JP7449214B2 - 分散測定装置および分散測定方法 - Google Patents

分散測定装置および分散測定方法 Download PDF

Info

Publication number
JP7449214B2
JP7449214B2 JP2020167851A JP2020167851A JP7449214B2 JP 7449214 B2 JP7449214 B2 JP 7449214B2 JP 2020167851 A JP2020167851 A JP 2020167851A JP 2020167851 A JP2020167851 A JP 2020167851A JP 7449214 B2 JP7449214 B2 JP 7449214B2
Authority
JP
Japan
Prior art keywords
optical
light
optical pulse
dispersion
pulse train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020167851A
Other languages
English (en)
Other versions
JP2022059944A (ja
Inventor
向陽 渡辺
永斉 高橋
恭平 重松
卓 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2020167851A priority Critical patent/JP7449214B2/ja
Priority to US17/488,493 priority patent/US11913836B2/en
Publication of JP2022059944A publication Critical patent/JP2022059944A/ja
Priority to US18/530,698 priority patent/US20240110833A1/en
Priority to JP2024030998A priority patent/JP2024052923A/ja
Application granted granted Critical
Publication of JP7449214B2 publication Critical patent/JP7449214B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0285Testing optical properties by measuring material or chromatic transmission properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

特許法第30条第2項適用 ウェブサイトの掲載日 令和2年7月16日 ウェブサイトのアドレス https://confit.atlas.jp/guide/event/jsap2020a2/subject/10p-Z19-10/advanced 〔刊行物等〕 発行日 令和2年8月26日 刊行物 第81回応用物理学会秋季学術講演会 講演予稿集 〔刊行物等〕 開催日 令和2年9月10日 集会名、開催場所 第81回応用物理学会秋季学術講演会
本開示は、分散測定装置および分散測定方法に関する。
非特許文献1及び非特許文献2は、超高速且つ連続の撮像を可能とするSTAMP(Sequentially Timed All-optical Mapping Photography)に関する技術を開示する。
K. Nakagawa, et. al., "Sequentially timed all-optical mapping photography (STAMP)," Nature Photonics,8, pp695-700 (2014). M. Tamamitsu, et. al., "Design for sequentially timed all-optic almapping photography withoptimum temporal performance," Optics Letters, 40, pp633-636 (2015).
STAMP技術では、互いに時間差を有し中心波長が互いに異なる複数の光パルスを対象物に連続して照射し、対象物を透過した各光パルスを分光してそれぞれイメージセンサの異なる領域にて撮像することにより、イメージセンサのフレームレートを超える高速撮影が可能となる。このような超高速撮影の際に、対象物における波長分散の大きさを同時に知ることができれば、例えば対象物の屈折率、反射率、吸収率、または厚みといった種々の付加情報を簡便に取得することができる。また、波長分散を導出する過程で、対象物からの透過光(各光パルス)の強度差を観察することで吸収スペクトル情報を得ることができる。
本開示は、高速撮影と同時に対象物における波長分散の大きさを知ることができる分散測定装置および分散測定方法を提供することを目的とする。
上述した課題を解決するために、本発明の一側面に係る分散測定装置は、パルス形成部と、光分岐部と、撮像部と、空間フィルタ部と、相関光学系と、光検出部と、演算部と、を備える。パルス形成部は、光源から出力された第1光パルスから、互いに時間差を有し中心波長が互いに異なる複数の第2光パルスを含む光パルス列を形成する。光分岐部は、パルス形成部から出力されたのち測定対象を通過した光パルス列を分岐する。撮像部は、光分岐部により分岐された一方の光パルス列を分光したのち撮像して、一方の光パルス列に含まれる第2光パルス毎に撮像データを生成する。空間フィルタ部は、光分岐部により分岐された他方の光パルス列を受け、他方の光パルス列の進行方向と交差する断面における一又は複数の部分領域の光を抽出する。相関光学系は、空間フィルタ部により抽出された一又は複数の部分領域の光の相互相関又は自己相関を含む相関光を出力する。光検出部は、相関光学系により出力された相関光の時間波形を検出する。演算部は、時間波形の特徴量に基づいて、測定対象における波長分散量を推定する。空間フィルタ部は、断面における部分領域の空間位置を変更可能とする。
本発明の一側面に係る分散測定方法は、パルス形成ステップと、光分岐ステップと、撮像ステップと、空間フィルタステップと、相関光生成ステップと、光検出ステップと、演算ステップと、を含む。パルス形成ステップでは、光源から出力された第1光パルスから、互いに時間差を有し中心波長が互いに異なる複数の第2光パルスを含む光パルス列を形成する。光分岐ステップでは、測定対象を通過した光パルス列を分岐する。撮像ステップでは、光分岐ステップにより分岐された一方の光パルス列を分光したのち撮像して、一方の光パルス列に含まれる第2光パルス毎に撮像データを生成する。空間フィルタステップでは、光分岐ステップにより分岐された他方の光パルス列の進行方向と交差する断面における一又は複数の部分領域の光を抽出する。相関光生成ステップでは、一又は複数の部分領域の光の相互相関又は自己相関を含む相関光を生成する。光検出ステップでは、相関光の時間波形を検出する。演算ステップでは、時間波形の特徴量に基づいて、測定対象における波長分散量を推定する。この分散測定方法では、他方のパルス列の進行方向と交差する断面における部分領域の空間位置を変更しながら、パルス形成ステップ、光分岐ステップ、撮像ステップ、空間フィルタステップ、相関光生成ステップ、光検出ステップ、及び演算ステップを繰り返し行う。
本発明の一側面に係る分散測定装置および分散測定方法によれば、高速撮影と同時に対象物における波長分散の大きさを知ることができる。
一実施形態に係る分散測定装置の構成を概略的に示す図である。 パルス形成部の構成例を示す図である。 空間光変調器の変調面を示す図である。 (a)帯域制御したマルチパルスの例を示すスペクトログラムである。(b)光パルス列の時間波形を表す図である。(c)3つの光パルスPb1~Pb3を合成したスペクトルを表す図である。 (a)帯域制御されていないマルチパルスの例を示すスペクトログラムである。(b)光パルス列の時間波形を表す図である。(c)3つの光パルスPd1~Pd3を合成したスペクトルを表す図である。 光パルス列の進行方向と交差する断面を模式的に示す図である。 光パルス列の自己相関を含む相関光を生成するための相関光学系の構成例を概略的に示す図である。 光パルス列の相互相関を含む相関光を生成するための相関光学系の別の構成例を概略的に示す図である。 光パルス列の相互相関を含む相関光を生成するための相関光学系の更に別の構成例を概略的に示す図である。 (a)測定対象が波長分散を有しない(波長分散がゼロである)場合の相関光の時間波形の例を示す。(b)測定対象が波長分散を有する(波長分散がゼロではない)場合の相関光の時間波形の例を示す。 演算部のハードウェアの構成例を概略的に示す図である。 分散測定方法を示すフローチャートである。 (a)単パルス状の光パルスのスペクトル波形を示す図である。(b)光パルスの時間強度波形を示す図である。 (a)空間光変調器において矩形波状の位相スペクトル変調を与えたときのパルス形成部からの出力光のスペクトル波形を示す図である。(b)出力光の時間強度波形を示す図である。 空間光変調器の変調パターンを演算する変調パターン算出装置の構成を示す図である。 位相スペクトル設計部及び強度スペクトル設計部の内部構成を示すブロック図である。 反復フーリエ変換法による位相スペクトルの計算手順を示す図である。 位相スペクトル設計部における位相スペクトル関数の計算手順を示す図である。 強度スペクトル設計部におけるスペクトル強度の計算手順を示す図である。 ターゲット生成部におけるターゲットスペクトログラムの生成手順の一例を示す図である。 強度スペクトル関数を算出する手順の一例を示す図である。 (a)スペクトログラムSGIFTA(ω,t)を示す図である。(b)スペクトログラムSGIFTA(ω,t)が変化したターゲットスペクトログラムTargetSG0(ω,t)を示す図である。 イメージセンサによって得られた測定対象に関する撮像データと、部分領域に対応する測定対象の部分を示すマークとを重ねて示す図である。 (a)算出した変調パターンを示すグラフである。(b)シミュレーションにより作成された光パルス列の時間波形を示すグラフである。 シミュレーションにより作成された光パルス列のスペクトログラムである。 (a)算出した変調パターンを示すグラフである。(b)シミュレーションにより作成された光パルス列の時間波形を示すグラフである。 シミュレーションにより作成された光パルス列のスペクトログラムである。 (a),(b)光パルスの2次分散量と、ピーク時間間隔の平均値との関係をプロットしたグラフである。 光パルスの2次分散量と、ピーク強度との関係をプロットしたグラフであって、中心波長がパルス毎に異なる光パルス列の場合を示す。 光パルスの2次分散量と、半値全幅との関係をプロットしたグラフであって、中心波長がパルス毎に異なる光パルス列の場合を示す。 (a),(b)光パルスPaの3次分散量と、ピーク時間間隔の差との関係をプロットしたグラフである。 光パルスの3次分散量と、ピーク強度との関係をプロットしたグラフであって、中心波長がパルス毎に異なる光パルス列の場合を示す。 光パルスの3次分散量と、半値全幅との関係をプロットしたグラフであって、中心波長がパルス毎に異なる光パルス列の場合を示す。 第1変形例としてのパルス形成部の構成を示す図である。 (a)帯域制御したマルチパルスを生成するためのスペクトル波形の一例を示すグラフである。(b)(a)に示したスペクトル波形に対応する光パルス列の時間波形を示すグラフである。 (a)帯域制御したマルチパルスを生成するためのスペクトル波形の他の例を示すグラフである。(b)(a)に示したスペクトル波形に対応する光パルス列の時間波形を示すグラフである。
本発明の一側面に係る分散測定装置は、パルス形成部と、光分岐部と、撮像部と、空間フィルタ部と、相関光学系と、光検出部と、演算部と、を備える。パルス形成部は、光源から出力された第1光パルスから、互いに時間差を有し中心波長が互いに異なる複数の第2光パルスを含む光パルス列を形成する。光分岐部は、パルス形成部から出力されたのち測定対象を通過した光パルス列を分岐する。撮像部は、光分岐部により分岐された一方の光パルス列を分光したのち撮像して、一方の光パルス列に含まれる第2光パルス毎に撮像データを生成する。空間フィルタ部は、光分岐部により分岐された他方の光パルス列を受け、他方の光パルス列の進行方向と交差する断面における一又は複数の部分領域の光を抽出する。相関光学系は、空間フィルタ部により抽出された一又は複数の部分領域の光の相互相関又は自己相関を含む相関光を出力する。光検出部は、相関光学系により出力された相関光の時間波形を検出する。演算部は、時間波形の特徴量に基づいて、測定対象における波長分散量を推定する。空間フィルタ部は、断面における部分領域の空間位置を変更可能とする。
本発明の一側面に係る分散測定方法は、パルス形成ステップと、光分岐ステップと、撮像ステップと、空間フィルタステップと、相関光生成ステップと、光検出ステップと、演算ステップと、を含む。パルス形成ステップでは、光源から出力された第1光パルスから、互いに時間差を有し中心波長が互いに異なる複数の第2光パルスを含む光パルス列を形成する。光分岐ステップでは、測定対象を通過した光パルス列を分岐する。撮像ステップでは、光分岐ステップにより分岐された一方の光パルス列を分光したのち撮像して、一方の光パルス列に含まれる第2光パルス毎に撮像データを生成する。空間フィルタステップでは、光分岐ステップにより分岐された他方の光パルス列の進行方向と交差する断面における一又は複数の部分領域の光を抽出する。相関光生成ステップでは、一又は複数の部分領域の光の相互相関又は自己相関を含む相関光を生成する。光検出ステップでは、相関光の時間波形を検出する。演算ステップでは、時間波形の特徴量に基づいて、測定対象における波長分散量を推定する。この分散測定方法では、他方のパルス列の進行方向と交差する断面における部分領域の空間位置を変更しながら、パルス形成ステップ、光分岐ステップ、撮像ステップ、空間フィルタステップ、相関光生成ステップ、光検出ステップ、及び演算ステップを繰り返し行う。
これらの装置及び方法では、パルス形成部(パルス形成ステップ)において、互いに時間差を有し中心波長が互いに異なる複数の第2光パルスを含む光パルス列が、第1光パルスから生成される。そして、光パルス列は、測定対象を通過したのち分岐される。分岐後の一方の光パルス列の各第2光パルスは、分光されることによって互いに空間的に分離され、個々に撮像されて撮像データに変換される。このように光パルス列を分光して第2光パルス毎に撮像することによって、撮像装置のフレームレートよりも高速な撮像が可能となる。
また、分岐後の他方の光パルス列は相互相関又は自己相関を含む相関光に変換され、その後、相関光の時間波形が検出される。例えば非線形光学結晶などを用いて光パルス列の相互相関又は自己相関を含む相関光を生成すると、その相関光の時間波形における種々の特徴量(例えばパルス間隔、ピーク強度、パルス幅など)は、測定対象の波長分散量と顕著な相関を有する。従って、検出された時間波形の特徴量に基づいて、測定対象における波長分散量を精度良く推定することができる。更に、時間波形が検出される際には、当該光パルス列の進行方向と交差する断面における一又は複数の部分領域の当該光パルス列に対応する相関光の時間波形が検出される。この場合、例えばフォトダイオードなどによって、高速な光パルスを含む相関光の時間波形を好適に検出することができる。そして、部分領域の空間位置が変更可能であることによって、測定対象の所望の位置における局所的な波長分散の大きさを精度良く知ることができる。
このように、上記の装置及び方法によれば、高速撮影と同時に対象物における波長分散の大きさを知ることができる。
上記の分散測定装置において、空間フィルタ部は、他方の光パルス列の光路上に配置された空間フィルタを有し、空間フィルタは、上記断面における部分領域の光を通過させ、他の領域の光を遮蔽してもよい。また、上記の分散測定方法の空間フィルタステップでは、上記断面における部分領域の光を通過させ、他の領域の光を遮蔽してもよい。例えばこのような構成によって、上記断面における部分領域の光を抽出し、その時間波形を検出することができる。
上記の分散測定装置において、空間フィルタは、部分領域の光のみを通過させるピンホールを含んでもよい。また、上記の分散測定方法の空間フィルタステップにおいて、部分領域の光のみを通過させるピンホールを用いてもよい。これらの場合、上記断面における部分領域の光を簡易な構成により抽出することができる。
上記の分散測定装置において、演算部は、測定対象の部分的な屈折率、反射率、吸収率、及び厚みのうち少なくとも一つの数値を、推定した波長分散量に基づいて算出してもよい。また、上記の分散測定方法の演算ステップにおいて、測定対象の部分的な屈折率、反射率、吸収率、及び厚みのうち少なくとも一つの数値を、推定した波長分散量に基づいて算出してもよい。この場合、測定対象の光学特性、外形、またはその両方を、短時間で計測することができる。
上記の分散測定装置及び分散測定方法において、時間波形の特徴量は、相関光に含まれる複数の光パルスの時間間隔を含んでもよい。本発明者は、時間波形における種々の特徴量のうち特にパルス間隔が、測定対象の波長分散量と顕著な相関を有することを見出した。従って、これらの装置及び方法によれば、測定対象の波長分散量をより精度良く推定することができる。
上記の分散測定装置において、パルス形成部は、第1光パルスに含まれる複数の波長成分を波長毎に空間的に分離する分光素子と、分光素子から出力された複数の波長成分の位相を相互にずらす空間光変調器と、空間光変調器から出力された複数の波長成分を集光する集光光学系と、を有してもよい。また、上記の分散測定方法のパルス形成ステップにおいて、第1光パルスに含まれる複数の波長成分を波長毎に空間的に分離し、空間光変調器を用いて複数の波長成分の位相を相互にずらしたのち、複数の波長成分を集光してもよい。例えばこれらのような装置及び方法によって、互いに時間差を有し中心波長が互いに異なる複数の第2光パルスを含む光パルス列を容易に形成することができる。
上記の分散測定装置において、演算部は、測定対象の波長分散がゼロであると仮定して予め算出された時間波形の特徴量と、検出した時間波形の特徴量とを比較して測定対象の波長分散量を推定してもよい。また、上記の分散測定方法の演算ステップでは、測定対象の波長分散がゼロであると仮定して予め算出された時間波形の特徴量と、検出した時間波形の特徴量とを比較して測定対象の波長分散量を推定してもよい。これらの装置及び方法によれば、測定対象の波長分散量をより精度良く推定することができる。
以下、添付図面を参照しながら、分散測定装置および分散測定方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本発明は、これらの例示に限定されるものではない。
図1は、一実施形態に係る分散測定装置の構成を概略的に示す図である。この分散測定装置1は、測定対象Bの透過像を撮像すると共に測定対象Bの波長分散を測定する装置である。分散測定装置1は、パルスレーザ光源2、パルス形成部3、相関光学系4、ビームスプリッタ5、演算部6、撮像部7、空間フィルタ部8、及び光検出部9を備える。
パルス形成部3の光入力端3aは、空間的に又は光ファイバ等の光導波路を介して、パルスレーザ光源2と光学的に結合されている。ビームスプリッタ5は、空間的に又は光ファイバ等の光導波路を介して、パルス形成部3の光出力端3bと光学的に結合されている。測定対象Bは、パルス形成部3とビームスプリッタ5との間の光路上に配置される。相関光学系4の光入力端4aは、空間的に又は光ファイバ等の光導波路を介して、ビームスプリッタ5の表面及び裏面のうち一方と光学的に結合されている。空間フィルタ部8は、ビームスプリッタ5と相関光学系4との間の光路上に配置されている。光検出部9は、空間的に又は光ファイバ等の光導波路を介して、相関光学系4の光出力端4bと光学的に結合されている。撮像部7は、空間的に又は光ファイバ等の光導波路を介して、ビームスプリッタ5の表面及び裏面のうち他方と光学的に結合されている。演算部6は、パルス形成部3、撮像部7、空間フィルタ部8、及び光検出部9と電気的に接続されている。
パルスレーザ光源2は、コヒーレントな光パルスPaを出力する。パルスレーザ光源2は、例えばフェムト秒レーザであり、一実施例ではLD直接励起型Yb:YAGパルスレーザといった固体レーザ光源である。光パルスPaは、本開示における第1光パルスの例であり、その時間波形は例えばガウス関数状である。光パルスPaの半値全幅(FWHM)は、例えば10fs~10000fsの範囲内であり、一例では100fsである。この光パルスPaは、或る程度の帯域幅を有する光パルスであって、連続する複数の波長成分を含む。一実施例では、光パルスPaの帯域幅は10nmであり、光パルスPaの中心波長は1030nmである。
パルス形成部3は、光パルスPaから複数の光パルス(第2光パルス)を含む光パルス列Pbを形成する部分である。光パルス列Pbは、光パルスPaを構成するスペクトルを複数の波長帯域に分け、それぞれの波長帯域を用いて生成したシングルパルス群である。なお、複数の波長帯域の境界では、互いに重なり合う部分があってもよい。以下の説明では、光パルス列Pbを「帯域制御したマルチパルス」と称することがある。
図2は、パルス形成部3の構成例を示す図である。このパルス形成部3は、回折格子12、レンズ13、空間光変調器(SLM)14、レンズ15、及び回折格子16を有する。回折格子12は本実施形態における分光素子であり、パルスレーザ光源2と光学的に結合されている。SLM14はレンズ13を介して回折格子12と光学的に結合されている。回折格子12は、光パルスPaに含まれる複数の波長成分を、波長毎に空間的に分離する。なお、分光素子として、回折格子12に代えてプリズム等の他の光学部品を用いてもよい。
光パルスPaは、回折格子12に対して斜めに入射し、複数の波長成分に分光される。この複数の波長成分を含む光P1は、レンズ13によって波長成分毎に集光され、SLM14の変調面に結像される。レンズ13は、光透過部材からなる凸レンズであってもよく、凹状の光反射面を有する凹面鏡であってもよい。
SLM14は、光パルスPaを光パルス列Pbに変換するために、回折格子12から出力された複数の波長成分の位相を相互にずらす。そのために、SLM14は、演算部6(図1を参照)から制御信号を受けて、光P1の位相変調と強度変調とを同時に行う。なお、SLM14は、位相変調のみ、または強度変調のみを行ってもよい。SLM14は、例えば位相変調型である。一実施例では、SLM14はLCOS(Liquid crystal on silicon)型である。なお、図には透過型のSLM14が示されているが、SLM14は反射型であってもよい。
図3は、SLM14の変調面17を示す図である。図3に示すように、変調面17には、複数の変調領域17aが或る方向AAに沿って並んでおり、各変調領域17aは方向AAと交差する方向ABに延びている。方向AAは、回折格子12による分光方向である。この変調面17はフーリエ変換面として働き、複数の変調領域17aのそれぞれには、分光後の対応する各波長成分が入射する。SLM14は、各変調領域17aにおいて、入射した各波長成分の位相及び強度を他の波長成分から独立して変調する。なお、本実施形態のSLM14は位相変調型であるため、強度変調は、変調面17に呈示される位相パターン(位相画像)によって実現される。
SLM14によって変調された変調光P2の各波長成分は、レンズ15によって回折格子16上の一点に集められる。このときのレンズ15は、変調光P2を集光する集光光学系として機能する。レンズ15は、光透過部材からなる凸レンズであってもよく、凹状の光反射面を有する凹面鏡であってもよい。また、回折格子16は合波光学系として機能し、変調後の各波長成分を合波する。すなわち、これらのレンズ15及び回折格子16により、変調光P2の複数の波長成分は互いに集光・合波されて、帯域制御したマルチパルス(光パルス列Pb)となる。
図4は、帯域制御したマルチパルスの例を示す図である。この例では、3つの光パルスPb1~Pb3からなる光パルス列Pbが示されている。図4(a)は、スペクトログラムであって、横軸に時間、縦軸に波長を示しており、光強度を色の濃淡で表している。図4(b)は、光パルス列Pbの時間波形を表している。各光パルスPb1~Pb3の時間波形は例えばガウス関数状である。
図4(a)及び図4(b)に示すように、3つの光パルスPb1~Pb3のピーク同士は時間的に互いに離れており、3つの光パルスPb1~Pb3の伝搬タイミングは互いにずれている。言い換えると、一の光パルスPb1に対して別の光パルスPb2が時間遅れを有しており、該別の光パルスPb2に対して更に別の光パルスPb3が時間遅れを有している。但し、隣り合う光パルスPb1,Pb2(又はPb2,Pb3)の裾部分同士が互いに重なっていてもよい。隣り合う光パルスPb1,Pb2(又はPb2,Pb3)の時間間隔(ピーク間隔)は、例えば10fs~10000fsの範囲内であり、一例では2000fsである。また、各光パルスPb~PbのFWHMは、例えば10fs~5000fsの範囲内であり、一例では300fsである。
図4(c)は、3つの光パルスPb1~Pb3を合成したスペクトルを表している。図4(c)に示すように3つの光パルスPb1~Pb3を合成したスペクトルは単一のピークを有するが、図4(a)を参照すると3つの光パルスPb1~Pb3の中心波長は互いにずれている。図4(c)に示す単一のピークを有するスペクトルは、ほぼ光パルスPaのスペクトルと同じである。
隣り合う光パルスPb1,Pb2(又はPb2,Pb3)のピーク波長間隔は、光パルスPaのスペクトル帯域幅によって定まり、概ね半値全幅の2倍の範囲内である。一例では、光パルスPaのスペクトル帯域幅が10nmの場合、ピーク波長間隔は5nmである。具体例として、光パルスPaの中心波長が1030nmである場合、3つの光パルスPb1~Pb3のピーク波長はそれぞれ1025nm、1030nm、及び1035nmであることができる。
図5は、比較例として、帯域制御されていないマルチパルスの例を示す図である。この例では、3つの光パルスPd1~Pd3からなる光パルス列Pdが示されている。図5(a)は、図4(a)と同様に、スペクトログラムであって、横軸に時間、縦軸に波長を示しており、光強度を色の濃淡で表している。図5(b)は、光パルス列Pdの時間波形を表している。図5(c)は、3つの光パルスPd1~Pd3を合成したスペクトルを表している。
図5(a)~(c)に示すように、3つの光パルスPd1~Pd3のピーク同士は時間的に互いに離れているが、3つの光パルスPd1~Pd3の中心波長は互いに一致している。本実施形態のパルス形成部3は、このような光パルス列Pdを生成するものではなく、図4に示されたような、中心波長が互いに異なる光パルス列Pbを生成するものである。
再び図1を参照する。ビームスプリッタ5は、本開示における分岐部の例であり、パルス形成部3から出力されたのち測定対象Bを通過した光パルス列Pbを二分岐する。ビームスプリッタ5は、例えば光パルス列Pbの波長を含む波長域において光透過性を有する基板と、該基板の表面上に形成された誘電体多層膜とを含んで構成され得る。基板の表面は、光パルス列Pbの光路に対して0°より大きく90°より小さい角度(一例では45°)を成す。ビームスプリッタ5の表面に入射した光パルス列Pbの一部は、誘電体多層膜において反射し、ビームスプリッタ5へ入射する前の光パルス列Pbの進行方向と交差する方向に進む。ビームスプリッタ5の表面に入射した光パルス列Pbの残部は、誘電体多層膜を透過し、ビームスプリッタ5へ入射する前の光パルス列Pbの進行方向と同じ方向に進む。ビームスプリッタ5の分岐比は例えば1:1である。
撮像部7は、ビームスプリッタ5により分岐された二つの光パルス列Pbのうち一方の光パルス列Pbを分光したのち撮像して、該一方の光パルス列Pbに含まれる光パルス毎に撮像データを生成する。具体的には、撮像部7は分光器71及びイメージセンサ72を有する。分光器71は、ビームスプリッタ5の表面と光学的に結合され、一方の光パルス列Pbを受ける。分光器71は、この光パルス列Pbを波長に応じて空間的に分光する。すなわち、分光器71は、光パルス列Pbに含まれる、互いに波長が異なる複数の光パルスPb1,Pb2,Pb3を、それぞれ異なる空間位置へ出力する。イメージセンサ72は、分光器71の光出射面と対向する受光面を有する。イメージセンサ72は、受光面における複数の領域それぞれに入射した光パルスPb1,Pb2,Pb3を撮像し、光パルスPb1,Pb2,Pb3にそれぞれ対応する複数の撮像データを生成する。このように、光パルス列Pbを分光して光パルスPb1,Pb2,Pb3毎に撮像することにより、イメージセンサ72のフレームレートよりも高速な撮像(具体的には、光パルスPb1,Pb2,Pb3の時間間隔と同一速度での撮像)が可能となる。こうして得られた複数の撮像データは、演算部に送られる。
空間フィルタ部8は、ビームスプリッタ5によって分岐された光パルス列Pbのうち他方を受ける。図6は、光パルス列Pbの進行方向と交差する断面を模式的に示す図である。空間フィルタ部8は、光パルス列Pbの進行方向と交差する(例えば進行方向と垂直な)断面における一又は複数の部分領域Pbcを抽出する。そのために、本実施形態の空間フィルタ部8は、空間フィルタ84を含んでいる。空間フィルタ84は、ビームスプリッタ5と相関光学系4との間の光パルス列Pbの光路上に配置されている。空間フィルタ84は、ビームスプリッタ5から出力された光パルス列Pbのうち一又は複数の部分領域Pbcの光を通過させ、残りの光を遮蔽する。一例では、空間フィルタ84は、部分領域Pbcの光のみを通過させるピンホール84aを含む。
空間フィルタ84における部分領域Pbcの位置は可変とされている。そのために、分散測定装置1は、光パルス列Pbの進行方向と交差する断面における部分領域Pbcの空間位置を変更する手段として、アクチュエータ85を備える。アクチュエータ85は、空間フィルタ部8の一部を構成してもよい。アクチュエータ85は、空間フィルタ84に取り付けられ、光パルス列Pbの進行方向と交差する面内において空間フィルタ84の位置を移動させることにより、該面内におけるピンホール84aの位置を変更する。なお、部分領域Pbcの空間位置を変更する手段はこれに限られず、例えば印加電圧によって光透過率を制御可能な板を用い、電圧を印加する位置を変更することによってピンホール84aの位置を変更してもよい。
相関光学系4は、ビームスプリッタ5によって分岐された他方の光パルス列Pbのうち空間フィルタ部8によって抽出された一又は複数の部分領域Pbcの光を受け、当該光の相互相関又は自己相関を含む相関光Pcを出力する。本実施形態では、相関光学系4はレンズ41、光学素子42及びレンズ43を含んで構成されている。レンズ41は、パルス形成部3と光学素子42との間の光路上に設けられ、空間フィルタ部8によって抽出された部分領域Pbcの光を光学素子42に集光する。
光学素子42は、例えば二次高調波(SHG)を発生する非線形光学結晶、及び蛍光体の少なくとも一方を含む発光体である。非線形光学結晶としては、例えばKTP(KTiOPO4)結晶、LBO(LiB35)結晶、BBO(β-BaB24)結晶等が挙げられる。蛍光体としては、例えばクマリン、スチルベン、ローダミン等が挙げられる。光学素子42は、光パルス列Pbから抽出された部分領域Pbcの光を入力し、当該光の相互相関又は自己相関を含む相関光Pcを生成する。レンズ43は、光学素子42から出力された相関光Pcを平行化または集光する。
ここで、相関光学系4の構成例について詳細に説明する。図7は、相関光学系4の構成例として、空間フィルタ部8を通過した光パルス列Pbの自己相関を含む相関光Pcを生成するための相関光学系4Aを概略的に示す図である。この相関光学系4Aは、光パルス列Pbを二分岐する光分岐部品として、ビームスプリッタ44を有する。ビームスプリッタ44は、図1に示されたビームスプリッタ5と空間フィルタ部8を介して光学的に結合されており、空間フィルタ部8を通過した光パルス列Pbの一部を透過し、残部を反射する。ビームスプリッタ44の分岐比は例えば1:1である。
ビームスプリッタ44により分岐された一方の光パルス列Pbaは、複数のミラー45を含む光路4cを通ってレンズ41に達する。ビームスプリッタ44により分岐された他方の光パルス列Pbbは、複数のミラー46を含む光路4dを通ってレンズ41に達する。光路4cの光学長と光路4dの光学長とは互いに異なる。従って、複数のミラー45及び複数のミラー46は、ビームスプリッタ44において分岐された一方の光パルス列Pbaと、他方の光パルス列Pbbとに対して時間差を与える遅延光学系を構成する。更に、複数のミラー46の少なくとも一部は移動ステージ47上に搭載されており、光路4dの光学長は可変となっている。故に、この構成では、光パルス列Pbaと光パルス列Pbbとの時間差を可変とすることができる。
この例では、光学素子42は非線形光学結晶を含む。レンズ41は、光パルス列Pba,Pbbのそれぞれを光学素子42に向けて集光するとともに、光学素子42において光パルス列Pba,Pbbの光軸を所定の角度でもって互いに交差させる。これにより、非線形光学結晶である光学素子42では、光パルス列Pba,Pbbの交点を起点として二次高調波が生じる。この二次高調波は、相関光Pcであって、光パルス列Pbの自己相関を含む。この相関光Pcはレンズ43にて平行化または集光された後、光検出部9に入力される。
図8は、相関光学系4の別の構成例として、空間フィルタ部8を通過した光パルス列Pbの相互相関を含む相関光Pcを生成するための相関光学系4Bを概略的に示す図である。この相関光学系4Bでは、空間フィルタ部8を通過した光パルス列Pbが光路4eを通ってレンズ41に達すると共に、シングルパルスである参照光パルスPrが光路4fを通ってレンズ41に達する。
光路4fは、複数のミラー48を含み、U字状に屈曲している。更に、複数のミラー48の少なくとも一部は移動ステージ49上に搭載されており、光路4fの光学長は可変となっている。故に、この構成では、光パルス列Pbと参照光パルスPrとの時間差(レンズ41に到達するタイミング差)を可変とすることができる。
この例においても、光学素子42は非線形光学結晶を含む。レンズ41は、光パルス列Pb及び参照光パルスPrを光学素子42に向けて集光するとともに、光学素子42において光パルス列Pbの光軸と参照光パルスPrの光軸とを所定の角度でもって互いに交差させる。これにより、非線形光学結晶である光学素子42では、光パルス列Pb及び参照光パルスPrの交点を起点として二次高調波が生じる。この二次高調波は、相関光Pcであって、光パルス列Pbの相互相関を含む。この相関光Pcはレンズ43にて平行化または集光された後、光検出部9に入力される。
図9は、相関光学系4の更に別の構成例として、空間フィルタ部8を通過した光パルス列Pbの相互相関を含む相関光Pcを生成するための相関光学系4Cを概略的に示す図である。この例において、パルス形成部3のSLM14は、第1の偏光方向に変調作用を有する偏光依存型の空間光変調器である。これに対し、パルス形成部3に入力される光パルスPaの偏向面は、SLM14が変調作用を有する偏光方向に対して傾斜しており、光パルスPaは、第1の偏光方向の偏光成分(図中の矢印Dp1)と、第1の偏光方向に対して直交する第2の偏光方向の偏光成分(図中の記号Dp2)とを含む。また、光パルスPaの偏波は、上記の偏波(傾斜した直線偏光)だけではなく、楕円偏光でも良い。
光パルスPaのうち第1の偏光方向の偏光成分は、SLM14において変調され、光パルス列Pbとしてパルス形成部3から出力される。一方、光パルスPaのうち第2の偏光方向の偏光成分は、SLM14において変調されずに、そのままパルス形成部3から出力される。この変調されなかった偏光成分は、シングルパルスである参照光パルスPrとして、光パルス列Pbと同軸でもって相関光学系4Cに提供される。
相関光学系4Cは、空間フィルタ部8を通過した光パルス列Pbと参照光パルスPrとから、光パルス列Pbの相互相関を含む相関光Pcを生成する。この構成例では、SLM14において光パルス列Pbに遅延を与え、且つその遅延時間を可変とすることにより(図中の矢印E)、光パルス列Pbと参照光パルスPrとの時間差(レンズ41に到達するタイミング差)を可変とすることができ、相関光学系4において光パルス列Pbの相互相関を含む相関光Pcを好適に生成することができる。
図10は、相関光Pcの特徴量を概念的に説明するための図である。図10(a)は、測定対象Bが波長分散を有しない(波長分散がゼロである)場合の相関光Pcの時間波形の例を示す。図10(b)は、測定対象Bが波長分散を有する(波長分散がゼロではない)場合の相関光Pcの時間波形の例を示す。
なお、これらの例は、相関光学系4に入力する光パルス列Pbが、図4(b)に示された3つの光パルスPb1~Pb3を含む場合を示している。この場合、相関光Pcは、光パルスPb1~Pb3にそれぞれ対応する3つの光パルスPc1~Pc3を含んで構成される。ここで、光パルスPc1~Pc3のピーク強度をそれぞれPE1~PE3とし、光パルスPc1~Pc3の半値全幅(FWHM)をそれぞれW1~W3とし、光パルスPc1,Pc2のピーク時間間隔(パルス間隔)をG1,2とし、光パルスPc2,Pc3のピーク時間間隔をG2,3とする。
図10(a)に示すように、測定対象Bが波長分散を有しない場合、相関光Pcの時間波形は光パルス列Pbの時間波形とほぼ同一となる。この例では、ピーク強度についてはPE2がPE1及びPE3よりも大きく、PE1とPE3とがほぼ等しい。また、半値全幅についてはW1とW2とW3とが互いにほぼ等しい。ピーク時間間隔についてはG1,2とG2,3とがほぼ等しい。
これに対し、図10(b)に示すように、測定対象Bが波長分散を有する場合、相関光Pcの時間波形は光パルス列Pbの時間波形から大きく変化する。この例では、光パルスPc1~Pc3のピーク強度PE1~PE3が図10(a)と比較して大きく低下しており、且つ、光パルスPc1~Pc3の半値全幅W1~W3が図10(a)と比較して顕著に拡大している。更に、ピーク時間間隔G1,2が図10(a)と比較して格段に長くなっている。
このように、測定対象Bが波長分散を有する場合、相関光Pcの時間波形の特徴量(ピーク強度PE1~PE3、半値全幅W1~W3、ピーク時間間隔G1,2,G2,3)が、測定対象Bが波長分散を有しない場合と比較して大きく変化する。そして、その変化量は、測定対象Bの波長分散量に依存する。従って、相関光Pcの時間波形の特徴量の変化を観察することにより、測定対象Bの波長分散量を精度良く且つ容易に知ることができる。
再び図1を参照する。光検出部9は、相関光学系4から出力された相関光Pcを受け、相関光Pcの時間波形を検出する部分である。そのために、本実施形態の光検出部9は、例えばフォトダイオードなどの光検出器(フォトディテクタ)91を含んで構成されている。光検出器91は、相関光学系4から出力された相関光Pcの強度を電気信号に変換することにより、相関光Pcの時間波形を検出する。空間フィルタ部8の部分領域Pbcが複数ある場合、光検出器91は、部分領域Pbc毎に配置される。検出結果である電気信号は、光検出器91から演算部6に提供される。
演算部6は、光検出器91から提供された相関光Pcの時間波形の特徴量に基づいて、測定対象Bにおける部分的な(すなわち部分領域Pbcが通過した部分の)波長分散量を推定する。上述したように、光パルス列Pbの相互相関又は自己相関を含む相関光Pcを生成した場合、その相関光Pcの時間波形における種々の特徴量(例えばパルス間隔、ピーク強度、パルス幅など)は、測定対象Bの波長分散量と顕著な相関を有する。従って、演算部6は、光パルス列Pbの部分領域Pbcに対応する相関光Pcの時間波形の特徴量を評価することによって、測定対象Bの部分的な波長分散量を精度良く推定することができる。
また、演算部6は、推定した波長分散量に基づいて、測定対象Bの部分的な屈折率、反射率、吸収率、及び厚みのうち少なくとも一つの数値を算出してもよい。測定対象Bの波長分散量とは、測定対象Bが各波長に対してどの程度の屈折率差を有しているかを表す物理量である。各波長に対する屈折率を求めるためには、波長分散量に加え、測定対象Bの厚さ情報が必要となる。一方、屈折率情報がある場合には、波長分散量から厚さを推定することができる。また、測定対象Bの反射率は、物質との境界における屈折率から見積もることができる。測定対象Bの吸収率(吸収スペクトル)は、測定対象Bを透過した光パルスPb~Pbの強度変化(すなわち光パルスPc~Pcの強度変化)から推定することができる。
図11は、演算部6のハードウェアの構成例を概略的に示す図である。図11に示すように、この演算部6は、物理的には、プロセッサ(CPU)61、ROM62及びRAM63等の主記憶装置、キーボード、マウス及びタッチスクリーン等の入力デバイス64、ディスプレイ(タッチスクリーン含む)等の出力デバイス65、他の装置との間でデータの送受信を行うためのネットワークカード等の通信モジュール66、ハードディスク等の補助記憶装置67などを含む、通常のコンピュータとして構成され得る。
コンピュータのプロセッサ61は、波長分散量算出プログラムによって、上記の演算部6の機能を実現することができる。言い換えると、波長分散量算出プログラムは、コンピュータのプロセッサ61を、演算部6として動作させる。波長分散量算出プログラムは、例えば補助記憶装置67といった、コンピュータの内部または外部の記憶装置(記憶媒体)に記憶される。記憶装置は、非一時的記録媒体であってもよい。記録媒体としては、フレキシブルディスク、CD、DVD等の記録媒体、ROM等の記録媒体、半導体メモリ、クラウドサーバ等が例示される。
補助記憶装置67は、測定対象Bの波長分散がゼロであると仮定して理論的に予め算出された相関光Pcの時間波形の特徴量を記憶している。この特徴量と、光検出部9により検出された時間波形の特徴量とを比較すれば、測定対象Bの波長分散に起因して相関光Pcの特徴量がどの程度変化したかがわかる。従って、演算部6は、補助記憶装置67に記憶された特徴量と、光検出部9により検出された時間波形の特徴量とを比較して、測定対象Bの波長分散量を推定することができる。
図12は、以上の構成を備える分散測定装置1を用いた分散測定方法を示すフローチャートである。この方法では、まず、パルス形成ステップS11において、光パルス列Pbを形成するために必要な設計情報を準備する。設計情報とは、例えば測定対象Bの波長分散がゼロであると仮定した場合の、ピーク時間間隔、ピーク強度、半値全幅、パルス数、帯域制御量などである。
そして、パルスレーザ光源2から出力された光パルスPaから、互いに時間差を有し中心波長が互いに異なる複数の光パルスPb1~Pb3を含む光パルス列Pbを形成する。例えば、光パルスPaに含まれる複数の波長成分を波長毎に空間的に分離し、SLM14を用いて複数の波長成分の位相を相互にずらしたのち、複数の波長成分を集光する。これにより、光パルス列Pbを容易に生成することができる。続くステップS12において、光パルス列Pbが測定対象Bを通過(透過)する。
続いて、光分岐ステップS13において、光パルス列Pbを二分岐する。光パルス列Pbの分岐には、上述したビームスプリッタ5が用いられる。分岐後、分光ステップS14及び撮像データ生成ステップS15と、空間フィルタステップS16、相関光生成ステップS17、光検出ステップS18、及び演算ステップS19とが並行して行われる。
分光ステップS14では、光分岐ステップS13により分岐された一方の光パルス列Pbを分光器71により分光して、各光パルスPb1~Pb3を空間的に異なる位置に出力する。撮像データ生成ステップS15では、各光パルスPb1~Pb3をイメージセンサ72により個別に撮像して、個々の撮像データを生成する。なお、分光ステップS14及び撮像データ生成ステップS15は、本開示における撮像ステップを構成する。
空間フィルタステップS16は、光分岐ステップS13において光パルス列Pbを分岐したのち、相関光生成ステップS17において相関光Pcを生成する前に行われる。空間フィルタステップS16では、光パルス列Pbの進行方向と交差する断面における一又は複数の部分領域Pbcの光を通過させて、当該断面における部分領域Pbcの光を光パルス列Pbから抽出する。この空間フィルタステップS16では、例えば、部分領域Pbcの光のみを通過させるピンホール84aを有する空間フィルタ84を用いて、部分領域Pbcの光を抽出する。
相関光生成ステップS17では、非線形光学結晶及び蛍光体の少なくとも一方を含む光学素子42を用いて、光パルス列Pbの部分領域Pbcの光の相互相関又は自己相関を含む相関光Pcを生成する。例えば、図7に示したように光パルス列Pbを二分岐し、分岐された一方の光パルス列Pbbを、他方の光パルス列Pbaに対して時間遅延させ、時間遅延した一方の光パルス列Pbbと、他方の光パルス列Pbaとから、光パルス列Pbの部分領域Pbcの光の自己相関を含む相関光Pcを生成する。
その後、光検出ステップS18において光パルス列Pbの部分領域Pbcの相関光Pcの時間波形を検出したのち、該時間波形の特徴量に基づいて、演算ステップS19において測定対象Bの部分的な波長分散量を推定する。例えば、相関光Pcのピーク強度E1~E3、半値全幅W1~W3、及びピーク時間間隔G1,2,G2,3のうち少なくとも一つに基づいて、測定対象Bの部分的な波長分散量を推定する。また、測定対象Bの波長分散がゼロであると仮定して理論的に予め算出された相関光Pcの時間波形の特徴量と、光検出ステップS18において検出された時間波形の特徴量とを比較して、測定対象Bの波長分散量を推定する。なお、測定対象Bの波長分散がゼロであると仮定した相関光Pcの時間波形の特徴量として、光パルス列Pbの設計に用いた特徴量をそのまま用いてもよい。また、演算ステップS19では、推定した波長分散量に基づいて、測定対象Bの部分的な屈折率、反射率、吸収率、及び厚みのうち少なくとも一つの数値を算出してもよい。
図9を参照して説明したように、SLM14は、第1の偏光方向に変調作用を有する偏光依存型のSLM14であってもよい。その場合、パルス形成ステップS11において、第1の偏光方向の成分、及び第1の偏光方向と直交する第2の偏光方向の成分の双方を含む光パルスPaを入力し、光パルスPaのうち第1の偏光方向の成分をSLM14において変調して光パルス列Pbとし、光パルスPaのうち第2の偏光方向の成分をSLM14において変調せずに参照光パルスPrとしてもよい。そして、相関光生成ステップS17において、第1の偏光方向を有する光パルス列Pbと、第2の偏光方向を有する参照光パルスPrとから、光パルス列Pbの相互相関を含む相関光Pcを生成してもよい。
ステップS14~S19ののち、測定を終了するか否かを判断する(ステップS20)。測定継続する場合(ステップS20:NO)、アクチュエータ85を用いて空間フィルタ84における部分領域Pbcの空間位置を変更し、再びステップS11~S19を繰り返す。測定を終了する場合(ステップS20:YES)、ステップS11~S19を繰り返さずに測定を終了する。
ここで、図2に示されたパルス形成部3のSLM14における、帯域制御したマルチパルスを生成するための位相変調について詳細に説明する。レンズ15よりも前の領域(スペクトル領域)と、回折格子16よりも後ろの領域(時間領域)とは、互いにフーリエ変換の関係にあり、スペクトル領域における位相変調は、時間領域における時間強度波形に影響する。従って、パルス形成部3からの出力光は、SLM14の変調パターンに応じた、光パルスPaとは異なる様々な時間強度波形を有することができる。
図13(a)は、一例として、単パルス状の光パルスPaのスペクトル波形(スペクトル位相G11及びスペクトル強度G12)を示し、図13(b)は、該光パルスPaの時間強度波形を示す。また、図14(a)は、一例として、SLM14において矩形波状の位相スペクトル変調を与えたときのパルス形成部3からの出力光のスペクトル波形(スペクトル位相G21及びスペクトル強度G22)を示し、図14(b)は、該出力光の時間強度波形を示す。図13(a)及び図14(a)において、横軸は波長(nm)を示し、左の縦軸は強度スペクトルの強度値(任意単位)を示し、右の縦軸は位相スペクトルの位相値(rad)を示す。また、図13(b)及び図14(b)において、横軸は時間(フェムト秒)を表し、縦軸は光強度(任意単位)を表す。
この例では、矩形波状の位相スペクトル波形を出力光に与えることにより、光パルスPaのシングルパルスが、高次光を伴うダブルパルスに変換されている。なお、図14に示されるスペクトル及び波形は一つの例であって、様々な位相スペクトル及び強度スペクトルの組み合わせにより、パルス形成部3からの出力光の時間強度波形を様々な形状に整形することができる。
図15は、SLM14の変調パターンを演算する変調パターン算出装置20の構成を示す図である。変調パターン算出装置20は、例えば、パーソナルコンピュータ;スマートフォン、タブレット端末などのスマートデバイス;あるいはクラウドサーバなどのプロセッサを有するコンピュータである。なお、図1に示された演算部6が変調パターン算出装置20を兼ねてもよい。
変調パターン算出装置20は、SLM14と電気的に接続され、パルス形成部3の出力光の時間強度波形を所望の波形に近づけるための位相変調パターンを算出し、該位相変調パターンを含む制御信号をSLM14に提供する。変調パターンは、SLM14を制御するためのデータであり、複素振幅分布の強度あるいは位相分布の強度のテーブルを含むデータである。変調パターンは、例えば、計算機合成ホログラム(Computer-Generated Holograms(CGH))である。
本実施形態の変調パターン算出装置20は、所望の波形を得る為の位相スペクトルを出力光に与える位相変調用の位相パターンと、所望の波形を得る為の強度スペクトルを出力光に与える強度変調用の位相パターンとを含む位相パターンをSLM14に呈示させる。そのために、変調パターン算出装置20は、図15に示すように、任意波形入力部21と、位相スペクトル設計部22と、強度スペクトル設計部23と、変調パターン生成部24とを有する。
すなわち、変調パターン算出装置20に設けられたコンピュータのプロセッサは、任意波形入力部21の機能と、位相スペクトル設計部22の機能と、強度スペクトル設計部23の機能と、変調パターン生成部24の機能とを実現する。それぞれの機能は、同じプロセッサにより実現されてもよいし、異なるプロセッサにより実現されてもよい。
コンピュータのプロセッサは、変調パターン算出プログラムによって、上記の各機能を実現することができる。故に、変調パターン算出プログラムは、コンピュータのプロセッサを、変調パターン算出装置20における任意波形入力部21、位相スペクトル設計部22、強度スペクトル設計部23、及び変調パターン生成部24として動作させる。変調パターン算出プログラムは、コンピュータの内部または外部の記憶装置(記憶媒体)に記憶される。記憶装置は、非一時的記録媒体であってもよい。記録媒体としては、フレキシブルディスク、CD、DVD等の記録媒体、ROM等の記録媒体、半導体メモリ、クラウドサーバ等が例示される。
任意波形入力部21は、操作者からの所望の時間強度波形の入力を受け付ける。操作者は、所望の時間強度波形に関する情報(例えばパルス間隔、パルス幅、パルス数など)を任意波形入力部21に入力する。所望の時間強度波形に関する情報は、位相スペクトル設計部22及び強度スペクトル設計部23に与えられる。位相スペクトル設計部22は、与えられた所望の時間強度波形の実現に適した、パルス形成部3の出力光の位相スペクトルを算出する。強度スペクトル設計部23は、与えられた所望の時間強度波形の実現に適した、パルス形成部3の出力光の強度スペクトルを算出する。
変調パターン生成部24は、位相スペクトル設計部22において求められた位相スペクトルと、強度スペクトル設計部23において求められた強度スペクトルとをパルス形成部3の出力光に与えるための位相変調パターン(例えば、計算機合成ホログラム)を算出する。そして、算出された位相変調パターンを含む制御信号SCが、SLM14に提供される。SLM14は、制御信号SCに基づいて制御される。
図16は、位相スペクトル設計部22及び強度スペクトル設計部23の内部構成を示すブロック図である。図16に示されるように、位相スペクトル設計部22及び強度スペクトル設計部23は、フーリエ変換部25、関数置換部26、波形関数修正部27、逆フーリエ変換部28、及びターゲット生成部29を有する。ターゲット生成部29は、フーリエ変換部29a及びスペクトログラム修正部29bを含む。これらの各構成要素の機能については、後に詳述する。
ここで、所望の時間強度波形は時間領域の関数として表され、位相スペクトルは周波数領域の関数として表される。従って、所望の時間強度波形に対応する位相スペクトルは、例えば、所望の時間強度波形に基づく反復フーリエ変換によって得られる。図17は、反復フーリエ変換法による位相スペクトルの計算手順を示す図である。
まず、周波数ωの関数である初期の強度スペクトル関数A0(ω)及び位相スペクトル関数Ψ0(ω)を用意する(図中の処理番号(1))。一例では、これらの強度スペクトル関数A0(ω)及び位相スペクトル関数Ψ0(ω)はそれぞれ入力光のスペクトル強度及びスペクトル位相を表す。次に、強度スペクトル関数A0(ω)及び位相スペクトル関数Ψn(ω)を含む周波数領域の波形関数(a)を用意する(図中の処理番号(2))。

添え字nは、第n回目のフーリエ変換処理後を表す。最初(第1回目)のフーリエ変換処理の前においては、位相スペクトル関数Ψn(ω)として上述した初期の位相スペクトル関数Ψ0(ω)が用いられる。iは虚数である。
続いて、上記関数(a)に対して周波数領域から時間領域へのフーリエ変換を行う(図中の矢印A1)。これにより、時間強度波形関数bn(t)及び時間位相波形関数Θn(t)を含む周波数領域の波形関数(b)が得られる(図中の処理番号(3))。
続いて、上記関数(b)に含まれる時間強度波形関数bn(t)を、所望の波形に基づく時間強度波形関数Target0(t)に置き換える(図中の処理番号(4)、(5))。

続いて、上記関数(d)に対して時間領域から周波数領域への逆フーリエ変換を行う(図中の矢印A2)。これにより、強度スペクトル関数Bn(ω)及び位相スペクトル関数Ψn(ω)を含む周波数領域の波形関数(e)が得られる(図中の処理番号(6))。
続いて、上記関数(e)に含まれる強度スペクトル関数Bn(ω)を拘束するため、初期の強度スペクトル関数A0(ω)に置き換える(図中の処理番号(7))。
以降、上記の処理(2)~(7)を複数回繰り返し行うことにより、波形関数中の位相スペクトル関数Ψn(ω)が表す位相スペクトル形状を、所望の時間強度波形に対応する位相スペクトル形状に近づけることができる。最終的に得られる位相スペクトル関数ΨIFTA(ω)が、所望の時間強度波形を得るための変調パターンの基になる。
しかしながら、上述したような反復フーリエ法では、時間強度波形を制御することはできるが、時間強度波形を構成する周波数成分(帯域波長)を制御することはできないという問題がある。そこで、本実施形態の変調パターン算出装置20は、以下に説明する算出方法を用いて、変調パターンの基になる位相スペクトル関数及び強度スペクトル関数を算出する。図18は、位相スペクトル設計部22における位相スペクトル関数の計算手順を示す図である。
まず、周波数ωの関数である初期の強度スペクトル関数A0(ω)及び位相スペクトル関数Φ0(ω)を用意する(図中の処理番号(1))。一例では、これらの強度スペクトル関数A0(ω)及び位相スペクトル関数Φ0(ω)はそれぞれ入力光のスペクトル強度及びスペクトル位相を表す。次に、強度スペクトル関数A0(ω)及び位相スペクトル関数Φ0(ω)を含む周波数領域の第1波形関数(g)を用意する(処理番号(2-a))。但し、iは虚数である。
続いて、位相スペクトル設計部22のフーリエ変換部25は、上記関数(g)に対して周波数領域から時間領域へのフーリエ変換を行う(図中の矢印A3)。これにより、時間強度波形関数a0(t)及び時間位相波形関数φ0(t)を含む時間領域の第2波形関数(h)が得られる(フーリエ変換ステップ、処理番号(3))。
続いて、位相スペクトル設計部22の関数置換部26は、次の数式(i)に示されるように、時間強度波形関数b0(t)に、任意波形入力部21において入力された所望の波形に基づく時間強度波形関数Target0(t)を代入する(処理番号(4-a))。
続いて、位相スペクトル設計部22の関数置換部26は、次の数式(j)に示されるように、時間強度波形関数a0(t)を時間強度波形関数b0(t)で置き換える。すなわち、上記関数(h)に含まれる時間強度波形関数a0(t)を、所望の波形に基づく時間強度波形関数Target0(t)に置き換える(関数置換ステップ、処理番号(5))。
続いて、位相スペクトル設計部22の波形関数修正部27は、置き換え後の第2波形関数(j)のスペクトログラムが、所望の波長帯域に従って予め生成されたターゲットスペクトログラムに近づくように第2波形関数を修正する。まず、置き換え後の第2波形関数(j)に対して時間-周波数変換を施すことにより、第2波形関数(j)をスペクトログラムSG0,k(ω,t)に変換する(図中の処理番号(5-a))。添え字kは、第k回目の変換処理を表す。
ここで、時間-周波数変換とは、時間波形のような複合信号に対して、周波数フィルタ処理または数値演算処理(窓関数をずらしながら乗算して、各々の時間に対してスペクトルを導出する処理)を施し、時間、周波数、信号成分の強さ(スペクトル強度)からなる3次元情報に変換することをいう。また、本実施形態では、その変換結果(時間、周波数、スペクトル強度)を「スペクトログラム」と定義する。
時間-周波数変換としては、例えば、短時間フーリエ変換(Short-Time Fourier Transform;STFT)やウェーブレット変換(ハールウェーブレット変換、ガボールウェーブレット変換、メキシカンハットウェーブレット変換、モルレーウェーブレット変換)などがある。
また、所望の波長帯域に従って予め生成されたターゲットスペクトログラムTargetSG0(ω,t)をターゲット生成部29から読み出す。このターゲットスペクトログラムTargetSG0(ω,t)は、目標とする時間波形(時間強度波形とそれを構成する周波数成分)と概ね同値であり、処理番号(5-b)のターゲットスペクトログラム関数において生成される。
次に、位相スペクトル設計部22の波形関数修正部27は、スペクトログラムSG0,k(ω,t)とターゲットスペクトログラムTargetSG0(ω,t)とのパターンマッチングを行い、類似度(どの程度一致しているか)を調べる。本実施形態では、類似度を表す指標として、評価値を算出する。そして、続く処理番号(5-c)では、得られた評価値が、所定の終了条件を満たすか否かの判定を行う。条件を満たせば処理番号(6)へ進み、満たさなければ処理番号(5-d)へ進む。処理番号(5-d)では、第2波形関数に含まれる時間位相波形関数φ0(t)を任意の時間位相波形関数φ0,k(t)に変更する。時間位相波形関数を変更した後の第2波形関数は、STFTなどの時間-周波数変換により再びスペクトログラムに変換される。
以降、上述した処理番号(5-a)~(5-d)が繰り返し行われる。こうして、スペクトログラムSG0,k(ω,t)がターゲットスペクトログラムTargetSG0(ω,t)に次第に近づくように、第2波形関数が修正される(波形関数修正ステップ)。
その後、位相スペクトル設計部22の逆フーリエ変換部28は、修正後の第2波形関数に対して逆フーリエ変換を行い(図中の矢印A4)、周波数領域の第3波形関数(k)を生成する(逆フーリエ変換ステップ、処理番号(6))。

この第3波形関数(k)に含まれる位相スペクトル関数Φ0,k(ω)が、最終的に得られる所望の位相スペクトル関数ΦTWC-TFD(ω)となる。この位相スペクトル関数ΦTWC-TFD(ω)が、変調パターン生成部24に提供される。
図19は、強度スペクトル設計部23におけるスペクトル強度の計算手順を示す図である。なお、処理番号(1)から処理番号(5-c)までは、上述した位相スペクトル設計部22におけるスペクトル位相の計算手順と同様なので説明を省略する。
強度スペクトル設計部23の波形関数修正部27は、スペクトログラムSG0,k(ω,t)とターゲットスペクトログラムTargetSG0(ω,t)との類似度を示す評価値が所定の終了条件を満たさない場合、第2波形関数に含まれる時間位相波形関数φ0(t)は初期値で拘束しつつ、時間強度波形関数b0(t)を任意の時間強度波形関数b0,k(t)に変更する(処理番号(5-e))。時間強度波形関数を変更した後の第2波形関数は、STFTなどの時間-周波数変換により再びスペクトログラムに変換される。
以降、処理番号(5-a)~(5-c)が繰り返し行われる。こうして、スペクトログラムSG0,k(ω,t)がターゲットスペクトログラムTargetSG0(ω,t)に次第に近づくように、第2波形関数が修正される(波形関数修正ステップ)。
その後、強度スペクトル設計部23の逆フーリエ変換部28は、修正後の第2波形関数に対して逆フーリエ変換を行い(図中の矢印A4)、周波数領域の第3波形関数(m)を生成する(逆フーリエ変換ステップ、処理番号(6))。
続いて、処理番号(7-b)では、強度スペクトル設計部23のフィルタ処理部が、第3波形関数(m)に含まれる強度スペクトル関数B0,k(ω)に対し、入力光の強度スペクトルに基づくフィルタ処理を行う(フィルタ処理ステップ)。具体的には、強度スペクトル関数B0,k(ω)に係数αを乗じた強度スペクトルのうち、入力光の強度スペクトルに基づいて定められる各波長毎のカットオフ強度を超える部分をカットする。全ての波長域において、強度スペクトル関数αB0,k(ω)が入力光のスペクトル強度を超えないようにするためである。
一例では、波長毎のカットオフ強度は、入力光の強度スペクトル(本実施形態では初期の強度スペクトル関数A0(ω))と一致するように設定される。その場合、次の数式(n)に示されるように、強度スペクトル関数αB0,k(ω)が強度スペクトル関数A0(ω)よりも大きい周波数では、強度スペクトル関数ATWC-TFD(ω)の値として強度スペクトル関数A0(ω)の値が取り入れられる。また、強度スペクトル関数αB0,k(ω)が強度スペクトル関数A0(ω)以下である周波数では、強度スペクトル関数ATWC-TFD(ω)の値として強度スペクトル関数αB0,k(ω)の値が取り入れられる(図中の処理番号(7-b))。

この強度スペクトル関数ATWC-TFD(ω)が、最終的に得られる所望のスペクトル強度として変調パターン生成部24に提供される。
変調パターン生成部24は、位相スペクトル設計部22において算出された位相スペクトル関数ΦTWC-TFD(ω)により示されるスペクトル位相と、強度スペクトル設計部23において算出された強度スペクトル関数ATWC-TFD(ω)により示されるスペクトル強度とを出力光に与えるための位相変調パターン(例えば、計算機合成ホログラム)を算出する(データ生成ステップ)。
ここで、図20は、ターゲット生成部29におけるターゲットスペクトログラムTargetSG0(ω,t)の生成手順の一例を示す図である。ターゲットスペクトログラムTargetSG0(ω,t)は、目標とする時間波形(時間強度波形とそれを構成する周波数成分(波長帯域成分))を示すので、ターゲットスペクトログラムの作成は、周波数成分(波長帯域成分)を制御するために極めて重要な工程である。
図20に示されるように、ターゲット生成部29は、まずスペクトル波形(初期の強度スペクトル関数A0(ω)及び初期の位相スペクトル関数Φ0(ω))、並びに所望の時間強度波形関数Target0(t)を入力する。また、所望の周波数(波長)帯域情報を含む時間関数p0(t)を入力する(処理番号(1))。
次に、ターゲット生成部29は、例えば図17に示された反復フーリエ変換法を用いて、時間強度波形関数Target0(t)を実現するための位相スペクトル関数ΦIFTA(ω)を算出する(処理番号(2))。
続いて、ターゲット生成部29は、先に得られた位相スペクトル関数ΦIFTA(ω)を利用した反復フーリエ変換法により、時間強度波形関数Target0(t)を実現するための強度スペクトル関数AIFTA(ω)を算出する(処理番号(3))。ここで、図21は、強度スペクトル関数AIFTA(ω)を算出する手順の一例を示す図である。
まず、初期の強度スペクトル関数Ak=0(ω)及び位相スペクトル関数Ψ0(ω)を用意する(図中の処理番号(1))。次に、強度スペクトル関数Ak(ω)及び位相スペクトル関数Ψ0(ω)を含む周波数領域の波形関数(o)を用意する(図中の処理番号(2))。

添え字kは、第k回目のフーリエ変換処理後を表す。最初(第1回目)のフーリエ変換処理の前においては、強度スペクトル関数Ak(ω)として上記の初期強度スペクトル関数Ak=0(ω)が用いられる。iは虚数である。
続いて、上記関数(o)に対して周波数領域から時間領域へのフーリエ変換を行う(図中の矢印A5)。これにより、時間強度波形関数bk(t)を含む周波数領域の波形関数(p)が得られる(図中の処理番号(3))。
続いて、上記関数(p)に含まれる時間強度波形関数bk(t)を、所望の波形に基づく時間強度波形関数Target0(t)に置き換える(図中の処理番号(4)、(5))。

続いて、上記関数(r)に対して時間領域から周波数領域への逆フーリエ変換を行う(図中の矢印A6)。これにより、強度スペクトル関数Ck(ω)及び位相スペクトル関数Ψk(ω)を含む周波数領域の波形関数(s)が得られる(図中の処理番号(6))。
続いて、上記関数(s)に含まれる位相スペクトル関数Ψk(ω)を拘束するため、初期の位相スペクトル関数Ψ0(ω)に置き換える(図中の処理番号(7-a))。
また、逆フーリエ変換後の周波数領域における強度スペクトル関数Ck(ω)に対し、入力光の強度スペクトルに基づくフィルタ処理を行う。具体的には、強度スペクトル関数Ck(ω)により表される強度スペクトルのうち、入力光の強度スペクトルに基づいて定められる各波長毎のカットオフ強度を超える部分をカットする。
一例では、波長毎のカットオフ強度は、入力光の強度スペクトル(例えば初期の強度スペクトル関数Ak=0(ω))と一致するように設定される。その場合、次の数式(u)に示されるように、強度スペクトル関数Ck(ω)が強度スペクトル関数Ak=0(ω)よりも大きい周波数では、強度スペクトル関数Ak(ω)の値として強度スペクトル関数Ak=0(ω)の値が取り入れられる。また、強度スペクトル関数Ck(ω)が強度スペクトル関数Ak=0(ω)以下である周波数では、強度スペクトル関数Ak(ω)の値として強度スペクトル関数Ck(ω)の値が取り入れられる(図中の処理番号(7-b))。

上記関数(s)に含まれる強度スペクトル関数Ck(ω)を、上記数式(u)によるフィルタ処理後の強度スペクトル関数Ak(ω)に置き換える。
以降、上記の処理(2)~(7-b)を繰り返し行うことにより、波形関数中の強度スペクトル関数Ak(ω)が表す強度スペクトル形状を、所望の時間強度波形に対応する強度スペクトル形状に近づけることができる。最終的に、強度スペクトル関数AIFTA(ω)が得られる。
再び図20を参照する。以上に説明した処理番号(2)、(3)における位相スペクトル関数ΦIFTA(ω)及び強度スペクトル関数AIFTA(ω)の算出によって、これらの関数を含む周波数領域の第3波形関数(v)が得られる(処理番号(4))。
ターゲット生成部29のフーリエ変換部29aは、上の波形関数(v)をフーリエ変換する。これにより、時間領域の第4波形関数(w)が得られる(処理番号(5))。
ターゲット生成部29のスペクトログラム修正部29bは、時間-周波数変換により第4波形関数(w)をスペクトログラムSGIFTA(ω,t)に変換する(処理番号(6))。そして、処理番号(7)では、所望の周波数(波長)帯域情報を含む時間関数p0(t)を基にスペクトログラムSGIFTA(ω,t)を修正することにより、ターゲットスペクトログラムTargetSG0(ω,t)を生成する。例えば、2次元データにより構成されるスペクトログラムSGIFTA(ω,t)に現れる特徴的パターンを部分的に切り出し、時間関数p0(t)を基に当該部分の周波数成分の操作を行う。以下、その具体例について詳細に説明する。
例えば、所望の時間強度波形関数Target0(t)として時間間隔が2ピコ秒であるトリプルパルスを設定した場合について考える。このとき、スペクトログラムSGIFTA(ω,t)は、図22(a)に示されるような結果となる。なお、図22(a)において横軸は時間(単位:フェムト秒)を示し、縦軸は波長(単位:nm)を示す。また、スペクトログラムの値は、図の明暗によって示されており、明るいほどスペクトログラムの値が大きい。このスペクトログラムSGIFTA(ω,t)において、トリプルパルスは2ピコ秒間隔で時間軸上に分かれたドメインD1、D2、及びD3として現れる。ドメインD1、D2、及びD3の中心(ピーク)波長は800nmである。
仮に出力光の時間強度波形のみを制御したい(単にトリプルパルスを得たい)場合には、これらのドメインD1、D2、及びD3を操作する必要はない。しかし、各パルスの周波数(波長)帯域を制御したい場合には、これらのドメインD1、D2、及びD3の操作が必要となる。すなわち、図22(b)に示されるように、波長軸(縦軸)に沿った方向に各ドメインD1、D2、及びD3を互いに独立して移動させることは、それぞれのパルスの構成周波数(波長帯域)を変更することを意味する。このような各パルスの構成周波数(波長帯域)の変更は、時間関数p0(t)を基に行われる。
例えば、ドメインD2のピーク波長を800nmで据え置き、ドメインD1及びD3のピーク波長がそれぞれ-2nm、+2nmだけ平行移動するように時間関数p0(t)を記述するとき、スペクトログラムSGIFTA(ω,t)は、図22(b)に示されるターゲットスペクトログラムTargetSG0(ω,t)に変化する。例えばスペクトログラムにこのような処理を施すことによって、時間強度波形の形状を変えずに、各パルスの構成周波数(波長帯域)が任意に制御されたターゲットスペクトログラムを作成することができる。
以上に説明した本実施形態の分散測定装置1及び分散測定方法によって得られる効果について説明する。
本実施形態の分散測定装置1及び分散測定方法では、パルス形成部3(パルス形成ステップS11)において、互いに時間差を有し中心波長が互いに異なる複数の光パルスPb1~Pb3を含む光パルス列Pbが、パルスレーザ光源2から出力された光パルスPaから生成される。そして、光パルス列Pbは、測定対象Bを通過したのち分岐される。分岐後の一方の光パルス列Pbの各光パルスPb1~Pb3は、分光されることによって互いに空間的に分離され、個々に撮像されて撮像データに変換される。このように光パルス列Pbを分光して光パルスPb1~Pb3毎に撮像することによって、イメージセンサ72のフレームレートよりも高速な撮像が可能となる。
また、分岐後の他方の光パルス列Pbは相互相関又は自己相関を含む相関光Pcに変換され、その後、相関光Pcの時間波形が検出される。例えば非線形光学結晶などを用いて光パルス列Pbの相互相関又は自己相関を含む相関光Pcを生成すると、その相関光Pcの時間波形における種々の特徴量(例えばピーク強度PE1~PE3、半値全幅W1~W3、ピーク時間間隔G1,2、G2,3など)は、測定対象Bの波長分散量と顕著な相関を有する。従って、検出された時間波形の特徴量に基づいて、測定対象Bにおける波長分散量を精度良く推定することができる。
更に、時間波形が検出される際には、分岐後の他方の光パルス列Pbの進行方向と交差する断面における一又は複数の部分領域Pbcの時間波形が検出される。この場合、例えば部分領域Pbc毎に光検出器91(フォトダイオードなど)を配置するなどして、高速な光パルスPc1~Pc3を含む相関光Pcの時間波形を好適に検出することができる。そして、部分領域Pbcの空間位置が変更可能であることによって、測定対象Bの所望の位置における局所的な波長分散の大きさを精度良く知ることができる。
このように、本実施形態の分散測定装置1及び分散測定方法によれば、測定対象Bを高速撮影すると同時に、測定対象Bにおける波長分散の大きさを知ることができる。図23は、イメージセンサ72によって得られた測定対象Bに関する撮像データと、部分領域Pbcに対応する測定対象Bの部分を示すマークMとを重ねて示す図である。同図に示すように、測定対象Bに関する撮像データとマークMとを重ねてディスプレイ等に表示させてもよい。その場合、マークMの色等によって、測定対象Bの当該部分の波長分散量(或いは、屈折率、反射率、吸収率、又は厚みといった波長分散量から算出される数値)を表してもよい。
更に、本実施形態によれば、特許文献1及び非特許文献1に開示された構成と異なり発光スペクトルを測定する必要がないので、光学系を簡略化することができ、測定対象Bの波長分散を簡易な構成によって測定することができる。
本実施形態のように、空間フィルタ部8は、ビームスプリッタ5と相関光学系4との間の光路上に配置された空間フィルタ84を有してもよい。また、本実施形態のように、分散測定方法は光分岐ステップS13と相関光生成ステップS17との間に空間フィルタステップS16を含んでもよい。例えばこのような構成によって、ビームスプリッタ5から出力された光パルス列Pbのうち一又は複数の部分領域Pbcの光を抽出し、その時間波形を検出することができる。これらの場合、空間フィルタ84は、部分領域Pbcの光のみを通過させるピンホール84aを含んでもよい。また、空間フィルタステップS16において、部分領域Pbcの光のみを通過させるピンホール84aを用いてもよい。これにより、分岐後の他方の光パルス列Pbの進行方向と交差する断面における部分領域Pbcの光を簡易な構成により抽出することができる。
本実施形態のように、演算部6は、測定対象Bの部分的な屈折率、反射率、吸収率、及び厚みのうち少なくとも一つの数値を、推定した波長分散量に基づいて算出してもよい。また、本実施形態のように、演算ステップS19において、測定対象Bの部分的な屈折率、反射率、吸収率、及び厚みのうち少なくとも一つの数値を、推定した波長分散量に基づいて算出してもよい。この場合、測定対象Bの光学特性、外形、またはその両方を、短時間で計測することができる。
本実施形態のように、演算部6は(演算ステップS19では)、光パルス列Pbのピーク時間間隔G1,2、G2,3に基づいて光パルスPaの波長分散量を求めてもよい。下記の実施例に示すように、本発明者は、時間波形における種々の特徴量のうち特にピーク時間間隔G1,2、G2,3が、測定対象Bの波長分散量と顕著な相関を有することを見出した。従って、光パルス列Pbのピーク時間間隔G1,2、G2,3に基づいて光パルスPaの波長分散量を推定することにより、測定対象Bの波長分散量をより精度良く推定することができる。
図2に示したように、パルス形成部3は、光パルスPaに含まれる複数の波長成分を波長毎に空間的に分離する回折格子12と、回折格子12から出力された複数の波長成分の位相を相互にずらすSLM14と、SLM14から出力された複数の波長成分を集光するレンズ15を有してもよい。同様に、パルス形成ステップS11では、光パルスPaに含まれる複数の波長成分を波長毎に空間的に分離し、SLM14を用いて複数の波長成分の位相を相互にずらしたのち、複数の波長成分を集光してもよい。この場合、互いに時間差を有し中心波長が互いに異なる複数の光パルスPb1~Pb3を含む光パルス列Pbを容易に形成することができる。
本実施形態のように、相関光学系4は非線形光学結晶及び蛍光体の少なくとも一方を含んでもよい。同様に、相関光生成ステップS17では、非線形光学結晶及び蛍光体の少なくとも一方を用いて相関光Pcを生成してもよい。この場合、光パルス列Pbの相互相関又は自己相関を含む相関光Pcを容易に生成することができる。
本実施形態のように、演算部6は(演算ステップS19では)、測定対象Bの波長分散がゼロであると仮定して予め算出された相関光Pcの時間波形の特徴量と、光検出部9により検出された相関光Pcの時間波形の特徴量とを比較して、光パルスPaの波長分散量を求めてもよい。この場合、測定対象Bの波長分散量をより精度良く推定することができる。
(実施例)
本発明者は、上記実施形態の実施例として、数値計算によるシミュレーションを行った。光パルスPaとして、帯域幅10nm、中心波長1030nmのシングルパルスを仮定した。この光パルスPaを、図4に示した3つの光パルスPb1~Pb3を含む光パルス列Pbに変換するために、上記実施形態において述べた方法を用いて、SLM14に呈示させる変調パターンを算出した。このとき、ピーク時間間隔G1,2,G2,3を2000fs、中心波長をそれぞれ1025nm、1030nm、及び1035nmとした。
図24(a)は、算出した変調パターンを示すグラフである。同図において、横軸は波長(単位:nm)を表し、左の縦軸は光強度(任意単位)を表し、右の縦軸は位相(rad)を表す。また、図中のグラフG31はスペクトル位相の変調パターンを示し、図中のグラフG32はスペクトル強度の変調パターンを示す。
図24(b)は、本シミュレーションにより作成された光パルス列Pbの時間波形を示すグラフである。図25は、本シミュレーションにより作成された光パルス列Pbのスペクトログラムである。図24(b)では、横軸に時間(単位:fs)を示し、縦軸に光強度(任意単位)を示している。また、図25では、横軸に時間、縦軸に波長を示しており、光強度を色の濃淡で表している。これらの図に示すように、互いに時間差を有し中心波長が互いに異なる3つの光パルスPb1~Pb3を含む光パルス列Pbが得られた。
また、本シミュレーションでは、比較のため、光パルスPaを、図5に示した3つの光パルスPd1~Pd3を含む光パルス列Pdに変換するために、上記実施形態において述べた方法を用いて、SLM14に呈示させる変調パターンを算出した。これらのピーク時間間隔を光パルスPb1~Pb3と同じとし、各光パルスPd1~Pd3の中心波長を1030nmとした。
図26(a)は、算出した変調パターンを示すグラフである。図中のグラフG41はスペクトル位相の変調パターンを示し、図中のグラフG42はスペクトル強度の変調パターンを示す。図26(b)は、本シミュレーションにより作成された光パルス列Pdの時間波形を示すグラフである。図27は、本シミュレーションにより作成された光パルス列Pdのスペクトログラムである。これらの図に示すように、互いに時間差を有し中心波長が互いに等しい3つの光パルスPd1~Pd3を含む光パルス列Pdが得られた。
[2次分散によるパルス列の特徴量の変化]
測定対象Bの2次分散がパルス列の特徴量に与える影響を調べるために、模擬的に光パルスPaの2次分散量を変化させて、光パルス列Pb,Pdの時間波形の変化を調べた。図28(a)及び図28(b)は、光パルスPaの2次分散量と、ピーク時間間隔G1,2,G2,3の平均値(G1,2+G2,3)/2との関係をプロットしたグラフである。図28(a)は中心波長がパルス毎に異なる光パルス列Pbの場合を示し、図28(b)は各パルスの中心波長が互いに等しい光パルス列Pdの場合を示す。これらの図において、横軸は光パルスPaの2次分散量(単位:fs2)を表し、縦軸はピーク時間間隔G1,2,G2,3の平均値(単位:fs)を表す。
図28(a)を参照すると、中心波長がパルス毎に異なる光パルス列Pbの場合、2次分散量の増減に伴って、ピーク時間間隔G1,2,G2,3の平均値が単調に(ほぼ線形に)増減することがわかる。更に詳細にデータを調べると、中央の光パルスPb2のピーク時間に対して、左右の光パルスPb1,Pb3のピーク時間が、分散量に応じて互いに対称に移動する傾向があることが確認された。この例では、ピーク時間間隔G1,2,G2,3の50fsの増加(または減少)は、5000fs2の2次分散量の増加(または減少)に相当する。一方、図28(b)を参照すると、各パルスの中心波長が互いに等しい光パルス列Pdの場合、2次分散量の増減にかかわらず、ピーク時間間隔G1,2,G2,3の平均値はほぼ一定であることがわかる。このことから、中心波長がパルス毎に異なる光パルス列Pbのピーク時間間隔G1,2,G2,3に基づいて、測定対象Bの2次分散量を精度良く且つ容易に推定できることがわかる。
図29は、光パルスPaの2次分散量と、ピーク強度E1~E3との関係をプロットしたグラフであって、中心波長がパルス毎に異なる光パルス列Pbの場合を示す。三角形のプロットはピーク強度E1を表し、円形のプロットはピーク強度E2を表し、四角形のプロットはピーク強度E3を表す。この図において、横軸は光パルスPaの2次分散量(単位:fs2)を表し、縦軸はピーク強度(任意単位)を表す。図29を参照すると、中心波長がパルス毎に異なる光パルス列Pbにおいて、2次分散量の増減に伴いピーク強度E1~E3も増減することがわかる。このことから、中心波長がパルス毎に異なる光パルス列Pbのピーク強度E1~E3に基づいて、測定対象Bの2次分散量を精度良く且つ容易に推定できることがわかる。
図30は、光パルスPaの2次分散量と、半値全幅W1~W3との関係をプロットしたグラフであって、中心波長がパルス毎に異なる光パルス列Pbの場合を示す。三角形のプロットは半値全幅W1を表し、円形のプロットは半値全幅W2を表し、四角形のプロットは半値全幅W3を表す。この図において、横軸は光パルスPaの2次分散量(単位:fs2)を表し、縦軸は半値全幅(単位:fs)を表す。図30を参照すると、中心波長がパルス毎に異なる光パルス列Pbにおいて、2次分散量の増減に伴い半値全幅W1~W3も増減することがわかる。このことから、中心波長がパルス毎に異なる光パルス列Pbの半値全幅W1~W3に基づいて、測定対象Bの2次分散量を精度良く且つ容易に推定できることがわかる。
[3次分散によるパルス列の特徴量の変化]
測定対象Bの3次分散がパルス列の特徴量に与える影響を調べるために、模擬的に光パルスPaの3次分散量を変化させて、光パルス列Pb,Pdの時間波形の変化を調べた。図31(a)及び図31(b)は、光パルスPaの3次分散量と、ピーク時間間隔G1,2,G2,3の差(G1,2-G2,3)/2との関係をプロットしたグラフである。図31(a)は中心波長がパルス毎に異なる光パルス列Pbの場合を示し、図31(b)は各パルスの中心波長が互いに等しい光パルス列Pdの場合を示す。これらの図において、横軸は光パルスPaの3次分散量(単位:fs3)を表し、縦軸はピーク時間間隔G1,2,G2,3の差(単位:fs)を表す。図31(a)を参照すると、中心波長がパルス毎に異なる光パルス列Pbの場合、3次分散量の増減に伴って、ピーク時間間隔G1,2,G2,3の差が単調に増減することがわかる。一方、図31(b)を参照すると、各パルスの中心波長が互いに等しい光パルス列Pdの場合、3次分散量の増減にかかわらず、ピーク時間間隔G1,2,G2,3の差はほぼ一定であることがわかる。このことから、中心波長がパルス毎に異なる光パルス列Pbのピーク時間間隔G1,2,G2,3に基づいて、測定対象Bの3次分散量を精度良く且つ容易に推定できることがわかる。
更に詳細にデータを調べると、中心波長がパルス毎に異なる光パルス列Pbの場合、中央の光パルスPb2のピーク時間に対して、左右の光パルスPb1,Pb3のピーク時間が、分散量に応じて互いに非対称に移動する傾向があることが確認された。このような特徴は2次分散量のときとは異なるものであり、この差異すなわちピーク時間間隔G1,2,G2,3の相対的な変化の傾向に基づいて、分散次数を区別することが可能となる。
図32は、光パルスPaの3次分散量と、ピーク強度E1~E3との関係をプロットしたグラフであって、中心波長がパルス毎に異なる光パルス列Pbの場合を示す。三角形のプロットはピーク強度E1を表し、円形のプロットはピーク強度E2を表し、四角形のプロットはピーク強度E3を表す。この図において、横軸は光パルスPaの3次分散量(単位:fs3)を表し、縦軸はピーク強度(任意単位)を表す。図32を参照すると、中心波長がパルス毎に異なる光パルス列Pbにおいて、3次分散量の増減に伴いピーク強度E1~E3も増減することがわかる。このことから、中心波長がパルス毎に異なる光パルス列Pbのピーク強度E1~E3に基づいて、測定対象Bの3次分散量を精度良く且つ容易に推定できることがわかる。
図33は、光パルスPaの3次分散量と、半値全幅W1~W3との関係をプロットしたグラフであって、中心波長がパルス毎に異なる光パルス列Pbの場合を示す。三角形のプロットは半値全幅W1を表し、円形のプロットは半値全幅W2を表し、四角形のプロットは半値全幅W3を表す。この図において、横軸は光パルスPaの3次分散量(単位:fs3)を表し、縦軸は半値全幅(単位:fs)を表す。図33を参照すると、中心波長がパルス毎に異なる光パルス列Pbにおいて、3次分散量の増減に伴い半値全幅W1~W3も増減することがわかる。このことから、中心波長がパルス毎に異なる光パルス列Pbの半値全幅W1~W3に基づいて、測定対象Bの3次分散量を精度良く且つ容易に推定できることがわかる。
(第1変形例)
図34は、上記実施形態の第1変形例として、パルス形成部3Aの構成を示す図である。このパルス形成部3Aは、パルス伸展器18を有し、更に、SLM14(図2を参照)に代えてフィルタ19を有する。パルス伸展器18はパルスレーザ光源2と回折格子12との間の光路上に設けられ、光パルスPaのパルス幅を拡大する。パルス伸展器18としては、例えばガラスブロック、回折格子対、プリズムペアなどが挙げられる。
フィルタ19は、光強度フィルタであって、レンズ13を介して回折格子12と光学的に結合されている。回折格子12により分光された光P1は、レンズ13によって各波長成分毎に集光され、フィルタ19に達する。フィルタ19は、各波長成分に対応する光学的な開口(または、吸収率若しくは反射率が周囲と異なるフィルタ)を有しており、光パルスPaを構成する波長帯域の中から複数の波長成分を選択的に通過させる。なお、これら複数の波長成分の伝搬タイミングはパルス伸展器18によって互いにずれている。フィルタ19を通過した各波長成分は、レンズ15によって回折格子16上の一点に集められる。これらのレンズ15及び回折格子16により、フィルタ19を通過した複数の波長成分は互いに集光・合波されて、帯域制御したマルチパルス(光パルス列Pb)となる。
上記実施形態の分散測定装置1は、パルス形成部3に代えて、本変形例のパルス形成部3Aを備えてもよい。その場合でも、上記実施形態と同様の効果を好適に奏することができる。
本開示の分散測定装置および分散測定方法は、上述した実施形態および変形例に限定されるものではなく、種々の変形が可能である。
上記実施形態では、図2に示したように回折格子12及びSLM14を用いて光パルス列Pbを形成する方式を例示し、第1変形例ではパルス伸展器18及びフィルタ19を用いて光パルス列Pbを形成する方式を例示したが、パルス形成部3及びパルス形成ステップS11において光パルス列Pbを形成する方式はこれらに限られない。例えば、SLM14に代えて可変型ミラーを用いてもよい。或いは、SLM14に代えて、電子的に位相を制御できる液晶ディスプレイ、音響光学変調器などを用いてもよい。
また、上記実施形態では、非線形光学結晶又は蛍光体を用いて相関光Pcを生成する方式を例示したが、相関光学系4及び相関光生成ステップS17において相関光Pcを生成する方式はこれらに限られない。
また、図15に示した変調パターン算出装置20の位相スペクトル設計部22及び強度スペクトル設計部23におけるスペクトル波形の設計方法、及びそれによる帯域制御したマルチパルスの生成方法については、上記実施形態では、図16に示したフーリエ変換部25、関数置換部26、波形関数修正部27、逆フーリエ変換部28、及びターゲット生成部29を用いてスペクトル波形を算出する構成を例示している。
このような構成によれば、光パルス列を構成するマルチパルスの時間波形を所望の形状に近づけ、また、光パルス列に含まれる各光パルスの帯域成分を高精度に制御することができる。しかしながら、帯域制御したマルチパルスの生成方法は、このような方法に限られるものではなく、例えば以下に説明するように、複雑な最適化アルゴリズムを用いずにより簡易な方法で、マルチパルスを生成するためのスペクトル波形(スペクトル変調パターン)を求めてもよい。
具体的には、帯域制御したマルチパルスの生成方法として、生成したいマルチパルスでの光パルス数、各光パルスを構成する帯域成分、及び光パルスの間隔の情報に基づいて、直線状の位相変調パターン(線形位相パターン)を組み合わせる方法を用いることができる。以下に示す図35及び図36は、このようなマルチパルスの生成方法を説明するための概念図である。
図35(a)は、帯域制御したマルチパルスを生成するためのスペクトル波形の一例を示すグラフである。このグラフにおいて、横軸は波長を表し、左の縦軸は光強度を表し、右の縦軸は位相を表す。また、図中のグラフG51はスペクトル位相を示し、グラフG52はスペクトル強度を示している。また、図中の領域R1、R2、R3は、それぞれグラフG52のスペクトル強度波形に対して設定された波長領域を示している。また、グラフG51のスペクトル位相パターンのうちで、位相パターンX1は波長領域R1における位相パターンを示し、位相パターンX2は波長領域R2における位相パターンを示し、位相パターンX3は波長領域R3における位相パターンを示している。これらの位相パターンX1、X2、X3は、互いに傾きが異なる線形位相パターンである。
図35(b)は、図35(a)に示したスペクトル波形に対応する光パルス列の時間波形を示すグラフである。このグラフにおいて、横軸は時間を表し、縦軸は光強度を表す。この方法では、光パルス列の時間波形において、スペクトル位相に含まれる互いに傾きが異なる線形位相パターンの数に応じて、光パルスが生成される。図35に示した例では、波長領域R1、R2、R3において、上記した線形位相パターンX1、X2、X3を与えることで、3個の光パルスY1、Y2、Y3からなる帯域制御したマルチパルスが生成されている。
このような方法では、線形位相パターンXiの傾きの大きさが、対応する光パルスYiの時間波形における移動量に対応する。また、各光パルスYiを構成する帯域成分は、スペクトル波形に対する波長領域Riの区分設定によって制御することができる。図35に示した例では、波長領域R1のスペクトル強度成分によって光パルスY1が生成され、波長領域R2のスペクトル強度成分によって光パルスY2が生成され、波長領域R3のスペクトル強度成分によって光パルスY3が生成されている。
なお、上記の方法において、スペクトル強度成分の制御については、例えば、不要な強度成分に対してあらかじめフィルタ処理(強度変調による強度カット)を行っても良い。また、位相パターンX1、X2、X3の傾きの差が小さい場合には、得られる時間波形において光パルスが充分に分離されない可能性があるため、そのような点を考慮して位相パターンを設定することが好ましい。また、スペクトル位相における位相パターンは、図35に示した例では連続したパターンとなっているが、不連続なパターンとしても良い。
図36(a)は、帯域制御したマルチパルスを生成するためのスペクトル波形の他の例を示すグラフである。図中のグラフG61はスペクトル位相を示し、グラフG62はスペクトル強度を示している。また、図中の領域R4、R5、R6は、それぞれグラフG62のスペクトル強度波形に対して設定された波長領域を示している。また、グラフG61のスペクトル位相パターンのうちで、位相パターンX4は波長領域R4における位相パターンを示し、位相パターンX5は波長領域R5における位相パターンを示し、位相パターンX6は波長領域R6における位相パターンを示している。これらの位相パターンX4、X5、X6は、互いに傾きが異なる線形位相パターンであり、また、位相パターンX5、X6の境界で不連続なパターンとなっている。
図36(b)は、図36(a)に示したスペクトル波形に対応する光パルス列の時間波形を示すグラフである。図36に示した例では、スペクトル位相における上記した不連続な位相パターンの設定により、波長領域R4のスペクトル強度成分によって光パルスY4が生成され、波長領域R5のスペクトル強度成分によって光パルスY6が生成され、波長領域R6のスペクトル強度成分によって光パルスY5が生成されている。このように、スペクトル位相における位相パターンの設定により、時間波形において各光パルスを構成する帯域成分を任意に入れ替え、設定することが可能である。
1…分散測定装置、2…パルスレーザ光源、3,3A…パルス形成部、3a…光入力端、3b…光出力端、4,4A,4B,4C…相関光学系、4a…光入力端、4b…光出力端、4c~4f…光路、5…ビームスプリッタ、6…演算部、7…撮像部、8…空間フィルタ部、9…光検出部、12…回折格子、13…レンズ、14…空間光変調器(SLM)、15…レンズ、16…回折格子、17…変調面、17a…変調領域、18…パルス伸展器、19…フィルタ、20…変調パターン算出装置、21…任意波形入力部、22…位相スペクトル設計部、23…強度スペクトル設計部、24…変調パターン生成部、25…フーリエ変換部、26…関数置換部、27…波形関数修正部、28…逆フーリエ変換部、29…ターゲット生成部、29a…フーリエ変換部、29b…スペクトログラム修正部、41…レンズ、42…光学素子、43…レンズ、44…ビームスプリッタ、45,46,48…ミラー、61…プロセッサ(CPU)、62…ROM、63…RAM、64…入力デバイス、65…出力デバイス、66…通信モジュール、67…補助記憶装置、71…分光器、72…イメージセンサ、84…空間フィルタ、84a…ピンホール、85…アクチュエータ、91…光検出器、B…測定対象、D,D,D…ドメイン、M…マーク、P1…光、P2…変調光、Pa…光パルス、Pb…光パルス列、Pb~Pb…光パルス、Pba,Pbb…光パルス列、Pbc…部分領域、Pc…相関光、Pc~Pc…光パルス、Pd…光パルス列、Pd~Pd…光パルス、PE~PE…ピーク強度、Pr…参照光パルス、R1~R6…波長領域、S11…パルス形成ステップ、S13…光分岐ステップ、S14…分光ステップ、S15…撮像データ生成ステップ、S16…空間フィルタステップ、S17…相関光生成ステップ、S18…光検出ステップ、S19…演算ステップ、SC…制御信号、X1,X2…線形位相パターン、X3~X6…位相パターン、Y1~Y6…光パルス。

Claims (14)

  1. 光源から出力された第1光パルスから、互いに時間差を有し中心波長が互いに異なる複数の第2光パルスを含む光パルス列を形成するパルス形成部と、
    前記パルス形成部から出力されたのち測定対象を通過した前記光パルス列を分岐する光分岐部と、
    前記光分岐部により分岐された一方の前記光パルス列を分光したのち撮像して、前記一方の光パルス列に含まれる前記第2光パルス毎に撮像データを生成する撮像部と、
    前記光分岐部により分岐された他方の前記光パルス列を受け、前記他方の光パルス列の進行方向と交差する断面における一又は複数の部分領域の光を抽出する空間フィルタ部と、
    前記空間フィルタ部により抽出された前記一又は複数の部分領域の光の相互相関又は自己相関を含む相関光を出力する相関光学系と、
    前記相関光学系により出力された前記相関光の時間波形を検出する光検出部と、
    前記時間波形の特徴量に基づいて、前記測定対象における波長分散量を推定する演算部と、を備え、
    前記空間フィルタ部は、前記断面における前記部分領域の空間位置を変更可能とする、分散測定装置。
  2. 前記空間フィルタ部は、前記他方の光パルス列の光路上に配置された空間フィルタを有し、
    前記空間フィルタは、前記断面における前記部分領域の光を通過させ、他の領域の光を遮蔽する、請求項1に記載の分散測定装置。
  3. 前記空間フィルタは、前記部分領域の光のみを通過させるピンホールを含む、請求項2に記載の分散測定装置。
  4. 前記演算部は、前記測定対象の部分的な屈折率、反射率、吸収率、及び厚みのうち少なくとも一つの数値を、推定した前記波長分散量に基づいて算出する、請求項1~3の何れか1項に記載の分散測定装置。
  5. 前記時間波形の特徴量は、前記相関光に含まれる複数の光パルスの時間間隔を含む、請求項1~4のいずれか1項に記載の分散測定装置。
  6. 前記パルス形成部は、
    前記第1光パルスに含まれる複数の波長成分を波長毎に空間的に分離する分光素子と、
    前記分光素子から出力された前記複数の波長成分の位相を相互にずらす空間光変調器と、
    前記空間光変調器から出力された前記複数の波長成分を集光する集光光学系と、
    を有する、請求項1~5のいずれか1項に記載の分散測定装置。
  7. 前記演算部は、前記測定対象の波長分散がゼロであると仮定して予め算出された前記時間波形の特徴量と、検出した前記時間波形の特徴量とを比較して前記測定対象の波長分散量を推定する、請求項1~6のいずれか1項に記載の分散測定装置。
  8. 光源から出力された第1光パルスから、互いに時間差を有し中心波長が互いに異なる複数の第2光パルスを含む光パルス列を形成するパルス形成ステップと、
    測定対象を通過した前記光パルス列を分岐する光分岐ステップと、
    前記光分岐ステップにより分岐された一方の前記光パルス列を分光したのち撮像して、前記一方の光パルス列に含まれる前記第2光パルス毎に撮像データを生成する撮像ステップと、
    前記光分岐ステップにより分岐された他方の前記光パルス列の進行方向と交差する断面における一又は複数の部分領域の光を抽出する空間フィルタステップと、
    前記一又は複数の部分領域の光の相互相関又は自己相関を含む相関光を生成する相関光生成ステップと、
    前記相関光の時間波形を検出する光検出ステップと、
    前記時間波形の特徴量に基づいて、前記測定対象における波長分散量を推定する演算ステップと、
    を含み、
    前記断面における前記部分領域の空間位置を変更しながら、前記パルス形成ステップ、前記光分岐ステップ、前記撮像ステップ、前記空間フィルタステップ、前記相関光生成ステップ、前記光検出ステップ、及び前記演算ステップを繰り返し行う、分散測定方法。
  9. 前記空間フィルタステップでは、前記断面における前記部分領域の光を通過させ、他の領域の光を遮蔽する、請求項8に記載の分散測定方法。
  10. 前記空間フィルタステップでは、前記部分領域の光のみを通過させるピンホールを用いる、請求項9に記載の分散測定方法。
  11. 前記演算ステップでは、前記測定対象の部分的な屈折率、反射率、吸収率、及び厚みのうち少なくとも一つの数値を、推定した前記波長分散量に基づいて算出する、請求項8~10の何れか1項に記載の分散測定方法。
  12. 前記時間波形の特徴量は、前記相関光に含まれる複数の光パルスの時間間隔を含む、請求項8~11のいずれか1項に記載の分散測定方法。
  13. 前記パルス形成ステップでは、前記第1光パルスに含まれる複数の波長成分を波長毎に空間的に分離し、空間光変調器を用いて前記複数の波長成分の位相を相互にずらしたのち、前記複数の波長成分を集光する、請求項8~12のいずれか1項に記載の分散測定方法。
  14. 前記演算ステップでは、前記測定対象の波長分散がゼロであると仮定して予め算出された前記時間波形の特徴量と、検出した前記時間波形の特徴量とを比較して前記測定対象の波長分散量を推定する、請求項8~13のいずれか1項に記載の分散測定方法。
JP2020167851A 2020-10-02 2020-10-02 分散測定装置および分散測定方法 Active JP7449214B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020167851A JP7449214B2 (ja) 2020-10-02 2020-10-02 分散測定装置および分散測定方法
US17/488,493 US11913836B2 (en) 2020-10-02 2021-09-29 Dispersion measurement apparatus and dispersion measurement method
US18/530,698 US20240110833A1 (en) 2020-10-02 2023-12-06 Dispersion measurement apparatus and dispersion measurement method
JP2024030998A JP2024052923A (ja) 2020-10-02 2024-03-01 分散測定装置および分散測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020167851A JP7449214B2 (ja) 2020-10-02 2020-10-02 分散測定装置および分散測定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024030998A Division JP2024052923A (ja) 2020-10-02 2024-03-01 分散測定装置および分散測定方法

Publications (2)

Publication Number Publication Date
JP2022059944A JP2022059944A (ja) 2022-04-14
JP7449214B2 true JP7449214B2 (ja) 2024-03-13

Family

ID=80931928

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020167851A Active JP7449214B2 (ja) 2020-10-02 2020-10-02 分散測定装置および分散測定方法
JP2024030998A Pending JP2024052923A (ja) 2020-10-02 2024-03-01 分散測定装置および分散測定方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024030998A Pending JP2024052923A (ja) 2020-10-02 2024-03-01 分散測定装置および分散測定方法

Country Status (2)

Country Link
US (2) US11913836B2 (ja)
JP (2) JP7449214B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184700B2 (ja) * 2019-04-05 2022-12-06 浜松ホトニクス株式会社 分散測定装置、パルス光源、分散測定方法、および分散補償方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193557A (ja) 1998-12-24 2000-07-14 Anritsu Corp 波長分散測定装置及び偏波分散測定装置
JP2002273583A (ja) 2001-03-19 2002-09-25 Inst Of Physical & Chemical Res 透明媒質加工装置
US20060088259A1 (en) 2004-07-21 2006-04-27 Weiner Andrew M Ultrashort photonic waveform measurement using quasi-phase-matched non-linear optics
JP2017183994A (ja) 2016-03-30 2017-10-05 浜松ホトニクス株式会社 撮像システム及び撮像方法
WO2017169788A1 (ja) 2016-03-30 2017-10-05 浜松ホトニクス株式会社 パルス光生成装置、光照射装置、光加工装置、光応答測定装置、顕微鏡装置、及びパルス光生成方法
WO2017169656A1 (ja) 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 撮像装置
JP2017181259A (ja) 2016-03-30 2017-10-05 浜松ホトニクス株式会社 パルス光の波形計測方法及び波形計測装置
US20200142175A1 (en) 2017-03-13 2020-05-07 Technion Research And Development Foundation Ltd. Ptychography based system and method
JP7184700B2 (ja) 2019-04-05 2022-12-06 浜松ホトニクス株式会社 分散測定装置、パルス光源、分散測定方法、および分散補償方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248996A (ja) 1992-03-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> 光ファイバの波長分散測定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193557A (ja) 1998-12-24 2000-07-14 Anritsu Corp 波長分散測定装置及び偏波分散測定装置
JP2002273583A (ja) 2001-03-19 2002-09-25 Inst Of Physical & Chemical Res 透明媒質加工装置
US20060088259A1 (en) 2004-07-21 2006-04-27 Weiner Andrew M Ultrashort photonic waveform measurement using quasi-phase-matched non-linear optics
JP2017183994A (ja) 2016-03-30 2017-10-05 浜松ホトニクス株式会社 撮像システム及び撮像方法
WO2017169788A1 (ja) 2016-03-30 2017-10-05 浜松ホトニクス株式会社 パルス光生成装置、光照射装置、光加工装置、光応答測定装置、顕微鏡装置、及びパルス光生成方法
JP2017181259A (ja) 2016-03-30 2017-10-05 浜松ホトニクス株式会社 パルス光の波形計測方法及び波形計測装置
WO2017169656A1 (ja) 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 撮像装置
US20200142175A1 (en) 2017-03-13 2020-05-07 Technion Research And Development Foundation Ltd. Ptychography based system and method
JP7184700B2 (ja) 2019-04-05 2022-12-06 浜松ホトニクス株式会社 分散測定装置、パルス光源、分散測定方法、および分散補償方法

Also Published As

Publication number Publication date
US20220107221A1 (en) 2022-04-07
US20240110833A1 (en) 2024-04-04
JP2024052923A (ja) 2024-04-12
JP2022059944A (ja) 2022-04-14
US11913836B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
JP7339416B2 (ja) 測定装置および測定方法
JP4688866B2 (ja) 所望の3次元電磁気フィールドの生成
JP6654948B2 (ja) パルス光の波形計測方法及び波形計測装置
JP2024052923A (ja) 分散測定装置および分散測定方法
JP2022109486A (ja) 光測定装置及び光測定方法
JP6516554B2 (ja) 変調パターン算出装置、光制御装置、変調パターン算出方法および変調パターン算出プログラム
JP6762171B2 (ja) データ作成装置、光制御装置、データ作成方法、及びデータ作成プログラム
WO2022070541A1 (ja) 分散測定装置および分散測定方法
CN110967958A (zh) 一种基于多狭缝扩展记录频域全息成像的方法及装置
WO2022249660A1 (ja) 分散測定装置及び分散測定方法
WO2022249658A1 (ja) 分散測定装置及び分散測定方法
CN210895004U (zh) 一种基于多狭缝扩展记录频域全息成像的装置
WO2022249659A1 (ja) 分散測定装置及び分散測定方法
JP7149857B2 (ja) データ作成装置、光制御装置、データ作成方法、及びデータ作成プログラム
US20230304926A1 (en) Time response measurement apparatus and time response measurement method
US20230304923A1 (en) Optical property measurement apparatus and optical property measurement method
JP3566936B2 (ja) 光信号電界の時間波形測定方法及び装置
Gabolde Measurements of the spatio-temporal profiles of femtosecond laser pulses
Heidt et al. Holographic elements and holographic techniques used in photonics

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240301

R150 Certificate of patent or registration of utility model

Ref document number: 7449214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150