JPH0123133B2 - - Google Patents

Info

Publication number
JPH0123133B2
JPH0123133B2 JP60023727A JP2372785A JPH0123133B2 JP H0123133 B2 JPH0123133 B2 JP H0123133B2 JP 60023727 A JP60023727 A JP 60023727A JP 2372785 A JP2372785 A JP 2372785A JP H0123133 B2 JPH0123133 B2 JP H0123133B2
Authority
JP
Japan
Prior art keywords
eye
measurement
refractive power
fixation target
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60023727A
Other languages
Japanese (ja)
Other versions
JPS61185242A (en
Inventor
Kyoji Sekiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60023727A priority Critical patent/JPS61185242A/en
Publication of JPS61185242A publication Critical patent/JPS61185242A/en
Priority to US07/342,708 priority patent/US4929076A/en
Publication of JPH0123133B2 publication Critical patent/JPH0123133B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各測定に適するように制御可能な固
視標を有する眼屈折力・角膜形状測定用の眼科用
測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ophthalmological measuring device for measuring eye refractive power and corneal shape, which has a fixation target that can be controlled to suit each measurement.

[従来の技術] 一般に眼屈折検査を行う場合には、屈折力の測
定の他に乱視の有無の検査や、乱視軸・乱視度の
検査のために角膜形状の測定を併せて行われてい
る。従来では、このような検査を行う場合に、角
膜形状の測定と屈折力の測定とをそれぞれ別々に
異種の器械で行つていたが、測定に要する時間と
手数が検者及び被検者の双方にとつて相当の負担
になるため、近年では同一の器械で両測定が可能
な装置が造られている。
[Prior Art] Generally, when performing an eye refraction test, in addition to measuring refractive power, corneal shape measurements are also performed to test for the presence of astigmatism and to test the astigmatism axis and degree of astigmatism. . Conventionally, when performing such examinations, the corneal shape and refractive power were measured separately using different instruments, but the time and effort required for the measurements was costly for both the examiner and the examinee. Since this is a considerable burden for both parties, in recent years devices have been created that can perform both measurements using the same instrument.

ところで、一般に眼屈折力や角膜形状を測定す
る際には、その装置内部に設けた固視標を被検眼
に注視させ被検眼を固定してから、被検眼の眼底
や角膜に所定の視標を投影してその反射像を検出
器で受光し、それらを解析することによつて測定
値を得ている。
By the way, generally when measuring eye refractive power or corneal shape, the subject's eye is fixed on a fixation target provided inside the device, and then a predetermined target is placed on the fundus or cornea of the subject's eye. The measured values are obtained by projecting the reflected light onto a detector, receiving the reflected images, and analyzing them.

眼屈折力測定用固視標には風景等のスライド写
真と放射状パターンの2種類があり、後者の放射
状パターンはその中心を注視させるようになつて
いる。眼屈折力と角膜形状とを同一器械で測定す
る装置においては、これらの固視標の何れかが設
置されているが、角膜形状を測定する場合には、
眼屈折力測定の場合よりも被検者の動きによつて
測定結果が大きく影響されるため、より一層被検
眼に視標を注視させ被検眼を確実に固定させる必
要がある。従つて、角膜形状測定時に眼屈折力測
定用固視標をそのまま用いると、精密な測定の障
害となる場合がある。
There are two types of fixation targets for measuring eye refractive power: a slide photograph of a landscape, etc., and a radial pattern.The latter radial pattern is designed to direct the eye to its center. In devices that measure eye refractive power and corneal shape using the same instrument, one of these fixation targets is installed, but when measuring corneal shape,
Since the measurement result is affected more by the movement of the subject than in the case of eye refractive power measurement, it is necessary to make the subject's eye gaze at the optotype more firmly and to fix the subject's eye more reliably. Therefore, if the fixation target for eye refractive power measurement is used as it is when measuring the corneal shape, accurate measurement may be hindered.

共通の固視標として風景等のスライドを使用し
た場合には、被検者はスライドの何処を見てよい
か迷うために被検眼が固定され難く、角膜形状測
定用固視標としては不向きである。また、放射状
パターンを共通の固視標として使用した場合に
は、パターン中心が正視の位置に固定されている
ために、中度或いは強度の近視・遠視眼の被検者
の場合にはパターンがぼやけてしまい注視できな
いため被検眼が固定され難く、これも角膜形状測
定用固視標としては不十分である。このように、
従来の固視標は十分に満足のいくものではないた
めめ、測定の精度を低下させる原因ともなつてい
る。
If a slide showing a landscape or the like is used as a common fixation target, the examinee may be confused as to where to look on the slide, making it difficult to fixate the subject's eye, making it unsuitable as a fixation target for corneal topography measurement. be. In addition, when a radial pattern is used as a common fixation target, the center of the pattern is fixed at the position of emmetropia, so in the case of subjects with moderate or severe myopia/hyperopia, the pattern may be distorted. Since it is blurred and cannot be gazed at, it is difficult to fix the eye to be examined, and this is also insufficient as a fixation target for corneal shape measurement. in this way,
Conventional fixation targets are not fully satisfactory, which causes a decrease in measurement accuracy.

[発明の目的] 本発明の目的は、眼屈折力及び角膜形状の両測
定に適するように制御可能な固視標を設けること
により、測定時間と手数とを大幅に軽減させ、被
検眼を十分に固定して高精度の測定を可能にした
眼科用測定装置を提供することにある。
[Object of the Invention] The object of the present invention is to significantly reduce measurement time and labor by providing a fixation target that can be controlled to be suitable for measuring both eye refractive power and corneal shape. It is an object of the present invention to provide an ophthalmological measuring device which enables highly accurate measurement by being fixed to

[発明の概要] 上述の目的を達成するための本発明の要旨は、
被検眼の眼屈折力測定光学系と、該眼屈折力測定
光学系と部分的に光学系を共有する角膜形状測定
光学系と、眼屈折力測定用の第1の固視手段と、
角膜形状測定用の第2の固視手段と、前記2つの
測定に応じて前記第1、第2の固視手段を切換え
ると共に、被検眼の眼屈折力に適応する位置に前
記第2の固視手段を調整する手段とを有すること
を特徴とする眼科用測定装置である。
[Summary of the invention] The gist of the present invention for achieving the above object is as follows:
an optical system for measuring the eye refractive power of the eye to be examined, a corneal shape measuring optical system that partially shares an optical system with the optical system for measuring the eye refractive power, and a first fixation means for measuring the eye refractive power;
A second fixation means for corneal shape measurement, and the first and second fixation means are switched according to the two measurements, and the second fixation means is placed at a position that adapts to the eye refractive power of the eye to be examined. An ophthalmological measuring device characterized by having a means for adjusting a viewing means.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明す
る。
[Embodiments of the Invention] The present invention will be described in detail based on illustrated embodiments.

第1図は本発明の一実施例を示す光学系であ
り、角膜形状測定時には、リング状ストロボ1か
ら発せられた可視光が、被検眼Eに対向するコリ
メータ用リングレンズ2に設けた円形のスリツト
3を照明するようになつている。スリツト3は光
軸を含む一断面で見たときにリングレンズ2の焦
点面上にあり、このスリツト3を光学的に無限遠
点にあるようにし、その無限遠点から投影された
光が被検眼Eの角膜Ecを照明するようにされて
いる。被検眼Eはその表面が凸面鏡のようになつ
ているので、スリツト3の角膜反射像を作り、こ
の角膜反射像は対物レンズ4を介して近赤外光の
みを反射し他の波長の光を透過するダイクロイツ
クミラー5を透過し、可視光反射・赤外光透過の
ダイクロイツクミラー6で上方に反射され、ビー
ムスプリツタ7で右方に反射されて多数穴絞り8
を通り、プリズム9によつて偏向されCCD(電荷
結合素子)から成る一次元位置検出素子10に再
結像される。
FIG. 1 shows an optical system showing an embodiment of the present invention. During corneal shape measurement, visible light emitted from a ring-shaped strobe 1 is transmitted through a circular lens provided on a collimator ring lens 2 facing the eye E to be examined. It is designed to illuminate slit 3. The slit 3 is located on the focal plane of the ring lens 2 when viewed in a cross section including the optical axis, and the slit 3 is optically positioned at an infinity point so that the light projected from that infinity point is illuminated. It is designed to illuminate the cornea Ec of the optometrist E. Since the surface of the eye E to be examined is shaped like a convex mirror, a corneal reflection image of the slit 3 is created, and this corneal reflection image reflects only the near-infrared light through the objective lens 4 and rejects light of other wavelengths. It passes through a dichroic mirror 5 that transmits light, is reflected upward by a dichroic mirror 6 that reflects visible light and transmits infrared light, is reflected to the right by a beam splitter 7, and is transmitted to a multi-hole aperture 8.
The light is deflected by a prism 9 and reimaged onto a one-dimensional position detection element 10 made of a CCD (charge coupled device).

多数穴絞り8は第2図aに示すように、例えば
5個の開口部8a〜8eを有し、プリズム9も開
口部8a〜8eに対応して点線で区分したような
5個のエレメント9a〜9eを有し、これらの各
エレメント9a〜9eは第2図bに示すような断
面形状となつている。この多数穴絞り8とプリズ
ム9とによつて分離された5個の角膜反射像は、
検出素子10の位置で第3図に示すような関係で
結合される。この第3図において、Sbは角膜Ec
で反射された像が対物レンズ4で結像し分離され
た角膜反射像を表し、また10a〜10eはそれ
ぞれ検出素子であり、開口部8a〜8e、プリズ
ムエレメント9a〜9eのそれぞれに対応してい
る。これによつて、角膜反射像Sbの中の5点の
座標を検知することになり、この5点の座標を二
次曲線の一般式、 AX2+BXY+CY2+DX+EY+F=0 に代入して、連立方程式を解くことにより係数A
〜Eを求め、楕円の一般式、 (x−x02/a2+(y−y02/b2=1 ただし、 x=Xcosθ−Ysinθ y=Xsinθ+Ycosθ に変形し、楕円の長径a、短径bから角膜Ecの
両主経線の曲率半径を導出し、角度θから乱視軸
を算出することができる。
As shown in FIG. 2a, the multi-hole diaphragm 8 has, for example, five apertures 8a to 8e, and the prism 9 also has five elements 9a as divided by dotted lines corresponding to the apertures 8a to 8e. -9e, and each of these elements 9a-9e has a cross-sectional shape as shown in FIG. 2b. The five corneal reflection images separated by the multi-hole diaphragm 8 and the prism 9 are as follows:
They are coupled at the position of the detection element 10 in a relationship as shown in FIG. In this figure 3, Sb is corneal Ec
The reflected image is formed by the objective lens 4 and represents a separated corneal reflection image, and 10a to 10e are detection elements, respectively, corresponding to the apertures 8a to 8e and prism elements 9a to 9e. There is. As a result, the coordinates of five points in the corneal reflection image Sb are detected, and by substituting the coordinates of these five points into the general formula of the quadratic curve, AX 2 + BXY + CY 2 + DX + EY + F = 0, the simultaneous equations are obtained. By solving the coefficient A
Find the general formula for the ellipse, (x-x 0 ) 2 /a 2 + (y-y 0 ) 2 /b 2 = 1. However, transform it into The radius of curvature of both principal meridians of the cornea Ec can be derived from a and the short axis b, and the astigmatism axis can be calculated from the angle θ.

一方、屈折力測定の場合は、第1図に示すよう
に赤外光を発する発光ダイオード11からの光
が、集光レンズ12を通つて眼底投影チヤート1
3を照射するようになつている。このチヤート1
3には、第4図に示すように相互に120度の角度
をなす3経線方向の3本のスリツト13a〜13
cが設けられている。発光ダイオード11からの
光は、更にリレーレンズ14を通つて眼底照明絞
り15に一旦結像されてから、穴あきミラー16
を通つて赤外光であるためにダイクロイツクミラ
ー6を通り、遠赤外光のみがダイクロイツクミラ
ー5を透過して、対物レンズ4を介して被検眼E
の瞳孔に結像され眼底Efを照明するようになつ
ている。
On the other hand, in the case of refractive power measurement, as shown in FIG.
It is designed to irradiate 3. This chart 1
As shown in FIG.
c is provided. The light from the light emitting diode 11 further passes through the relay lens 14 and is once focused on the fundus illumination diaphragm 15, and then passes through the perforated mirror 16.
Since the infrared light passes through the dichroic mirror 6, only the far infrared light passes through the dichroic mirror 5 and passes through the objective lens 4 to the subject's eye E.
The image is formed on the pupil of the eye and illuminates the fundus Ef.

この遠赤外光によるチヤート13の像はリレー
レンズ14を通つて一旦結像し、対物レンズ4に
より正視眼眼底と共役になるように投影される。
眼底Efからの反射像は、再び対物レンズ4を経
由してダイクロイツクミラー5,6を透過して結
像し、穴あきミラー16で下方に反射される。穴
あきミラー16の近くには絞り板17が配置され
ており、この絞り板17は第5図に示すように環
状の透過部から成る6個の開口部17a〜17f
を有している。そして、開口部17aと17d,
17bと17e,17cと17fは、それぞれ対
応して1つのチヤンネルを形成している。眼底照
明絞り15と絞り板17とは、被検眼Eの瞳孔上
では第6図の15A,17Aで示すように結像
し、チヤート13の像を投影光学系と測定光学系
とに分離するようになつている。
The image of the chart 13 formed by this far-infrared light is once formed through the relay lens 14 and projected by the objective lens 4 so as to be conjugate with the fundus of the emmetropic eye.
The reflected image from the fundus Ef passes through the objective lens 4 again, passes through the dichroic mirrors 5 and 6, forms an image, and is reflected downward by the perforated mirror 16. A diaphragm plate 17 is arranged near the perforated mirror 16, and as shown in FIG.
have. And openings 17a and 17d,
17b and 17e, and 17c and 17f correspond to each other and form one channel. The fundus illumination diaphragm 15 and the diaphragm plate 17 form an image on the pupil of the eye E as shown in 15A and 17A in FIG. 6, and separate the image of the chart 13 into a projection optical system and a measurement optical system. It's getting old.

絞り板17により分割された光束は、結像レン
ズ18を介してプリズム19によつて分離され、
反射ミラー20、シリンドリカルレンズ21を経
て検出素子22の短手方向に集光され、3個の検
出素子22a〜22c上に結像されるようになつ
ている。プリズム19は第7図aに示すように6
個のエレメント19a〜19fを有しており、絞
り板17の6個の開口部17a〜17fに対応し
て像を分離するようになつていて、第7図bはプ
リズム19の断面形状を示している。
The light beam divided by the diaphragm plate 17 is separated by a prism 19 via an imaging lens 18.
The light is focused in the transverse direction of the detection element 22 through the reflection mirror 20 and the cylindrical lens 21, and is imaged onto the three detection elements 22a to 22c. The prism 19 is 6 as shown in FIG. 7a.
The prism 19 has six elements 19a to 19f, and is designed to separate images corresponding to the six apertures 17a to 17f of the aperture plate 17. FIG. 7b shows the cross-sectional shape of the prism 19. ing.

このように分離された像は、第8図に示すよう
に配置された3個のシリンドリカルレンズ21a
〜21cにより像の長手方向に集光されて検出素
子22a〜22c上に結像され、開口部17a〜
17fに対応した眼底像Pa〜Pfとなる。
The images separated in this way are captured by three cylindrical lenses 21a arranged as shown in FIG.
~21c focuses the light in the longitudinal direction of the image and forms an image on the detection elements 22a~22c, and the openings 17a~
The fundus images Pa to Pf correspond to 17f.

被検眼Eが非正視眼であれば、眼底Efから出
射して瞳孔上の或る一点を出た光線は、屈折力に
応じた角度で出射されるから、本実施例のような
光学系を使用すれば被検眼Eの屈折力に応じて検
出素子22上での2つの眼底像Pの距離が変化す
る。
If the eye E to be examined is an ametropic eye, the light ray that exits from the fundus Ef and exits at a certain point on the pupil will exit at an angle that corresponds to the refractive power. When used, the distance between the two fundus images P on the detection element 22 changes depending on the refractive power of the eye E to be examined.

従つて、予め2つの眼底像Pの間隙と屈折力の
関係を求めておけば、3径線方向の屈折力が測定
でき、その各屈折力を次式、 D=Asin(2ω+θ)+B に代入して球面度数、乱視度数、乱視角を計算す
ることができる。変数D、ωは屈折力及び径線方
向の角度をそれぞれ表し、定数A、B、θはそれ
ぞれ乱視度、平均屈折力、乱視軸に相当する。
Therefore, if the relationship between the gap between the two fundus images P and the refractive power is determined in advance, the refractive power in the three radial directions can be measured, and each of the refractive powers is substituted into the following formula, D=Asin(2ω+θ)+B. The spherical power, astigmatic power, and astigmatic angle can be calculated using The variables D and ω represent the refractive power and the radial angle, respectively, and the constants A, B, and θ correspond to the degree of astigmatism, the average refractive power, and the astigmatic axis, respectively.

被検眼Eと器械との位置合わせは、図示しない
光源から出射され、対物レンズ4によりダイクロ
イツクミラー5を下方に反射した前眼部からの赤
外光を、テレビリレーレンズ23によつてテレビ
撮像管24上に結像し、本体に付属又は別個に設
けられたテレビモニタによつて行うことができ
る。
To align the eye E and the instrument, infrared light from the anterior segment of the eye, which is emitted from a light source (not shown) and reflected downward by the objective lens 4 on the dichroic mirror 5, is captured by the television relay lens 23. The image is formed on the tube 24 and can be performed by a television monitor attached to the main body or provided separately.

眼屈折力測定用としての二次元固視標25を備
えた第1の固視手段は光源26と共にビームスプ
リツタ7の上方に設けられ、光源26によつて照
明された固視標25は、リレーレンズ27、ビー
ムスプリツタ7を介して被検眼Eにより注視され
るようになつている。固視標25は光源26と共
に光軸上を上下に移動させ、複数の位置に被検眼
Eを固定させて測定を行うことにより、被検眼E
の器械近視を除去するように制御される。
A first fixation means equipped with a two-dimensional fixation target 25 for eye refractive power measurement is provided above the beam splitter 7 together with a light source 26, and the fixation target 25 illuminated by the light source 26 is It is designed to be gazed at by the eye E through the relay lens 27 and beam splitter 7. The fixation target 25 is moved up and down on the optical axis together with the light source 26, and the eye E is fixed at a plurality of positions for measurement.
The instrument is controlled to eliminate myopia.

固視標25に風景等にスライドが用いられた場
合には、これを角膜形状測定用固視標として使用
すのは不適当であるから、被検眼Eの眼底Efの
正視眼位置に別の点状固視標を備えた第2の固視
手段が設けられる。例えば本実施例では、プリズ
ム9の中心にフアイバ28の一端が配され、他端
近傍に可視光を発する発光ダイオード29が配さ
れている。そして、角膜形状測定時には照明光源
26は消灯され、発光ダイオード29が点灯さ
れ、プリズム9の中心にフアイバ28を介した発
光ダイオード29が発光することにより、被検眼
Eは鮮明な輝点を注視することができ、被検眼E
は固定されることになる。
If a slide is used for the fixation target 25, such as a landscape, it is inappropriate to use this as a fixation target for corneal shape measurement, so a different emmetropic eye position of the fundus Ef of the eye E is placed. A second fixation means is provided with a punctate fixation target. For example, in this embodiment, one end of the fiber 28 is arranged at the center of the prism 9, and a light emitting diode 29 that emits visible light is arranged near the other end. When measuring the corneal shape, the illumination light source 26 is turned off, the light emitting diode 29 is turned on, and the light emitting diode 29 emits light through the fiber 28 at the center of the prism 9, so that the eye E to be examined gazes at a clear bright spot. The eye to be examined E
will be fixed.

第9図はフアイバ28を被検眼Eの他の正視眼
位置に設置した第2の実施例を示しており、眼屈
折力測定用の二次元固視標25の照明光源26側
の中心位置にフアイバ28の一端が設置され、他
端に発光ダイオード29が配置されている。この
実施例においても、先の実施例と同様の手順を追
つて角膜形状が測定されるが、この第2の実施例
の場合には固視標25と共にフアイバ28も移動
できるので、角膜形状測定の際により鮮明な輝点
を被検眼Eに注視させることができる。
FIG. 9 shows a second embodiment in which the fiber 28 is installed at another emmetropic eye position of the eye E to be examined, and is placed at the center position on the side of the illumination light source 26 of the two-dimensional fixation target 25 for eye refractive power measurement. One end of the fiber 28 is installed, and a light emitting diode 29 is placed at the other end. In this embodiment as well, the corneal shape is measured following the same procedure as in the previous embodiment, but in the case of this second embodiment, the fiber 28 can also be moved together with the fixation target 25. At this time, the subject's eye E can be made to gaze at a clearer bright spot.

屈折力測定用固視標25に放射状パターンが用
いられた場合には、これを角膜形状測定にも共用
させることができるが、固視標25は通常では正
視位置に設置されているので、正視被検眼しか注
視することができない。そこで、被検眼Eの屈折
力に応じた位置に固視標25を設置するために、
角膜形状測定前に屈折力測定を簡単に行つておく
ことが好ましい。即ち、発光ダイオード11を1
回発光させ、眼底Efからの反射像を検出素子2
2で把え、その屈折力に応じた位置に固視標25
を移動させると、被検者に固視標25が鮮明に見
えるようになり、被検眼Eを確実に固定すること
ができる。なお、固視標25の位置決定に必要な
球面度数の値は概略の数字でよいため、1径線の
み処理し測定処理時間を短縮してもよい。
If a radial pattern is used as the fixation target 25 for refractive power measurement, it can also be used for corneal shape measurement, but since the fixation target 25 is usually installed at the emmetropic position, Only the eye to be examined can be gazed at. Therefore, in order to set the fixation target 25 at a position corresponding to the refractive power of the eye E,
It is preferable to simply measure the refractive power before measuring the corneal shape. That is, the light emitting diode 11 is
The detection element 2 emits light twice and detects the reflected image from the fundus Ef.
2, and fixation target 25 at a position according to its refractive power.
By moving the fixation target 25, the subject can clearly see the fixation target 25, and the subject's eye E can be reliably fixed. Note that since the value of the spherical power necessary for determining the position of the fixation target 25 may be a rough number, only one radius line may be processed to shorten the measurement processing time.

角膜形状測定のみの場合は、このように先に簡
単に屈折力測定を行うようにするが、屈折力測
定・角膜形状測定を連続して行う場合には、屈折
力測定の測定結果をそのまま利用することができ
る。即ち、屈折力測定によつて得られた球面度数
に相当する位置に固視標25を移動させてから角
膜形状測定に移行すればよい。
If only corneal topography is to be measured, perform a simple refractive power measurement like this, but if refractive power and corneal topography measurements are to be performed consecutively, the measurement results of the refractive power measurement can be used as is. can do. That is, it is sufficient to move the fixation target 25 to a position corresponding to the spherical power obtained by the refractive power measurement and then proceed to the corneal shape measurement.

第10図は本装置の制御回路であり、検出素子
10の信号を入力する角膜形状測定回路30、検
出素子22の信号を入力する眼屈折力測定回路3
1、眼屈折力測定回路31の信号を入力し、一体
化した固視標25及び光源26を制御する固視標
制御回路32、光源26及び発光ダイオード29
を制御する固視標照明制御回路33が、測定の選
択や連続測定時の手順及び固視標25や照明装置
の制御を行う測定選択制御回路34にそれぞぞれ
接続されている。
FIG. 10 shows the control circuit of this device, including a corneal shape measuring circuit 30 that inputs the signal of the detection element 10, and an eye refractive power measurement circuit 3 that inputs the signal of the detection element 22.
1. A fixation target control circuit 32 that inputs the signal of the eye refractive power measurement circuit 31 and controls the integrated fixation target 25 and light source 26, the light source 26, and the light emitting diode 29.
A fixation target illumination control circuit 33 is connected to a measurement selection control circuit 34 that controls measurement selection, continuous measurement procedures, and the fixation target 25 and illumination device.

なお、固視標照明制御回路33は測定選択制御
回路34の指令により、光源26及び発光ダイオ
ード29の点灯を適宜に切換えるための回路であ
るから、固視標25が放射状パターン等の中心を
注視させることができるものであるときには、こ
の制御回路33は省略できる。
Note that the fixation target illumination control circuit 33 is a circuit for appropriately switching the lighting of the light source 26 and the light emitting diode 29 according to commands from the measurement selection control circuit 34, so that the fixation target 25 is fixed at the center of the radial pattern, etc. This control circuit 33 can be omitted if it is possible to do so.

固視標25に風景等のスライドを使用したため
にフアイバ28を設けた装置においては、測定選
択制御回路34で眼屈折力測定或いは連続測定が
選択されると、固視標照明制御回路33により光
源26が点灯され、固視標制御回路32によつて
固視標25及び光源26を移動させながら、検出
素子22の信号を眼屈折力測定回路31に入力
し、器械近視が除去された正確な屈折力測定結果
を得ることができる。
In a device in which a fiber 28 is provided because a slide such as a landscape is used as the fixation target 25, when eye refractive power measurement or continuous measurement is selected by the measurement selection control circuit 34, the fixation target illumination control circuit 33 switches the light source 26 is turned on, and while the fixation target control circuit 32 moves the fixation target 25 and the light source 26, the signal of the detection element 22 is input to the eye refractive power measurement circuit 31, and an accurate measurement is performed in which instrumental myopia is removed. A refractive power measurement result can be obtained.

連続測定の場合は固視標照明制御回路33によ
り光源26を消灯し、発光ダイオード29を点灯
して被検眼Eが注視し易いフアイバ28の輝点を
生じさせて被検眼Eを固定し測定を行い、検出素
子10からの信号を角膜形状測定回路30により
角膜形状測定結果を得ることができる。測定選択
制御回路34で角膜形状測定が選択されたとき
は、固視標照明制御回路33によつて発光ダイオ
ード29を点灯し、以下は前述と同様の手順を追
つて角膜形状測定値を得る。
In the case of continuous measurement, the light source 26 is turned off by the fixation target illumination control circuit 33, and the light emitting diode 29 is turned on to produce a bright spot on the fiber 28 that can be easily observed by the eye E to be examined, fixing the eye E to be examined and performing measurements. The corneal shape measuring circuit 30 uses the signal from the detection element 10 to obtain a corneal shape measurement result. When corneal shape measurement is selected by the measurement selection control circuit 34, the light emitting diode 29 is turned on by the fixation target illumination control circuit 33, and the corneal shape measurement value is obtained by following the same procedure as described above.

固視標25として放射状パターンを使用した場
合に、測定選択制御回路34で眼屈折力測定或い
は連続測定が選択されると、先と同様にして眼屈
折力測定が行われ、連続測定が選択された場合に
は、固視標制御回路32により固視標25を眼屈
折力測定によつて得られた位置に移動させ、固視
標25を被検眼Eに注視させて角膜形状測定を行
う。
When a radial pattern is used as the fixation target 25, if eye refractive power measurement or continuous measurement is selected by the measurement selection control circuit 34, eye refractive power measurement is performed in the same manner as before, and continuous measurement is selected. In this case, the fixation target control circuit 32 moves the fixation target 25 to the position obtained by the eye refractive power measurement, and the eye E is made to gaze at the fixation target 25 to measure the corneal shape.

測定選択制御回路34によつて角膜形状測定の
みが選択されたときには、眼屈折力測定時の手順
に従つて1径線方向のみのデータを検出素子22
から眼屈折力測定回路31に入力させ、その結果
により固視標制御回路32で固視標25を移動さ
せ、それを被検眼Eに注視させて通常の角膜形状
測定を行う。
When only corneal shape measurement is selected by the measurement selection control circuit 34, data in only one radial direction is sent to the detection element 22 according to the procedure for eye refractive power measurement.
is inputted to the eye refractive power measurement circuit 31, and based on the result, the fixation target control circuit 32 moves the fixation target 25, and causes the eye E to gaze at it to perform normal corneal shape measurement.

[発明の効果] 以上説明したように本発明に係る眼科用測定装
置によれば、眼屈折力測定及び角膜形状測定のそ
れぞれに適した固視標を設け、測定時にそれらを
切換えて呈示し、或いは同一の固視標を用い角膜
形状測定時には眼屈折力測定によつて得られた被
検眼に適した位置に固視標を移動させることによ
つて、被検眼に鮮明に見える固視標を呈示し、測
定に際しての位置合わせの時間を短縮すると共
に、正確な測定結果を得ることが可能である。
[Effects of the Invention] As explained above, according to the ophthalmological measuring device according to the present invention, fixation targets suitable for eye refractive power measurement and corneal shape measurement are provided, and these are switched and presented at the time of measurement, Alternatively, when measuring the corneal shape using the same fixation target, by moving the fixation target to a position suitable for the eye to be examined obtained by eye refractive power measurement, the fixation target can be clearly seen by the eye to be examined. It is possible to shorten the time for alignment during presentation and measurement, and to obtain accurate measurement results.

また、本発明では2つの固視標を切換えて眼屈
折力測定に二次元固視標を使用することにより、
次のような独特の効果を発揮することができる。
即ち、風景等の二次元固視標を用いて眼屈折力測
定を行う場合に、瞳孔径の小さい又は光刺激に敏
感な被検眼は、二次元固視標の明るさから縮瞳し
てしまい、測定器の最小瞳孔径以下になつて測定
不能になる場合がある。このような場合でも、本
発明では固視標を点状固視標に切換えれば、視野
は暗くなつて散瞳し易くなるので、瞳孔が開いて
測定が可能になる。また、点状固視標に被検眼を
注視させて角膜形状を測定すると、角膜頂点での
曲率を測定することになるが、固視標を二次元固
視標に切換え、被検眼の視度まで移動させて二次
元固視標の中の注視位置を指示し変えることによ
り、角膜頂点以外の周辺形状を測定できる。
In addition, in the present invention, by switching between two fixation targets and using a two-dimensional fixation target for eye refractive power measurement,
The following unique effects can be achieved.
In other words, when eye refractive power is measured using a two-dimensional fixation target such as a landscape, the subject's eye, which has a small pupil diameter or is sensitive to light stimulation, may have miosis due to the brightness of the two-dimensional fixation target. , the pupil diameter may fall below the minimum pupil diameter of the measuring device, making measurement impossible. Even in such a case, according to the present invention, if the fixation target is switched to a punctate fixation target, the visual field becomes darker and the pupils are more likely to be dilated, so the pupil opens and measurement becomes possible. In addition, when measuring the corneal shape by having the eye to be examined fixate on a dotted fixation target, the curvature at the corneal apex is measured, but the fixation target is changed to a two-dimensional fixation target, and the diopter of the eye to be examined is measured. By moving it up to and changing the gaze position within the two-dimensional fixation target, the peripheral shape other than the corneal vertex can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る眼科用測定装置の実施例を
示し、第1図はその光学的構成図、第2図aは多
数穴絞りの正面図、bはプリズムの断面図、第3
図は角膜反射像と検出素子との関係の説明図、第
4図は眼底投影チヤートの正面図、第5図は眼屈
折測定用絞り板の正面図、第6図は被検眼瞳孔上
での絞りの結像状態の正面図、第7図aは眼屈折
力測定用像分離プリズムの正面図、bはその断面
図、第8図は眼底像と受光素子との関係の説明
図、第9図は角膜形状測定用固視標の別の実施例
を示す構成図、第10図は制御回路のブロツク回
路構成図である。 符号1はリング状ストロボ、2はリングレン
ズ、3はスリツト、4は対物レンズ、5,6はダ
イクロイツクミラー、7はビームスプリツタ、8
は多数穴絞り、9,19はプリズム、10,22
は検出素子、11,29は発光ダイオード、13
はチヤート、15は照明絞り、16は穴あきミラ
ー、17は絞り板、21はシリンドリカルレン
ズ、24はテレビ撮像管、25は固視標、26は
光源、28はフアイバ、30は角膜形状測定回
路、31は眼屈折力測定回路、32は固視標制御
回路、33は固視標照明制御回路、34は測定選
択制御回路である。
The drawings show an embodiment of the ophthalmological measurement device according to the present invention, in which FIG. 1 is an optical configuration diagram thereof, FIG. 2a is a front view of a multi-hole aperture, FIG.
The figure is an explanatory diagram of the relationship between the corneal reflection image and the detection element, Figure 4 is a front view of the fundus projection chart, Figure 5 is a front view of the aperture plate for eye refraction measurement, and Figure 6 is the diagram on the pupil of the eye to be examined. FIG. 7a is a front view of the image separation prism for eye refractive power measurement, FIG. 8 is a cross-sectional view thereof, FIG. 8 is an explanatory diagram of the relationship between the fundus image and the light receiving element, and FIG. This figure is a block diagram showing another embodiment of the fixation target for corneal shape measurement, and FIG. 10 is a block diagram of the control circuit. 1 is a ring-shaped strobe, 2 is a ring lens, 3 is a slit, 4 is an objective lens, 5 and 6 are dichroic mirrors, 7 is a beam splitter, 8
is a multi-hole aperture, 9, 19 is a prism, 10, 22
is a detection element, 11 and 29 are light emitting diodes, 13
is a chart, 15 is an illumination diaphragm, 16 is a perforated mirror, 17 is an aperture plate, 21 is a cylindrical lens, 24 is a television image pickup tube, 25 is a fixation target, 26 is a light source, 28 is a fiber, and 30 is a corneal topography measurement circuit. , 31 is an eye refractive power measurement circuit, 32 is a fixation target control circuit, 33 is a fixation target illumination control circuit, and 34 is a measurement selection control circuit.

Claims (1)

【特許請求の範囲】 1 被検眼の眼屈折力測定光学系と、該眼屈折力
測定光学系と部分的に光学系を共有する角膜形状
測定光学系と、眼屈折力測定用の第1の固視手段
と、角膜形状測定用の第2の固視手段と、前記2
つの測定に応じて前記第1、第2の固視手段を切
換えると共に、被検眼の眼屈折力に適応する位置
に前記第2の固視手段を調整する手段とを有する
ことを特徴とする眼科用測定装置。 2 前記第1の固視手段を風景等のスライドとし
た特許請求の範囲第1項に記載の眼料用測定装
置。 3 前記第1の固視手段を放射状パターンとした
特許請求の範囲第1項に記載の眼科用測定装置。
[Scope of Claims] 1. An optical system for measuring the eye refractive power of the eye to be examined, an optical system for measuring the corneal shape that partially shares an optical system with the optical system for measuring the eye refractive power, and a first optical system for measuring the eye refractive power. a fixation means; a second fixation means for corneal shape measurement;
ophthalmology, characterized in that it has a means for switching the first and second fixation means according to the measurement, and adjusting the second fixation means to a position that adapts to the eye refractive power of the eye to be examined. Measuring device for 2. The ophthalmic measurement device according to claim 1, wherein the first fixation means is a slide of scenery or the like. 3. The ophthalmological measuring device according to claim 1, wherein the first fixation means has a radial pattern.
JP60023727A 1983-06-13 1985-02-09 Ophthalmic measuring apparatus Granted JPS61185242A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60023727A JPS61185242A (en) 1985-02-09 1985-02-09 Ophthalmic measuring apparatus
US07/342,708 US4929076A (en) 1983-06-13 1989-04-24 Ophthalmic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023727A JPS61185242A (en) 1985-02-09 1985-02-09 Ophthalmic measuring apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2105936A Division JPH02289227A (en) 1990-04-21 1990-04-21 Measuring device for ophthalmology

Publications (2)

Publication Number Publication Date
JPS61185242A JPS61185242A (en) 1986-08-18
JPH0123133B2 true JPH0123133B2 (en) 1989-05-01

Family

ID=12118345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023727A Granted JPS61185242A (en) 1983-06-13 1985-02-09 Ophthalmic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61185242A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185242A (en) * 1985-02-09 1986-08-18 キヤノン株式会社 Ophthalmic measuring apparatus
JP2706251B2 (en) * 1988-02-02 1998-01-28 株式会社トプコン Eye refractive power measuring device
JP6735963B2 (en) * 2015-10-22 2020-08-05 株式会社トーメーコーポレーション Ophthalmic equipment
JP6613103B2 (en) * 2015-10-29 2019-11-27 株式会社トプコン Ophthalmic equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565532A (en) * 1979-06-27 1981-01-21 Fuji Photo Film Co Ltd Photographic film unit
JPS57103703A (en) * 1980-12-19 1982-06-28 Sumitomo Metal Ind Ltd Production of slab and its device array
JPS57200128A (en) * 1981-06-03 1982-12-08 Tokyo Optical Objective automatic eye refractive force measuring apparatus
JPS5829446A (en) * 1981-08-18 1983-02-21 キヤノン株式会社 Ophthalmic measuring apparatus
JPS5875529A (en) * 1981-10-30 1983-05-07 株式会社 ニデツク Self-feeling ascertaining apparatus astigmatic axis in objective automatic refraction meter
JPS5977828A (en) * 1982-10-27 1984-05-04 キヤノン株式会社 Apparatus for measuring shape of cornea
JPS5980227A (en) * 1982-10-29 1984-05-09 株式会社ニデツク Apparatus for measuring refractive force of eye
JPS6021738A (en) * 1983-07-19 1985-02-04 キヤノン株式会社 Ophthalmic measuring apparatus
JPS61185242A (en) * 1985-02-09 1986-08-18 キヤノン株式会社 Ophthalmic measuring apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565532A (en) * 1979-06-27 1981-01-21 Fuji Photo Film Co Ltd Photographic film unit
JPS57103703A (en) * 1980-12-19 1982-06-28 Sumitomo Metal Ind Ltd Production of slab and its device array
JPS57200128A (en) * 1981-06-03 1982-12-08 Tokyo Optical Objective automatic eye refractive force measuring apparatus
JPS5829446A (en) * 1981-08-18 1983-02-21 キヤノン株式会社 Ophthalmic measuring apparatus
JPS5875529A (en) * 1981-10-30 1983-05-07 株式会社 ニデツク Self-feeling ascertaining apparatus astigmatic axis in objective automatic refraction meter
JPS5977828A (en) * 1982-10-27 1984-05-04 キヤノン株式会社 Apparatus for measuring shape of cornea
JPS5980227A (en) * 1982-10-29 1984-05-09 株式会社ニデツク Apparatus for measuring refractive force of eye
JPS6021738A (en) * 1983-07-19 1985-02-04 キヤノン株式会社 Ophthalmic measuring apparatus
JPS61185242A (en) * 1985-02-09 1986-08-18 キヤノン株式会社 Ophthalmic measuring apparatus

Also Published As

Publication number Publication date
JPS61185242A (en) 1986-08-18

Similar Documents

Publication Publication Date Title
US6685320B2 (en) Opthalmic characteristic measuring apparatus
JP3740546B2 (en) Ophthalmic measuring device
US6267477B1 (en) Three dimensional imaging apparatus and a method for use thereof
US7216980B2 (en) Eye characteristic measuring apparatus
US6086205A (en) Apparatus and method for simultaneous bilateral retinal digital angiography
JPS63267331A (en) Non-contact type tonometer
JP4663147B2 (en) Eye characteristics measuring device
JPH08103413A (en) Ophthalmological measuring instrument
JP4663148B2 (en) Eye characteristics measuring device
JP7266375B2 (en) Ophthalmic device and method of operation thereof
US4929076A (en) Ophthalmic measuring apparatus
JPH0123133B2 (en)
US11571123B2 (en) Ophthalmologic apparatus and method of controlling the same
JP4795002B2 (en) Ophthalmic measuring device
JP4113399B2 (en) Eye characteristics measuring device
JPH0431690B2 (en)
JPS61100227A (en) Ophthalmic measuring apparatus
JPS6117494B2 (en)
JPS6257534A (en) Ophthalmic measuring apparatus
JPH0342885Y2 (en)
JP7459491B2 (en) Ophthalmology measuring device
JP7133995B2 (en) Ophthalmic device and its control method
WO2023145638A1 (en) Ophthalmic device and ophthalmic program
JP7281877B2 (en) ophthalmic equipment
WO2022209991A1 (en) Ophthalmologic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees