JPH01213535A - Inside-cylinder pressure detector for internal combustion engine - Google Patents

Inside-cylinder pressure detector for internal combustion engine

Info

Publication number
JPH01213535A
JPH01213535A JP63039907A JP3990788A JPH01213535A JP H01213535 A JPH01213535 A JP H01213535A JP 63039907 A JP63039907 A JP 63039907A JP 3990788 A JP3990788 A JP 3990788A JP H01213535 A JPH01213535 A JP H01213535A
Authority
JP
Japan
Prior art keywords
cylinder pressure
sensor
thermistor
output
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039907A
Other languages
Japanese (ja)
Inventor
Toshio Iwata
俊雄 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63039907A priority Critical patent/JPH01213535A/en
Priority to KR1019890001746A priority patent/KR920006455B1/en
Priority to DE3905824A priority patent/DE3905824A1/en
Publication of JPH01213535A publication Critical patent/JPH01213535A/en
Priority to US07/503,072 priority patent/US5062294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To stabilize pressure signals by providing a current-voltage converting function element in a piezo-electric type inside-cylinder pressure sensor. CONSTITUTION:The pressure-electric charge quantity converting factor of a piezo-electric type inside-cylinder pressure sensor 1 has a positive temperature characteristic and, when the temperature rises, the quantity of the electric charge outputted from the sensor 1 increases and correction is required to the temperature change in order to obtain correct inside-cylinder pressure values. Therefore, a thermistor 6 is assembled in the sensor 1. When the thermistor 6 is assemble in the sensor 6 as part of the feedback resistance of an operational amplifier 51 so that a change in the resistance value caused by the temperature change of the thermistor 6 can immediately change the current-voltage converting factor, the sum of the resistance values of a resistance 53 and the thermistor 6 becomes smaller because of the change in the resistance value of the thermistor 6, even when the temperature of the sensor 1 rises and the quantity of its output electric charge increases and, as a result, the output signal of the amplifier 51 tends to become larger. Therefore, stable inside-cylinder pressure signals can be obtained always regardless of the temperature change of the sensor 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は内燃機関の燃焼気筒内の圧力情報を計測する
内燃機関の筒内圧力検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cylinder pressure detector for an internal combustion engine that measures pressure information within a combustion cylinder of an internal combustion engine.

〔従来の技術〕[Conventional technology]

内燃機関の燃焼状態や回転サイクル毎のIJ作を計測す
るために一般に燃焼気筒内の圧力が測定される。この潰
1定に用いられる筒内圧力センサとして圧電形筒内圧セ
ンサがよく利用されている。この圧電形筒内圧センサは
圧力に感応して電荷ゲ発生する圧電素子に直接的あるい
は間接的に気筒内の圧力が印加されて、印加圧力に応じ
た電荷量を出力するものである。例えば、圧電形筒内圧
センサの一例を第4図に示す。第4図において(1υに
圧電素子、astrss枚の圧電素子にはさまれ、出力
信号をリード線圓に導く電極、04はセンサの内部構造
部品を偕うケースである。この圧電形筒内圧センサはリ
ング状の形状をしており、第5図に示すようにエンジン
の燃焼気筒の1壇をなすシリンダヘッド+21と点火プ
ラグ131との間に装着される。そして、燃焼気筒内の
圧力が、咀火プラグを通じて圧1[形部内圧センサ…の
圧電素子Oυに伝達され、筒内圧力に応じた電荷が出力
される。
In order to measure the combustion state of an internal combustion engine and the IJ operation for each rotation cycle, the pressure within the combustion cylinder is generally measured. A piezoelectric cylinder pressure sensor is often used as the cylinder pressure sensor used for this constant squeezing. This piezoelectric cylinder pressure sensor outputs an amount of charge according to the applied pressure by directly or indirectly applying pressure within the cylinder to a piezoelectric element that generates a charge in response to pressure. For example, an example of a piezoelectric cylinder pressure sensor is shown in FIG. In Fig. 4, (1υ is a piezoelectric element, an electrode sandwiched between the astrss piezoelectric elements and leads the output signal to the lead wire circle, and 04 is a case that covers the internal structural parts of the sensor. This piezoelectric cylinder pressure sensor has a ring-like shape, and is installed between the cylinder head +21, which forms one of the combustion cylinders of the engine, and the spark plug 131, as shown in Fig. 5.Then, the pressure inside the combustion cylinder is Pressure 1 is transmitted through the mastication plug to the piezoelectric element Oυ of the shaped section internal pressure sensor, and an electric charge corresponding to the cylinder pressure is output.

ところで、上記圧電形筒内圧センサの筒内圧力に対応す
る出力信号は電荷量であるために、この電荷itt′に
’Jft気的処理しやすい電圧値に変換する必要がある
。そこで、1[荷酸全電圧値に変換する手段として一般
にチャージアンプが用いられていた。86図にチャージ
アンプの基本回路倉示す。第6図において、曲ニオペア
ンプであり、vItviコンデンサである。圧電形前内
圧センサ…の出力はオペアンプ(転)の反転入力に接続
され、コンデンサ(社)はオペアンプhaの反転入力と
出力との間に接続される。またオペアンプ4υの非反転
入力は接地されている。いま、オペアンプ(6)に反転
及び非反転の入力電圧が同レベルになるように出力制御
するものであり、圧電形筒内圧センサIl+から電荷Q
が入力されるとオペアンプ(転)ha荷Q、1にすべて
コンデンサーに光電するように制御動作する。
By the way, since the output signal corresponding to the in-cylinder pressure of the piezoelectric in-cylinder pressure sensor is an amount of electric charge, it is necessary to convert this electric charge itt' into a voltage value that can be easily processed by 'Jft'. Therefore, a charge amplifier has generally been used as a means for converting the voltage into a total voltage value of 1. Figure 86 shows the basic circuitry of the charge amplifier. In FIG. 6, it is an operational amplifier and a vItvi capacitor. The output of the piezoelectric type front internal pressure sensor is connected to the inverting input of the operational amplifier (inverter), and the capacitor is connected between the inverting input and output of the operational amplifier ha. Further, the non-inverting input of the operational amplifier 4υ is grounded. Now, the output is controlled so that the inverting and non-inverting input voltages to the operational amplifier (6) are at the same level, and the charge Q is output from the piezoelectric cylinder pressure sensor Il+.
When is input, the operational amplifier (converter) conducts a control operation such that all the charges Q and 1 are photoelectrically applied to the capacitor.

従って、コンデンサ四の静電容量1cとするとV = 
Q/Cなる電圧がオペアンプ(社)の中力に現われる。
Therefore, if the capacitance of capacitor 4 is 1c, then V =
A voltage called Q/C appears at the central voltage of the operational amplifier.

ここで電荷1itQ#−を筒内圧力と比例関係にあるた
め、オペアンプ(財)の出力電圧Vは筒内圧力に心じた
値となり、エンジン運転中には第7図に示すような燃焼
圧力信号を出力する@〔発明が酬茨しようとする課題〕 ところが、上述した圧電形筒内圧センサ…においては圧
カー電荷酸変僕特性に温度変化ンζよる特性変化があり
、また、圧電素子の温度変化に対してはパイロ効果と呼
ばれる電荷発生の特性がある。特に、第す図に示すよう
に燃焼室内近傍に設置される場合には、シリンダヘッド
(2)や点火プラグ;31の温度上昇や、燃焼室内温度
の伝達によるサイクル毎の温度変化が大きいため、前述
したチャージアンプの出力信号波形は上記温度変化の影
響を大きく受け、正確な14内圧力の測定が不可能にな
るという課題があった。また、何らかの形で温度補償を
行おうとしても、チャージアンプの回路では出力電荷分
コンデンサ1邊で直接電圧値に変換するため複雑になる
という課題があった。
Since the charge 1itQ#- is proportional to the in-cylinder pressure, the output voltage V of the operational amplifier takes into account the in-cylinder pressure, and during engine operation, the combustion pressure as shown in Figure 7 Outputting a signal @ [The problem to be solved by the invention] However, in the above-mentioned piezoelectric cylinder pressure sensor, there is a change in the piezoelectric charge acid characteristic due to temperature change, and the piezoelectric element There is a characteristic of charge generation called the pyro effect in response to temperature changes. In particular, when it is installed near the combustion chamber as shown in Figure 2, the temperature of the cylinder head (2) and spark plug; The output signal waveform of the charge amplifier described above is greatly affected by the temperature change, making it impossible to accurately measure the internal pressure. Further, even if some form of temperature compensation is attempted, there is a problem in that the charge amplifier circuit directly converts the output charge into a voltage value at a single capacitor, making it complicated.

本発明はこのような課題VC鑑みてなされたものであり
、尚内圧センサの出力信号から筒内圧力に対応する信号
を得る場合に、筒内圧センサの温度変化よる影響を受け
ない正確な筒内圧力の計I!1ll11fr実現するこ
とを目的とする。
The present invention has been made in view of the above-mentioned problem in VC, and when obtaining a signal corresponding to the cylinder pressure from the output signal of the cylinder pressure sensor, it is possible to obtain an accurate cylinder pressure signal that is not affected by temperature changes of the cylinder pressure sensor. Pressure gauge I! The purpose is to realize 1ll11fr.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る内燃機関の筒内圧力検出装置は、圧電形筒
内圧センサの出力電流信号を受信し、その″[/、t 
fmを電圧値に変換することによって閣内圧力情報(で
関する信号を得るものであり、特に電l九−電圧変換機
能素子を圧電形筒内圧センサ内に含んでなるものである
The in-cylinder pressure detection device for an internal combustion engine according to the present invention receives an output current signal of a piezoelectric in-cylinder pressure sensor, and receives the output current signal from the piezoelectric cylinder pressure sensor.
A signal related to internal pressure information is obtained by converting fm into a voltage value, and in particular, an electric-voltage conversion functional element is included in the piezoelectric cylinder pressure sensor.

〔作用〕[Effect]

本発明においては、温度変化に対する圧電形筒内圧セン
サの出力変化を1M、流−電圧変換機能素子によって補
正するものである。
In the present invention, changes in the output of the piezoelectric cylinder pressure sensor due to temperature changes are corrected by a 1M current-voltage conversion function element.

〔実施例〕〔Example〕

第1図に本発明の実施例ケ示す。第1図において1.)
υとF12+はオペアンプ、・4、囁、571は抵抗、
 I41と+1はコンデンサである。圧電形筒内圧セン
サ1;の出力はオペアンプ5υの反転入力と圧電形筒内
圧センサ+l+に内植されたサーミスタ16)の一端に
接続され、抵抗協はオペアンプJυの出力とサーミスタ
(61の他端との間に接続される。コンデンサIと抵抗
取ハ1頁列にオペアンプIの出力とオペアンプ免の反転
入力との間に接続され、抵抗司とコンデンサ増は並列に
オペアンプ・)2の反転入力と出力との間に接続される
。また、オペアンプ60及び検の非反転入力はともに接
地される。
FIG. 1 shows an embodiment of the present invention. In Figure 1, 1. )
υ and F12+ are operational amplifiers, ・4, whisper, 571 is a resistor,
I41 and +1 are capacitors. The output of the piezoelectric cylinder pressure sensor 1 is connected to the inverting input of the operational amplifier 5υ and one end of the thermistor 16) embedded in the piezoelectric cylinder pressure sensor +l+, and the resistor is connected to the output of the operational amplifier Jυ and the other end of the thermistor (61). The capacitor I and the resistor are connected in parallel between the output of the operational amplifier I and the inverting input of the operational amplifier (2), and the resistor and the resistor are connected in parallel to the inverting input of the operational amplifier (2). and the output. Further, the non-inverting inputs of the operational amplifier 60 and the detector are both grounded.

次に第5図に示した実施例の動作を説明する。Next, the operation of the embodiment shown in FIG. 5 will be explained.

いま、圧電形筒内圧センサ…の出力から筒内圧力に対応
して電荷Qが出力されると、オペアンプ6υのフィード
バック制御によって、抵抗、i3には−””/(ltな
る電流がオペアンプ5υから出力される。そして、抵抗
53とサーミスタ(61との電圧1年下によってオペア
ンプ60の出力電圧V、は抵抗t+iの抵抗頃とサーミ
スタ16)の抵抗値との和ヲR1とすると、 vl−−R1玉 t となる。すなわち、圧電形部内圧センサの出力電流鶴4
tが電圧値に笈侠されたものである。
Now, when a charge Q is output from the output of the piezoelectric cylinder pressure sensor corresponding to the cylinder pressure, the feedback control of the operational amplifier 6υ causes a current of −””/(lt to flow from the operational amplifier 5υ to the resistor i3. Then, if the voltage between the resistor 53 and the thermistor (61 is one year lower), the output voltage V of the operational amplifier 60 is the sum of the resistance value of the resistor t+i and the thermistor 16), then R1, vl-- R1 ball t.That is, the output current of the piezoelectric part internal pressure sensor is 4.
t is expressed as a voltage value.

このオペアンプ、1υの出力電圧v1の悟号改形r第2
図のIal l/(示す。この波形は館内圧力に時間微
分したものに相当する。
This operational amplifier has an output voltage v1 of 1υ and is a modified r second
Ial l/(shown in the figure). This waveform corresponds to the pressure in the building that is time-differentiated.

その次に、オペアンプ50の出力からオペアンプ)乃の
反転入力VCはコンデンサ禰と抵抗5@を経て電流が流
れる。
Next, a current flows from the output of the operational amplifier 50 to the inverting input VC of the operational amplifier 50 via the capacitor and the resistor 5@.

ここで、コンデンサAは変流結合用として用いられるた
め静電容量は充分大きく設定され筒内圧力変化によるX
流電化率VC対しインピーダンスが惨めて小さくなるよ
うになっている。それ故、そこに流れる岨流ムは下式の
ように、オペアンプ5υの出力電圧v1と抵抗値の抵抗
値R1で決定ぴれる。
Here, capacitor A is used for current coupling, so its capacitance is set sufficiently large so that X
The impedance becomes pitifully small with respect to the current electrification rate VC. Therefore, the current flowing there is determined by the output voltage v1 of the operational amplifier 5υ and the resistance value R1, as shown in the following equation.

VIR+  dQ I、 −1−一嶌°王 ヤして、オペアンプ4IZの出力からにフィードバック
IIIJ#によって一工1のtIIL流が流れる。ここ
で、砥恍、司はオペアンプ)力の出力−圧Vs k *
時間びハby疋数で零点復帰させるための抵抗でめシ。
VIR + dQ I, -1 - 1 yen, and a tIIL current flows from the output of the operational amplifier 4IZ by the feedback IIIJ#. Here, Tokun and Tsukasa are operational amplifiers) Force output - pressure Vs k *
It is used as a resistance to return to zero point with time and number.

その抵抗鴫式はコンデンサ順に流れる′1尤に対して#
祝できるt@度のtItfItとなるような高抵抗値に
設定されている。frlつて、オペアンプ−5zの出力
電圧V!は下式のように出力′電流−工嘗とコンデンサ
)6の静電容量c3によって決定される。
The resistance equation is #
The resistance value is set to a high value such that tItfIt can be reached at t@degrees. frl, the output voltage of operational amplifier -5z is V! is determined by the output current - engineering and the capacitance c3 of the capacitor 6, as shown in the following equation.

すなわち、オペアンプ祷の出力′1圧V1は圧電形部内
圧センナ+11の出力′−荷Qに比例するものであり、
46図のtb+ vc示すようにその出力1ぎ号は向内
圧力そのものに相当する。
That is, the output '1 voltage V1 of the operational amplifier is proportional to the output '-load Q of the piezoelectric part internal pressure sensor +11,
As shown in tb+vc in Fig. 46, the output number 1 corresponds to the inward pressure itself.

することによって、rtJ内圧力1g号倉得ることがで
きる。
By doing this, it is possible to obtain an rtJ internal pressure of 1 g.

ところで、圧電形1!I]内圧センサ…の圧カー亀荷蝋
i″懐俤畝には正の温度特性があり、−温度が尚くなる
と出力′畦何破が多くなる。そのため、ブーミスタ+6
1がない4合オペアンプ^υの出力f1号は第2図1&
Iの仮線に示すように大きくなり、止錐な前回圧力を優
るには圧電形高内圧センサI11の温度変化に対する補
正が必要となる。そこで1本−実施例においては第8図
に示すように圧′1形筒内圧センサ+l+の内部にサー
ミスタ16)?組み入れている。第3図では第1図に対
しサーミスタ16)の池に絶縁板a51と電極槽が追加
されてhる。そして、サーミスタ161自身をオペアン
プjlのフィードバック抵抗の一部となるようにしてい
る。それ故、サーミスタ(6)け電流電圧変換素子の一
部をなし、サーミスタ(61の温度変化による抵抗用変
化は直ちに電流電圧変換係数を変化させるものとなる。
By the way, piezoelectric type 1! I] The internal pressure sensor has a positive temperature characteristic, and when the -temperature becomes too low, the output increases. Therefore, the Boomister +6
The output f1 of the 4-way operational amplifier ^υ without 1 is shown in Figure 2 1&
The pressure increases as shown by the temporary line I, and in order to overcome the previous pressure which is a stopper, it is necessary to correct the temperature change of the piezoelectric high internal pressure sensor I11. Therefore, in the embodiment, one thermistor 16) is installed inside the pressure '1 type cylinder pressure sensor +l+ as shown in FIG. It is incorporated. In FIG. 3, an insulating plate a51 and an electrode tank are added to the thermistor 16) as compared to FIG. 1. The thermistor 161 itself is made to become part of the feedback resistance of the operational amplifier jl. Therefore, the thermistor (6) forms a part of the current-voltage conversion element, and a change in resistance due to a temperature change in the thermistor (61) immediately changes the current-voltage conversion coefficient.

6肯って、圧電形筒内圧センサIl+の温度が上昇し、
出力゛重荷電が増加することによってオペアンプ5aの
出力信号が第2図1&Iの破線のように大きくなろうと
しても、サーミスタ1610砥抗ha 変化によって抵
抗帽の抵抗値とサーミスタ+61の抵抗値との和が小さ
くなるため、圧電形筒内圧センサ+l+の1品度食化に
拘らず、第8図(ILlの実線で示す信号を得ることが
でき、第2図1b+に示すように常に安定した筒内圧力
信号を得ることができる。
6 Yes, the temperature of the piezoelectric cylinder pressure sensor Il+ rises,
Even if the output signal of the operational amplifier 5a increases as shown by the broken line in FIG. Because the sum becomes smaller, it is possible to obtain the signal shown by the solid line in FIG. 8 (ILl) regardless of the single-grade eclipse of the piezoelectric cylinder pressure sensor +l+, and the cylinder is always stable as shown in FIG. 2 1b+. An internal pressure signal can be obtained.

なお、上記実施例においては温度測定器としてサーミス
タを用いたが、半導体等の池の方法を用いることもでき
る。
In the above embodiment, a thermistor was used as the temperature measuring device, but a method using a semiconductor or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば筒内圧でンサに温
度変化が生じてもそれによる変人のない安定した筒内圧
力信号を得ることができる。
As explained above, according to the present invention, even if a temperature change occurs in the sensor due to the cylinder pressure, a stable cylinder pressure signal can be obtained without any fluctuations caused by the temperature change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の回路図、第2図1I′
i編1図の実施例の動作説明図、第3図は第1図の実施
例による圧電形筒内圧センサの断面構造図、第4図は圧
電形筒内圧センサの断面構造図、第5図は圧電形筒内圧
センサの取付図、第6図は従来装置の回路図、第7図は
従来装置の出力波形図である。
FIG. 1 is a circuit diagram of an embodiment according to the present invention, and FIG. 2 is a circuit diagram of an embodiment according to the present invention.
Figure 3 is a cross-sectional structural diagram of the piezoelectric cylinder pressure sensor according to the embodiment shown in Figure 1, Figure 4 is a cross-sectional structural diagram of the piezoelectric cylinder pressure sensor, and Figure 5 is 6 is an installation diagram of a piezoelectric cylinder pressure sensor, FIG. 6 is a circuit diagram of a conventional device, and FIG. 7 is an output waveform diagram of a conventional device.

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の燃焼気筒内の圧力を検出する圧電形圧力検出
器、この圧電形圧力検出器の出力電流信号を受信し、電
流値を電圧値に変換する電流−電圧変換器を含んで構成
される内燃機関の筒内圧力検出装置において、上記圧電
形圧力検出器は上記電流−電圧変換器の変換機能素子を
含むことを特徴とする内燃機関の筒内圧力検出装置。
It is composed of a piezoelectric pressure detector that detects the pressure in the combustion cylinder of an internal combustion engine, and a current-voltage converter that receives the output current signal of the piezoelectric pressure detector and converts the current value into a voltage value. An in-cylinder pressure detection device for an internal combustion engine, wherein the piezoelectric pressure detector includes a conversion function element of the current-voltage converter.
JP63039907A 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine Pending JPH01213535A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63039907A JPH01213535A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine
KR1019890001746A KR920006455B1 (en) 1988-02-22 1989-02-15 Cylinder pressure detecting apparatus
DE3905824A DE3905824A1 (en) 1988-02-22 1989-02-22 Device for detecting the pressure in a cylinder of an internal combustion engine
US07/503,072 US5062294A (en) 1988-02-22 1990-03-29 Apparatus for detecting pressure in cylinder of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039907A JPH01213535A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01213535A true JPH01213535A (en) 1989-08-28

Family

ID=12566026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039907A Pending JPH01213535A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01213535A (en)

Similar Documents

Publication Publication Date Title
US5062294A (en) Apparatus for detecting pressure in cylinder of internal combustion engine
US4322977A (en) Pressure measuring system
JP3343509B2 (en) Air flow measurement device
JPH0546488B2 (en)
JP4223915B2 (en) Thermal flow meter and control system
JPH07113709A (en) Pressure difference measuring method and displacement converting device
CN103080703A (en) Gas flow rate measurement device
Ferrari et al. Oscillator-based interface for measurand-plus-temperature readout from resistive bridge sensors
JP3275547B2 (en) Voltage-frequency conversion circuit
JPH11337382A (en) Heat generating resistor type air flow rate measuring apparatus
JPH01213535A (en) Inside-cylinder pressure detector for internal combustion engine
EP3029444B1 (en) Capacitive sensor
JP2000018989A (en) Ratiometric output-type heating resistor-type air flowmeter
US9880063B2 (en) Pressure sensor stabilization
US11085953B2 (en) Half-bridge differential sensor
JP3227084B2 (en) Air flow measurement device
JPH01213534A (en) Inside-cylinder pressure detector for internal combustion engine
JPH01213538A (en) Inside-cylinder pressure detector for internal combustion engine
JPS5912570Y2 (en) Flow rate measuring device
JPH1019625A (en) Air flow meter
JP3060774B2 (en) Capacitance type alcohol concentration detector
JPS6053829A (en) Pressure detecting device
JPH0746058B2 (en) Air flow detector
KR100566134B1 (en) Portable pressure measuring device
JPH08145754A (en) Intake air flow measuring device for internal combustion engine