JP2650962B2 - Exposure method, element forming method, and semiconductor element manufacturing method - Google Patents

Exposure method, element forming method, and semiconductor element manufacturing method

Info

Publication number
JP2650962B2
JP2650962B2 JP11242288A JP11242288A JP2650962B2 JP 2650962 B2 JP2650962 B2 JP 2650962B2 JP 11242288 A JP11242288 A JP 11242288A JP 11242288 A JP11242288 A JP 11242288A JP 2650962 B2 JP2650962 B2 JP 2650962B2
Authority
JP
Japan
Prior art keywords
pattern
mask
resist
exposure
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11242288A
Other languages
Japanese (ja)
Other versions
JPH01283925A (en
Inventor
宏 福田
恒男 寺澤
昇雄 長谷川
稔彦 田中
卓 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11242288A priority Critical patent/JP2650962B2/en
Publication of JPH01283925A publication Critical patent/JPH01283925A/en
Application granted granted Critical
Publication of JP2650962B2 publication Critical patent/JP2650962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、寸法0.2μm〜0.1μm以下の極微細パタン
を有する半導体または超電導素子の製造方法に係り、特
にこれらの素子に好適なパタン形成方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor or superconducting element having an ultrafine pattern having a size of 0.2 μm to 0.1 μm or less, and particularly to a pattern formation suitable for these elements. About the method.

〔従来の技術〕[Conventional technology]

パーミアブル・ベース・トランジスタ(以下PBT)ま
たは各種量子井戸アレイデバイス、超マトリクス固体発
振子、ラテラル超格子FET、共鳴トンネリング効果デバ
イス等の量子効果デバイスの作製においては、素子内に
極めて微細な格子状,縞状,又は点状パタンの集合等を
作製する必要がある。これらのデバイスの多くは量子効
果をねらつており、そのパタン周期は、0.1μm程度か
らそれ以下であることが望まれる。
In the manufacture of quantum effect devices such as permeable base transistors (hereinafter PBT) or various quantum well array devices, super-matrix solid-state oscillators, lateral superlattice FETs, and resonant tunneling effect devices, extremely fine lattices are formed in the device. It is necessary to produce a set of striped or dotted patterns. Many of these devices aim at the quantum effect, and its pattern period is desired to be about 0.1 μm or less.

従来、これらの素子はEB(電子ビーム)又はFIB(集
束イオンビーム)の直接描画により作製されてきた。EB
を用いた量子効果デバイスの作製に関しては、例えば、
ソリツド・ステート・テクノロジー,1985年,10月号,第
125頁から第129頁(Solid State Technology/October,1
985,pp125−129)に論じられている。
Conventionally, these devices have been manufactured by direct writing of EB (electron beam) or FIB (focused ion beam). EB
For the production of quantum effect devices using, for example,
Solid State Technology, October 1985, October
Pages 125 to 129 (Solid State Technology / October, 1
985, pp 125-129).

一方、縮小投影露光法による光リソグラフイの限界解
像度は、露光波長に比例し、縮小レンズの開口数に反比
例する。現在エキシマレーザ(KrFレーザ,波長248nm)
と開口数0.4〜0.5の縮小レンズを用いて0.3μm程度が
達成されている。又、開口数0.5の反射光学系とArFエキ
シマレーザ(波長193nm)を用いて0.13μmを解像した
例がある。(ジヤーナル オブ バキユーム サイエン
ス アンド テクノロジー B5(1),1987年,1/2月
号,第389頁から第390頁(J.Vac.Sci.Technol.B5
(1),Jan/Feb 1987,pp389−390))。
On the other hand, the limit resolution of optical lithography by the reduction projection exposure method is proportional to the exposure wavelength and inversely proportional to the numerical aperture of the reduction lens. Excimer laser (KrF laser, wavelength 248nm)
Using a reducing lens having a numerical aperture of 0.4 to 0.5, a thickness of about 0.3 μm has been achieved. There is also an example in which 0.13 μm is resolved using a reflective optical system having a numerical aperture of 0.5 and an ArF excimer laser (wavelength 193 nm). (Journal of Bakiyum Science and Technology B5 (1), 1987, January, pp. 389-390 (J. Vac. Sci. Technol. B5
(1), Jan / Feb 1987, pp 389-390)).

ところで、縮小投影露光法における解像限界を向上す
る方法に位相シフト法がある。位相シフト法によれば、
その解像限界は通常の透過型マスクによる露光法を用い
た場合の2倍程度向上する。従つて、これによれば0.15
μmから0.1μm以下の微細パタンを形成することが可
能である。この位相シフト法は、特別な露光装置を必要
とせず、通常の縮小投影露光装置において、従来の透過
型マスク(レチクル)を位相シフトマスク(レチクル)
に変更するだけで行なうことができる。位相シフト法に
関しては例えば、アイ・イー・イー・イー;トランザク
シヨン オン エレクトロン デバイシズ,イーデー3
1,ナンバー6(1984)第753頁から第763頁(IEEE,Tran
s,Electron Devices,Vol,ED−31,No.6(1984),pp753−
763)に論じられている。
Incidentally, there is a phase shift method as a method for improving the resolution limit in the reduction projection exposure method. According to the phase shift method,
The resolution limit is improved about twice as much as the case where the exposure method using a normal transmission mask is used. Therefore, according to this, 0.15
It is possible to form a fine pattern of μm to 0.1 μm or less. This phase shift method does not require a special exposure apparatus, and a conventional transmission type mask (reticle) is replaced with a phase shift mask (reticle) in a normal reduction projection exposure apparatus.
It can be done simply by changing to Regarding the phase shift method, see, for example, IEE; Transaction on Electron Devices, E3
1, Number 6 (1984) pp. 753 to 763 (IEEE, Tran
s, Electron Devices, Vol, ED-31, No. 6 (1984), pp753-
763).

また、光を用いて縮小投影露光法の解像限界以下のパ
タンを形成する別の方法に、ホログラフイ法があるが、
このホログラフイ法は特殊な露光装置を必要とし、しか
もパタンはウエハの全面に形成され、そのパタンを、基
板上に既に存在するパタンに対して位置合わせすること
ができない。この様なホログラフイ法については、例え
ば昭和59年秋季、第45回応用物理学会学術講演会、講演
予講集第242頁に論じられている。
Another method of forming a pattern below the resolution limit of the reduced projection exposure method using light is a holographic method.
The holographic method requires a special exposure apparatus, and the pattern is formed on the entire surface of the wafer, and the pattern cannot be aligned with the pattern already existing on the substrate. Such a holographic method is discussed, for example, in the autumn of 1984, at the 45th Annual Conference of the Japan Society of Applied Physics, Preliminary Lecture Book, p. 242.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記のEB,FIBによる極微細パタンの描画作製には、多
大の時間を要し、経済性が悪いという問題点があつた。
The above-described EB and FIB drawing and manufacturing of an extremely fine pattern requires a great deal of time, and has a problem of low economic efficiency.

一方、縮小投影露光法の限界解像度ではPBT、量子効
果デバイス等に必要な0.1μm以下のパタンを形成する
ことは非常に困難である。
On the other hand, it is very difficult to form a pattern of 0.1 μm or less required for a PBT, a quantum effect device or the like at the limit resolution of the reduced projection exposure method.

位相シフト法を用いればこれを達成することが可能で
ある。しかしながら、位相シフト法の弱点として、実際
のLSIパタンの様な複雑なマスクパタンに対応するのが
困難なことがあげられる。位相シフト法は、単純なライ
ンアンドスペースパタン(以下L/S)、格子パタン,点
状パタン等の作製に関して、非常に有効な技術である。
This can be achieved by using the phase shift method. However, the weak point of the phase shift method is that it is difficult to deal with a complicated mask pattern such as an actual LSI pattern. The phase shift method is a very effective technique for producing a simple line-and-space pattern (hereinafter, L / S), a lattice pattern, a point pattern, and the like.

本発明の目的は、極微細パタンを有するデバイスのパ
タン形成において、上記問題点を解決し、簡便かつスル
ープツトの大きい、経済性に優れた微細素子の形成方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems in forming a pattern of a device having an extremely fine pattern, and to provide a simple and large-throughput method for forming a fine element excellent in economy.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、上記デバイスのパタン形成に際して上記
デバイスの極微細パタン領域(例えばPBTのグリツド部
分)の露光に対しては位相シフトマスクを、また、その
他のパタン領域の露光には通常の透過型マスクを用いた
縮小投影露光で適用することにより達成される。
The object of the present invention is to provide a phase shift mask for exposing an extremely fine pattern region (for example, a grid portion of PBT) of the device when forming a pattern of the device, and a normal transmission type mask for exposing the other pattern regions. This is achieved by applying with reduced projection exposure using

〔作用〕[Action]

本発明が対象とするデバイスのパタンは、単純な繰り
返し構造を有する極微細パタンの密集領域と、制御電極
や配線等の比較的複雑な構造を有する回路領域に2分さ
れる。これらの2つの領域はデバイス製造プロセスにお
ける同一層内に混在する場合もあり、又、別々の層とし
て存在する場合もある。
The pattern of the device to which the present invention is directed is divided into a dense region of an extremely fine pattern having a simple repeating structure and a circuit region having a relatively complicated structure such as a control electrode and a wiring. These two regions may coexist in the same layer in the device manufacturing process, or may exist as separate layers.

前者の極微細パタン領域は単純なL/S、点状パタン集
合、格子状パタンで、その寸法は0.1μm程度、もしく
はそれ以下であり、その形状も比較的単純である。この
領域内のパタン形成は位相シフトマスク(レチクル)を
用いた縮小投影露光法により可能となる。
The former ultrafine pattern region is a simple L / S, a set of point-like patterns, and a lattice-like pattern, and its dimensions are about 0.1 μm or less, and its shape is relatively simple. Pattern formation in this region can be performed by a reduced projection exposure method using a phase shift mask (reticle).

一方、後者の回路領域におけるパタンの寸法は前者よ
り大きく、従来の透過型マスク(レチクル)を用いた縮
小投影露光法により形成するのが適している。
On the other hand, the size of the pattern in the latter circuit area is larger than that of the former, and it is suitable to form the pattern by a reduced projection exposure method using a conventional transmission mask (reticle).

上記2つの領域を別々に露光する際には、両者の位置
合せを行なう必要がある。通像合せ精度は少なくとも最
小寸法の半分以下に抑えなければならない。従つて、0.
1μmのパタンに対しては0.05μm以下の合せ精度が必
要となるが、現在この様な精度をもつ露光装置はない。
しかし、本発明における2つの領域間の合せ精度は、通
常の露光装置の保障する程度の値で十分である。何故な
らば、本発明の対象となるデバイスにおける極微細パタ
ンは全体として機能し、従つて逆微細パタン領域と回路
パタン領域の相対位置は所定の範囲内に収める必要があ
るものの、極微細パタンの一つひとつの位置精度はそれ
ほど厳密さを要求されない。
When exposing the above two regions separately, it is necessary to align them. The image alignment accuracy must be kept at least less than half the minimum dimension. Therefore, 0.
An alignment accuracy of 0.05 μm or less is required for a 1 μm pattern, but there is currently no exposure apparatus having such an accuracy.
However, the alignment accuracy between the two regions in the present invention is sufficient if the value is assured by a normal exposure apparatus. This is because the ultrafine pattern in the device targeted by the present invention functions as a whole, so that the relative positions of the inverse fine pattern region and the circuit pattern region need to be within a predetermined range, Each position accuracy is not required to be so strict.

前記二つの領域が同一層内に混在する場合には、一枚
のマスク上に位相シフトマスク領域と透過型マスク領域
を混在させることもできる。これを用いれば、上記極微
細パタン領域と回路パタン領域を1枚のマスクで同時に
露光することができる。但し、この場合、二つの領域の
接続部において解像不良の生じる恐れがある。即ち、位
相の異なる2つの透光部が接する場合、干渉によりここ
で光強度が低下する。この様なパタンの配置は避けなけ
ればならない。
When the two regions are mixed in the same layer, the phase shift mask region and the transmission type mask region can be mixed on one mask. If this is used, the extremely fine pattern region and the circuit pattern region can be simultaneously exposed with one mask. However, in this case, there is a possibility that poor resolution may occur at the connection between the two regions. That is, when two translucent portions having different phases come into contact with each other, the light intensity is reduced here due to interference. Such pattern arrangement must be avoided.

本発明によれば、パタンの露光は縮小投影露光法によ
り行なわれるもので、電子ビーム,集束イオンビームの
直接描画による方法に比してはるかに短時間でこれを完
了させることができる。
According to the present invention, the pattern exposure is performed by the reduced projection exposure method, and can be completed in a much shorter time than the method using the direct drawing of the electron beam and the focused ion beam.

又、本発明によれば、特殊な露光装置を必要とせず、
露光フイールド内の所望の位置に極微細パタンを形成す
ることができるため、ホログラフイ法より有利である。
According to the present invention, no special exposure apparatus is required,
It is more advantageous than the holographic method because an extremely fine pattern can be formed at a desired position in the exposure field.

〔実施例〕〔Example〕

実施例1 以下、本発明を用いたPBTの製造方法の実施例を示
す。
Example 1 Hereinafter, an example of a method for manufacturing a PBT using the present invention will be described.

まず、キヤリア収集電極層に形成したGaAs基板上にさ
らにW薄膜を形成し、その上に、下層有機膜/中間層無
機膜/上層レジスト膜の3層構造からなる、いわゆる3
層レジストを形成した。上層レジストとしてはPMMA(ポ
リメチルメタクリレート)を用いた。次に、第1図
(a)に示した様なPBTの制御電極領域の極微細L/Sだけ
を有する位相シフトレチクルを用いて露光を行なつた。
位相シフトレチクルの微細L/Sにおける隣り合う透光部
は、照明光の位相を互いに180゜反転させる様配置され
ている。次に、第1図(b)に示した様な制御電極周辺
回路パタンを有する透過型レチクルに変換し、露光を行
なつた。
First, a W thin film is further formed on a GaAs substrate formed on a carrier collecting electrode layer, and a so-called three-layer structure of a lower organic film / intermediate inorganic film / upper resist film is formed thereon.
A layer resist was formed. PMMA (polymethyl methacrylate) was used as the upper resist. Next, exposure was performed using a phase shift reticle having only a very small L / S in the control electrode region of the PBT as shown in FIG. 1 (a).
Adjacent light-transmitting portions in the fine L / S of the phase shift reticle are arranged so as to invert the phase of the illumination light by 180 °. Next, the light was converted into a transmission type reticle having a control electrode peripheral circuit pattern as shown in FIG. 1 (b), and exposure was performed.

上記2つの領域に対する露光は、基板を露光装置の基
板ステージ上に固定したままレチクルのみを変更して、
連続的に行なわれる。各々の露光において位置合せ操作
を行なうことはいうまでもない。又、上記2つの領域に
対する露光の順番は特に規定しない。使用した露光装置
の光源はKrFエキシマレーザ、光学系の開口数は0.6であ
る。1露光フイールドにおいて上記2枚のレチクル各各
の露光に要する時間は約5秒であつた。一方、電子線描
画装置を用いて同一パタンの露光を行なつたところ、こ
れに要する時間は約600秒であつた。
Exposure to the two regions is performed by changing only the reticle while the substrate is fixed on the substrate stage of the exposure apparatus.
It is performed continuously. It goes without saying that a positioning operation is performed in each exposure. The order of exposure for the two regions is not particularly defined. The light source of the exposure apparatus used was a KrF excimer laser, and the numerical aperture of the optical system was 0.6. The time required for exposure of each of the two reticles in one exposure field was about 5 seconds. On the other hand, when the same pattern was exposed using an electron beam lithography apparatus, the time required for the exposure was about 600 seconds.

次に、上記上層レジストの現像を行ない、第1図
(c)に示した様な上層レジストパタンを得た。これを
反応性イオンエツチングにより順次前記中間層,下層へ
転写した。その結果、上記下層有機膜において前記極微
細制御電極パタン領域におけるアスペクト比の高い矩形
断面形状を有するL/Sパタンと、前記周辺回路パタンの
両方が得られた。
Next, the upper resist was developed to obtain an upper resist pattern as shown in FIG. 1 (c). This was sequentially transferred to the intermediate layer and the lower layer by reactive ion etching. As a result, in the lower organic film, both the L / S pattern having a rectangular sectional shape with a high aspect ratio in the ultrafine control electrode pattern region and the peripheral circuit pattern were obtained.

こうして形成された下層有機層パタンをマスクとして
W膜のドライエツチングを行ない、制御電極パタンを形
成した後、その上にGaAsを成長させ制御電極を埋め込
み、ひき続きキヤリア注入電極、配線等を形成してPBT
を作製した。上記制御電極パタン以外の露光は全て透過
型マスクを用いた。作製したPBTの電気特性を評価した
結果、所期の性能が得られた。
Using the lower organic layer pattern thus formed as a mask, dry etching of the W film is performed to form a control electrode pattern. After that, GaAs is grown thereon and the control electrode is buried, and subsequently, a carrier injection electrode, wiring, etc. are formed. PBT
Was prepared. All the exposures other than the control electrode pattern used a transmission mask. As a result of evaluating the electrical characteristics of the produced PBT, the expected performance was obtained.

なお、第1図は説明のための模式的な平面であり、必
ずしも実際のトランジスタのレイアウトを表示したもの
ではない。また、デバイス構造、基板材料,制御電極材
料,レジスト材料およびプロセス,露光装置等に関して
も、本実施例に示したものに限らず使用することができ
る。
FIG. 1 is a schematic plan view for explanation, and does not necessarily show an actual transistor layout. Further, the device structure, the substrate material, the control electrode material, the resist material and the process, the exposure apparatus, and the like can be used without being limited to those described in this embodiment.

本実施例の露光過程は、PBTに限らず単純な極微細L/S
パタンと周辺回路の混在する他のデバイス例えばラテカ
ル1次元超格子FET等に対しても適用できる。
The exposure process of this embodiment is not limited to PBT,
The present invention can be applied to other devices in which patterns and peripheral circuits are mixed, such as a lateral one-dimensional superlattice FET.

実施例2 PBTにおいては、極微細パタン領域と回路パタン領域
が同一層(制御電極層)内に混在するので、上記各領域
に対応して位相シフトマスク領域と透過型マスク領域の
混在するレチクルによりパタンを形成できる。このため
のマスクを第2図に示す。前記実施例1においては、制
御電極形状は第1図(c)に示したごとくくし型であつ
た。しかし本方法においては位相シフトマスク領域と透
過マスク領域を完全に分離するために、透過型マスク領
域内の完全な遮光部中に位相シフト型マスク領域(第2
図中点線内)を配置した。
Embodiment 2 In the PBT, since the extremely fine pattern region and the circuit pattern region are mixed in the same layer (control electrode layer), a reticle in which a phase shift mask region and a transmission type mask region are mixed corresponding to each of the above regions is used. A pattern can be formed. FIG. 2 shows a mask for this purpose. In the first embodiment, the shape of the control electrode was a comb shape as shown in FIG. 1 (c). However, in this method, in order to completely separate the phase shift mask area and the transmission mask area, the phase shift mask area (second
(Within the dotted line in the figure).

実施例3 本発明を用いて超マトリクス固体発振素子の製造方法
に関する一実施例を示す。
Example 3 An example of a method for manufacturing a super-matrix solid-state oscillation device using the present invention will be described.

GaAs基板上にポジ型レジストPMMAを塗布し、第3図に
示す様なドツト状の透光部の集合をもつ位相シフトマス
クで露光を行なつた。その後現像して第3図の透光部の
各々に対応したレジスト開口部を得た。位相シフトマス
クの各透光部は照明光の位相を上下左右の両方向に交互
に180゜反転させる様に(市松模様状に)配置されてい
る。なお、位相シフトマスクには、第3図に示したドツ
ト状透光部の各々の周囲に位相反転用のより微細な透光
部パタンを設けてもよい。
A positive resist PMMA was applied on a GaAs substrate, and exposure was performed using a phase shift mask having a set of dot-shaped translucent portions as shown in FIG. Thereafter, development was performed to obtain a resist opening corresponding to each of the light-transmitting portions in FIG. The translucent portions of the phase shift mask are arranged (in a checkerboard pattern) so as to alternately invert the phase of the illumination light by 180 ° in both the upper, lower, left and right directions. The phase shift mask may be provided with a finer light-transmitting portion pattern for phase inversion around each of the dot-shaped light-transmitting portions shown in FIG.

次に、メタライゼーシヨンを行ない、レジスト上およ
びレジスト開口部の基板上に金属を蒸着した後、レジス
トを除去してリフトオフ法により基板上にメタルドツト
行列を形成した。ひき続き電極等を形成して超マトリク
ス固体発振素子を製造した。
Next, metallization was performed to deposit metal on the resist and on the substrate at the resist opening, and then the resist was removed to form a metal dot matrix on the substrate by a lift-off method. Subsequently, electrodes and the like were formed to manufacture a super-matrix solid-state oscillation device.

ここでは固体発振素子の製造への実施例を示したが、
本実施例のレジストパタン形成工程をGaAs基板上のメタ
ライゼーシヨンに代えて、他の様々なプロセスと組み合
せることにより、種々のデバイスへの応用が可能であ
る。例えばGaAs基板上にGaAlAs薄膜を成長させた後、ネ
ガ型レジストと本実施例による位相シフトマスクを用い
てパタン形成を行なうと、第3図のドツト状透光部の各
々に対応してレジストパタンが残る。これをマスクにGa
AlAsの異方性エツチングを行ない、適当な後処理を行な
うことにより量子井戸行列を形成することができる。同
様に、ラテラルFET超格子、共鳴トンネリング効果トラ
ンジスタ等への応用が可能である。
Here, an example of manufacturing a solid-state oscillation element has been described.
By combining the resist pattern forming step of this embodiment with other various processes instead of the metallization on the GaAs substrate, application to various devices is possible. For example, after a GaAlAs thin film is grown on a GaAs substrate and a pattern is formed using a negative resist and the phase shift mask according to the present embodiment, a resist pattern corresponding to each of the dot-shaped translucent portions in FIG. 3 is obtained. Remains. Use this as a mask for Ga
By performing anisotropic etching of AlAs and performing appropriate post-processing, a quantum well matrix can be formed. Similarly, the present invention can be applied to a lateral FET superlattice, a resonant tunneling effect transistor, and the like.

実施例4 本発明を用いた超マトリクス固体発振素子の製造方法
に関する別の実施例を示す。
Embodiment 4 Another embodiment relating to a method of manufacturing a super matrix solid-state oscillation device using the present invention will be described.

前記実施例3におけるポジ型レジストをネガ型レジス
トに置き換え、さらに、露光プロセスを以下の様に変更
した。まず第4図に示す様なマスクA,マスクB,マスクC
を用意した。マスクA及びBはL/S位相シフトマスク
で、各々におけるL/Sは互いに直交しているか、もしく
は基準方向に対して異なる角度をもつている。A,B及び
Cの3枚のマスクを用いて、同一レジスト膜上に重ね露
光することにより、実施例3と同様のレジストパタンを
得た。即ちドツト行例はマスクA及びBにおけるL/Sの
重なり部分に形成され,マスクCはドツト行列領域の範
囲を規定する。本実施例によれば、実施例3と比べてド
ツト行列の周期をより小さくすることが可能で、しかも
レジストの平面的形状を角ばらせることができた。
The positive resist in Example 3 was replaced with a negative resist, and the exposure process was changed as follows. First, a mask A, a mask B, and a mask C as shown in FIG.
Was prepared. The masks A and B are L / S phase shift masks, and the L / S in each is orthogonal to each other or has a different angle with respect to the reference direction. Using the three masks A, B and C, the same resist film was overexposed to obtain the same resist pattern as in Example 3. That is, the dot row example is formed at the overlapping portion of L / S in the masks A and B, and the mask C defines the range of the dot matrix area. According to the present embodiment, it is possible to make the period of the dot matrix smaller than that of the third embodiment, and to make the planar shape of the resist square.

本実施例のパタン形式工程が、実施例3と同様様々な
デバイスに応用可能であることはいうまでもない。
It goes without saying that the pattern type process of this embodiment can be applied to various devices as in the third embodiment.

〔発明の効果〕〔The invention's effect〕

以上本発明による半導体又は超電導体装置の製造方法
によれば、量子効果素子等における0.1μm程度からそ
れ以下の寸法のパタンから成る極微細パタン領域を含む
回路パタンの形成過程において、上記極微細パタン領域
の露光を位相シフト法を用いた縮小投影露光法により、
それ以外の回路パタンを通常の露光法により各々独立に
行なうことにより、上記パタン形成に要する時間を著し
く短縮するとともに、装置コストを低減することができ
る。
According to the method of manufacturing a semiconductor or superconductor device according to the present invention, in the process of forming a circuit pattern including an ultrafine pattern region including a pattern having a size of about 0.1 μm or less in a quantum effect element or the like, Exposure of the area is performed by the reduced projection exposure method using the phase shift method,
By independently performing other circuit patterns by a normal exposure method, the time required for forming the pattern can be significantly reduced, and the cost of the apparatus can be reduced.

これにより、上記半導体・超電導体素子の量産におけ
る経済性を向上させることができる。また、上記素子が
集積化された場合において、これらの効果は一層顕著と
なる。
Thereby, the economical efficiency in mass production of the semiconductor / superconductor element can be improved. Further, when the above elements are integrated, these effects become more remarkable.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第4図は、本発明の実施例におけるマスクパ
タンの平面図である。
1 to 4 are plan views of a mask pattern according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 稔彦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 大嶋 卓 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭58−173744(JP,A) 特開 昭62−189468(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiko Tanaka 1-280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Inside the Hitachi, Ltd. Central Research Laboratory (72) Inventor Taku Oshima 1-280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Hitachi, Ltd. Central Research Laboratory (56) References JP-A-58-173744 (JP, A) JP-A-62-189468 (JP, A)

Claims (25)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被加工物層上にレジスト層を形成し、 露光光によって該レジスト層の第1領域は密にパターン
ニングし第2の領域は第1の領域よりも粗にパターンニ
ングする露光方法であって、 上記第1の領域は上記露光光の位相を反転させる位相シ
フトパターンを有するマスクパターンで露光し、 上記第2の領域は光透過領域と非透過領域から成るマス
クパターンで露光することを特徴とする露光方法。
An exposure for forming a resist layer on a workpiece layer, wherein exposure light is used to pattern a first region of the resist layer densely and a second region is patterned more coarsely than the first region. In the method, the first area is exposed with a mask pattern having a phase shift pattern for inverting the phase of the exposure light, and the second area is exposed with a mask pattern including a light transmitting area and a non-transmitting area. An exposure method comprising:
【請求項2】上記第2のパターンは位相シフトパターン
であることを特徴とする請求項1記載の露光方法。
2. The exposure method according to claim 1, wherein said second pattern is a phase shift pattern.
【請求項3】上記第1のパターンは制御電極であること
を特徴とする請求項1記載の露光方法。
3. The exposure method according to claim 1, wherein said first pattern is a control electrode.
【請求項4】上記第1のパターンは配線であることを特
徴とする請求項1記載の露光方法。
4. The exposure method according to claim 1, wherein said first pattern is a wiring.
【請求項5】上記第1のパターンと第2のパターンは同
一マスクに形成されていることを特徴とする請求項1か
ら4のいずれか記載の露光方法。
5. The exposure method according to claim 1, wherein the first pattern and the second pattern are formed on the same mask.
【請求項6】上記第1のパターンと第2のパターンは異
なるマスクに形成されていることを特徴とする請求項1
から4のいずれか記載の露光方法。
6. The apparatus according to claim 1, wherein said first pattern and said second pattern are formed on different masks.
5. The exposure method according to any one of items 1 to 4.
【請求項7】被加工膜を有する基板にレジスト膜を塗布
し、露光光によりマスクのパターンを投影光学系を介し
て上記レジスト膜へ露光した後現像してレジストパター
ンを形成する工程と、 形成されたレジストパターンから上記被加工膜を加工す
る工程を含む素子の形成方法であって、 上記レジスト膜の所定の領域に密成るパターンを有する
第1のパターンで投影露光する工程と、 第1のパターンより粗なるパターンを有する第2のパタ
ーンで投影露光する工程とを含み、上記第1のパターン
と上記第2のパターンの少なくともどちらか一方は露光
光の位相を反転させる位相シフトパターンであることを
特徴とする素子の形成方法。
7. A step of applying a resist film on a substrate having a film to be processed, exposing a mask pattern by exposure light to the resist film through a projection optical system, and developing the resist film to form a resist pattern. A process of processing the film to be processed from the formed resist pattern, comprising: projecting and exposing a first pattern having a pattern dense in a predetermined region of the resist film; Projecting and exposing with a second pattern having a pattern coarser than the pattern, wherein at least one of the first pattern and the second pattern is a phase shift pattern for inverting the phase of exposure light. A method for forming an element, comprising:
【請求項8】上記レジスト膜はポジ型レジストであり、
上記位相が反転された隣接する光透過部に対応する現像
後レジスト除去領域が互に接続することを特徴とする請
求項7記載の素子の形成方法。
8. The resist film is a positive resist,
8. The method for forming an element according to claim 7, wherein the post-development resist removal regions corresponding to the adjacent light transmitting portions whose phases are inverted are connected to each other.
【請求項9】上記レジスト膜はネガ型レジストであり、
現像後上記位相が反転された隣接する光透過部に対応す
る現像後レジスト除去領域が互に接続することを特徴と
する請求項7記載の素子の形成方法。
9. The resist film is a negative type resist,
8. The method according to claim 7, wherein the post-development resist removal regions corresponding to the adjacent light transmitting portions whose phases have been inverted after the development are connected to each other.
【請求項10】上記第1のパターンと第2のパターンが
上記レジスト膜上の同一の位置に露光することを特徴と
する請求項7から9のいずれか記載の素子の形成方法。
10. The method according to claim 7, wherein the first pattern and the second pattern are exposed at the same position on the resist film.
【請求項11】上記第1のパターンと第2のパターンは
いずれも位相シフトマスク上に形成されていることを特
徴とする請求項7から10のいずれか記載の素子の形成方
法。
11. The method according to claim 7, wherein both the first pattern and the second pattern are formed on a phase shift mask.
【請求項12】上記第1のパターンが位相シフトマスク
でかつ第2のパターンが透過型マスク上に形成されてい
ることを特徴とする請求項7から10のいずれか記載の素
子の形成方法。
12. The method according to claim 7, wherein said first pattern is a phase shift mask, and said second pattern is formed on a transmission type mask.
【請求項13】上記第1のパターンと上記第2のパター
ンとが同一のマスク上に形成されていることを特徴とす
る請求項7から10のいずれか記載の素子の形成方法。
13. The method according to claim 7, wherein the first pattern and the second pattern are formed on the same mask.
【請求項14】基板に薄膜を形成する工程と、 該薄膜上にレジスト層を形成する工程と、 露光光の位相を反転させる位相シフトパターンをレジス
ト層に投影露光する工程と、 光透過領域と非透過領域から成るマスクパターンをレジ
スト上に投影露光する工程と、 露光後に現像する工程と、 エッチングにより上記薄膜を加工する工程と、 上記加工領域に半導体素子を形成する工程とを含むこと
を特徴とする半導体素子の製造方法。
14. A step of forming a thin film on a substrate, a step of forming a resist layer on the thin film, a step of projecting and exposing a phase shift pattern for inverting the phase of exposure light to the resist layer, Projecting and exposing a mask pattern formed of a non-transmissive region onto a resist, developing after exposure, processing the thin film by etching, and forming a semiconductor element in the processed region. A method of manufacturing a semiconductor device.
【請求項15】上記位相シフトパターンが制御電極であ
ることを特徴とする請求項14記載の半導体素子の製造方
法。
15. The method according to claim 14, wherein the phase shift pattern is a control electrode.
【請求項16】上記位相シフトパターンが配線であるこ
とを特徴とする請求項14記載の半導体素子の製造方法。
16. The method according to claim 14, wherein the phase shift pattern is a wiring.
【請求項17】上記投影露光する工程として上記位相シ
フトパターンと上記光透過領域と非透過領域から成るマ
スクパターンを同一レジスト層に露光することを特徴と
する請求項14から16のいずれか記載の半導体素子の製造
方法。
17. The method according to claim 14, wherein the step of projecting and exposing comprises exposing the same resist layer to the phase shift pattern and a mask pattern comprising the light transmitting area and the non-transmitting area. A method for manufacturing a semiconductor device.
【請求項18】上記位相シフトパターンと上記光透過領
域と非透過領域から成るマスクパターンとは同一のマス
ク上に形成されていることを特徴とする請求項14から17
のいずれか記載の半導体素子の製造方法。
18. The apparatus according to claim 14, wherein said phase shift pattern and said mask pattern comprising said light transmitting area and said non-transmitting area are formed on the same mask.
13. The method for manufacturing a semiconductor device according to any one of the above.
【請求項19】上記位相シフトパターンと上記光透過領
域と非透過領域から成るマスクパターンとは異なるマス
ク上に形成されていることを特徴とする請求項14から17
のいずれか記載の半導体素子の製造方法。
19. The apparatus according to claim 14, wherein said phase shift pattern and said mask pattern comprising said light transmitting area and said non-transmitting area are formed on different masks.
13. The method for manufacturing a semiconductor device according to any one of the above.
【請求項20】第1の寸法を有する第1のパターンと、
上記第1の寸法より微細な第2の寸法を有する第2のパ
ターンとを有する半導体素子の製造方法であって、上記
第1のパターンは光透過領域と光非透過領域を含むマス
クパターンを投影光学系を介して投影露光することによ
り形成し、上記第2のパターンは隣接する光透過部を通
過する光の位相を反転させる位相シフトマスクパターン
を投影光学系を介して投影露光することにより形成する
ことを特徴とする半導体素子の製造方法。
20. A first pattern having a first dimension,
A method of manufacturing a semiconductor device having a second pattern having a second dimension finer than the first dimension, wherein the first pattern projects a mask pattern including a light transmitting area and a light non-transmitting area. The second pattern is formed by projecting and exposing through a projection optical system a phase shift mask pattern that inverts the phase of light passing through an adjacent light transmitting portion. A method of manufacturing a semiconductor device.
【請求項21】上記第1のパターンと第2のパターン
は、上記半導体素子の同一層内に形成されていることを
特徴とする請求項20記載の半導体素子の製造方法。
21. The method according to claim 20, wherein the first pattern and the second pattern are formed in the same layer of the semiconductor element.
【請求項22】上記第1のパターンと第2のパターン
は、異なるマスクにより形成されることを特徴とする請
求項20記載の半導体素子の製造方法。
22. The method according to claim 20, wherein the first pattern and the second pattern are formed using different masks.
【請求項23】上記第1のパターンと第2のパターン
は、同一のマスクにより形成されることを特徴とする請
求項20記載の半導体素子の製造方法。
23. The method according to claim 20, wherein the first pattern and the second pattern are formed using the same mask.
【請求項24】上記第1のパターンと第2のパターン
は、上記半導体素子の異なる層に形成されていることを
特徴とする請求項20記載の半導体素子の製造方法。
24. The method according to claim 20, wherein the first pattern and the second pattern are formed in different layers of the semiconductor element.
【請求項25】上記第2のパターンは、制御電極である
ことを特徴とする請求項21から24いずれかに記載の半導
体素子の製造方法。
25. The method according to claim 21, wherein the second pattern is a control electrode.
JP11242288A 1988-05-11 1988-05-11 Exposure method, element forming method, and semiconductor element manufacturing method Expired - Lifetime JP2650962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11242288A JP2650962B2 (en) 1988-05-11 1988-05-11 Exposure method, element forming method, and semiconductor element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11242288A JP2650962B2 (en) 1988-05-11 1988-05-11 Exposure method, element forming method, and semiconductor element manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11152895A Division JP2638561B2 (en) 1995-05-10 1995-05-10 Mask formation method

Publications (2)

Publication Number Publication Date
JPH01283925A JPH01283925A (en) 1989-11-15
JP2650962B2 true JP2650962B2 (en) 1997-09-10

Family

ID=14586253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11242288A Expired - Lifetime JP2650962B2 (en) 1988-05-11 1988-05-11 Exposure method, element forming method, and semiconductor element manufacturing method

Country Status (1)

Country Link
JP (1) JP2650962B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551750B2 (en) 2001-03-16 2003-04-22 Numerical Technologies, Inc. Self-aligned fabrication technique for tri-tone attenuated phase-shifting masks
US6653026B2 (en) 2000-12-20 2003-11-25 Numerical Technologies, Inc. Structure and method of correcting proximity effects in a tri-tone attenuated phase-shifting mask
US6684382B2 (en) 2001-08-31 2004-01-27 Numerical Technologies, Inc. Microloading effect correction
US6698007B2 (en) 2001-10-09 2004-02-24 Numerical Technologies, Inc. Method and apparatus for resolving coloring conflicts between phase shifters
US6704921B2 (en) 2002-04-03 2004-03-09 Numerical Technologies, Inc. Automated flow in PSM phase assignment
US6721938B2 (en) 2001-06-08 2004-04-13 Numerical Technologies, Inc. Optical proximity correction for phase shifting photolithographic masks
US6735752B2 (en) 2001-09-10 2004-05-11 Numerical Technologies, Inc. Modifying a hierarchical representation of a circuit to process features created by interactions between cells
US6733929B2 (en) 2000-07-05 2004-05-11 Numerical Technologies, Inc. Phase shift masking for complex patterns with proximity adjustments
US6738958B2 (en) 2001-09-10 2004-05-18 Numerical Technologies, Inc. Modifying a hierarchical representation of a circuit to process composite gates
US6811954B1 (en) 2000-02-25 2004-11-02 Renesas Technology Corp. Semiconductor integrated circuit device and method of manufacturing the same, and method of manufacturing masks
US6811935B2 (en) 2000-07-05 2004-11-02 Numerical Technologies, Inc. Phase shift mask layout process for patterns including intersecting line segments
US6818385B2 (en) 1996-09-18 2004-11-16 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US6821689B2 (en) 2002-09-16 2004-11-23 Numerical Technologies Using second exposure to assist a PSM exposure in printing a tight space adjacent to large feature
US6828085B2 (en) 1998-09-10 2004-12-07 Canon Kabushiki Kaisha Exposure method and device manufacturing method using the same
US6859918B2 (en) 2001-04-03 2005-02-22 Numerical Technologies Alleviating line end shortening by extending phase shifters
US6866971B2 (en) 2000-09-26 2005-03-15 Synopsys, Inc. Full phase shifting mask in damascene process
US6901575B2 (en) 2000-10-25 2005-05-31 Numerical Technologies, Inc. Resolving phase-shift conflicts in layouts using weighted links between phase shifters
US6978436B2 (en) 2000-07-05 2005-12-20 Synopsys, Inc. Design data format and hierarchy management for phase processing
US6981240B2 (en) 2001-11-15 2005-12-27 Synopsys, Inc. Cutting patterns for full phase shifting masks
US7028285B2 (en) 2000-07-05 2006-04-11 Synopsys, Inc. Standard cell design incorporating phase information
US7083879B2 (en) 2001-06-08 2006-08-01 Synopsys, Inc. Phase conflict resolution for photolithographic masks
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
US7165234B2 (en) 2002-06-11 2007-01-16 Synopsys, Inc. Model-based data conversion
US7178128B2 (en) 2001-07-13 2007-02-13 Synopsys Inc. Alternating phase shift mask design conflict resolution
US7281226B2 (en) 2000-10-25 2007-10-09 Synopsys, Inc. Incrementally resolved phase-shift conflicts in layouts for phase-shifted features
US7348108B2 (en) 2000-07-05 2008-03-25 Synopsys, Inc. Design and layout of phase shifting photolithographic masks
US7585595B2 (en) 2000-07-05 2009-09-08 Synopsys, Inc. Phase shift mask including sub-resolution assist features for isolated spaces

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710967B2 (en) 1988-11-22 1998-02-10 株式会社日立製作所 Manufacturing method of integrated circuit device
US5298365A (en) * 1990-03-20 1994-03-29 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
JP2636700B2 (en) * 1993-10-04 1997-07-30 日本電気株式会社 Method for manufacturing semiconductor device
JP3479329B2 (en) * 1993-10-29 2003-12-15 株式会社日立製作所 Method for manufacturing semiconductor integrated circuit device
JP3819711B2 (en) 1998-10-23 2006-09-13 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP3385325B2 (en) 1998-11-09 2003-03-10 日本電気株式会社 Exposure method and exposure apparatus for lattice pattern
DE10048151B4 (en) 2000-09-28 2009-04-09 Qimonda Ag Method of lithographically patterning a photoresist layer
US6605481B1 (en) 2002-03-08 2003-08-12 Numerical Technologies, Inc. Facilitating an adjustable level of phase shifting during an optical lithography process for manufacturing an integrated circuit
JP4963830B2 (en) 2005-12-15 2012-06-27 ルネサスエレクトロニクス株式会社 Pattern formation method
JP4956122B2 (en) * 2006-09-27 2012-06-20 東芝マイクロエレクトロニクス株式会社 Multiple exposure photomask, layout method thereof, and method of manufacturing semiconductor device using multiple exposure photomask

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818385B2 (en) 1996-09-18 2004-11-16 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US6828085B2 (en) 1998-09-10 2004-12-07 Canon Kabushiki Kaisha Exposure method and device manufacturing method using the same
US6811954B1 (en) 2000-02-25 2004-11-02 Renesas Technology Corp. Semiconductor integrated circuit device and method of manufacturing the same, and method of manufacturing masks
US7132203B2 (en) 2000-07-05 2006-11-07 Synopsys, Inc. Phase shift masking for complex patterns with proximity adjustments
US7500217B2 (en) 2000-07-05 2009-03-03 Synopsys, Inc. Handling of flat data for phase processing including growing shapes within bins to identify clusters
US7435513B2 (en) 2000-07-05 2008-10-14 Synopsys, Inc. Design and layout of phase shifting photolithographic masks
US6733929B2 (en) 2000-07-05 2004-05-11 Numerical Technologies, Inc. Phase shift masking for complex patterns with proximity adjustments
US7348108B2 (en) 2000-07-05 2008-03-25 Synopsys, Inc. Design and layout of phase shifting photolithographic masks
US7585595B2 (en) 2000-07-05 2009-09-08 Synopsys, Inc. Phase shift mask including sub-resolution assist features for isolated spaces
US6811935B2 (en) 2000-07-05 2004-11-02 Numerical Technologies, Inc. Phase shift mask layout process for patterns including intersecting line segments
US6978436B2 (en) 2000-07-05 2005-12-20 Synopsys, Inc. Design data format and hierarchy management for phase processing
US8977989B2 (en) 2000-07-05 2015-03-10 Synopsys, Inc. Handling of flat data for phase processing including growing shapes within bins to identify clusters
US7028285B2 (en) 2000-07-05 2006-04-11 Synopsys, Inc. Standard cell design incorporating phase information
US7534531B2 (en) 2000-09-26 2009-05-19 Synopsys, Inc. Full phase shifting mask in damascene process
US7659042B2 (en) 2000-09-26 2010-02-09 Synopsys, Inc. Full phase shifting mask in damascene process
US6866971B2 (en) 2000-09-26 2005-03-15 Synopsys, Inc. Full phase shifting mask in damascene process
US7281226B2 (en) 2000-10-25 2007-10-09 Synopsys, Inc. Incrementally resolved phase-shift conflicts in layouts for phase-shifted features
US6901575B2 (en) 2000-10-25 2005-05-31 Numerical Technologies, Inc. Resolving phase-shift conflicts in layouts using weighted links between phase shifters
US7827518B2 (en) 2000-10-25 2010-11-02 Synopsys, Inc. Incrementally resolved phase-shift conflicts in layouts for phase-shifted features
US7216331B2 (en) 2000-10-25 2007-05-08 Synopsys, Inc. Resolving phase-shift conflicts in layouts using weighted links between phase shifters
US6653026B2 (en) 2000-12-20 2003-11-25 Numerical Technologies, Inc. Structure and method of correcting proximity effects in a tri-tone attenuated phase-shifting mask
US6551750B2 (en) 2001-03-16 2003-04-22 Numerical Technologies, Inc. Self-aligned fabrication technique for tri-tone attenuated phase-shifting masks
US6859918B2 (en) 2001-04-03 2005-02-22 Numerical Technologies Alleviating line end shortening by extending phase shifters
US7083879B2 (en) 2001-06-08 2006-08-01 Synopsys, Inc. Phase conflict resolution for photolithographic masks
US6721938B2 (en) 2001-06-08 2004-04-13 Numerical Technologies, Inc. Optical proximity correction for phase shifting photolithographic masks
US7169515B2 (en) 2001-06-08 2007-01-30 Synopsys, Inc. Phase conflict resolution for photolithographic masks
US7178128B2 (en) 2001-07-13 2007-02-13 Synopsys Inc. Alternating phase shift mask design conflict resolution
US6684382B2 (en) 2001-08-31 2004-01-27 Numerical Technologies, Inc. Microloading effect correction
US6735752B2 (en) 2001-09-10 2004-05-11 Numerical Technologies, Inc. Modifying a hierarchical representation of a circuit to process features created by interactions between cells
US6738958B2 (en) 2001-09-10 2004-05-18 Numerical Technologies, Inc. Modifying a hierarchical representation of a circuit to process composite gates
US6698007B2 (en) 2001-10-09 2004-02-24 Numerical Technologies, Inc. Method and apparatus for resolving coloring conflicts between phase shifters
US6981240B2 (en) 2001-11-15 2005-12-27 Synopsys, Inc. Cutting patterns for full phase shifting masks
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
US6704921B2 (en) 2002-04-03 2004-03-09 Numerical Technologies, Inc. Automated flow in PSM phase assignment
US7165234B2 (en) 2002-06-11 2007-01-16 Synopsys, Inc. Model-based data conversion
US6821689B2 (en) 2002-09-16 2004-11-23 Numerical Technologies Using second exposure to assist a PSM exposure in printing a tight space adjacent to large feature

Also Published As

Publication number Publication date
JPH01283925A (en) 1989-11-15

Similar Documents

Publication Publication Date Title
JP2650962B2 (en) Exposure method, element forming method, and semiconductor element manufacturing method
JP2638561B2 (en) Mask formation method
US5472813A (en) Pattern exposing method using phase shift and mask used therefor
JP2974821B2 (en) Pattern formation method
US6777143B2 (en) Multiple mask step and scan aligner
US5308741A (en) Lithographic method using double exposure techniques, mask position shifting and light phase shifting
JP3119217B2 (en) Photomask and exposure method using photomask
US7179570B2 (en) Chromeless phase shift lithography (CPL) masks having features to pattern large area line/space geometries
US8637214B2 (en) Photomask sets for fabricating semiconductor devices
US5789117A (en) Transfer method for non-critical photoresist patterns
US7824843B2 (en) Pattern forming method, electronic device manufacturing method and electronic device
US6057066A (en) Method of producing photo mask
JPH05197126A (en) Photo-mask and pattern forming method therewith
US6670646B2 (en) Mask and method for patterning a semiconductor wafer
US6168904B1 (en) Integrated circuit fabrication
JPH06181164A (en) Aligner and aligning method
JPH0845810A (en) Formation of resist pattern
JP2004087715A (en) Method for exposing to electron beam, semiconductor device, method for processing exposure pattern data, and program
JPS62264052A (en) Mask for exposure
JP3247428B2 (en) Projection exposure mask and projection exposure method
KR940011203B1 (en) Process for producing pattern
JPH05198479A (en) Formation of resist pattern
JP2002072444A (en) Method for producing semiconductor integrated circuit device
JP3238732B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH01147546A (en) Photomask for producing integrated circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11

EXPY Cancellation because of completion of term