JPH01216751A - Method for detecting center of rotary shaft - Google Patents

Method for detecting center of rotary shaft

Info

Publication number
JPH01216751A
JPH01216751A JP4302588A JP4302588A JPH01216751A JP H01216751 A JPH01216751 A JP H01216751A JP 4302588 A JP4302588 A JP 4302588A JP 4302588 A JP4302588 A JP 4302588A JP H01216751 A JPH01216751 A JP H01216751A
Authority
JP
Japan
Prior art keywords
center
output
displacement meter
steel ball
main spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4302588A
Other languages
Japanese (ja)
Other versions
JPH0651263B2 (en
Inventor
Sadami Kondo
近藤 定巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP4302588A priority Critical patent/JPH0651263B2/en
Publication of JPH01216751A publication Critical patent/JPH01216751A/en
Publication of JPH0651263B2 publication Critical patent/JPH0651263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect the center of a main spindle simply and rapidly on a machine by moving a noncontact displacement meter faced to a steel ball installed on a rotary shaft in two directions perpendicularly to the rotary shaft and detecting the least varying position of its output as the center of the rotary shaft. CONSTITUTION:A preparatory member 15 in which a semispherical steel ball 5 is eccentrically embedded in the vicinity of the center of the chuck 3 of a main spindle 1 is held by a chuck claw 4, a noncontact displacement meter 12 installed on the upper base 7 of a tool rest is brought close to the steel ball 5 while rotating the main spindle 1, the tool rest is moved in the X direction watching the output of the displace ment meter 12, and the tool rest is stopped in the position of detecting the minimum position of the varying width of the output. Then, the tool rest is moved in the Y direction and stopped at the time of equally detecting the minimum width of the output. This position is determined to be the rotation center of the main spindle 1 and a tool 14 is faced to the main spindle 1 side in the center position of the displace ment meter 2 based on the difference in the known heights of the displacement meter 12 and a cutting edge to carry out the cutting of a workpiece held by the chuck 3 by NC, thereby enabling the cutting of a nonspherical lens, etc.

Description

【発明の詳細な説明】 本発明は精密旋盤の加工時において主軸若しくは産業機
械の回転軸の軸中心を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the axis center of a main spindle or a rotating shaft of an industrial machine during machining of a precision lathe.

従来の技術 旋盤で超精密加工例えば非球面レンズの加工を行う場合
に主軸中心と工具刃先の芯高とを一致させることは重要
なことであって両者が一致しているかどうかは簡単に判
断できないため、−度試切削を行ってその加工物の形状
精度により評価していた。
Conventional technology When performing ultra-precision machining, such as machining an aspherical lens, using a conventional lathe, it is important to match the center of the spindle with the center height of the tool tip, and it is not easy to determine whether the two match. Therefore, trial cutting was performed to evaluate the shape accuracy of the workpiece.

発明が解決しようとする課題 加工物を試切削するには慎重に作業を要し作業に時間が
かかり、それを取外して改めて測定機台上で測定を行い
誤差を計算して位置調整後再度切削をするなどの必要が
あるため、正規加工に入るまでの準備時間を要して面倒
なうえ作業能率を低下させる問題点を有していた。
Problems that the invention aims to solve Test-cutting a workpiece requires careful work and takes a long time, and it is necessary to remove the workpiece, measure it again on the measuring machine stand, calculate the error, adjust the position, and then cut it again. This has the problem of requiring preparation time before starting regular machining, which is troublesome and reduces work efficiency.

本発明は試切削を必要とせずしかも機上で簡単。The present invention does not require trial cutting and can be easily performed on a machine.

迅速に主軸中心が検出できる方法を提供するを目的とす
る。
The purpose of this invention is to provide a method that can quickly detect the center of the spindle.

課題を解決するための手段 先端の中心近傍位置に鋼球を取付けた回転軸を回転させ
、鋼球に対面させて移動台に取付けた非接触形変位計を
前記回転軸に直角の2方向に移動させ、該非接触形変位
計の前記2方向の出力の最小変動位置を回転軸中心とし
て検出するものである。
Means for Solving the Problems A rotating shaft with a steel ball attached near the center of the tip is rotated, and a non-contact displacement meter attached to a movable table facing the steel ball is moved in two directions perpendicular to the rotating shaft. The non-contact type displacement meter is moved to detect the minimum variation position of the output in the two directions with respect to the rotation axis.

作用 回転軸例えば主軸の端面中心に鋼球を取付けて回転させ
る。主軸と直角なx、Y軸2方向に移動させる移動台に
取付けた非接触形変位計を先ずX軸方向に動かし検出出
力最小の位置において次ぎにY軸方向に動かし検出出力
最小の位置に移動台を停止する。この位置における変位
計位置が主軸中心となる。
A steel ball is attached to the center of the end face of the operating rotation shaft, such as the main shaft, and rotated. A non-contact displacement meter attached to a moving platform that moves in two directions of the x and y axes perpendicular to the main axis is first moved in the x-axis direction to the position of minimum detection output, then moved to the y-axis direction to the position of minimum detection output. Stop the platform. The displacement meter position at this position is the center of the main shaft.

実施例 本例のサドル上の刃物台については実験的な姿で表現さ
れているが、本発明の意図を実際的に明確にするためあ
えて具体的に記述するものである。
Embodiment Although the turret on the saddle in this embodiment is expressed in an experimental manner, it will be specifically described in order to make the intention of the present invention clear in practice.

周知のNC精密旋盤において主軸1を回転可能に軸承し
た主軸台2はベツドの2軸方向案内面上でNCで位置決
め可能に載置されており、主軸lの前端には把持装置例
えば真空チャック3が嵌着されている。そのチャック爪
4と干渉しない中心部に故意に少し偏心して半調理5が
埋設された段取15がチャック爪4で把持されている。
In a well-known NC precision lathe, a headstock 2 rotatably supporting a main spindle 1 is placed on a two-axis direction guide surface of a bed so that it can be positioned using the NC, and a gripping device such as a vacuum chuck 3 is attached to the front end of the main spindle 1. is fitted. A set-up 15 in which a semi-cooked food 5 is intentionally buried slightly eccentrically in the center where it does not interfere with the chuck jaws 4 is held by the chuck jaws 4.

一方ベッドのX軸方向本内面上にX軸方向移動可能にサ
ドル6が載置されNCで位置決め制御される。サドル6
上には刃物台が旋回位置決め可能に設けられ、この刃物
台は工具取付溝7aをZ軸方向に有し下面7bを平とし
た上台7と、サドル6上に図示しない割出台上に固設さ
れた上面8aを傾斜面とした下台8とよりなり、下面7
bと上面8aとの間に楔体9が介装され、この楔体9が
ボルトlOによって進退されることにより上台7は案内
18bに挟まれて上下方向にのみ移動される。
On the other hand, a saddle 6 is placed on the main inner surface of the bed in the X-axis direction so as to be movable in the X-axis direction, and its positioning is controlled by an NC. saddle 6
A tool rest is provided on the top so that it can be rotated and positioned, and this tool rest is fixed on an upper stand 7 having a tool mounting groove 7a in the Z-axis direction and a flat lower surface 7b, and an index stand (not shown) on the saddle 6. The upper surface 8a is a sloped surface, and the lower surface 8 is a sloped surface.
A wedge body 9 is interposed between b and the upper surface 8a, and as this wedge body 9 is advanced and retreated by a bolt lO, the upper stand 7 is moved only in the vertical direction while being sandwiched between the guides 18b.

そして楔体9はばね11によってねじのバックラシェな
しの4i′eに付勢されている。 また図示はされてい
ないが、下台8は上台7の上部部分に1部分かぶさって
おり、強いばねの力によって土台の下面7bを常に楔体
9に押しつけるよう働いている。
The wedge body 9 is urged by a spring 11 to 4i'e without backlash of the screw. Although not shown, the lower stand 8 partially covers the upper part of the upper stand 7, and acts to constantly press the lower surface 7b of the base against the wedge body 9 by the force of a strong spring.

上台7の工具取付溝7aには主軸1と対向して非接触形
変位計12をポル)13で固定し反対側には工具14が
ポル)13で固定されている。変位計12の出力は増巾
器16で増巾されて表示器に入力される。そして工具1
4切刃の高さと変位計12の中心高さの差とは事前に測
定しておくものである。 鋼球5が主軸回転中心に対し
偏心して砲付けられているため第2図のように鋼球5の
中心軌跡は偏心量を半径とする円となる。変位計12を
主軸中心より離れた位置で矢印方向に移動させると、第
3図のように変位計12の(1)位置と(In)位置に
おける鋼球5の頂点と球表面までの距離はj、、j、と
変化するため変位計12の出力も変化する。この状態で
主軸lが回転されると変位計12が(り位置において鋼
球5の偏心により距jil tt t が偏心量に比例
して変動する。
In the tool mounting groove 7a of the upper stand 7, a non-contact displacement gauge 12 is fixed with a pin 13 facing the main shaft 1, and a tool 14 is fixed with a pin 13 on the opposite side. The output of the displacement meter 12 is amplified by an amplifier 16 and input to the display. and tool 1
The difference between the heights of the four cutting edges and the center height of the displacement meter 12 is measured in advance. Since the steel ball 5 is mounted eccentrically with respect to the center of rotation of the main shaft, the center locus of the steel ball 5 forms a circle whose radius is the amount of eccentricity, as shown in FIG. When the displacement meter 12 is moved in the direction of the arrow at a position away from the center of the spindle, the distance between the apex of the steel ball 5 and the ball surface at the (1) and (In) positions of the displacement meter 12 is as shown in Fig. 3. j, , j, the output of the displacement meter 12 also changes. When the main shaft l is rotated in this state, the distance jil tt t changes in proportion to the amount of eccentricity due to the eccentricity of the steel ball 5 at the position where the displacement meter 12 is located.

また(II)位置においても同様に出力は変動するが鋼
球5の中心に近いため!、に比べて変動は小さくなる。
In addition, the output similarly fluctuates at position (II), but because it is close to the center of the steel ball 5! , the fluctuation is smaller compared to .

したがって変位計12が鋼球5の旋回中心位置が出力変
動中が一番小さくなる。すなわちX軸方向の変位を示す
第4図で明白である。同じ理によってY軸方向の変位変
動最小位置が鋼球の旋回中心位置となるのでX軸方向の
中心を出し次いでY軸方向の中心を出すと第5図のよう
に変動巾零の位置が主軸中心となる。
Therefore, the position of the center of rotation of the steel ball 5 measured by the displacement meter 12 becomes the smallest when the output is fluctuating. That is, this is clearly seen in FIG. 4, which shows the displacement in the X-axis direction. According to the same principle, the position of the minimum displacement fluctuation in the Y-axis direction becomes the center of rotation of the steel ball, so if you bring out the center in the X-axis direction and then the center in the Y-axis direction, the position of zero fluctuation width will be the main axis as shown in Figure 5. Become the center.

中心検出方法のフローチャートの第6図において、ステ
ップS1において主軸のチャック3の中心近傍に半調理
5を偏心して埋めた段取り15をチャック爪4に把持さ
せる。ステップs2において刃物台の上台7にを付けた
変位計12を鋼球5に接近させ必要により主軸を寸転し
て出力状態を確認する。 ステップS3において主軸l
を回転させるステップs4において変位計12の出力を
見ながら刃物台をX軸方向に移動する。ステップS5に
おいて出力変動中の最小位置をさぐり検出されるまでス
テップS4との間を繰り返し、検出された位置で刃物台
を停止させる。
In FIG. 6 of the flowchart of the center detection method, in step S1, the chuck claw 4 grips the setup 15 in which the semi-cooked material 5 is eccentrically buried near the center of the chuck 3 of the main shaft. In step s2, the displacement meter 12 attached to the upper stand 7 of the tool rest is brought close to the steel ball 5, and if necessary, the main shaft is rotated to check the output state. In step S3, the main axis l
In step s4 of rotating the tool post, the tool rest is moved in the X-axis direction while observing the output of the displacement meter 12. In step S5, the process from step S4 is repeated until the minimum position during output fluctuation is detected, and the tool rest is stopped at the detected position.

ステップS6において刃物台を7輪(高さ)方向に移動
させる。ステップS7において出力最小中を検出するよ
うステップs6との間を繰り返し、検出されたとき停止
させる。
In step S6, the tool rest is moved in the seven wheel (height) direction. In step S7, the process from step s6 is repeated to detect the minimum output, and when detected, the process is stopped.

ステップS8において変位計と切刃との既知の高さの差
から変位計の中心位置に工具の高さが一致するように上
台7を位置決めするものである。
In step S8, the upper stand 7 is positioned so that the height of the tool matches the center position of the displacement meter based on the known height difference between the displacement meter and the cutting edge.

位置決めされた刃物台の工具を主軸側に向はチャックに
把持された工作物をNC@111で切削し非球面レンズ
などを切削するものである。
The tool on the positioned tool rest is moved toward the spindle side, and the workpiece gripped by the chuck is cut using the NC@111 to cut an aspherical lens or the like.

なお本実施例では旋盤の主軸と刃物台で述べたがこれに
こだわることな(あらゆる機械に同様にして中心位置の
検出に応用できるものである。
Although this embodiment has been described with reference to the main shaft and tool rest of a lathe, the present invention is not limited to this; it can be similarly applied to detecting the center position of any machine.

さらに変位計の出力をNC装置内で演算して最小変動点
を見出しX軸、Y軸制御位置決めで自動化することも可
能である。
Furthermore, it is also possible to calculate the output of the displacement meter within the NC device, find the minimum fluctuation point, and automate positioning by X- and Y-axis control.

効果 以上詳述したように本発明は機上で主軸中心を検出する
ことができ、刃物台の工具を中心に正確に一致させるこ
とができ、非球面レンズなどの特殊加工でも加工精度を
格段に向上することができる。しかも中心検出が短時間
に極めて容易に行いうる効果がある。
Effects As detailed above, the present invention can detect the center of the spindle on the machine and accurately align the tool on the turret with the center, greatly improving machining accuracy even in special machining such as aspherical lenses. can be improved. Moreover, there is an effect that center detection can be performed extremely easily in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明図、第2図は鋼球の中心の軌跡と
変位計の平面の位置関係を示す図、第3図は同じくその
高さの位置関係を示す図、第4図はX軸方向の変位計の
出力変動中を示す図、第5図はX軸方向の変位計の出力
変動中を示す図、第6図は回転軸中心検出の流れ図であ
る。 l・・主軸  5・・鋼球  7・・上台8・・下台 
 9・・楔
Figure 1 is an explanatory diagram of the present invention, Figure 2 is a diagram showing the positional relationship between the locus of the center of the steel ball and the plane of the displacement meter, Figure 3 is a diagram showing the positional relationship of the height, and Figure 4 5 is a diagram showing a state in which the output of the displacement meter in the X-axis direction is fluctuating, FIG. 5 is a diagram showing a state in which the output of the displacement meter in the X-axis direction is fluctuating, and FIG. 6 is a flowchart for detecting the center of the rotation axis. l...Main shaft 5...Steel ball 7...Upper stand 8...Lower stand
9. Wedge

Claims (1)

【特許請求の範囲】[Claims] (1)先端の中心近傍位置に鋼球を取付けた回転軸を回
転させ、鋼球に対面させて移動台に取付けた非接触形変
位計を前記回転軸に直角の2方向に移動させ、該非接触
形変位計の前記2方向の出力の最小変動位置を回転軸中
心として検出することを特徴とする回転軸中心の検出方
法。
(1) Rotate a rotating shaft with a steel ball attached near the center of the tip, move a non-contact displacement meter attached to a moving table facing the steel ball in two directions perpendicular to the rotating shaft, and A method for detecting the center of a rotating shaft, characterized in that the position of minimum variation in the output in the two directions of the contact displacement meter is detected as the center of the rotating shaft.
JP4302588A 1988-02-25 1988-02-25 Rotation axis center detection method Expired - Lifetime JPH0651263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4302588A JPH0651263B2 (en) 1988-02-25 1988-02-25 Rotation axis center detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4302588A JPH0651263B2 (en) 1988-02-25 1988-02-25 Rotation axis center detection method

Publications (2)

Publication Number Publication Date
JPH01216751A true JPH01216751A (en) 1989-08-30
JPH0651263B2 JPH0651263B2 (en) 1994-07-06

Family

ID=12652409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4302588A Expired - Lifetime JPH0651263B2 (en) 1988-02-25 1988-02-25 Rotation axis center detection method

Country Status (1)

Country Link
JP (1) JPH0651263B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094061A1 (en) * 2000-06-02 2001-12-13 Citizen Watch Co., Ltd. Method and apparatus for positioning cutting tool, and electrical device for tool positioning
WO2008050551A1 (en) * 2006-10-26 2008-05-02 Tsugami Corporation Lathe and method of machining by lathe
CN106002377A (en) * 2016-06-27 2016-10-12 北京航天控制仪器研究所 Machining method for improving coaxiality accuracy of opposite holes of part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094061A1 (en) * 2000-06-02 2001-12-13 Citizen Watch Co., Ltd. Method and apparatus for positioning cutting tool, and electrical device for tool positioning
JP4528485B2 (en) * 2000-06-02 2010-08-18 シチズンホールディングス株式会社 Tool alignment method, tool alignment apparatus, and energization apparatus for alignment
WO2008050551A1 (en) * 2006-10-26 2008-05-02 Tsugami Corporation Lathe and method of machining by lathe
EP2098330A1 (en) * 2006-10-26 2009-09-09 Tsugami Corporation Lathe and method of machining by lathe
JP4896152B2 (en) * 2006-10-26 2012-03-14 株式会社ツガミ Lathe and machining method with lathe
US8244396B2 (en) 2006-10-26 2012-08-14 Tsugami Corporation Turning machine and machining method by the same
EP2098330A4 (en) * 2006-10-26 2013-01-16 Tsugami Kk Lathe and method of machining by lathe
CN106002377A (en) * 2016-06-27 2016-10-12 北京航天控制仪器研究所 Machining method for improving coaxiality accuracy of opposite holes of part

Also Published As

Publication number Publication date
JPH0651263B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US6511364B2 (en) Method and apparatus for grinding eccentric cylindrical portions of workpiece with diameter measuring device
CN111716147B (en) Device and method for accurately controlling and processing wall thickness error of rotary shell part
US4890421A (en) Automatic measurement system
JPH01216751A (en) Method for detecting center of rotary shaft
CN211760513U (en) Gantry grinding machine
JP2015039732A (en) Machine tool and work machining portion measuring method using machine tool
CN108971999B (en) Eccentric inclined plane machining device and method for sliding ring
JPS59192457A (en) Positioner
JP4545501B2 (en) Tool centering method and tool measuring method
JP3780470B2 (en) Method for aligning composite eccentric shafts
JP7000785B2 (en) Machine Tools
JP2792909B2 (en) Measuring device for internal cutting tools
JP3087075B2 (en) Scroll shape processing device
CN219212267U (en) Precise auxiliary tool for inclined hole machining
JPS629807A (en) Center height measuring device for cutting tool
CN214722781U (en) Special tool for alignment of machining position
JPH0118255Y2 (en)
JP5674439B2 (en) Automatic centering system and automatic centering method
JPH0224610Y2 (en)
JPH0357430Y2 (en)
JP2571141Y2 (en) Measurement position correction jig device
JPS6398503A (en) Apparatus and method for measuring rotary tool
JPH0612481Y2 (en) Centering measuring device
JPH04193460A (en) Measuring method for shape or profile irregularity and device used therefor
US3018994A (en) Adjusting dial indicator mounting