low and clears the flip-flop 15.

フリップ70ツブ15がクリアされると、フリップ70
クプ15の出力QがHIとなり、ANDゲート19が閉
じて、カウンタ21のカウントが止まる。このカウンタ
21でカウントされたカウント数と霜の量の関係を第5
図のカウント数−霜の量の特性図に示す。
When flip 70 knob 15 is cleared, flip 70
The output Q of the cup 15 becomes HI, the AND gate 19 closes, and the counter 21 stops counting. The relationship between the count number counted by this counter 21 and the amount of frost is shown in the fifth figure.
This is shown in the characteristic diagram of count number vs. amount of frost in the figure.

次に上記構成における本発明の熱交換器の霜センサの動
作を第6図の本発明だ係る熱交換器の霜センサの一実施
例の動作フローチャートを参照して説明する。
Next, the operation of the frost sensor for a heat exchanger according to the present invention having the above configuration will be explained with reference to the operation flowchart of an embodiment of the frost sensor for a heat exchanger according to the present invention shown in FIG.

まず、躇センサの加熱ヒータ9への通電の前のサーミス
タ8の抵抗値を検出する(ステップ5o)。
First, the resistance value of the thermistor 8 is detected before the heater 9 of the resistance sensor is energized (step 5o).

その後霜センサ4のサーミスタ8に近接して設けた加熱
ヒータ9に通電を行うCステップ52)。
Thereafter, the heater 9 provided close to the thermistor 8 of the frost sensor 4 is energized (C step 52).

この加熱ヒータ9への通電は例えば5秒間通電を行い加
熱ヒータ9への通電を断ち、サーミスタ8の加熱を中止
する(ステップ53)。このときのサーミスタ8の抵抗
値を検出しくステップ54)記憶する(ステップ55)
。ステップ55で記憶した加熱ヒータ9による加熱後の
サーミスタ8の抵抗値と、ステップ51で記憶した加熱
前のサーミスタ8の抵抗値を比較する(ステップ56)
The power is supplied to the heater 9 for, for example, 5 seconds, and then the power to the heater 9 is cut off to stop heating the thermistor 8 (step 53). Detect and store the resistance value of the thermistor 8 at this time (step 54) (step 55)
. The resistance value of the thermistor 8 after being heated by the heater 9 stored in step 55 is compared with the resistance value of the thermistor 8 before heating stored in step 51 (step 56).
.

またあらかじめ、除πレベルとして閾値X(加熱ヒータ
9での加熱前のサーミスタ8の抵抗値がらの所定のずれ
値)を設定し、記憶しておき、この閾値Xと、ステップ
56で比較した加熱前のサーミスタ8の抵抗値と加熱ヒ
ータ9により加熱した後のサーミスタ8の抵抗値の差と
を比較する(ステップ57)。
In addition, a threshold value X (a predetermined deviation value from the resistance value of the thermistor 8 before heating by the heating heater 9) is set and stored in advance as the division π level, and the heating value is compared with this threshold value X in step 56. The difference between the resistance value of the previous thermistor 8 and the resistance value of the thermistor 8 after being heated by the heater 9 is compared (step 57).

第7図は本発明に係る熱交換器の霜センサの時間−サー
ミスタ抵抗値特性図である。図に示したように、加熱ヒ
ータ9の通電前のサーミスタ8の抵抗値から所定の抵抗
値に閾値Xを設定したものであるが、未着霜時に加熱ヒ
ータ9を通電した場合には、サーミスタ8の温度が加熱
ヒータ9がらの熱により上昇するため、サーミスタ8の
低抗値は低下する。また着霜時に加熱ヒータ9を通電し
た場合には、耐着した霜の融解により熱が失われてサー
ミスタ8′の温度は上昇しないため、サーミスタ8の低
抗値は高い。従って、一定時間(たとえば5秒間)加熱
ヒータ9へ通電し、そのときのサーミスタ8の抵抗値の
変化率および変化量を検出することができる。この変化
率の違いに一定の閾値Xを設定し、この閾値Xより変化
率が大きいか小さいかを比較でき、着霜の有無を検知す
ることができる。
FIG. 7 is a time-thermistor resistance characteristic diagram of the frost sensor of the heat exchanger according to the present invention. As shown in the figure, the threshold value X is set to a predetermined resistance value from the resistance value of the thermistor 8 before the heater 9 is energized. Since the temperature of the thermistor 8 increases due to the heat from the heater 9, the low resistance value of the thermistor 8 decreases. Furthermore, when the heater 9 is energized during frost formation, the temperature of the thermistor 8' does not rise because heat is lost due to the melting of the frost that has adhered, so the resistance value of the thermistor 8 is high. Therefore, it is possible to energize the heater 9 for a certain period of time (for example, 5 seconds) and detect the rate and amount of change in the resistance value of the thermistor 8 at that time. A constant threshold value X is set for this difference in rate of change, and it is possible to compare whether the rate of change is larger or smaller than this threshold value X, and the presence or absence of frost formation can be detected.

また、加熱ヒータ9とサーミスタ8との組合せの霜セン
サを複数設けることにより、熱交換器である蒸発器2の
冷媒入口および冷媒出口の着霜状態や除霜時の融鰯度合
が異なることによる検知の不備を無くすることができる
。したがって、ステップ57での閾値Xとの比較を、数
個所に取り付けた霜センサ4で行い、閾値Xより抵抗値
の変化量が小さいものが、取り付1すだ霜センサの数が
ら設定した設定数Nの個数よりも少ないか多いかを求め
る(ステップ58)。この結果が設定数Nよりも少ない
ときは、霜の付着量は少ないとして除霜ヒータ3へ通電
をせず除N運転は行わないで、冷却運転を継続して行う
(ステップ59.60)。
In addition, by providing a plurality of frost sensors in combination with the heater 9 and thermistor 8, it is possible to detect differences in the frost formation state at the refrigerant inlet and refrigerant outlet of the evaporator 2, which is a heat exchanger, and the degree of melting during defrosting. Defects in detection can be eliminated. Therefore, the comparison with the threshold value X in step 57 is performed using the frost sensors 4 installed at several locations, and the one with a smaller change in resistance value than the threshold value It is determined whether the number is smaller or larger than the number N (step 58). When this result is less than the set number N, it is assumed that the amount of frost adhesion is small, and the defrosting heater 3 is not energized and the cooling operation is continued without performing the N removal operation (steps 59 and 60).

そして次のセンシングまで一定間隔をあけるため(例え
ば3分間)タイマーをセットしくステップ61)、タイ
マーをスタートさせ(ステップ62)、次のセンシング
を行う。
Then, in order to leave a certain interval until the next sensing (for example, 3 minutes), a timer is set (step 61), the timer is started (step 62), and the next sensing is performed.

ステップ58で比較した結果が設定数Nよりも多いとき
は、霜の付着量が多いとして、除霜ヒータ3への通電を
行い、除霜運転を開始する(ステップ63)。この除霜
ヒータ3への通′准は制御手段のカウンタ21でカウン
トされた数により制御される。
If the comparison result in step 58 is greater than the set number N, it is determined that the amount of frost adhesion is large, and the defrosting heater 3 is energized to start defrosting operation (step 63). This communication to the defrosting heater 3 is controlled by the number counted by the counter 21 of the control means.

除Fl運転中はセンシングを除霜運転終了まで繰り返し
行うため、霜センサ4の加熱ヒータ9をセットし、スタ
ートさせる(ステップ64)。また、同時に除霜ヒータ
3近傍にもサーミスタ8を設値し、このサーミスタ8の
抵抗値を検出し、(ステップ65)1検出した抵抗値を
記憶させ(ステップ66)たとえば5秒後に再びサーミ
スタ8の抵抗値を検出しくステップ67)、ステップ6
5で求めた抵抗値との差をとり(ステップ68)、閾値
Xと比較する(ステップ57)。以下、ステップ58か
らステップ68を繰り返し行う。そして、蒸発器2に取
り付けた霜センサ4のサーミスタ8からデータから全て
、閾値Xに達すると、除霜が終了したとし、除霜ヒータ
3への通電をやめ、通常の冷却運転を行うことで、正確
な除籍動作を行うことができる。なお、通常、除霜ヒー
タ3への通電時間は1時間程度で除霜できる。
During the defrosting operation, sensing is repeated until the end of the defrosting operation, so the heater 9 of the frost sensor 4 is set and started (step 64). At the same time, a thermistor 8 is also set near the defrosting heater 3, the resistance value of this thermistor 8 is detected (step 65), the detected resistance value is memorized (step 66), and the thermistor 8 is again set after 5 seconds, for example. Step 67), step 6 to detect the resistance value of
The difference from the resistance value obtained in step 5 is taken (step 68) and compared with the threshold value X (step 57). Thereafter, steps 58 to 68 are repeated. When the data from the thermistor 8 of the frost sensor 4 attached to the evaporator 2 reaches the threshold value X, it is assumed that defrosting has ended, and the power to the defrost heater 3 is stopped and normal cooling operation is performed. , it is possible to perform accurate expulsion operations. Note that defrosting can normally be performed in about one hour when the defrosting heater 3 is energized.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱交換器に近接して感温素子を設け、
この感温素子に近接して加熱手段を設け、加熱手段によ
り、感温素子を加熱し、抵抗値の変化率を比較すること
で、正確な着霜状態を知ることができ、除霜の開始、終
了を正確に制御することができる。
According to the present invention, the temperature sensing element is provided in close proximity to the heat exchanger,
By installing a heating means in close proximity to this temperature sensing element, the heating means heats the temperature sensing element, and by comparing the rate of change in resistance value, it is possible to know the exact frosting state and start defrosting. , the termination can be precisely controlled.

よって、必要なときだけ除霜ができるため効率のよい冷
却運転の維持を行うことができるっ
Therefore, defrosting can be performed only when necessary, making it possible to maintain efficient cooling operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱交換器の霜センサを取り付けた
冷蔵庫内の概略図、@2図および第3図は本発明に係る
熱交換器の霜センサを示す概略図、第4図は本発明に係
る熱交換器の霜センサの制御手段を示す回路図、第5図
は本発明に係る霜センサのカウント数−箱の量の特性図
、第6図は本発明に係る熱交換器の霜センサの一実施例
を示す動作フローチャート、81¥7図は本発明に係る
熱交換器の昂センサの時間−サーミスタ抵抗値特性図、
第8図は従来の除霜装置を示す概略図、第9図は従来の
除霜装置に係る制御回路図である。 1・・・冷蔵庫本体、   2・・・蒸発器、3・・・
除霜ヒータ、   4・・・霜センサ、7・・・冷却フ
ィン、   8・・・サーミスタ、9・・・加熱ヒータ
。 代理人 弁理士 則 近 憲 佑 同      宇  治     弘 茎1図 第3回 25  回 092;’T 勺−ミスク抵抗イ龜 第 8  回 /62 鷺  9  図
Figure 1 is a schematic diagram of the inside of a refrigerator equipped with a frost sensor for a heat exchanger according to the present invention, Figures 2 and 3 are schematic diagrams showing a frost sensor for a heat exchanger according to the present invention, and Figure 4 is A circuit diagram showing the control means for the frost sensor of the heat exchanger according to the present invention, FIG. 5 is a characteristic diagram of the count number-box amount of the frost sensor according to the present invention, and FIG. 6 is a diagram showing the frost sensor control means according to the present invention. An operation flowchart showing an embodiment of the frost sensor, 81 yen 7 Figure is a time-thermistor resistance value characteristic diagram of the frost sensor of the heat exchanger according to the present invention,
FIG. 8 is a schematic diagram showing a conventional defrosting device, and FIG. 9 is a control circuit diagram relating to the conventional defrosting device. 1... Refrigerator body, 2... Evaporator, 3...
Defrosting heater, 4...Frost sensor, 7...Cooling fin, 8...Thermistor, 9...Heating heater. Agent Patent Attorney Nori Chika Ken Yudo Uji Hiroki 1 Figure 3rd 25th 092;'T Tsuji-Misku Resistance 8th/62 Sagi 9 Figure

Claims (3)

【特許請求の範囲】[Claims] (1)熱交換器に近接して設けた感温素子と、この感温
素子を加熱する前記感温素子に近接して設けた加熱手段
と、前記感温素子の抵抗値を検出し、この検出量により
前記熱交換器の除霜手段を制御する制御手段とを具備し
たことを特徴とする熱交換器の霜センサ。
(1) A temperature-sensitive element provided close to a heat exchanger, a heating means provided close to the temperature-sensitive element that heats the temperature-sensitive element, and a resistance value of the temperature-sensitive element detected; A frost sensor for a heat exchanger, comprising: a control means for controlling a defrosting means of the heat exchanger according to a detected amount.
(2)前記制御手段は、前記感温素子の検出した抵抗値
が所定値以内のとき前記除霜手段を作動し、前記感温素
子の検出した抵抗値が所定値以上のとき前記除霜手段を
停止することを特徴とする特許請求の範囲第1項記載の
熱交換器の霜センサ。
(2) The control means operates the defrosting means when the resistance value detected by the temperature sensing element is within a predetermined value, and the defrosting means when the resistance value detected by the temperature sensing element is greater than or equal to the predetermined value. The frost sensor for a heat exchanger according to claim 1, wherein the frost sensor stops the frost sensor.
(3)前記感温素子と前記加熱手段とを少なくとも2組
以上有し、そのうちの少なくとも1組の内の加熱手段を
除霜手段と兼用とすることを特徴とする特許請求の範囲
第1項記載の熱交換器の霜センサ。
(3) Claim 1 characterized in that it has at least two or more sets of the temperature sensing element and the heating means, and at least one of the sets of the heating means is also used as a defrosting means. Frost sensor for the heat exchanger described.
JP14159488A 1988-06-10 1988-06-10 Frost sensor for heat exchanger Pending JPH01312378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14159488A JPH01312378A (en) 1988-06-10 1988-06-10 Frost sensor for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14159488A JPH01312378A (en) 1988-06-10 1988-06-10 Frost sensor for heat exchanger

Publications (1)

Publication Number Publication Date
JPH01312378A true JPH01312378A (en) 1989-12-18

Family

ID=15295638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14159488A Pending JPH01312378A (en) 1988-06-10 1988-06-10 Frost sensor for heat exchanger

Country Status (1)

Country Link
JP (1) JPH01312378A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522232A (en) * 1994-09-19 1996-06-04 Ishizuka Electronics Corporation Frost detecting device
JP2012184854A (en) * 2011-03-03 2012-09-27 Panasonic Corp Refrigerator
WO2014085344A1 (en) * 2012-11-30 2014-06-05 Lennox International Inc. Ice sensor for a heat pump
KR20190101669A (en) * 2018-02-23 2019-09-02 엘지전자 주식회사 Refrigerator
WO2019172532A1 (en) * 2018-03-08 2019-09-12 엘지전자 주식회사 Refrigerator and controlling method thereof
KR20190106201A (en) * 2018-03-08 2019-09-18 엘지전자 주식회사 Refrigerator
WO2019190113A1 (en) * 2018-03-26 2019-10-03 엘지전자 주식회사 Refrigerator and method for controlling same
WO2019190114A1 (en) * 2018-03-26 2019-10-03 엘지전자 주식회사 Refrigerator and method for controlling same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522232A (en) * 1994-09-19 1996-06-04 Ishizuka Electronics Corporation Frost detecting device
JP2012184854A (en) * 2011-03-03 2012-09-27 Panasonic Corp Refrigerator
WO2014085344A1 (en) * 2012-11-30 2014-06-05 Lennox International Inc. Ice sensor for a heat pump
US9816745B2 (en) 2012-11-30 2017-11-14 Lennox Industries Inc. Ice sensor for a heat pump
US10240852B2 (en) 2012-11-30 2019-03-26 Lennox Industries Inc. Ice sensor for a heat pump
KR20190101669A (en) * 2018-02-23 2019-09-02 엘지전자 주식회사 Refrigerator
EP3764033A4 (en) * 2018-03-08 2021-12-01 LG Electronics Inc. Refrigerator and controlling method thereof
CN111801539B (en) * 2018-03-08 2022-04-26 Lg电子株式会社 Refrigerator and control method thereof
KR20190106201A (en) * 2018-03-08 2019-09-18 엘지전자 주식회사 Refrigerator
US11530866B2 (en) 2018-03-08 2022-12-20 Lg Electronics Inc. Refrigerator
AU2019232055B2 (en) * 2018-03-08 2022-08-25 Lg Electronics Inc. Refrigerator and controlling method thereof
KR20190106242A (en) * 2018-03-08 2019-09-18 엘지전자 주식회사 Refrigerator and controlling method the same
WO2019172532A1 (en) * 2018-03-08 2019-09-12 엘지전자 주식회사 Refrigerator and controlling method thereof
CN111801539A (en) * 2018-03-08 2020-10-20 Lg电子株式会社 Refrigerator and control method thereof
CN111886462A (en) * 2018-03-26 2020-11-03 Lg电子株式会社 Refrigerator and control method thereof
KR20190112482A (en) * 2018-03-26 2019-10-07 엘지전자 주식회사 Refrigerator and controlling method the same
KR20190112464A (en) * 2018-03-26 2019-10-07 엘지전자 주식회사 Refrigerator and controlling method the same
CN111886462B (en) * 2018-03-26 2022-05-03 Lg电子株式会社 Refrigerator and control method thereof
WO2019190114A1 (en) * 2018-03-26 2019-10-03 엘지전자 주식회사 Refrigerator and method for controlling same
WO2019190113A1 (en) * 2018-03-26 2019-10-03 엘지전자 주식회사 Refrigerator and method for controlling same
US11867448B2 (en) 2018-03-26 2024-01-09 Lg Electronics Inc. Refrigerator and method for controlling the same

Similar Documents

Publication Publication Date Title
US4689965A (en) Adaptive defrost control for a refrigerator
JPH01312378A (en) Frost sensor for heat exchanger
US4531376A (en) Refrigerator defrost control
EP1843111A2 (en) System and method for determining defrost power delivered by a defrost heater
JP3103275B2 (en) Refrigerator defroster
US4305259A (en) Frost sensor employing self-heating thermistor as sensor element
JP3034781B2 (en) refrigerator
US5502976A (en) Air conditioning apparatus
JP2001263912A (en) Refrigerator
JPH03271680A (en) Controller for refrigerator
JP2644852B2 (en) Defrost control device for refrigerators, etc.
JPS62210382A (en) Refrigerator
JPH11148769A (en) Defrosting controller for refrigerator
JPS5930335Y2 (en) Defrost control device
JPS6212224Y2 (en)
JPH02103372A (en) Defrost controller
JPS599474A (en) Frost sensor for refrigerator
JPH02136672A (en) Defrosting control device for refrigerator
JPS63169458A (en) Heat pump device
JPS60169038A (en) Device to control defrosting in air conditioner of heat pump type
JPS63213769A (en) Refrigerator
JPS63172874A (en) Defrostation controller for refrigerator
JPS61180868A (en) Automatic controller for time of ice making of ice machine
JPS59205568A (en) Controller for defrostation
JPS608686A (en) Controller for defrostation