JPH0546488B2 - - Google Patents

Info

Publication number
JPH0546488B2
JPH0546488B2 JP59115730A JP11573084A JPH0546488B2 JP H0546488 B2 JPH0546488 B2 JP H0546488B2 JP 59115730 A JP59115730 A JP 59115730A JP 11573084 A JP11573084 A JP 11573084A JP H0546488 B2 JPH0546488 B2 JP H0546488B2
Authority
JP
Japan
Prior art keywords
temperature
strain
sensitive
resistor
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59115730A
Other languages
Japanese (ja)
Other versions
JPS60259922A (en
Inventor
Masahiro Kume
Koji Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11573084A priority Critical patent/JPS60259922A/en
Publication of JPS60259922A publication Critical patent/JPS60259922A/en
Publication of JPH0546488B2 publication Critical patent/JPH0546488B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 技術分野 この発明は液体などの圧力をダイヤフラムで受
け、ダイヤフラム上に設定された感歪抵抗体によ
り歪を電気信号に変換して取り出す形式の歪セン
サに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a strain sensor that receives the pressure of a liquid or the like with a diaphragm and converts the strain into an electrical signal using a strain-sensitive resistor set on the diaphragm.

従来の技術 従来より液体などの圧力を測定する圧力センサ
としてダイヤフラムで圧力を受け、ダイヤフラム
上に形成した感歪抵抗体により歪を電気抵抗の変
化として取り出す圧力センサが広く使用されてい
る。感歪抵抗体には金属ゲージや半導体ゲージの
他、シリコン半導体をダイヤフラムとし、ダイヤ
フラム上に拡散抵抗層を形成せしめたものなどが
ある。感歪抵抗体がシリコンなどの半導体の場合
には特に抵抗やゲージ率が使用温度の影響を強く
受けるので温度に対する補償をより厳密にするこ
とが必要であるが、金属ゲージ式に較べゲージ率
が10倍以上と感度が優れるという利点がある。
BACKGROUND ART Conventionally, pressure sensors have been widely used for measuring the pressure of liquids, etc., which receive pressure with a diaphragm and extract strain as a change in electrical resistance using a strain-sensitive resistor formed on the diaphragm. In addition to metal gauges and semiconductor gauges, strain-sensitive resistors include those with a silicon semiconductor diaphragm and a diffused resistance layer formed on the diaphragm. When the strain-sensitive resistor is made of a semiconductor such as silicon, the resistance and gauge factor are particularly strongly affected by the operating temperature, so it is necessary to compensate for temperature more strictly. It has the advantage of being more sensitive than 10 times.

第8図は従来の圧力センサの1例を示したもの
で、半導体ゲージをダイヤフラム上に貼着した要
部の断面図である。感歪抵抗体3,5はダイヤフ
ラム上に形成されている。4,6は感歪抵抗体両
端の電極部をそれぞれ示している。感歪抵抗体は
温度補償をとるため、通常第9図の如く、ブリツ
ジ回路接続して使用される。第9図において、1
1,12は感歪抵抗、13,14は金属抵抗、4
1は定電圧電源部を示している。電源41はブリ
ツジ端a,cに接続され、ブリツジ電圧出力は
b,dより得られる。
FIG. 8 shows an example of a conventional pressure sensor, and is a sectional view of the main part in which a semiconductor gauge is stuck on a diaphragm. The strain-sensitive resistors 3 and 5 are formed on the diaphragm. Reference numerals 4 and 6 indicate electrode portions at both ends of the strain-sensitive resistor, respectively. In order to compensate for the temperature, the strain-sensitive resistor is usually connected to a bridge circuit as shown in FIG. 9. In Figure 9, 1
1 and 12 are strain sensitive resistors, 13 and 14 are metal resistors, 4
1 indicates a constant voltage power supply section. A power source 41 is connected to bridge ends a and c, and bridge voltage outputs are obtained from b and d.

又、感歪抵抗の抵抗温度特性に差がある場合に
は更に、ブリツジを構成する抵抗体部に必要に応
じ、金属抵抗を直・並列接続する方法により、ブ
リツジ出力電圧b,d間の電圧零点の温度による
変動を補償することが知られている。
In addition, if there is a difference in the resistance temperature characteristics of the strain-sensitive resistors, the voltage between the bridge output voltages b and d can be adjusted by connecting metal resistors in series or in parallel to the resistor parts that constitute the bridge, as necessary. It is known to compensate for variations due to temperature at the zero point.

一方出力感度は感歪抵抗のゲージ率に比例する
が、ゲージ率が周囲温度の影響を受けるので、使
用温度に対する補償が必要であり、例えば第10
図の如く、サーミスター素子15に金属抵抗1
6,17を直・並列に接続したものをブリツジに
直列に外付けして加え、これを定電圧電源42に
接続する方法が知られている。しかしながら上述
の方法では外付けするサーミスタ素子の抵抗温度
特性を感歪抵抗体の抵抗温度特性に見合つて厳密
に調整することはかなり複雑で手間を要すると共
に、例えば−40℃〜+120℃などの如く、巾広い
使用温度域では充分な感度補償を得ることが困難
な場合が多い。又出力感度補償不一致からくる誤
差はブリツジ出力電圧零点変動を与えるという問
題も内在しており、この零点変動が無視出来ない
ケースも多い。又、所望のサーミスタ素子は必ず
しも小型のものが得られず、センサ全体の形状が
大きくなるなどの欠点を有していた。
On the other hand, the output sensitivity is proportional to the gauge factor of the strain-sensitive resistor, but since the gauge factor is affected by the ambient temperature, it is necessary to compensate for the operating temperature.
As shown in the figure, the thermistor element 15 has a metal resistor 1
A known method is to externally connect 6 and 17 in series and in parallel to the bridge, and connect this to the constant voltage power supply 42. However, with the above method, it is quite complicated and time-consuming to precisely adjust the resistance-temperature characteristics of the external thermistor element to match the resistance-temperature characteristics of the strain-sensitive resistor. In many cases, it is difficult to obtain sufficient sensitivity compensation in a wide operating temperature range. There is also the inherent problem that errors resulting from mismatched output sensitivity compensation cause bridge output voltage zero point fluctuations, and there are many cases in which this zero point fluctuation cannot be ignored. Further, the desired thermistor element cannot necessarily be made small, and the sensor as a whole has disadvantages such as an increase in size.

発明の目的 それゆえ、本発明の目的は上述の内容に鑑み、
感歪半導体抵抗体で構成されるブリツジ出力電圧
の零点変動を最小限に保つたまゝで、感度の温度
補償を容易とする小型の歪センサを提供すること
である。
Purpose of the Invention Therefore, the purpose of the present invention is to:
It is an object of the present invention to provide a small strain sensor that facilitates temperature compensation of sensitivity while keeping the zero point fluctuation of a bridge output voltage made of a strain-sensitive semiconductor resistor to a minimum.

発明の構成 本発明は、感歪半導体抵抗がダイヤフラム上に
ブリツジ回路接続され、ブリツジ出力端の一方に
直列する2ケの該感歪半導体抵抗の中点と電気接
続され、ブリツジ出力電圧零点が温度補償され、
ダイヤフラム上の歪を受けない部分に感歪半導体
抵抗と同一材料からなる感温度抵抗体を設けた歪
センサに於いて、該感温度抵抗体がブリツジ入力
端部に直列接続して定電流源に接続するか、又は
該感温抵抗体と金属抵抗体との直列回路をブリツ
ジ入力端部に並列接続して定電圧源に接続し、ブ
リツジ出力電圧と該感温度抵抗体の電圧を計測し
てコンビユータ演算部で比較の上、温度補正され
た圧力を検力する小型の歪センサを提供する。
Structure of the Invention In the present invention, a strain-sensitive semiconductor resistor is connected in a bridge circuit on a diaphragm, electrically connected to the midpoint of two strain-sensitive semiconductor resistors connected in series to one of the bridge output terminals, and the zero point of the bridge output voltage is compensated,
In a strain sensor in which a temperature-sensitive resistor made of the same material as the strain-sensitive semiconductor resistor is provided on a portion of the diaphragm that is not subjected to strain, the temperature-sensitive resistor is connected in series to the bridge input end and serves as a constant current source. Alternatively, connect the series circuit of the temperature-sensitive resistor and the metal resistor in parallel to the bridge input terminal and connect it to a constant voltage source, and measure the bridge output voltage and the voltage of the temperature-sensitive resistor. A compact strain sensor is provided that detects temperature-corrected pressure after comparison in a computer calculation unit.

実施例 第1図は本発明の歪センサの実施例で要部の断
面図を示している。第1図において1はステンレ
スなどの金属ダイヤフラム、2は樹脂やセラミツ
ク、ガラスなどからなる電気絶縁層、3,5,7
は該絶縁層上に形成されたシリコン、ゲルマニウ
ムなどの感歪半導体抵抗体を示す。感歪抵抗体
3,5はダイヤフラム1に生ずる歪を受ける歪セ
ンサ部で歪による電気抵抗変化と抵抗体3,5の
両端電極4,6より取り出す。抵抗体7はダイヤ
フラム1の歪を受けない部分に形成された感温セ
ンサ部で、感歪抵抗体3,5の温度を近似的に感
知し、その電気抵抗変化を抵抗体7の両端電極8
より取り出す。
Embodiment FIG. 1 shows a cross-sectional view of essential parts of an embodiment of the strain sensor of the present invention. In Figure 1, 1 is a metal diaphragm made of stainless steel, 2 is an electrical insulating layer made of resin, ceramic, glass, etc., 3, 5, 7
indicates a strain-sensitive semiconductor resistor made of silicon, germanium, etc. formed on the insulating layer. The strain-sensitive resistors 3 and 5 are strain sensor sections that receive strain generated in the diaphragm 1, and electrical resistance changes due to strain are extracted from electrodes 4 and 6 at both ends of the resistors 3 and 5. The resistor 7 is a temperature-sensitive sensor portion formed in a portion of the diaphragm 1 that is not subjected to strain, and approximately senses the temperature of the strain-sensitive resistors 3 and 5, and detects the change in electrical resistance at the electrodes 8 at both ends of the resistor 7.
Take it out.

抵抗体3,5,7は同一ダイヤフラム上に同一
半導体材料で形成されており、小型化が容易であ
る。
The resistors 3, 5, and 7 are formed of the same semiconductor material on the same diaphragm, and can be easily miniaturized.

第2図は第1図におけるブリツジ回路接続例を
示したもので、21,22,は3,5に相当する
感歪半導体抵抗、23,24は金属抵抗、25は
7に相当する該感歪半導体抵抗と同一材料からな
る感温抵抗体、43は定電流電源部をそれぞれ示
している。尚、第2図において、ブリツジ電圧出
力零点の温度補償用の金属抵抗接続部分は図より
省略しているがb,d間のブリツジ出力電圧の零
点温度補償は充分とれているものとする。又点線
部20は歪センサとして一体化され、同一周囲温
度で使用される部分を示している。
FIG. 2 shows an example of the bridge circuit connection in FIG. A temperature-sensitive resistor made of the same material as the semiconductor resistor, and 43 a constant current power supply section, respectively. In FIG. 2, the metal resistor connection portion for temperature compensation of the bridge voltage output zero point is omitted from the figure, but it is assumed that the bridge output voltage zero point temperature compensation between b and d is sufficiently compensated. Furthermore, the dotted line portion 20 indicates a portion that is integrated as a strain sensor and is used at the same ambient temperature.

第3図は第2図におけるブリツジ出力電圧V1
とダイヤフラムに印加される圧力Pとの関係を周
囲温度Tをパラメーターとして示したものであ
る。図においてT0は20℃を示す。第4図は第2
図における抵抗25の両端c,e間電圧V2と温
度Tと関係を示したものである。第3図に示した
如くブリツジ出力電圧の周囲温度による零点変動
は充分低く抑えられている。又圧力Pに対するブ
リツジ出力電圧V1は、α,βを定数として V1α{1−β(T−T0)}Pで表わされる。
Figure 3 shows the bridge output voltage V 1 in Figure 2.
The relationship between P and the pressure P applied to the diaphragm is shown using the ambient temperature T as a parameter. In the figure, T 0 indicates 20°C. Figure 4 is the second
This figure shows the relationship between the voltage V 2 between both ends c and e of the resistor 25 in the figure and the temperature T. As shown in FIG. 3, the zero point fluctuation of the bridge output voltage due to ambient temperature is suppressed to a sufficiently low level. Further, the bridge output voltage V 1 with respect to the pressure P is expressed as V 1 α{1-β(T-T 0 )}P, where α and β are constants.

又第4図より電圧V2はV0,γを定数としてV2
V0erTで表わされる。従つて、電圧V1,V2を計
測すれば、PV1/α{1−β(T−T0)}よりダ
イヤフラムに印加される圧力を算出できる。ま
ず、第3図に示される周囲温度をパラメータとし
て計測される電圧V1の際の圧力値をコンピユー
タの演算部に記憶させておき、第4図の如き周囲
温度と電圧V2の関係を比較することにより真の
圧力値を算出することが可能である。
Also, from Fig. 4, the voltage V 2 is V 2 with V 0 and γ as constants.
It is expressed as V 0 e rT . Therefore, by measuring the voltages V 1 and V 2 , the pressure applied to the diaphragm can be calculated from PV 1 /α{1−β(T−T 0 )}. First, the pressure value at voltage V 1 measured using the ambient temperature as a parameter shown in Fig. 3 is stored in the calculation section of the computer, and the relationship between the ambient temperature and voltage V 2 as shown in Fig. 4 is compared. By doing so, it is possible to calculate the true pressure value.

第5図は第1図におけるブリツジ回路接続の他
の実施例を示す。図において31,32は3,5
に相当する感歪半導体抵抗、33,34,36は
金属抵抗、35は7に相当する感温抵抗体、又は
45は定電圧電源部をそれぞれ示している。(第
2図と同様、ブリツジ電圧出力零点の温度補償用
の金属抵抗接続部分は省略しているが、b,d間
のブリツジ出力電圧の零点温度補償は、充分とれ
ているものとする)尚点線部30は、歪センサー
として一体化され、同一周囲温度で使用される部
分を示している。第5図の場合にもブリツジ出力
電圧b,d間電圧V1と、感温抵抗体35の両端
ec′間電圧V2との関係も第3図、第4図と同様の
特性を有している。従つて、電圧V1,V2を計測
して、圧力Pの値を算出できる。尚、必要によ
り、第2図25、第3図35の感温抵抗体の抵抗
温度特性を直線化するため第6図、第7図の如
く、感温抵抗体25,35の両端にそれぞれ金属
抵抗26,27、及び38,39を直・並列に加
えることも可能である。金属抵抗36は、定電圧
電源に対する分担電圧抵抗である。
FIG. 5 shows another embodiment of the bridge circuit connection in FIG. In the figure, 31 and 32 are 3 and 5
, 33, 34, and 36 are metal resistors, 35 is a temperature-sensitive resistor corresponding to 7, and 45 is a constant voltage power supply section, respectively. (Similar to Figure 2, the metal resistor connection part for temperature compensation at the bridge voltage output zero point is omitted, but it is assumed that the bridge output voltage zero point temperature compensation between b and d is sufficient.) The dotted line portion 30 indicates a portion that is integrated as a strain sensor and is used at the same ambient temperature. In the case of FIG. 5, the voltage between the bridge output voltage b and d is
The relationship with the ec' voltage V 2 also has the same characteristics as in FIGS. 3 and 4. Therefore, the value of pressure P can be calculated by measuring voltages V 1 and V 2 . If necessary, in order to linearize the resistance-temperature characteristics of the temperature-sensitive resistors 25 and 35 in FIGS. It is also possible to add resistors 26, 27 and 38, 39 in series and parallel. The metal resistor 36 is a shared voltage resistor for the constant voltage power supply.

尚、本実施例ではダイヤフラムが金属の場合を
示したが、ダイヤフラムにシリコン単結晶など半
導体を用いた場合にも同様に優れた効果が得られ
る。
Although this embodiment shows the case where the diaphragm is made of metal, similar excellent effects can be obtained when the diaphragm is made of a semiconductor such as silicon single crystal.

又本発明実施例において、感温抵抗体部に印加
する電源は感歪抵抗体部用電源と共通としたが、
それぞれ別電源で駆動してよいことはもちろんで
ある。
Furthermore, in the embodiments of the present invention, the power supply applied to the temperature-sensitive resistor section was the same as the power supply for the strain-sensitive resistor section.
Of course, each may be driven by a separate power source.

発明の効果 上述の如く、本発明は、感歪半導体抵抗がダイ
ヤフラム上にブリツジ回路接続され、ブリツジ出
力端の一方に直列する2ケの該感歪半導体抵抗の
中点と電気接続され、ブリツジ出力電圧零点が温
度補償され、ダイヤフラム上の歪を受けない部分
に感歪半導体抵抗と同一材料からなる感温度抵抗
体を設けた歪センサに於いて、該感温抵抗体がブ
リツジ入力端部に直列接続して定電流源に接続す
るか、又は該感温度抵抗体と金属抵抗体との直列
回路をブリツジ入力端部に並列接続して定電圧源
に接続し、第3図に示す周囲温度をパラメータと
するブリツジ出力電圧と計測圧力の関係を、あら
かじめコンピユータの演算部に記憶させておき、
第4図に示す感温度抵抗体部分の電圧とを比較す
ることにより、感歪半導体抵抗及び金属抵抗体の
温度係数やピエゾ抵抗係数の微調整を省いても、
正確な圧力計測のできる小型の歪センサを提供す
るものである。
Effects of the Invention As described above, in the present invention, a strain-sensitive semiconductor resistor is connected in a bridge circuit on a diaphragm, and is electrically connected to the midpoint of two strain-sensitive semiconductor resistors connected in series to one of the bridge output terminals. In a strain sensor in which the voltage zero point is temperature-compensated and a temperature-sensitive resistor made of the same material as the strain-sensitive semiconductor resistor is provided on a portion of the diaphragm that does not receive strain, the temperature-sensitive resistor is connected in series with the bridge input end. or connect a series circuit of the temperature-sensitive resistor and metal resistor in parallel to the bridge input end and connect it to a constant voltage source to maintain the ambient temperature shown in Figure 3. The relationship between the bridge output voltage and the measured pressure, which are parameters, is stored in advance in the calculation section of the computer.
By comparing the voltage of the temperature-sensitive resistor part shown in FIG.
The present invention provides a small strain sensor that can accurately measure pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の歪センサの実施例で要部の断
面図を示す。第2図は第1図に於けるブリツジ回
路接続例を示す。第3図は第2図に於けるブリツ
ジ出力電圧V1とダイヤフラムに印加される圧力
Pとの関係を周囲温度Tをパラメーターとして示
したもので縦軸は出力電圧を、横軸は圧力を示
す。第4図は、第2図に於ける感温抵抗体間の電
圧V2の温度特性を示し、縦軸は電圧を、横軸は
温度を示す。第5図、第6図及び第7図は本発明
の歪センサの他の実施例のブリツジ回路接続例を
それぞれ示す。第8図は従来の歪センサの一例を
示す要部の断面図である。第9図及び第10図は
従来の歪センサのブリツジ回路接続例を示す。 3,5,11,12,21,22,31,32
……感歪半導体抵抗、25,35……感温抵抗
体、41,42,45,46……定電圧電源部、
43,44……定電流電源部。
FIG. 1 shows a sectional view of the main parts of an embodiment of the strain sensor of the present invention. FIG. 2 shows an example of the bridge circuit connection in FIG. 1. Figure 3 shows the relationship between the bridge output voltage V 1 and the pressure P applied to the diaphragm in Figure 2 using the ambient temperature T as a parameter, where the vertical axis shows the output voltage and the horizontal axis shows the pressure. . FIG. 4 shows the temperature characteristics of the voltage V 2 between the temperature-sensitive resistors in FIG. 2, where the vertical axis shows the voltage and the horizontal axis shows the temperature. FIGS. 5, 6 and 7 respectively show bridge circuit connection examples of other embodiments of the strain sensor of the present invention. FIG. 8 is a sectional view of essential parts of an example of a conventional strain sensor. 9 and 10 show examples of bridge circuit connections of conventional strain sensors. 3, 5, 11, 12, 21, 22, 31, 32
...Strain sensitive semiconductor resistor, 25, 35... Temperature sensitive resistor, 41, 42, 45, 46... Constant voltage power supply section,
43, 44... constant current power supply section.

Claims (1)

【特許請求の範囲】 1 感歪半導体抵抗がダイヤフラム上にブリツジ
回路接続され、ブリツジ出力端の一方に直列する
2ケの該感歪半導体抵抗の中点と電気接続され、
ブリツジ出力電圧零点が温度補償され、ダイヤフ
ラム上の歪を受けない部分に感歪半導体抵抗と同
一材料からなる感温度抵抗体25,35を設けた
歪センサに於いて、該感温度抵抗体がブリツジ入
力端部に直列接続して定電流源に接続するか、又
は該感温抵抗体と金属抵抗体36,38との直列
回路をブリツジ入力端部に並列接続して定電圧源
に接続し、ブリツジ出力電圧V1と該感温度抵抗
体の電圧(V2)を計測して比較の上、温度補正
された圧力を検出することを特徴とする歪セン
サ。 2 上記感温抵抗体は、これと直列26,38又
は並列27,39に金属抵抗体を接続してなるこ
とを特徴とする特許請求の範囲第1項記載の歪セ
ンサ。
[Claims] 1. A strain-sensitive semiconductor resistor is connected in a bridge circuit on the diaphragm, and is electrically connected to the midpoint of the two strain-sensitive semiconductor resistors connected in series to one of the bridge output terminals,
In a strain sensor in which the bridge output voltage zero point is temperature-compensated and temperature-sensitive resistors 25 and 35 made of the same material as the strain-sensitive semiconductor resistor are provided on a portion of the diaphragm that is not subjected to strain, the temperature-sensitive resistor is Connect in series to the input end and connect to a constant current source, or connect a series circuit of the temperature sensitive resistor and metal resistors 36 and 38 in parallel to the bridge input end and connect to a constant voltage source, A strain sensor characterized in that a bridge output voltage V 1 and a voltage (V 2 ) of the temperature-sensitive resistor are measured and compared to detect a temperature-corrected pressure. 2. The strain sensor according to claim 1, wherein the temperature-sensitive resistor is formed by connecting a metal resistor in series 26, 38 or in parallel 27, 39.
JP11573084A 1984-06-05 1984-06-05 Strain sensor Granted JPS60259922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11573084A JPS60259922A (en) 1984-06-05 1984-06-05 Strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11573084A JPS60259922A (en) 1984-06-05 1984-06-05 Strain sensor

Publications (2)

Publication Number Publication Date
JPS60259922A JPS60259922A (en) 1985-12-23
JPH0546488B2 true JPH0546488B2 (en) 1993-07-14

Family

ID=14669677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11573084A Granted JPS60259922A (en) 1984-06-05 1984-06-05 Strain sensor

Country Status (1)

Country Link
JP (1) JPS60259922A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728679U (en) * 1993-11-11 1995-05-30 セーラー万年筆株式会社 Knock type writing instrument
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9060904B2 (en) 2007-06-18 2015-06-23 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9072634B2 (en) 2007-06-18 2015-07-07 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US9375358B2 (en) 2012-12-10 2016-06-28 The Procter & Gamble Company Absorbent article with high absorbent material content
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9713557B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent article with high absorbent material content
US9713556B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US10071002B2 (en) 2013-06-14 2018-09-11 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10470948B2 (en) 2003-02-12 2019-11-12 The Procter & Gamble Company Thin and dry diaper
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US10632029B2 (en) 2015-11-16 2020-04-28 The Procter & Gamble Company Absorbent cores having material free areas
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US10842690B2 (en) 2016-04-29 2020-11-24 The Procter & Gamble Company Absorbent core with profiled distribution of absorbent material
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11123240B2 (en) 2016-04-29 2021-09-21 The Procter & Gamble Company Absorbent core with transversal folding lines
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
US11510829B2 (en) 2014-05-27 2022-11-29 The Procter & Gamble Company Absorbent core with absorbent material pattern

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158442B2 (en) 2009-02-27 2013-03-06 三菱電機株式会社 Semiconductor pressure sensor and manufacturing method thereof
JP5278114B2 (en) * 2009-03-31 2013-09-04 株式会社デンソー Sensor device
JP6341119B2 (en) * 2015-03-03 2018-06-13 株式会社デンソー Sensor drive device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119675A (en) * 1973-03-15 1974-11-15
JPS5245377A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Silicon mechanical-electrical converter
JPS56145327A (en) * 1980-04-15 1981-11-12 Fuji Electric Co Ltd Pressure transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119675A (en) * 1973-03-15 1974-11-15
JPS5245377A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Silicon mechanical-electrical converter
JPS56145327A (en) * 1980-04-15 1981-11-12 Fuji Electric Co Ltd Pressure transducer

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728679U (en) * 1993-11-11 1995-05-30 セーラー万年筆株式会社 Knock type writing instrument
US11234868B2 (en) 2003-02-12 2022-02-01 The Procter & Gamble Company Comfortable diaper
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US11135096B2 (en) 2003-02-12 2021-10-05 The Procter & Gamble Company Comfortable diaper
US11793682B2 (en) 2003-02-12 2023-10-24 The Procter & Gamble Company Thin and dry diaper
US10660800B2 (en) 2003-02-12 2020-05-26 The Procter & Gamble Company Comfortable diaper
US10470948B2 (en) 2003-02-12 2019-11-12 The Procter & Gamble Company Thin and dry diaper
US9060904B2 (en) 2007-06-18 2015-06-23 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9072634B2 (en) 2007-06-18 2015-07-07 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US9241845B2 (en) 2007-06-18 2016-01-26 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US10004647B2 (en) 2009-12-02 2018-06-26 The Procter & Gamble Company Apparatus and method for transferring particulate material
US11110011B2 (en) 2011-06-10 2021-09-07 The Procter & Gamble Company Absorbent structure for absorbent articles
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US9649232B2 (en) 2011-06-10 2017-05-16 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9173784B2 (en) 2011-06-10 2015-11-03 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US11000422B2 (en) 2011-06-10 2021-05-11 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10893987B2 (en) 2011-06-10 2021-01-19 The Procter & Gamble Company Disposable diapers with main channels and secondary channels
US10813794B2 (en) 2011-06-10 2020-10-27 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US10245188B2 (en) 2011-06-10 2019-04-02 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US11602467B2 (en) 2011-06-10 2023-03-14 The Procter & Gamble Company Absorbent structure for absorbent articles
US11135105B2 (en) 2011-06-10 2021-10-05 The Procter & Gamble Company Absorbent structure for absorbent articles
US10449097B2 (en) 2012-11-13 2019-10-22 The Procter & Gamble Company Absorbent articles with channels and signals
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9375358B2 (en) 2012-12-10 2016-06-28 The Procter & Gamble Company Absorbent article with high absorbent material content
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9713557B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent article with high absorbent material content
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9713556B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US10071002B2 (en) 2013-06-14 2018-09-11 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US10765567B2 (en) 2013-08-27 2020-09-08 The Procter & Gamble Company Absorbent articles with channels
US11612523B2 (en) 2013-08-27 2023-03-28 The Procter & Gamble Company Absorbent articles with channels
US11406544B2 (en) 2013-08-27 2022-08-09 The Procter & Gamble Company Absorbent articles with channels
US10335324B2 (en) 2013-08-27 2019-07-02 The Procter & Gamble Company Absorbent articles with channels
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US10675187B2 (en) 2013-12-19 2020-06-09 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US11191679B2 (en) 2013-12-19 2021-12-07 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US10828206B2 (en) 2013-12-19 2020-11-10 Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11510829B2 (en) 2014-05-27 2022-11-29 The Procter & Gamble Company Absorbent core with absorbent material pattern
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
US11918445B2 (en) 2015-05-12 2024-03-05 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US11497657B2 (en) 2015-05-29 2022-11-15 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10632029B2 (en) 2015-11-16 2020-04-28 The Procter & Gamble Company Absorbent cores having material free areas
US11123240B2 (en) 2016-04-29 2021-09-21 The Procter & Gamble Company Absorbent core with transversal folding lines
US10842690B2 (en) 2016-04-29 2020-11-24 The Procter & Gamble Company Absorbent core with profiled distribution of absorbent material

Also Published As

Publication number Publication date
JPS60259922A (en) 1985-12-23

Similar Documents

Publication Publication Date Title
JPH0546488B2 (en)
US5741074A (en) Linear integrated sensing transmitter sensor
US4320664A (en) Thermally compensated silicon pressure sensor
US3967188A (en) Temperature compensation circuit for sensor of physical variables such as temperature and pressure
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
EP0198855A1 (en) Circuit for capacitive sensor made of brittle material
US11598686B2 (en) Temperature compensation of strain gauge output
US3956927A (en) Strain gauge transducer apparatus
US3948102A (en) Trielectrode capacitive pressure transducer
JPS61107774A (en) Pressure sensor and making thereof
US3490272A (en) Temperature compensated resistance measurement bridge
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
JPS6222272B2 (en)
JPS60122336A (en) Transducer
JPH0455542B2 (en)
JPH041472Y2 (en)
JPS5967437A (en) Quartz vibrator pressure sensor
JPH0587665A (en) Differential pressure measuring device
JPH0313537B2 (en)
Bryzek Approaching performance limits in silicon piezoresistive pressure sensors
JP2636404B2 (en) Semiconductor differential pressure measuring device
JPH0814521B2 (en) Temperature compensation method for semiconductor pressure sensor
JPS5920658Y2 (en) Detection circuit for thermal conduction type vacuum gauge
RU2024830C1 (en) Unit for measuring pressure
JP2536822B2 (en) Temperature compensation circuit for weighing device