JPH01283925A - Element forming method - Google Patents

Element forming method

Info

Publication number
JPH01283925A
JPH01283925A JP63112422A JP11242288A JPH01283925A JP H01283925 A JPH01283925 A JP H01283925A JP 63112422 A JP63112422 A JP 63112422A JP 11242288 A JP11242288 A JP 11242288A JP H01283925 A JPH01283925 A JP H01283925A
Authority
JP
Japan
Prior art keywords
pattern
mask
exposure
region
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63112422A
Other languages
Japanese (ja)
Other versions
JP2650962B2 (en
Inventor
Hiroshi Fukuda
宏 福田
Tsuneo Terasawa
恒男 寺澤
Norio Hasegawa
昇雄 長谷川
Toshihiko Tanaka
稔彦 田中
Taku Oshima
卓 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11242288A priority Critical patent/JP2650962B2/en
Publication of JPH01283925A publication Critical patent/JPH01283925A/en
Application granted granted Critical
Publication of JP2650962B2 publication Critical patent/JP2650962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain minute elements characterized by a simple constitution and large throughputs in the formation of a disk pattern having a very minute pattern, by using a phase shifting mask which imparts the phase difference to neighboring light with respect to the exposure of the very minute pattern, and using a transmitting type mask for the other pattern region. CONSTITUTION:A phase shifting mask is used for the exposure of the very minute pattern of a device, and an ordinary transmitting type mask is used for the exposure of the other pattern. Thus the reduced projection exposure is performed. Namely, the patterns of the object device are divided into two regions; i.e., the closely assembled region of the very minute patterns each having a simple repeating structure and the circuit regions such as control electrodes and wirings having a relatively complicated structure. The shape of the very minute pattern region is relatively simple, and the patterns in this region can be formed by using the reduced projection exposure method using the phase shift mask. Meanwhile, the size of the pattern in the circuit region is larger than the very minute pattern. It is suitable that this pattern is formed by the reduced projection exposure method using the transmitting type mask.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、寸法0.2μm〜0.1μm以下の極微細パ
タンを有する半導体または超電導素子の製造方法に係り
、特にこれらの素子に好適なパタン形成方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor or superconducting element having an ultrafine pattern with dimensions of 0.2 μm to 0.1 μm or less, and particularly to a method for manufacturing a semiconductor or superconducting device suitable for these devices. The present invention relates to a pattern forming method.

〔従来の技術〕[Conventional technology]

パーミアブル・ベース・トランジスタ(以下PBT)ま
たは各種量子井戸アレイデバイス、超マトリクス固体発
振子、ラテラル超格子FET、共鳴トンネリング効果デ
バイス等の量子効果デバイスの作製においては、素子内
に極めて微細な格子状、縞状、又は点状パタンの集合等
を作製する必要がある。これらのデバイスの多くは量子
効果をねらっており、そのパタン周期は、0.1μm程
度からそれ以下であることが望まれる。
In the production of quantum effect devices such as permable base transistors (hereinafter referred to as PBTs), various quantum well array devices, supermatrix solid-state oscillators, lateral superlattice FETs, and resonant tunneling effect devices, extremely fine lattice-shaped, It is necessary to create a set of striped or dotted patterns. Many of these devices aim at quantum effects, and the pattern period is preferably about 0.1 μm or less.

従来、これらの素子はEB(電子ビーム)又はFIR(
集束イオンビーム)の直接描画により作製されてきた。
Conventionally, these elements are EB (electron beam) or FIR (
They have been fabricated by direct writing using a focused ion beam.

EBを用いた量子効果デバイスの作製に関しては、例え
ば、ソリッド・ステート・テクノロジー、1985年、
10月号、第125頁から第129頁(Solid 5
tate Technologyloctober、 
 1985 、 p p 125−129 )に論じら
れている。
Regarding the production of quantum effect devices using EB, see, for example, Solid State Technology, 1985;
October issue, pages 125 to 129 (Solid 5
tate Technology
1985, pp 125-129).

一方、縮小投影露光法による光りソグラフイの限界解像
度は、露光波長に比例し、縮小レンズの開口数に反比例
する。現在エキシマレーザ(にrFレーザ、波長248
nm)と開口数0.4〜0.5の縮小レンズを用いて0
.3μm程度が達成されている。又、開口数0.5 の
反射光学系とA r Fエキシマレーザ(波長193n
m)を用いて0.13μmを解像した例がある。(ジャ
ーナル オブバキューム サイエンス アンド テクノ
ロジーB5 (1)、1987年、1/2月号、第38
9頁から第390頁(J、Vac、Sci、Techn
ol、 B 5 (1) 。
On the other hand, the critical resolution of photolithography using the reduction projection exposure method is proportional to the exposure wavelength and inversely proportional to the numerical aperture of the reduction lens. Currently excimer laser (rF laser, wavelength 248
nm) and a reduction lens with a numerical aperture of 0.4 to 0.5.
.. A thickness of about 3 μm has been achieved. In addition, a reflective optical system with a numerical aperture of 0.5 and an A r F excimer laser (wavelength 193 nm) are used.
There is an example in which 0.13 μm was resolved using the method. (Journal of Vacuum Science and Technology B5 (1), January/February 1987, No. 38
Pages 9 to 390 (J, Vac, Sci, Techn.
ol, B 5 (1).

Jan/Feb 1987.pp389−390))。Jan/Feb 1987. pp389-390)).

ところで、縮小投影露光法における解像限界を向上する
方法に位相シフト法がある0位相シフト法によれば、そ
の解像限界は通常の透過型マスクによる露光法を用いた
場合の2倍径度向上する。
By the way, according to the zero phase shift method, which is a phase shift method that improves the resolution limit in the reduction projection exposure method, the resolution limit is twice the diameter when using the exposure method using a normal transmission mask. improves.

従って、これによれば0.15μmから0.1μm以下
の微細パタンを形成することが可能である。
Therefore, according to this, it is possible to form a fine pattern of 0.15 μm to 0.1 μm or less.

この位相シフト法は、特別な露光装置を必要とせず、通
常の縮小投影露光装置において、従来の透過型マスク(
レチクル)を位相シフトマスク(レチクル)に変更する
だけで行なうことができる。
This phase shift method does not require special exposure equipment, and can be used with conventional transmission masks (
This can be done by simply changing the phase shift mask (reticle) to a phase shift mask (reticle).

位相シフト法に関しては例えば、アイ・イー・イー・イ
ー;トランザクション オン エレクトロン デパイシ
ズ、イーデー31.ナンバー6(1984)第753頁
から第763頁(IEEE。
Regarding the phase shift method, see, for example, IE; Transactions on Electron Devices, E.D. 31. No. 6 (1984), pp. 753-763 (IEEE.

Trans、 Electron Devices、 
Vol、 E D −31、Nn6 (1984)、p
p753−763)に論じられている。
Trans, Electron Devices,
Vol, ED-31, Nn6 (1984), p
p753-763).

また、光を用いて縮小投影露光法の解像限界以下のパタ
ンを形成する別の方法に、ホログラフィ法があるが、こ
のホログラフィ法は特殊な露光装置を必要とし、しかも
パタンはウェハの全面に形成され、そのパタンを、基板
上に既に存在するパタンに対して位置合わせすることが
できない、この様なホログラフィ法については、例えば
昭和59年秋季、第45回応用物理学会学術誦演会、講
演予詔集第242頁に論じられている。
Holography is another method that uses light to form patterns that are below the resolution limit of reduction projection exposure, but this holography requires special exposure equipment and the pattern covers the entire surface of the wafer. Regarding this holographic method, in which the pattern formed on the substrate cannot be aligned with the pattern that already exists on the substrate, for example, in the autumn of 1981, the 45th Annual Meeting of the Japan Society of Applied Physics, lecture schedule. This is discussed on page 242 of the imperial edict.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のEB、FIBによる極微細パタンの描画作製には
、多大の時間を要し、経済性が悪いという問題点があっ
た。
The drawing and production of extremely fine patterns using the above-mentioned EB and FIB requires a large amount of time and is disadvantageous in that it is not economically viable.

一方、縮小投影露光法の限界解像度ではPBT、量子効
果デバイス等に必要な0.1μm以下のパタンを形成す
ることは非常に困難である。
On the other hand, with the limited resolution of the reduction projection exposure method, it is extremely difficult to form a pattern of 0.1 μm or less, which is necessary for PBT, quantum effect devices, and the like.

位相シフト法を用いればこれを達成することが可能であ
る。しかしながら、位相シフト法の弱点として、実際の
LSIパタンの様な複雑なマスクパタンに対応するのが
困難なことがあげられる。
This can be achieved using a phase shift method. However, a weakness of the phase shift method is that it is difficult to deal with complex mask patterns such as actual LSI patterns.

位相シフト法は、単純なラインアンドスペースパタン(
以下L/S)、格子パタン、点状パタン等の作製に関し
て、非常に有効な技術である。
The phase shift method uses a simple line and space pattern (
This is a very effective technique for producing L/S), lattice patterns, dot patterns, etc.

本発明の目的は、極微細パタンを有するデバイスのパタ
ン形成において、上記問題点を解決し。
An object of the present invention is to solve the above-mentioned problems in pattern formation of a device having an ultra-fine pattern.

簡便かつスループットの大きい、経済性に優れた微細素
子の形成方法を提供することにある。
The object of the present invention is to provide a method for forming microscopic elements that is simple, has high throughput, and is highly economical.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、上記デバイスのパタン形成に際して上記デ
バイスの極微細パタン領fd(例えばP[37のグリッ
ド部分)の露光に対しては位相シフトマスクを、また、
その他のパタン領域の露光には通常の透過型マスクを用
いた縮小投影露光で適用することにより達成される。
The above purpose is to use a phase shift mask for exposing the extremely fine pattern area fd (for example, the grid portion of P[37) of the device when forming a pattern of the device;
Exposure of other pattern areas is achieved by reduction projection exposure using a normal transmission mask.

〔作用〕 本発明が対象とするデバイスのパタンは、単純な繰り返
し構造を有する極微細パタンの密集領域と、制御電極や
配線等の比較的複雑な構造を有する回路領域に2分され
る。これらの2つの領域はデバイス製造プロセスにおけ
る同一層内に混在する場合もあり、又、別々の層として
存在する場合もある。
[Operation] The pattern of a device targeted by the present invention is divided into a dense region of extremely fine patterns having a simple repeating structure and a circuit region having a relatively complex structure such as control electrodes and wiring. These two regions may coexist within the same layer in the device manufacturing process, or may exist as separate layers.

前者の極微細パタン領域は単純なL/S、点状パタン集
合、格子状パタンで、その寸法は0.1μm程度、もし
くはそれ以下であり、その形状も比較的単純である。こ
の領域内のパタン形成は位相シフトマスク(レチクル)
を用いた縮小投影露光法により可能となる。
The former ultra-fine pattern region is a simple L/S, a dot pattern set, or a lattice pattern, and its size is about 0.1 μm or less, and its shape is also relatively simple. Pattern formation in this area is done using a phase shift mask (reticle)
This is made possible by the reduction projection exposure method using

一方、後者の回路領域におけるパタンの寸法は前者より
大きく、従来の透過型マスク(レチクル)を用いた縮小
投影露光法により形成するのが適している。
On the other hand, the dimensions of the pattern in the latter circuit area are larger than the former, and it is suitable to form it by a reduction projection exposure method using a conventional transmission mask (reticle).

上記2つの領域を別々に露光する際には、両者の位置合
せを行なう必要がある。通常合せ精度は少なくとも最小
寸法の半分以下に抑えなければならない。従って、0.
1μmのパタンに対しては0.05μm以下の合せ精度
が必要となるが、現在この様な精度をもつ露光装置はな
い。しかし、本発明における2つの領域間の合せ精度は
、通常の露光装置の保障する程度の値で十分である。何
故ならば、本発明の対象となるデバイスにおける極微細
パ′タンは全体として機能し、従って極微細パタン領域
と回路パタン領域の相対位置は所定の範囲内に収める必
要があるものの、極微細パタンの一つひとつの位置精度
はそれほど厳密さを要求されない。
When exposing the above two areas separately, it is necessary to align the two areas. Normally, the alignment accuracy must be kept to at least half of the minimum dimension. Therefore, 0.
For a pattern of 1 .mu.m, alignment accuracy of 0.05 .mu.m or less is required, but there is currently no exposure apparatus with such accuracy. However, in the present invention, the alignment accuracy between the two areas is sufficient to be a value guaranteed by a normal exposure apparatus. This is because the ultrafine pattern in the device that is the object of the present invention functions as a whole, and therefore the relative positions of the ultrafine pattern area and the circuit pattern area must be within a predetermined range. The precision of each position is not required to be very precise.

前記二つの領域が同一層内に混在する場合には、−枚の
マスク上に位相シフトマスク領域と透過型マスク領域を
混在させることもできる。これを用いれば、上記極微細
パタン領域と回路パタン領域を1枚のマスクで同時に露
光することができる。
When the two regions are mixed in the same layer, the phase shift mask region and the transmission mask region can be mixed on the -th mask. If this is used, the extremely fine pattern area and the circuit pattern area can be exposed simultaneously using one mask.

但し、この場合、二つの領域の接続部において解像不良
の生じる恐れがある。即ち、位相の異なる2つの透光部
が接する場合、干渉によりここで光強度が低下する。こ
の様なパタンの配置は避けなければならない。
However, in this case, there is a risk that poor resolution may occur at the connection between the two areas. That is, when two transparent parts having different phases come into contact, the light intensity decreases there due to interference. This type of pattern arrangement must be avoided.

本発明によれば、パタンの露光は縮小投影露光法により
行なわれるので、i!子ビーム、集束イオンビームの直
接描画による方法に比してはるかに短時間でこれを完了
することができる。
According to the present invention, since the pattern is exposed by the reduction projection exposure method, i! This can be completed in a much shorter time than methods using direct writing using child beams or focused ion beams.

又1本発明によれば、特殊な露光装置を必要とせず、露
光フィールド内の所望の位置に極微細パタンを形成する
ことができるため、ホログラフィ法より有利である。
Furthermore, according to the present invention, an extremely fine pattern can be formed at a desired position within the exposure field without requiring a special exposure device, which is more advantageous than the holography method.

〔実施例) 実施例1 以下、本発明を用いたPBTの製造方法の実施例を示す
[Example] Example 1 Hereinafter, an example of a method for producing PBT using the present invention will be shown.

まず、キャリア収集電極層に形成したG a A s基
板上にさらにW薄膜を形成し、その上に、下層有機膜/
中間層無機膜/上層レジスト膜の3層構造からなる。い
わゆる3層レジストを形成した。
First, a W thin film is further formed on the GaAs substrate formed on the carrier collection electrode layer, and a lower organic film/
It consists of a three-layer structure: an intermediate layer inorganic film/an upper layer resist film. A so-called three-layer resist was formed.

上層レジストとしてはPMMA (ポリメチルメタクリ
レート)を用いた0次に、第1図(a)に示した様なP
BTの制御電極領域の極微細L/Sだけを有する位相シ
フトレチクルを用いて露光を行なった。位相シフトレチ
クルの微細L/Sにおける隣り合う透光部は、照明光の
位相を互いに180’反転させる様装置されている。次
に、第1図(b)に示した様な制御電極周辺回路パタン
を有する透過型レチクルに交換し、露光を行なった。
The upper layer resist is 0-order using PMMA (polymethyl methacrylate) and PMMA (polymethyl methacrylate) as shown in Figure 1(a).
Exposure was performed using a phase shift reticle having only a very fine L/S in the control electrode area of the BT. Adjacent light transmitting parts in the fine L/S of the phase shift reticle are arranged to invert the phases of the illumination light by 180' with respect to each other. Next, the reticle was replaced with a transmission type reticle having a control electrode peripheral circuit pattern as shown in FIG. 1(b), and exposure was performed.

上記2つの領域に対する露光は、基板を露光装置の基板
ステージ上に固定したままレチクルのみを変更して、連
続的に行なわれる。各々の露光において位置合せ操作を
行なうことはいうまでもない。又、上記2つの領域に対
する露光の順番は特に規定しない。使用した露光装置の
光源はKrFエキシマレーザ、光学系の開口数は0.6
である。
Exposure of the above two regions is performed continuously by changing only the reticle while the substrate is fixed on the substrate stage of the exposure apparatus. Needless to say, alignment operations are performed for each exposure. Further, the order of exposure for the above two regions is not particularly defined. The light source of the exposure device used was a KrF excimer laser, and the numerical aperture of the optical system was 0.6.
It is.

1露光フイールドにおいて上記2枚のレチクル各各の露
光に要する時間は約5秒であった。一方、電子線描画装
置を用いて同一パタンの露光を行なったところ、これに
要する時間は約600秒であった。
The time required to expose each of the two reticles in one exposure field was about 5 seconds. On the other hand, when the same pattern was exposed using an electron beam lithography system, the time required for this was about 600 seconds.

次に、上記上層レジストの現像を行ない、第1図(Q)
に示した様な上層レジストパタンを得た。
Next, the upper layer resist is developed, and as shown in FIG.
An upper resist pattern as shown in Figure 3 was obtained.

これを反応性イオンエツチングにより順次前記中間層、
下層へ転写した。その結果、上記下層有機膜において前
記極微細制御電極パタン領域におけるアスペクト比の高
い矩形断面形状を有するL/Sパタンと、前記周辺回路
パタンの両方が得られた。
This is sequentially etched by reactive ion etching into the intermediate layer,
Transferred to the lower layer. As a result, both an L/S pattern having a rectangular cross-sectional shape with a high aspect ratio in the ultra-fine control electrode pattern region and the peripheral circuit pattern were obtained in the lower organic film.

こうして形成した下層有機層パタンをマスクとしてW膜
のドライエツチングを行ない、制御電極パタンを形成し
た後、その上にGaAsを成長させ制御電極を埋め込み
、ひき続きキャリア注入電極、配線等を形成してPBT
を作製した。上記制御電極パタン以外の露光は全て透過
型マスクを用いた。作製したPBTの電気特性を評価し
た結果、所期の性能が得られた。
Using the lower organic layer pattern thus formed as a mask, dry etching of the W film is performed to form a control electrode pattern, and then GaAs is grown on the pattern to embed the control electrode, followed by formation of carrier injection electrodes, wiring, etc. PBT
was created. A transmission mask was used for all exposures other than the control electrode pattern described above. As a result of evaluating the electrical characteristics of the produced PBT, the expected performance was obtained.

なお、第1図は説明のための模式的な平面であり、必ず
しも実際のトランジスタのレイアウトを表示したもので
はない。また、デバイス構造、基板材料、制御電極材料
、レジスト材料およびプロセス、露光装置等に関しても
、本実施例に示したものに限らず使用することができる
Note that FIG. 1 is a schematic plane for explanation and does not necessarily represent the actual layout of transistors. Further, the device structure, substrate material, control electrode material, resist material and process, exposure apparatus, etc. are not limited to those shown in this embodiment, and may be used.

本実施例の露光過程は、PBTに限らずlit純な極微
細L/Sパタンと周辺回路の混在する他のデバイス例え
ばタテカル1次元超格子FET等に対しても適用できる
The exposure process of this embodiment can be applied not only to PBT but also to other devices in which a lit-pure ultrafine L/S pattern and peripheral circuits coexist, such as a vertical one-dimensional superlattice FET.

実施例2 PBTにおいては、極微細パタン領域と回路パタン領域
が同一層(制御電極層)内に混在するので、上記各領域
に対応して位相シフトマスク領域と透過型マスク領域の
混在するレチクルによりパタンを形成できる。このため
のマスクを第2図に示す。前記実施例1においては、制
御電極形状は第1図(Q)に示したごとくくシ型であっ
た。しかし本方法においては位相シフトマスク領域と透
過マスク領域を完全に分離するために、透過型マスク領
域内の完全な遮光部中に位相シフト型マスク領域(第2
図中点線内)を配置した。
Example 2 In PBT, an extremely fine pattern area and a circuit pattern area coexist in the same layer (control electrode layer), so a reticle with a coexistence of a phase shift mask area and a transmission mask area corresponds to each of the above areas. Can form patterns. A mask for this purpose is shown in FIG. In Example 1, the shape of the control electrode was square as shown in FIG. 1(Q). However, in this method, in order to completely separate the phase shift mask region and the transmission mask region, the phase shift mask region (the second
(within the dotted line in the figure) was placed.

実施例3 本発明を用いて超マトリクス固体発振素子の製造方法に
関する一実施例を示す。
Example 3 An example of a method for manufacturing a supermatrix solid-state oscillation device using the present invention will be described.

G a A s基板上にポジ型レジストPMMAを塗布
し、第3図に示す様なドツト状の透光部の集合をもつ位
相シフトマスクで露光を行なった。その後現像して第3
図の透光部の各々に対応したレジスト開口部を得た。位
相シフトマスクの各透光部は照明光の位相を上下左右の
両方向に交互に180゜反転させる様に(市松模様状に
)配置されている。
A positive resist PMMA was coated on a GaAs substrate, and exposure was performed using a phase shift mask having a set of dot-shaped transparent parts as shown in FIG. After that, develop the third
Resist openings corresponding to each of the transparent parts shown in the figure were obtained. The light-transmitting parts of the phase shift mask are arranged (in a checkered pattern) so as to alternately invert the phase of the illumination light by 180 degrees in both the vertical and horizontal directions.

なお1位相シフトマスクには、第3図に示したドツト状
透光部の各々の周囲に位相反転用のより微細な透光部パ
タンを設けてもよい。
Note that the phase shift mask may be provided with a finer pattern of transparent parts for phase inversion around each of the dot-shaped transparent parts shown in FIG.

次に、メタライゼーションを行ない、レジスト上および
レジスト開口部の基板上に金属を蒸着した後、レジスト
を除去してリフトオフ法により基板上にメタルドツト行
列を形成した。ひき続き電極等を形成して超マトリクス
固体発振素子を製造した。
Next, metallization was performed to deposit metal on the resist and the substrate in the openings of the resist, and then the resist was removed and a metal dot matrix was formed on the substrate by a lift-off method. Subsequently, electrodes and the like were formed to manufacture a supermatrix solid-state oscillation device.

ここでは固体発振素子の製造への実施例を示したが、本
実施例のレジストパタン形成工程をGaAs基板上のメ
タライゼーションに代えて、他の様々なプロセスと組み
合せることにより、種々のデバイスへの応用が可能であ
る。例えばGaAs基板上にGaA Q As薄膜を成
長させた後、ネガ型レジストと本実施例による位相シフ
トマスクを用いてパタン形成を行なうと、第3図のドツ
ト状透光部の各々に対応してレジストパタンか残る。こ
れをマスクにGaA Q Asの異方性エツチングを行
ない、適当な後処理を行なうことにより量子井戸行列を
形成することができる。同様に、ラテラルFET超格子
、共鳴トンネリング効果トランジスタ等への応用が可能
である。
Although an example for manufacturing a solid-state oscillator device has been shown here, the resist pattern forming process of this example can be replaced with metallization on a GaAs substrate and can be combined with various other processes to manufacture various devices. can be applied. For example, if a GaA QAs thin film is grown on a GaAs substrate and then patterned using a negative resist and a phase shift mask according to this embodiment, a pattern will be formed corresponding to each of the dot-shaped transparent parts shown in FIG. A resist pattern remains. Using this as a mask, GaA Q As is anisotropically etched and a quantum well matrix can be formed by performing appropriate post-processing. Similarly, application to lateral FET superlattices, resonant tunneling effect transistors, etc. is possible.

実施例4 本発明を用いた超マトリクス固体発振素子の製造方法に
関する別の実施例を示す。
Example 4 Another example of the method for manufacturing a supermatrix solid-state oscillation device using the present invention will be described.

前記実施例3におけるポジ型レジストをネガ型レジスト
に置き換え、さらに、露光プロセスを以下の様に変更し
た。まず第4図に示す様なマスクA、マスクB、マスク
Cを用意した。マスクA及びBはL/S位相シフトマス
クで、各々におけるL/Sは互いに直交しているか、も
しくは基準方向に対して異なる角度をもっている。A、
B及びCの3枚のマスクを用いて、同一レシスト膜上に
重ね露光することにより、実施例3と同様のレジストパ
タンを得た。即ちドツト行列はマスクA及びBにおける
L/Sの重なり部分に形成され、マスクCはドツト行列
領域の範囲を規定する。本実施例によれば、実施例3と
比べてドツト行列の周期をより小さくすることが可能で
、しかもレジストの平面的形状を角ばらせることができ
た。
The positive resist in Example 3 was replaced with a negative resist, and the exposure process was changed as follows. First, masks A, B, and C as shown in FIG. 4 were prepared. Masks A and B are L/S phase shift masks, with the L/S in each being perpendicular to each other or at different angles with respect to the reference direction. A,
A resist pattern similar to that in Example 3 was obtained by overlapping exposure on the same resist film using three masks B and C. That is, the dot matrix is formed in the L/S overlap portion of masks A and B, and mask C defines the range of the dot matrix region. According to this example, it was possible to make the period of the dot matrix smaller than in Example 3, and moreover, it was possible to make the planar shape of the resist more angular.

本実施例のパタン形式1程が、実施例3と同様様々なデ
バイスに応用可能であることはいうまでもない。
It goes without saying that the pattern format 1 of this embodiment can be applied to various devices as in the third embodiment.

〔発明の効果〕〔Effect of the invention〕

以上本発明による半導体又は超電導体装置の製造方法に
よれば、量子効果素子等における0、1μm程度からそ
れ以下の寸法のパタンから成る極微細パタン領域を含む
回路パタンの形成過程において、上記極微細パタン領域
の露光を位相シフト法を用いた縮小投影露光法により、
それ以外の回路パタンを通常の露光法により各々独立に
行なうことにより、上記パタン形成に要する時間を著し
く短縮するとともに、装置コストを低減することができ
る。
As described above, according to the method for manufacturing a semiconductor or superconductor device according to the present invention, in the process of forming a circuit pattern including an ultrafine pattern region consisting of a pattern with a size of about 0.1 μm or less in a quantum effect element or the like, the ultrafine Exposure of the pattern area is performed using a reduction projection exposure method using a phase shift method.
By forming the other circuit patterns independently using a normal exposure method, it is possible to significantly shorten the time required for pattern formation and to reduce the cost of the apparatus.

これにより、上記半導体・超電導体素子の量産における
経済性を向上させることができる。また。
This makes it possible to improve the economy in mass production of the semiconductor/superconductor elements. Also.

上記素子が集積化された場合において、これらの効果は
一層顕著となる。
These effects become even more remarkable when the above elements are integrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は5本発明の実施例におけるマスクパ
タンの平面図である。 丼 j 圀 臀 、3 図 等斗肥
1 to 4 are plan views of mask patterns in five embodiments of the present invention. Rice bowl j 圀耀、3 zutōdouhi

Claims (1)

【特許請求の範囲】 1、縮小投影露光法を用いて極微細パタン領域を有する
素子の形成方法において、上記極微細パタン領域の露光
に対して隣接する照明光に位相差を与える位相シフトマ
スクを、その他のパタン領域に対して透過型マスクを各
々用いることを特徴とする素子の形成方法。 2、上記極微細パタン領域及びそれ以外のパタン領域に
対する露光が、同一レジスト膜に対して少なくとも1枚
以上の位相シフトマスクと透過型マスクにより、各々別
個に行なわれることを特徴とする特許請求の範囲第1項
記載の素子の形成方法。 3、上記極微細パタン領域及びそれ以外のパタン領域に
対する露光が、上記各領域に対応して、位相シフトマス
ク領域と透過型マスク領域の混在するマスクにより行な
われることを特徴とする特許請求の範囲第1項記載の素
子の形成方法。
[Claims] 1. A method for forming an element having an ultrafine pattern area using a reduction projection exposure method, which includes a phase shift mask that provides a phase difference between adjacent illumination light for exposure of the ultrafine pattern area. , a method for forming an element, characterized in that a transmission mask is used for each of the other pattern regions. 2. The ultrafine pattern area and other pattern areas are exposed to light on the same resist film separately using at least one phase shift mask and a transmission mask. A method for forming an element according to scope 1. 3. The scope of the present invention is characterized in that the exposure of the extremely fine pattern area and other pattern areas is performed using a mask that includes a phase shift mask area and a transmissive mask area, corresponding to each of the areas. A method for forming the element according to item 1.
JP11242288A 1988-05-11 1988-05-11 Exposure method, element forming method, and semiconductor element manufacturing method Expired - Lifetime JP2650962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11242288A JP2650962B2 (en) 1988-05-11 1988-05-11 Exposure method, element forming method, and semiconductor element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11242288A JP2650962B2 (en) 1988-05-11 1988-05-11 Exposure method, element forming method, and semiconductor element manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11152895A Division JP2638561B2 (en) 1995-05-10 1995-05-10 Mask formation method

Publications (2)

Publication Number Publication Date
JPH01283925A true JPH01283925A (en) 1989-11-15
JP2650962B2 JP2650962B2 (en) 1997-09-10

Family

ID=14586253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11242288A Expired - Lifetime JP2650962B2 (en) 1988-05-11 1988-05-11 Exposure method, element forming method, and semiconductor element manufacturing method

Country Status (1)

Country Link
JP (1) JP2650962B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358807A (en) * 1988-11-22 1994-10-25 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
JPH07106227A (en) * 1993-10-04 1995-04-21 Nec Corp Manufacture of semiconductor device
JPH07130615A (en) * 1993-10-29 1995-05-19 Hitachi Ltd Method of forming fine pattern
US5455144A (en) * 1990-03-20 1995-10-03 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
DE10048151A1 (en) * 2000-09-28 2002-05-02 Infineon Technologies Ag Photomask and its use for the lithographic structuring of a photoresist layer and for the production of magnetic storage elements
US6518180B1 (en) 1998-10-23 2003-02-11 Hitachi, Ltd. Method for fabricating semiconductor device and method for forming mask suitable therefor
US6558881B2 (en) 1998-11-09 2003-05-06 Nec Corporation Method of exposing a lattice pattern onto a photo-resist film
US6566023B2 (en) 1996-09-18 2003-05-20 Numerical Technology, Inc. Phase shifting circuit manufacture method and apparatus
US6605481B1 (en) 2002-03-08 2003-08-12 Numerical Technologies, Inc. Facilitating an adjustable level of phase shifting during an optical lithography process for manufacturing an integrated circuit
US6704921B2 (en) 2002-04-03 2004-03-09 Numerical Technologies, Inc. Automated flow in PSM phase assignment
US6721938B2 (en) 2001-06-08 2004-04-13 Numerical Technologies, Inc. Optical proximity correction for phase shifting photolithographic masks
US6733929B2 (en) 2000-07-05 2004-05-11 Numerical Technologies, Inc. Phase shift masking for complex patterns with proximity adjustments
US6785879B2 (en) 2002-06-11 2004-08-31 Numerical Technologies, Inc. Model-based data conversion
US6787271B2 (en) 2000-07-05 2004-09-07 Numerical Technologies, Inc. Design and layout of phase shifting photolithographic masks
US6811935B2 (en) 2000-07-05 2004-11-02 Numerical Technologies, Inc. Phase shift mask layout process for patterns including intersecting line segments
US6821689B2 (en) 2002-09-16 2004-11-23 Numerical Technologies Using second exposure to assist a PSM exposure in printing a tight space adjacent to large feature
US6859918B2 (en) 2001-04-03 2005-02-22 Numerical Technologies Alleviating line end shortening by extending phase shifters
US6866971B2 (en) 2000-09-26 2005-03-15 Synopsys, Inc. Full phase shifting mask in damascene process
US6978436B2 (en) 2000-07-05 2005-12-20 Synopsys, Inc. Design data format and hierarchy management for phase processing
US6981240B2 (en) 2001-11-15 2005-12-27 Synopsys, Inc. Cutting patterns for full phase shifting masks
US7028285B2 (en) 2000-07-05 2006-04-11 Synopsys, Inc. Standard cell design incorporating phase information
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
US7178128B2 (en) 2001-07-13 2007-02-13 Synopsys Inc. Alternating phase shift mask design conflict resolution
US7216331B2 (en) 2000-10-25 2007-05-08 Synopsys, Inc. Resolving phase-shift conflicts in layouts using weighted links between phase shifters
JP2007165704A (en) * 2005-12-15 2007-06-28 Renesas Technology Corp Pattern forming method, and manufacturing method for levenson type mask
US7281226B2 (en) 2000-10-25 2007-10-09 Synopsys, Inc. Incrementally resolved phase-shift conflicts in layouts for phase-shifted features
JP2008083391A (en) * 2006-09-27 2008-04-10 Toshiba Microelectronics Corp Multiple exposure photomask and its layout method, method of manufacturing semiconductor device using multiple exposure photomask
US7585595B2 (en) 2000-07-05 2009-09-08 Synopsys, Inc. Phase shift mask including sub-resolution assist features for isolated spaces

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352405B2 (en) 1998-09-10 2002-12-03 キヤノン株式会社 Exposure method, device manufacturing method using the same, and semiconductor device
AU2000226927A1 (en) 2000-02-25 2001-09-03 Hitachi Ltd. Semiconductor integrated circuit device and method of producing the same, and method of producing masks
US7083879B2 (en) 2001-06-08 2006-08-01 Synopsys, Inc. Phase conflict resolution for photolithographic masks
US6653026B2 (en) 2000-12-20 2003-11-25 Numerical Technologies, Inc. Structure and method of correcting proximity effects in a tri-tone attenuated phase-shifting mask
US6551750B2 (en) 2001-03-16 2003-04-22 Numerical Technologies, Inc. Self-aligned fabrication technique for tri-tone attenuated phase-shifting masks
US6684382B2 (en) 2001-08-31 2004-01-27 Numerical Technologies, Inc. Microloading effect correction
US6738958B2 (en) 2001-09-10 2004-05-18 Numerical Technologies, Inc. Modifying a hierarchical representation of a circuit to process composite gates
US6735752B2 (en) 2001-09-10 2004-05-11 Numerical Technologies, Inc. Modifying a hierarchical representation of a circuit to process features created by interactions between cells
US6698007B2 (en) 2001-10-09 2004-02-24 Numerical Technologies, Inc. Method and apparatus for resolving coloring conflicts between phase shifters

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948574A (en) * 1988-11-22 1999-09-07 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
US7008736B2 (en) 1988-11-22 2006-03-07 Renesas Technology Corp. Semiconductor integrated circuit device fabrication method using a mask having a phase shifting film covering region and an opening region
US6106981A (en) * 1988-11-22 2000-08-22 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
US6733933B2 (en) 1988-11-22 2004-05-11 Renesas Technology Corporation Mask for manufacturing semiconductor device and method of manufacture thereof
US5484671A (en) * 1988-11-22 1996-01-16 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
US6548213B2 (en) 1988-11-22 2003-04-15 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
US5358807A (en) * 1988-11-22 1994-10-25 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
US5830606A (en) * 1988-11-22 1998-11-03 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
US6458497B2 (en) 1988-11-22 2002-10-01 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
US6420075B1 (en) 1988-11-22 2002-07-16 Hitachi, Ltd. Mask for manufacturing semiconductor device and method of manufacture thereof
US5667941A (en) * 1990-03-20 1997-09-16 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
US6309800B1 (en) * 1990-03-20 2001-10-30 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
US5455144A (en) * 1990-03-20 1995-10-03 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
US6794118B2 (en) 1990-03-20 2004-09-21 Renesas Technology Corp. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
US5753416A (en) * 1990-03-20 1998-05-19 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
US6153357A (en) * 1990-03-20 2000-11-28 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
JPH07106227A (en) * 1993-10-04 1995-04-21 Nec Corp Manufacture of semiconductor device
JPH07130615A (en) * 1993-10-29 1995-05-19 Hitachi Ltd Method of forming fine pattern
US6818385B2 (en) 1996-09-18 2004-11-16 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US6566023B2 (en) 1996-09-18 2003-05-20 Numerical Technology, Inc. Phase shifting circuit manufacture method and apparatus
US6518180B1 (en) 1998-10-23 2003-02-11 Hitachi, Ltd. Method for fabricating semiconductor device and method for forming mask suitable therefor
US6558881B2 (en) 1998-11-09 2003-05-06 Nec Corporation Method of exposing a lattice pattern onto a photo-resist film
US7500217B2 (en) 2000-07-05 2009-03-03 Synopsys, Inc. Handling of flat data for phase processing including growing shapes within bins to identify clusters
US7028285B2 (en) 2000-07-05 2006-04-11 Synopsys, Inc. Standard cell design incorporating phase information
US6733929B2 (en) 2000-07-05 2004-05-11 Numerical Technologies, Inc. Phase shift masking for complex patterns with proximity adjustments
US8977989B2 (en) 2000-07-05 2015-03-10 Synopsys, Inc. Handling of flat data for phase processing including growing shapes within bins to identify clusters
US6787271B2 (en) 2000-07-05 2004-09-07 Numerical Technologies, Inc. Design and layout of phase shifting photolithographic masks
US7348108B2 (en) 2000-07-05 2008-03-25 Synopsys, Inc. Design and layout of phase shifting photolithographic masks
US6811935B2 (en) 2000-07-05 2004-11-02 Numerical Technologies, Inc. Phase shift mask layout process for patterns including intersecting line segments
US7435513B2 (en) 2000-07-05 2008-10-14 Synopsys, Inc. Design and layout of phase shifting photolithographic masks
US6978436B2 (en) 2000-07-05 2005-12-20 Synopsys, Inc. Design data format and hierarchy management for phase processing
US7585595B2 (en) 2000-07-05 2009-09-08 Synopsys, Inc. Phase shift mask including sub-resolution assist features for isolated spaces
US7534531B2 (en) 2000-09-26 2009-05-19 Synopsys, Inc. Full phase shifting mask in damascene process
US7659042B2 (en) 2000-09-26 2010-02-09 Synopsys, Inc. Full phase shifting mask in damascene process
US6866971B2 (en) 2000-09-26 2005-03-15 Synopsys, Inc. Full phase shifting mask in damascene process
DE10048151A1 (en) * 2000-09-28 2002-05-02 Infineon Technologies Ag Photomask and its use for the lithographic structuring of a photoresist layer and for the production of magnetic storage elements
DE10048151B4 (en) * 2000-09-28 2009-04-09 Qimonda Ag Method of lithographically patterning a photoresist layer
US6620559B2 (en) 2000-09-28 2003-09-16 Infineon Technologies Ag Photomask, method of lithographically structuring a photoresist layer with the photomask, and method of producing magnetic memory elements
US7281226B2 (en) 2000-10-25 2007-10-09 Synopsys, Inc. Incrementally resolved phase-shift conflicts in layouts for phase-shifted features
US7827518B2 (en) 2000-10-25 2010-11-02 Synopsys, Inc. Incrementally resolved phase-shift conflicts in layouts for phase-shifted features
US7216331B2 (en) 2000-10-25 2007-05-08 Synopsys, Inc. Resolving phase-shift conflicts in layouts using weighted links between phase shifters
US6859918B2 (en) 2001-04-03 2005-02-22 Numerical Technologies Alleviating line end shortening by extending phase shifters
US6721938B2 (en) 2001-06-08 2004-04-13 Numerical Technologies, Inc. Optical proximity correction for phase shifting photolithographic masks
US7178128B2 (en) 2001-07-13 2007-02-13 Synopsys Inc. Alternating phase shift mask design conflict resolution
US6981240B2 (en) 2001-11-15 2005-12-27 Synopsys, Inc. Cutting patterns for full phase shifting masks
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
US6605481B1 (en) 2002-03-08 2003-08-12 Numerical Technologies, Inc. Facilitating an adjustable level of phase shifting during an optical lithography process for manufacturing an integrated circuit
US6704921B2 (en) 2002-04-03 2004-03-09 Numerical Technologies, Inc. Automated flow in PSM phase assignment
US6785879B2 (en) 2002-06-11 2004-08-31 Numerical Technologies, Inc. Model-based data conversion
US7165234B2 (en) 2002-06-11 2007-01-16 Synopsys, Inc. Model-based data conversion
US6821689B2 (en) 2002-09-16 2004-11-23 Numerical Technologies Using second exposure to assist a PSM exposure in printing a tight space adjacent to large feature
US8367309B2 (en) 2005-12-15 2013-02-05 Renesas Electronics Corporation Pattern formation method using levenson-type mask and method of manufacturing levenson-type mask
JP2007165704A (en) * 2005-12-15 2007-06-28 Renesas Technology Corp Pattern forming method, and manufacturing method for levenson type mask
US7682760B2 (en) 2005-12-15 2010-03-23 Renesas Technology Corp. Pattern formation method using Levenson-type mask and method of manufacturing Levenson-type mask
US7935462B2 (en) 2005-12-15 2011-05-03 Renesas Electronics Corporation Pattern formation method using levenson-type mask and method of manufacturing levenson-type mask
US8071264B2 (en) 2005-12-15 2011-12-06 Renesas Electronics Corporation Pattern formation method using levenson-type mask and method of manufacturing levenson-type mask
JP2008083391A (en) * 2006-09-27 2008-04-10 Toshiba Microelectronics Corp Multiple exposure photomask and its layout method, method of manufacturing semiconductor device using multiple exposure photomask

Also Published As

Publication number Publication date
JP2650962B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JP2638561B2 (en) Mask formation method
JPH01283925A (en) Element forming method
US5472813A (en) Pattern exposing method using phase shift and mask used therefor
Tseng et al. Electron beam lithography in nanoscale fabrication: recent development
USRE36113E (en) Method for fine-line interferometric lithography
US5308741A (en) Lithographic method using double exposure techniques, mask position shifting and light phase shifting
US7179570B2 (en) Chromeless phase shift lithography (CPL) masks having features to pattern large area line/space geometries
US6096458A (en) Methods for manufacturing photolithography masks utilizing interfering beams of radiation
JPH1126344A (en) Method and device for forming pattern, and manufacture of semiconductor device
JPH03210560A (en) Mask for projection exposing
US5849438A (en) Phase shift mask and method for fabricating the same
JPH04206813A (en) Exposure method
JPH09120154A (en) Polarizing mask and its production as well as pattern exposure method and pattern projection aligner using the same
JP3083551B2 (en) Exposure mask and method of manufacturing the same
JPH06242595A (en) Mask for photoexposure and its production
US6296991B1 (en) Bi-focus exposure process
JPH05204131A (en) Photomask and formation of pattern using this mask
Harriott A new role for e-beam: Electron projection
JP3596145B2 (en) Semiconductor device manufacturing method, semiconductor device exposure apparatus, and semiconductor device manufactured using the same
JP3268692B2 (en) Method for forming semiconductor integrated circuit pattern and method for manufacturing mask used therefor
JPH06181164A (en) Aligner and aligning method
JPH0371133A (en) Mask for semiconductor device
JPS62264052A (en) Mask for exposure
JPH05198479A (en) Formation of resist pattern
KR940011203B1 (en) Process for producing pattern

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11

EXPY Cancellation because of completion of term