JP7388064B2 - Distance measuring device and method - Google Patents

Distance measuring device and method Download PDF

Info

Publication number
JP7388064B2
JP7388064B2 JP2019162233A JP2019162233A JP7388064B2 JP 7388064 B2 JP7388064 B2 JP 7388064B2 JP 2019162233 A JP2019162233 A JP 2019162233A JP 2019162233 A JP2019162233 A JP 2019162233A JP 7388064 B2 JP7388064 B2 JP 7388064B2
Authority
JP
Japan
Prior art keywords
light
amount
area
receiving
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019162233A
Other languages
Japanese (ja)
Other versions
JP2020160044A (en
Inventor
紀克 新浪
博一 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to EP20162213.1A priority Critical patent/EP3719529A1/en
Priority to US16/819,206 priority patent/US11914039B2/en
Publication of JP2020160044A publication Critical patent/JP2020160044A/en
Application granted granted Critical
Publication of JP7388064B2 publication Critical patent/JP7388064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、測距装置および測距方法に関するものである。 The present invention relates to a distance measuring device and a distance measuring method.

撮像領域に向けてレーザー光を照射し、撮像領域に存在する物体からの反射光を受光して、出射から受光までの時間差から物体までの距離を算出する測距方法が知られている。かかる測距方式はTOF(タイム・オブ・フライト)方式として既に知られている。TOF方式によって測距する測距装置のことをTOFカメラあるいは測距カメラということがある。また、特許文献1では撮像装置と記載しているが、特許文献1の記載されている撮像装置はTOFカメラの一例である。 A distance measuring method is known in which a laser beam is irradiated toward an imaging region, reflected light from an object present in the imaging region is received, and the distance to the object is calculated from the time difference between the emission and reception of the light. Such a distance measuring method is already known as the TOF (time of flight) method. A distance measuring device that measures distance using the TOF method is sometimes referred to as a TOF camera or a distance measuring camera. Further, although Patent Document 1 describes it as an imaging device, the imaging device described in Patent Document 1 is an example of a TOF camera.

TOF方式によって測距する測距装置(TOFカメラ)では、被写体からの反射光の受光レベル(受光量)が重要である。この受光レベルが低いとセンサ出力信号がノイズに埋もれ、受光レベルが高すぎるとセンサ出力信号が飽和して正確な測距値を得ることができない。特許文献1記載の発明は、測光部による測光エリアを設定し、測光エリアの測光量が正常値になるように照明部による照明光量を制御して、正確な測距値を得ようとするものである。 BACKGROUND ART In a distance measuring device (TOF camera) that measures distance using the TOF method, the level (amount of light received) of reflected light from a subject is important. If the light reception level is low, the sensor output signal will be buried in noise, and if the light reception level is too high, the sensor output signal will be saturated, making it impossible to obtain an accurate distance measurement value. The invention described in Patent Document 1 attempts to obtain accurate distance measurement values by setting a photometry area by a photometry section and controlling the amount of illumination light by the illumination section so that the amount of photometry in the photometry area becomes a normal value. It is.

前記特許文献1記載の撮像装置(TOFカメラ)は、測距対象領域測光量に基づいて露光制御を行う。すなわち、測光部により露光量を測光し、測光値が正常値以上であれば照明部による照明光量を下げ、測光値が正常値以下であれば照明部による照明光量を上げるようになっている。しかし、特許文献1記載の撮像装置(TOFカメラ)では、照明部によって被写体に照明された照射光が被写体により反射され撮像装置(TOFカメラ)に到達する反射光の光量について、この反射光の光量が撮像装置(TOFカメラ)から被写体までの距離に応じて変動することについて、考慮されていない。そのため、測距可能な範囲を拡張する、という観点で改善の余地がある。 The imaging device (TOF camera) described in Patent Document 1 performs exposure control based on the amount of photometry of a distance measurement target area. That is, the exposure amount is measured by the photometry section, and if the photometry value is above a normal value, the amount of illumination light from the illumination section is decreased, and when the photometry value is below the normal value, the amount of illumination light from the illumination section is increased. However, in the imaging device (TOF camera) described in Patent Document 1, the amount of reflected light that is reflected by the object and reaches the imaging device (TOF camera) is determined by It is not taken into consideration that the distance varies depending on the distance from the imaging device (TOF camera) to the subject. Therefore, there is room for improvement in terms of expanding the measurable range.

本発明は、以上述べたような従来技術の課題を解消するためになされたもので、測距可能な範囲を拡張することができる測距装置および測距方法を提供することを目的とする。 The present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a distance measuring device and a distance measuring method that can expand the measurable range.

本発明に係る撮像装置は、
複数の発光領域を2次元に配置してなる光源と、
前記光源から出射された出射光を測距領域へ導く光学素子と、
前記出射光が前記測距領域に存在する測距対象により反射された反射光を受光する受光部と、
を備えた測距装置であって、
前記受光部は複数の受光領域に分けられており、
前記複数の受光領域に対応する前記光源の各発光領域の発光量を各発光領域毎に制御する領域別光量制御部と、
前記受光領域毎に受光量を計測する領域光量計測部と、
前記光源の発光から前記受光部による受光までの時間を前記受光領域ごとに計測することで前記受光領域ごとに前記測距対象までの距離を計測する測距部と、
を有し、
前記領域別光量制御部は、前記光源の各発光点を同じ光量で同時発光させて予備発光を行い、前記予備発光によって前記領域光量計測部で計測された受光領域毎の受光量に基づき本発光の発光量を制御し、
前記測距部は、前記本発光によって前記受光領域ごとに前記測距対象までの距離を計測することを最も主要な特徴とする。
The imaging device according to the present invention includes:
A light source formed by two-dimensionally arranging a plurality of light emitting regions;
an optical element that guides the emitted light emitted from the light source to a ranging area;
a light receiving unit that receives reflected light from which the emitted light is reflected by a distance measurement target existing in the distance measurement area;
A distance measuring device comprising:
The light receiving section is divided into a plurality of light receiving areas,
a region-specific light amount control unit that controls the amount of light emitted by each light emitting region of the light source corresponding to the plurality of light receiving regions;
an area light amount measurement unit that measures the amount of light received for each of the light receiving areas;
a distance measurement unit that measures the distance to the distance measurement target for each of the light reception areas by measuring the time from the light emission of the light source to the reception of light by the light reception unit for each of the light reception areas;
has
The region-based light amount control section performs preliminary light emission by simultaneously causing each light emitting point of the light source to emit light with the same amount of light, and performs main light emission based on the amount of light received for each light receiving area measured by the area light amount measurement section by the preliminary light emission. Controls the amount of light emitted by
The most important feature of the distance measuring section is that it measures the distance to the distance measurement target for each of the light receiving areas by the main light emission.

本発明に係る撮像方法は、
複数の発光領域を2次元に配置してなる光源と、
前記光源から出射された出射光を測距領域へ導く光学素子と、
前記出射光が前記測距領域に存在する測距対象により反射された反射光を受光する受光部と、
を備えた測距装置を用いた測距方法であって、
前記受光部は複数の受光領域に分けられており、
前記複数の受光領域に対応する前記光源の各発光領域の発光量を各発光領域毎に制御する領域別光量制御工程と、
前記受光領域毎に受光量を計測する領域光量計測工程と、
前記光源の発光から前記受光部による受光までの時間を前記受光領域毎に計測することで前記受光領域毎に前記計測対象までの距離を計測する測距工程と、
を有し、
前記領域別光量制御工程は、前記光源の各発光点を同じ光量で同時発光させて予備発光を行い、前記予備発光によって領域光量計測工程で計測された領域毎の受光量に基づき本発光の発光量を制御し、
前記測距工程は、前記本発光によって前記受光領域ごとに前記測距対象までの距離を計測することを最も主要な特徴とする。
The imaging method according to the present invention includes:
A light source formed by two-dimensionally arranging a plurality of light emitting regions;
an optical element that guides the emitted light emitted from the light source to a ranging area;
a light receiving unit that receives reflected light in which the emitted light is reflected by a distance measurement target existing in the distance measurement area;
A distance measuring method using a distance measuring device equipped with
The light receiving section is divided into a plurality of light receiving areas,
a region-based light amount control step of controlling the amount of light emitted from each light emitting region of the light source corresponding to the plurality of light receiving regions for each light emitting region;
an area light amount measurement step of measuring the amount of light received for each of the light receiving areas;
a distance measuring step of measuring the distance to the measurement target for each of the light receiving areas by measuring the time from the light emission of the light source to the reception of light by the light receiving unit for each of the light receiving areas;
has
In the region-specific light amount control step, each light emitting point of the light source simultaneously emits light with the same amount of light to perform preliminary light emission, and the main light emission is performed based on the amount of light received for each region measured in the region light amount measurement step by the preliminary light emission. control the amount,
The most important feature of the distance measuring step is to measure the distance to the distance measurement target for each of the light receiving areas by the main light emission.

本発明によれば、遠距離の被写体に対しても近距離の被写体に対しても測距可能な範囲を拡張することができる。 According to the present invention, it is possible to expand the measurable range for both long-distance objects and short-distance objects.

本発明に係る測距装置および測距方法の実施例の光学系および制御系を概略的に示す模式図である。1 is a schematic diagram schematically showing an optical system and a control system of an embodiment of a distance measuring device and a distance measuring method according to the present invention. 複数の発光領域を2次元アレイ状に配置してなるレーザー光源の例を示す正面図および縦と横方向の照度分布図である。FIG. 2 is a front view and a vertical and horizontal illuminance distribution diagram showing an example of a laser light source in which a plurality of light emitting regions are arranged in a two-dimensional array. レーザー光源の発光量を一定にした場合に測距可能および測距不可能範囲を示すグラフである。It is a graph showing a range in which distance measurement is possible and a range in which distance measurement is not possible when the amount of light emitted from a laser light source is kept constant. TOFセンサ出力に対するレーザー光源の出力制御の例を示すグラフである。It is a graph showing an example of output control of a laser light source with respect to a TOF sensor output. レーザー光源を予備発光させたときの各撮像領域におけるTOFセンサ出力の分布を示す図である。FIG. 6 is a diagram showing the distribution of TOF sensor output in each imaging region when the laser light source is pre-emit. レーザー光源を予備発光させたときの各撮像領域におけるTOFセンサ出力の分布に対応するレーザー光源の本発光時の発光量分布を示す図である。FIG. 7 is a diagram showing a light emission amount distribution during main light emission of the laser light source corresponding to a distribution of TOF sensor output in each imaging region when the laser light source causes preliminary light emission. 本発明による通常撮影時の動作を示すフローチャートである。3 is a flowchart showing operations during normal photographing according to the present invention. 本発明による複数回撮影時の動作を示すフローチャートである。3 is a flowchart illustrating an operation when photographing multiple times according to the present invention. 被写体距離が近すぎる場合と遠すぎる場合の測距精度劣化および測距不能の理由を説明するタイミングチャートである。7 is a timing chart illustrating the reason for deterioration of distance measurement accuracy and failure of distance measurement when the object distance is too close and when the object distance is too far.

以下、本発明に係る測距装置および測距方法の実施例を、図面を参照しながら説明する。 Embodiments of a distance measuring device and a distance measuring method according to the present invention will be described below with reference to the drawings.

[実施例1]
図1は、本発明に係る測距装置の実施例であるTOFカメラ10を示す。図1において、TOFカメラ10は、メガヘルツ[MHz]程度に周波数変調された矩形波もしくはサイン波状のレーザー光を投光する投光系20と、投射光が物体すなわち被写体に当たって反射してきた光を受光する受光系30を備えている。
[Example 1]
FIG. 1 shows a TOF camera 10 which is an embodiment of a distance measuring device according to the present invention. In FIG. 1, the TOF camera 10 includes a light projection system 20 that emits a rectangular wave or sine wave laser beam whose frequency is modulated on the order of megahertz [MHz], and a light projection system 20 that receives light that is reflected when the projected light hits an object, that is, a subject. The light receiving system 30 is equipped with a light receiving system 30 for

投光系20は、光源として垂直共振器面発光レーザー(以下「VCSEL」という)21を有する。本実施例におけるVCSEL21は、複数の発光領域を2次元に配置している。VCSEL21は、その各発光領域による発光動作が発光制御部50によって制御される。投光系20はまた、VCSEL21の各発光点から発光される光を必要な画角に広げて投光するレンズ22を有する。 The light projection system 20 has a vertical cavity surface emitting laser (hereinafter referred to as "VCSEL") 21 as a light source. The VCSEL 21 in this embodiment has a plurality of light emitting regions arranged two-dimensionally. The light emitting operation of each light emitting region of the VCSEL 21 is controlled by the light emitting control section 50. The light projection system 20 also includes a lens 22 that spreads the light emitted from each light emitting point of the VCSEL 21 to a necessary angle of view and projects the light.

TOFカメラ10は判断部40を有している。判断部40は、発光制御部50を制御することによって、VCSEL21の各発光領域による発光タイミング、発光量などを制御する。 The TOF camera 10 has a determination section 40. The determination unit 40 controls the light emission timing, light emission amount, etc. of each light emission region of the VCSEL 21 by controlling the light emission control unit 50.

受光系30は、被写体に当たって反射してきた光を集光する受光レンズ31と、受光レンズ31で集められた光を受光して光電変換する受光センサ32を有する。本実施例では、受光センサ32としてTOFセンサを用いている。受光センサ32は、センサ素子による受光領域がVCSEL21の各発光領域の配置と同じ2次元に配置され、検出信号がセンサ各素子から決められた領域ごとに分割して出力される。 The light-receiving system 30 includes a light-receiving lens 31 that collects light that has hit a subject and is reflected, and a light-receiving sensor 32 that receives the light collected by the light-receiving lens 31 and converts it photoelectrically. In this embodiment, a TOF sensor is used as the light receiving sensor 32. In the light-receiving sensor 32, the light-receiving area by the sensor element is arranged in the same two-dimensional arrangement as the arrangement of each light-emitting area of the VCSEL 21, and a detection signal is outputted from each sensor element by dividing it into each determined area.

以上説明したように、TOFカメラ10は、複数の発光領域を2次元に配置したレーザー光源を用い、撮像素子の撮像面を、上記複数の発光領域と同じ数で同じ配置の複数の領域にメッシュ状に分割することで撮像領域を複数の領域に分け、各領域について測距する。 As explained above, the TOF camera 10 uses a laser light source in which a plurality of light emitting regions are arranged two-dimensionally, and meshes the imaging surface of the image sensor into a plurality of regions having the same number and the same arrangement as the plurality of light emitting regions. By dividing the imaging area into a plurality of areas, the distance measurement is performed for each area.

受光センサ32の検出信号は測光/制御部60に入力される。測光/制御部60は、TOFセンサからなる受光センサ32の各検出領域からのセンサ出力値を統計処理し、撮像領域毎に受光レベル(受光量)を計測する領域光量計測部として機能する。測光/制御部60はまた、受光センサ32の受光時間、受光感度、タイミング等を、VCSEL21の各発光領域からの投光制御と同期して制御する。上記領域光量計測部としての機能は、VCSEL21によるレーザー光の予備発光時も撮像領域毎に受光レベル(受光量)を計測し、この撮像領域毎の受光量に基づいて本発光時の発光量が後で説明する領域別光量制御部41によって制御される。 A detection signal from the light receiving sensor 32 is input to a photometry/control section 60 . The photometry/control unit 60 functions as an area light amount measurement unit that statistically processes sensor output values from each detection area of the light receiving sensor 32 made of a TOF sensor and measures the level of received light (amount of received light) for each imaging area. The photometry/control unit 60 also controls the light receiving time, light receiving sensitivity, timing, etc. of the light receiving sensor 32 in synchronization with light projection control from each light emitting area of the VCSEL 21. The function of the area light amount measurement unit is to measure the light reception level (light reception amount) for each imaging area even when the VCSEL 21 is pre-emitting laser light, and based on the reception light amount for each imaging area, the light emission amount during main emission is determined. It is controlled by a region-specific light amount control unit 41, which will be described later.

判断部40は、受光センサ32の受光領域毎のセンサ出力統計値から、撮影時のVCSEL21の発光領域毎の発光量および受光センサ32の受光感度を決定する領域別光量制御部41を有する。また、判断部40は、VCSEL21によるレーザー光の発光から、受光センサ32による受光までの時間を撮像領域ごとに計測することで撮像領域ごとの測距対象までの距離を計測する測距部42を有する。 The determining unit 40 includes a region-by-area light amount control unit 41 that determines the light emission amount for each light-emitting region of the VCSEL 21 and the light-receiving sensitivity of the light-receiving sensor 32 at the time of photographing based on the sensor output statistical value for each light-receiving region of the light-receiving sensor 32. The determining unit 40 also operates a distance measuring unit 42 that measures the distance to the distance measurement target for each imaging area by measuring the time from the emission of laser light by the VCSEL 21 to the reception of the laser beam by the light receiving sensor 32 for each imaging area. have

TOFカメラ10による距離測定動作は、一般的な位相検出方式のTOFカメラ動作と同等であり、周知の技術である。例えば、特開2018-077143号公報に記載されているTOFカメラと同様の技術を用いることができる。よって、TOFカメラ10による詳細な距離測定動作の説明は省略する。 The distance measurement operation by the TOF camera 10 is equivalent to the operation of a general phase detection type TOF camera, and is a well-known technique. For example, a technology similar to that of the TOF camera described in Japanese Patent Application Publication No. 2018-077143 can be used. Therefore, detailed explanation of the distance measurement operation by the TOF camera 10 will be omitted.

次に、図2に示す光源として使用するVCSEL21の、2次元アレイの素子配置について説明する。図2は、VCSEL21の発光面を模式的に示した図であり、黒丸が発光領域を示しており、縦方向および横方向にそれぞれ8個、合計64個の発光領域が配列されている。また、各発光領域内に、複数のVCSEL素子が等間隔で配置されている。 Next, the element arrangement of the two-dimensional array of the VCSEL 21 used as a light source shown in FIG. 2 will be explained. FIG. 2 is a diagram schematically showing the light-emitting surface of the VCSEL 21, with black circles indicating light-emitting regions, and 64 light-emitting regions in total, 8 each in the vertical and horizontal directions, are arranged. Further, within each light emitting region, a plurality of VCSEL elements are arranged at equal intervals.

図2では、VCSEL素子の上側の縁部と左側の縁部に沿って、それぞれ横方向の照度分布曲線と縦方向の照度分布曲線が示されている。これらの照度分布曲線のうち、点線は各素子の照度分布曲線、実線は全素子を同時に発光させた場合の照度分布曲線を示す。これらの照度分布曲線からわかるように、全素子同時発光時には、ほぼ均一な面発光となる。換言すると、素子の配置間隔は、均一な面発光となるように決められている。VCSEL素子の仕様によって異なるが、1辺がおおよそ50μm程度のスケールである。 In FIG. 2, horizontal and vertical illuminance distribution curves are shown along the upper and left edges of the VCSEL element, respectively. Among these illuminance distribution curves, the dotted line shows the illuminance distribution curve of each element, and the solid line shows the illuminance distribution curve when all the elements emit light at the same time. As can be seen from these illuminance distribution curves, when all the elements emit light simultaneously, substantially uniform surface light emission occurs. In other words, the arrangement intervals of the elements are determined so as to provide uniform surface emission. Although it varies depending on the specifications of the VCSEL element, the scale is approximately 50 μm on one side.

図3は、VCSEL21の全領域を同じ光量で発光させ、被写体からの反射光を受光センサ32で受光し、受光センサ32から出力される検出信号について示したもので、被写体距離に対する受光センサ32の出力の関係を示す。図3の横軸は被写体距離、縦軸は受光センサ32の出力を0から255までのレベルで表している。当然ながら、被写体は受光センサ32の視野内にある被写体である。 FIG. 3 shows the detection signal output from the light receiving sensor 32 when the entire area of the VCSEL 21 emits light with the same amount of light, and the light receiving sensor 32 receives the reflected light from the subject. Shows the relationship between the outputs. In FIG. 3, the horizontal axis represents the subject distance, and the vertical axis represents the output of the light receiving sensor 32 in levels from 0 to 255. Naturally, the subject is within the field of view of the light receiving sensor 32.

ここで、受光センサ32における受光面の横方向をX方向、縦方向をY方向、受光面と直交し受光面から離れる方向をZ方向と定義すると、受光面はXY平面となる。受光センサ32から測距する領域(測距領域)を見た場合、測距領域に存在する物体がXY平面と平行な平面でない限り、XY平面上の各分割領域に存在する物体までの距離すなわち被写体までの距離は分割領域ごとに異なる。 Here, if the horizontal direction of the light receiving surface of the light receiving sensor 32 is defined as the X direction, the vertical direction as the Y direction, and the direction perpendicular to the light receiving surface and away from the light receiving surface as the Z direction, the light receiving surface becomes the XY plane. When looking at the area to be measured from the light receiving sensor 32 (distance measurement area), unless the object existing in the distance measurement area is a plane parallel to the XY plane, the distance to the object existing in each divided area on the XY plane, i.e. The distance to the subject differs for each divided area.

そして、TOF方式による測距光の光量を均一にして撮像領域に向けて発光すると、近距離の被写体が存在する領域では反射光のレベルが高くなり、受光センサ32の出力レベルが飽和する。また、遠距離の被写体が存在する領域では反射光のレベルが低くなり、受光センサ32の出力信号がノイズに埋もれる。つまり、被写体位置が近すぎる場合と遠すぎる場合のいずれでも、測距不可能となりあるいは測距精度が劣化し、結果として、測距可能な被写体の距離範囲が制限される Then, when the amount of distance measuring light by the TOF method is made uniform and is emitted toward the imaging area, the level of reflected light becomes high in an area where a nearby object exists, and the output level of the light receiving sensor 32 becomes saturated. Further, in a region where a distant object exists, the level of reflected light is low, and the output signal of the light receiving sensor 32 is buried in noise. In other words, if the subject is too close or too far away, distance measurement becomes impossible or the distance measurement accuracy deteriorates, and as a result, the distance range of the subject that can be measured is limited.

具体的に説明する。VCSEL21がアレイ状に配置された全画素につき同じ光量で発光すると、図3に示すように、遠方の被写体による反射光は減衰し受光センサ32の出力は小さくなる。図3に示す例では、被写体距離が7mを超えるとセンサ出力と被写体距離の関係が非線形となり、測距精度が劣化するため、受光センサ32の出力は無効とする。近距離被写体に対しては、反射光の減衰は少ないため、受光センサ32の出力は大きくなる。 I will explain in detail. When the VCSEL 21 emits light with the same amount of light for all pixels arranged in an array, as shown in FIG. 3, the reflected light from a distant object is attenuated and the output of the light receiving sensor 32 becomes small. In the example shown in FIG. 3, when the subject distance exceeds 7 m, the relationship between the sensor output and the subject distance becomes non-linear and the distance measurement accuracy deteriorates, so the output of the light receiving sensor 32 is invalidated. For a close-distance object, the attenuation of reflected light is small, so the output of the light receiving sensor 32 becomes large.

図8は、近距離または遠距離被写体において、受光センサ32による測距精度が劣化し、あるいは測距不能となる理由について説明している。図8(a)は、VCSEL21の発光量と時間を示している。発光波形は矩形状の波形である。 FIG. 8 explains the reason why the accuracy of distance measurement by the light receiving sensor 32 deteriorates or becomes impossible to measure distance for a close or long distance object. FIG. 8(a) shows the amount of light emitted from the VCSEL 21 and the time. The emission waveform is a rectangular waveform.

図8(b)は、被写体距離が中間距離(1~7m)での受光センサ32の出力波形を示す。受光波形は矩形ではなく、少し遅延を持つ正弦波状の波形となり、発光と受光の位相差Δtを測定するポイントを決めるため、受光センサ32に出力判断閾値を設け、このレベルに達するまでの時間を計測し、その位相差を距離に換算する。中間距離にある被写体については精度の良い測距が可能である。 FIG. 8(b) shows the output waveform of the light receiving sensor 32 when the subject distance is an intermediate distance (1 to 7 m). The received light waveform is not rectangular but a sinusoidal waveform with a slight delay. In order to determine the point at which the phase difference Δt between emitted light and received light is measured, an output judgment threshold is set in the light receiving sensor 32, and the time required to reach this level is determined. Measure and convert the phase difference into distance. Accurate distance measurement is possible for objects at intermediate distances.

図8(c)は、被写体距離が近距離時(1m以内)の受光センサ32の出力波形を示す。被写体が近距離にあると、受光センサ32の出力が大きく飽和するため、波形の立ち上がりが急峻となる。このため、本来想定された正弦波形に対して、受光センサ32の出力が判断閾値(この例では50%)に達する時間に誤差が生じる。この誤差成分は図2(b)中のEで示される。この誤差Eの影響は、前記位相差Δtが小さい近距離ほど大きくなるため、近距離で受光センサ32の出力が飽和する場合には測距誤差が大きくなる。そのため、受光センサ32の出力が飽和する場合は測距演算を行わない。 FIG. 8(c) shows the output waveform of the light receiving sensor 32 when the subject distance is short (within 1 m). When the subject is close, the output of the light receiving sensor 32 is greatly saturated, and the rise of the waveform becomes steep. For this reason, an error occurs in the time when the output of the light receiving sensor 32 reaches the determination threshold (50% in this example) with respect to the originally assumed sine waveform. This error component is indicated by E in FIG. 2(b). The effect of this error E becomes larger as the phase difference Δt becomes smaller at a shorter distance, so when the output of the light receiving sensor 32 is saturated at a shorter distance, the distance measurement error becomes larger. Therefore, when the output of the light receiving sensor 32 is saturated, distance measurement calculation is not performed.

図8(d)は、被写体が遠距離(7m以遠)にある場合の受光センサ32の出力を示す。被写体が遠距離になるほど、受光センサ32の受光量が低下する。このため、受光センサ32の出力が位相差計測に必要な判断閾値を超えることがなく、前記位相差Δtの計測ができなくなる。この場合も、測距演算は行わない。 FIG. 8(d) shows the output of the light receiving sensor 32 when the subject is far away (more than 7 meters). The farther the subject is, the lower the amount of light received by the light receiving sensor 32 is. Therefore, the output of the light receiving sensor 32 does not exceed the determination threshold necessary for phase difference measurement, making it impossible to measure the phase difference Δt. In this case as well, distance measurement calculations are not performed.

図8から明らかなように、VCSEL21の全素子による1回の同じ光量、同時発光で測距可能な被写体距離は一定の範囲に限られる。 As is clear from FIG. 8, the distance to a subject that can be measured by simultaneously emitting the same amount of light once by all elements of the VCSEL 21 is limited to a certain range.

図4は、受光センサ32の出力に応じたVCSEL21の発光量制御について示している。図4の横軸は受光センサ32の出力で、最大レベルを255、最小レベルを0で表している。縦軸はVCSEL21の発光量で、最大3Wである。 FIG. 4 shows the control of the amount of light emitted from the VCSEL 21 according to the output of the light receiving sensor 32. The horizontal axis in FIG. 4 is the output of the light receiving sensor 32, with the maximum level represented by 255 and the minimum level represented by 0. The vertical axis represents the amount of light emitted by the VCSEL 21, which is 3W at maximum.

図4に示すように、VCSEL21の全素子を同じ光量で同時に発光したとき(1回目の発光、予備発光)の受光センサ32の出力に応じて2回目の発光すなわち本発光におけるVCSEL21の発光量を制御する。被写体までの距離が遠く、予備発光において受光センサ32の出力が微小で測距ができない場合には、本発光におけるVCSEL21の発光量を大きくする。被写体までの距離が近く、予備発光において受光センサ32の出力が飽和してしまい、測距ができない場合には、本発光におけるVCSEL21の発光量を小さくする。このような本発光における発光量の制御は、前記領域別光量制御部41が前記発光制御部50を制御することによって行われる。 As shown in FIG. 4, when all elements of the VCSEL 21 simultaneously emit light with the same amount of light (first light emission, preliminary light emission), the light emission amount of the VCSEL 21 during the second light emission, that is, the main light emission, is determined according to the output of the light receiving sensor 32. Control. If the distance to the subject is far and the output of the light receiving sensor 32 is so small in the preliminary light emission that distance measurement cannot be performed, the amount of light emitted by the VCSEL 21 in the main light emission is increased. If the distance to the subject is short and the output of the light receiving sensor 32 is saturated during preliminary light emission and distance measurement cannot be performed, the amount of light emitted by the VCSEL 21 during the main light emission is reduced. Such control of the light emission amount in the main light emission is performed by the area-based light amount control section 41 controlling the light emission control section 50.

図5(a)及び図5(b)は、受光センサ32の受光領域毎の測光値に応じたVCSEL21の発光量制御について説明している。図5(a)は、受光センサ32の受光領域を8×8分割したときの予備発光における各領域の受光センサ32の出力分布例を塗りつぶしパターンを変えることで表している。具体的には、受光センサ32の出力に応じて、出力が大きい領域を濃度が薄い塗りつぶしパターンで表現し、出力が小さい領域を濃度が濃い塗りつぶしパターンで表現している。換言すると、濃度が薄い塗りつぶしパターンで表現された領域は、この領域にある被写体までの距離が近いことを示しており、濃度が濃い塗りつぶしパターンで表現された領域は、この領域にある被写体までの距離が遠いことを示している。被写体が実質的に無限遠の位置にある領域は最も濃度が濃い塗りつぶしパターンで表現しており、被写体が最至近の位置にある領域、換言すると、受光センサ32の出力が最大となる領域(受光センサ32の出力が飽和している領域)は塗りつぶしパターンを用いず、白色で示している。なお、図5(a)では、説明を簡素化するために、白色を含めた5種類の塗りつぶしパターンで表現しているが、実際の受光センサ32の出力が5段階であることを示しているものではない。 5(a) and 5(b) explain the control of the amount of light emitted by the VCSEL 21 according to the photometric value of each light receiving area of the light receiving sensor 32. FIG. 5A shows an example of the output distribution of the light receiving sensor 32 in each area during preliminary light emission when the light receiving area of the light receiving sensor 32 is divided into 8×8 areas by changing the filling pattern. Specifically, according to the output of the light-receiving sensor 32, areas with high output are expressed by a filled pattern with a low density, and areas with a low output are expressed with a filled pattern with a high density. In other words, an area expressed with a light fill pattern indicates that the distance to the subject in this area is short, and an area expressed with a dark fill pattern indicates that the distance to the subject in this area is short. It shows that the distance is far. The area where the subject is substantially at infinity is represented by a filled pattern with the highest density, and the area where the subject is closest, in other words, the area where the output of the light receiving sensor 32 is maximum (light receiving The area (area where the output of the sensor 32 is saturated) is shown in white without using a fill pattern. In addition, in FIG. 5(a), in order to simplify the explanation, five types of fill patterns including white are used, but this shows that the actual output of the light receiving sensor 32 is in five levels. It's not a thing.

図5(b)は、予備発光において受光センサ32の出力分布が図5(a)に示す例のようになった場合にVCSEL21に対して設定される領域毎の発光量を塗りつぶしパターンを変えることで表している。塗りつぶしパターンの濃度が薄くなるほど発光量が大きいことを表している。図5(a)に対応して、被写体が近距離にあると思われる領域では、VCSEL21の発光量が小さく、被写体が遠距離にあると思われる領域については、VCSEL21の発光量が大きくなるように、制御する。なお、図5(a)と同様に図5(b)では、説明を簡素化するために、白色を含めた5種類の塗りつぶしパターンで表現しているが、実際のVCSEL21の発光量が5段階であることを示しているものではない。 FIG. 5(b) shows how to change the filling pattern of the light emission amount for each area set for the VCSEL 21 when the output distribution of the light receiving sensor 32 becomes like the example shown in FIG. 5(a) during preliminary light emission. It is expressed as This indicates that the lighter the density of the filled pattern, the greater the amount of light emitted. Corresponding to FIG. 5(a), the amount of light emitted by the VCSEL 21 is small in areas where the subject is considered to be close, and the amount of light emitted by the VCSEL 21 is increased in areas where the subject is considered to be far away. to control. Note that, similar to FIG. 5(a), in FIG. 5(b), in order to simplify the explanation, five types of fill patterns are used, including white, but the actual light emission amount of the VCSEL 21 is in five levels. It does not indicate that it is.

図6は、受光センサ32を標準感度に設定した通常撮影の処理フローを示す。STEP1では撮影前の予備発光を行う。このときVCSEL21の発光量は全画素共通とし、全領域均一の発光量となるように設定する。 FIG. 6 shows a processing flow for normal photography in which the light receiving sensor 32 is set to standard sensitivity. In STEP 1, preliminary light emission is performed before photographing. At this time, the amount of light emitted from the VCSEL 21 is set to be common to all pixels, and set so that the amount of light emitted from the VCSEL 21 is uniform throughout the area.

STEP2では、予備発光の反射光を受光センサ32で受光し検知する。受光センサ32の受光領域は前述の通り分割されていて、それぞれの領域におけるセンサ出力値から各領域の統計値を算出する。 In STEP 2, the light receiving sensor 32 receives and detects the reflected light of the preliminary light emission. The light receiving area of the light receiving sensor 32 is divided as described above, and the statistical value of each area is calculated from the sensor output value in each area.

STEP3では、STEP2で算出された各受光領域の統計値から、本撮影時のVCSEL21の各領域における発光量を設定する。VCSEL21の発光量については、図5(a)及び図5(b)において説明した通りである。 In STEP 3, the amount of light emitted in each area of the VCSEL 21 at the time of actual photographing is set from the statistical value of each light receiving area calculated in STEP 2. The amount of light emitted by the VCSEL 21 is as described in FIGS. 5(a) and 5(b).

STEP4では、STEP3で設定されたVCSEL21の発光量で発光させ本発光を行う。STEP5では、発光タイミングに合わせて受光センサ32のデータを取得する。 In STEP 4, the main light emission is performed by causing the VCSEL 21 to emit light with the light emission amount set in STEP 3. In STEP 5, data of the light receiving sensor 32 is acquired in accordance with the light emission timing.

STEP6では、STEP5で取得された受光センサ32のデータから、測距処理を実行し、画角内の被写体の距離情報を算出する。以上のとおり、VCSEL21の発光領域ごとに適正な発光量を設定することで、測距可能な被写体距離のレンジを拡大することが可能になる。 In STEP 6, distance measurement processing is executed from the data of the light receiving sensor 32 acquired in STEP 5, and distance information of the subject within the angle of view is calculated. As described above, by setting an appropriate amount of light emission for each light emitting area of the VCSEL 21, it is possible to expand the range of subject distances that can be measured.

[実施例2]
図7は、受光センサ32の感度を設定し直す場合であって、高感度による撮影の処理フローの例を示す。図7におけるSTEP1~5は、図6の処理フローにおけるSTEP1~5と同様であり、撮影データ取得まで実行する。STEP6で、本発光時の反射光を受光センサ32で検知し、受光領域毎のセンサ出力の統計値を算出し、センサ出力が小さく測距できない領域すなわち要感度アップ領域を検知する。
[Example 2]
FIG. 7 shows a case where the sensitivity of the light-receiving sensor 32 is reset, and shows an example of a processing flow for photographing with high sensitivity. STEPs 1 to 5 in FIG. 7 are the same as STEPs 1 to 5 in the processing flow of FIG. 6, and are executed up to the acquisition of photographic data. In STEP 6, the light receiving sensor 32 detects the reflected light during the main emission, calculates the statistical value of the sensor output for each light receiving area, and detects an area where the sensor output is too small to measure the distance, that is, an area where sensitivity needs to be increased.

STEP7では、STEP6で検知された要感度アップ領域のみについて受光センサ32の受光感度を上げる。STEP8では、VCSEL21の発光領域ごとに発光量を設定し、この設定に従いSTEP9でVCSEL21の各発光領域を発光させる。 In STEP7, the light-receiving sensitivity of the light-receiving sensor 32 is increased only for the sensitivity-up required area detected in STEP6. In STEP 8, the amount of light emission is set for each light emitting region of the VCSEL 21, and in accordance with this setting, each light emitting region of the VCSEL 21 is caused to emit light.

STEP10では、受光センサ32で受光領域ごとに測光する。STEP11では、STEP10における測光の結果、要感度アップ領域があるか否かを確認し、要感度アップ領域が残っている場合はSTEP7に戻りその領域の感度を高めて再測光する。要感度アップ領域が無い場合はSTEP12に進んで撮影処理を行い、受光センサ32による検出データを格納する。STEP11では、要感度アップ領域が残っていればSTEP7からのフローを繰り返し、撮影回数がN回を上限とし、STEP12の撮影処理を行う。 In STEP 10, the light receiving sensor 32 measures light for each light receiving area. In STEP 11, as a result of the photometry in STEP 10, it is confirmed whether or not there is a region requiring increased sensitivity. If a region requiring increased sensitivity remains, the process returns to STEP 7 to increase the sensitivity of that region and perform photometry again. If there is no area requiring increased sensitivity, the process proceeds to STEP 12, where photographing processing is performed and data detected by the light receiving sensor 32 is stored. In STEP 11, if a region requiring increased sensitivity remains, the flow from STEP 7 is repeated, and the number of shots is set to N times as the upper limit, and the shooting process in STEP 12 is performed.

STEP13では、STEP12で取得された受光センサ32のデータから、測距処理を実行し、画角内の被写体の距離情報を算出する。 In STEP 13, distance measurement processing is executed from the data of the light receiving sensor 32 acquired in STEP 12, and distance information of the subject within the viewing angle is calculated.

以上のように処理することで、VCSEL21の発光領域ごとの適正な発光量、受光センサ32の受光領域ごとの適正な感度となり、測距可能な被写体距離のレンジを図6にしめすレンジよりも更に拡大することが可能になる。 By processing as described above, the appropriate amount of light emission for each light emitting area of the VCSEL 21 and the appropriate sensitivity for each light receiving area of the light receiving sensor 32 are achieved, making the range of subject distance that can be measured even further than the range shown in Figure 6. It becomes possible to expand.

以上説明した実施例では、複数の発光領域を2次元に配置してなるレーザー光源として、複数の発光領域を2次元に配置したVCSELを用いて説明した。しかし、複数の発光領域を2次元に配置してなる光源であれば、VCSELに限定されるものではない。 In the embodiments described above, a VCSEL in which a plurality of light emitting regions are arranged two-dimensionally is used as a laser light source in which a plurality of light-emitting regions are arranged two-dimensionally. However, the light source is not limited to a VCSEL as long as it is a light source formed by two-dimensionally arranging a plurality of light emitting regions.

20 投光系
22 光学素子
30 受光系
32 受光センサ
41 領域別光量制御部
42 測距部
50 発光制御部
20 Light projecting system 22 Optical element 30 Light receiving system 32 Light receiving sensor 41 Area-specific light amount control section 42 Distance measuring section 50 Light emission control section

特願2012-198337号公報Patent Application No. 2012-198337

Claims (14)

複数の発光領域を有する光源を含み、測距領域に対して光を投光する投光系と、
複数の受光領域を有する受光部を含み、前記光源から出射された出射光が前記測距領域に存在する測距対象により反射された反射光を受光し検出信号を出力する受光系と、
記複数の受光領域に対応する前記光源の各発光領域の発光量を、発光領域毎に制御する領域別光量制御部と、
前記受光領域毎に受光量を計測する領域光量計測部と、
を備え、
記領域別光量制御部は、前記投光系に第1の投光を行わせ、
前記受光系は、前記第1の投光による第1の検出信号を出力し、
前記領域別光量制御部は、前記領域光量計測部で前記第1の検出信号に基づき計測された前記受光領域毎の受光量に基づき第2の投光における前記各発光領域の発光量を制御して前記投光系に第2の投光を行わせ
前記受光系は、前記第2の投光による第2の検出信号を出力することを特徴とする測距装置。
a light projection system including a light source having a plurality of light emitting regions and projecting light onto a distance measurement region ;
a light receiving system that includes a light receiving section having a plurality of light receiving areas, receives reflected light emitted from the light source and reflected by a distance measurement target existing in the distance measurement area , and outputs a detection signal;
a region- specific light amount control unit that controls the amount of light emitted from each light emitting region of the light source corresponding to the plurality of light receiving regions for each light emitting region;
an area light amount measurement unit that measures the amount of light received for each of the light receiving areas;
Equipped with
The area - specific light amount control unit causes the light projection system to perform first light projection,
The light receiving system outputs a first detection signal by the first light projection,
The area-specific light amount control unit controls the amount of light emitted from each of the light emitting areas in the second light projection based on the amount of light received for each light receiving area measured by the area light amount measurement unit based on the first detection signal. causing the light projection system to perform a second light projection ,
The distance measuring device is characterized in that the light receiving system outputs a second detection signal based on the second light projection .
前記第1の投光で計測された前記受光領域毎の受光量に基づき、前記受光量が大きい領域ほど前記第2の投光の発光量が小さくなるように、前記光源の各発光領域の発光量を制御する請求項1記載の測距装置。 Based on the amount of light received in each of the light receiving areas measured by the first light emitting, the light emission of each light emitting area of the light source is such that the area where the amount of light received is larger, the smaller the amount of light emitted by the second light emitting is. The distance measuring device according to claim 1, wherein the distance measuring device controls the amount . 前記第1の投光における前記受光領域毎の出力値から前記受光領域毎の統計値を算出し、前記統計値に基づき、前記第2の投光における前記光源の各発光領域の発光量を制御する請求項1記載の測距装置。 A statistical value for each light-receiving area is calculated from an output value for each light-receiving area in the first light emission, and based on the statistical value, a light emission amount of each light-emitting area of the light source in the second light emission is controlled. The distance measuring device according to claim 1. 前記第1の投光で前記光源から出射される光の前記測距領域における照度分布は均一である請求項記載の測距装置。 The distance measuring device according to claim 1 , wherein the illuminance distribution of the light emitted from the light source in the first light projection in the distance measuring area is uniform . 前記複数の受光領域は、撮像素子の受光面であって前記複数の発光領域と同じ数で同じ配置になるように分割されている請求項記載の測距装置。 2. The distance measuring device according to claim 1 , wherein the plurality of light-receiving areas are divided into a light-receiving surface of an image sensor so as to have the same number and the same arrangement as the plurality of light-emitting areas. 複数の発光領域を2次元に配置してなる光源と、
前記光源から出射された出射光を測距領域へ導く光学素子と、
前記出射光が前記測距領域に存在する測距対象により反射された反射光を受光する受光部と、
を備えた測距装置であって、
前記受光部は複数の受光領域に分けられており、
前記複数の受光領域に対応する前記光源の各発光領域の発光量を、発光領域毎に制御する領域別光量制御部と、
前記受光領域毎に受光量を計測する領域光量計測部と、
前記光源の発光から前記受光部による受光までの時間を前記受光領域ごとに計測することで前記受光領域ごとに前記測距対象までの距離を計測する測距部と、
を有し、
前記領域別光量制御部は、前記光源の各発光点を同じ光量で同時発光させて予備発光を行い、前記予備発光によって前記領域光量計測部で計測された受光領域毎の受光量に基づき本発光の発光量を制御し、
前記測距部は、前記本発光によって前記受光領域ごとに前記測距対象までの距離を計測することを特徴とする測距装置。
A light source formed by two-dimensionally arranging a plurality of light emitting regions;
an optical element that guides the emitted light emitted from the light source to a ranging area;
a light receiving unit that receives reflected light from which the emitted light is reflected by a distance measurement target existing in the distance measurement area;
A distance measuring device comprising:
The light receiving section is divided into a plurality of light receiving areas,
a region-specific light amount control unit that controls the amount of light emitted from each light emitting region of the light source corresponding to the plurality of light receiving regions for each light emitting region;
an area light amount measurement unit that measures the amount of light received for each of the light receiving areas;
a distance measurement unit that measures the distance to the distance measurement target for each of the light reception areas by measuring the time from the light emission of the light source to the reception of light by the light reception unit for each of the light reception areas;
has
The region-based light amount control section performs preliminary light emission by simultaneously causing each light emitting point of the light source to emit light with the same amount of light, and performs main light emission based on the amount of light received for each light receiving area measured by the area light amount measurement section by the preliminary light emission. Controls the amount of light emitted by
The distance measuring device is characterized in that the distance measuring unit measures the distance to the distance measuring object for each of the light receiving areas by the main light emission .
前記領域別光量制御部は、前記予備発光で計測された前記受光領域ごとの受光量に基づき、前記受光量が大きい領域ほど前記本発光の発光量が小さくなるように、前記光源の各発光領域の発光量を制御する請求項6記載の測距装置。 The area-specific light amount control unit controls each light emitting area of the light source so that the area where the amount of received light is larger is smaller in the amount of light emitted in the main emission based on the amount of light received in each of the light receiving areas measured in the preliminary light emission. 7. The distance measuring device according to claim 6, wherein the distance measuring device controls the amount of light emitted by the distance measuring device. 前記受光部の受光領域毎の受光感度を制御する制御部を有し、
前記測距部は、前記領域光量計測部で計測した受光量が不足する受光領域の受光感度を前記制御部により上げて、測距を行う請求項6記載の測距装置
a control unit that controls the light-receiving sensitivity of each light-receiving area of the light-receiving unit;
7. The distance measuring device according to claim 6, wherein the distance measuring section measures the distance by increasing the light receiving sensitivity of a light receiving area where the amount of light received by the area light amount measuring section is insufficient , by using the control section.
前記受光部の受光領域毎の受光感度を制御する制御部を有し、a control unit that controls the light-receiving sensitivity of each light-receiving area of the light-receiving unit;
前記測距部は、前記領域光量計測部で計測した受光量が飽和する受光領域の受光感度を前記制御部により下げて測距を行う請求項6記載の測距装置。7. The distance measuring device according to claim 6, wherein the distance measuring section measures the distance by lowering the light receiving sensitivity of the light receiving area where the amount of light received measured by the area light amount measuring section is saturated.
前記光源は、垂直共振器面発光レーザーである請求項6乃至9のいずれかに記載の測距装置。The distance measuring device according to any one of claims 6 to 9, wherein the light source is a vertical cavity surface emitting laser. 前記光学素子は、広角レンズである請求項6乃至10のいずれかに記載の測距装置。The distance measuring device according to any one of claims 6 to 10, wherein the optical element is a wide-angle lens. 複数の発光領域を2次元に配置してなる光源と、A light source formed by two-dimensionally arranging a plurality of light emitting regions;
前記光源から出射された出射光を測距領域へ導く光学素子と、an optical element that guides the emitted light emitted from the light source to a ranging area;
前記出射光が前記測距領域に存在する測距対象により反射された反射光を受光する受光部と、a light receiving unit that receives reflected light from which the emitted light is reflected by a distance measurement target existing in the distance measurement area;
を備えた測距装置を用いた測距方法であって、A distance measuring method using a distance measuring device equipped with
前記受光部は複数の受光領域に分けられており、The light receiving section is divided into a plurality of light receiving areas,
前記複数の受光領域に対応する前記光源の各発光領域の発光量を各発光領域毎に制御する領域別光量制御工程と、a region-based light amount control step of controlling the amount of light emitted from each light emitting region of the light source corresponding to the plurality of light receiving regions for each light emitting region;
前記受光領域毎に受光量を計測する領域光量計測工程と、an area light amount measurement step of measuring the amount of light received for each of the light receiving areas;
前記光源の発光から前記受光部による受光までの時間を前記受光領域毎に計測することで前記受光領域毎に前記測距対象までの距離を計測する測距工程と、A distance measuring step of measuring the distance to the distance measurement target for each of the light receiving areas by measuring the time from the light emission of the light source to the reception of light by the light receiving unit for each of the light receiving areas;
を有し、has
前記領域別光量制御工程は、前記光源の各発光点を同じ光量で同時発光させて予備発光を行い、前記予備発光によって領域光量計測工程で計測された領域毎の受光量に基づき本発光の発光量を制御し、In the region-specific light amount control step, each light emitting point of the light source simultaneously emits light with the same amount of light to perform preliminary light emission, and the main light emission is performed based on the amount of light received for each region measured in the region light amount measurement step by the preliminary light emission. control the amount,
前記測距工程は、前記本発光によって前記受光領域ごとに前記測距対象までの距離を計測することを特徴とする測距方法。The distance measuring method is characterized in that in the distance measuring step, the distance to the distance measuring object is measured for each of the light receiving areas by the main light emission.
前記受光部の受光領域毎の受光感度を制御する制御部を有し、a control unit that controls the light-receiving sensitivity of each light-receiving area of the light-receiving unit;
前記測距工程は、前記領域光量計測工程で計測した受光量が不足する受光領域の受光感度を前記制御部により上げて測距を行う請求項12記載の測距方法。13. The distance measuring method according to claim 12, wherein in the distance measuring step, the control unit increases the light receiving sensitivity of the light receiving area where the amount of light received in the area light amount measuring step is insufficient.
前記受光部の受光領域毎の受光感度を制御する制御部を有し、a control unit that controls the light-receiving sensitivity of each light-receiving area of the light-receiving unit;
前記測距工程は、前記領域光量計測工程で計測した受光量が飽和する受光領域の受光感度を前記制御部により下げて測距を行う請求項12記載の測距方法。13. The distance measuring method according to claim 12, wherein in the distance measuring step, the distance is measured by lowering the light receiving sensitivity of the light receiving area where the amount of light received measured in the area light amount measuring step is saturated.
JP2019162233A 2019-03-20 2019-09-05 Distance measuring device and method Active JP7388064B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20162213.1A EP3719529A1 (en) 2019-03-20 2020-03-10 Range finding device and range finding method
US16/819,206 US11914039B2 (en) 2019-03-20 2020-03-16 Range finding device and range finding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053171 2019-03-20
JP2019053171 2019-03-20

Publications (2)

Publication Number Publication Date
JP2020160044A JP2020160044A (en) 2020-10-01
JP7388064B2 true JP7388064B2 (en) 2023-11-29

Family

ID=72643017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019162233A Active JP7388064B2 (en) 2019-03-20 2019-09-05 Distance measuring device and method

Country Status (1)

Country Link
JP (1) JP7388064B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166523A1 (en) * 2020-02-21 2021-08-26 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and distance measurement method
JP2023009480A (en) * 2021-07-07 2023-01-20 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and distance measurement method
JP2023176643A (en) * 2022-05-31 2023-12-13 ソニーセミコンダクタソリューションズ株式会社 Ranging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130954A (en) 2001-10-24 2003-05-08 Nikon Corp Range finder
JP2008241435A (en) 2007-03-27 2008-10-09 Stanley Electric Co Ltd Distance image generation device
JP2017090144A (en) 2015-11-06 2017-05-25 株式会社リコー Object detection device, sensing device and moving body device
JP2017173298A (en) 2016-03-16 2017-09-28 株式会社リコー Object detection device and mobile entity device
US20180059221A1 (en) 2016-08-31 2018-03-01 Qualcomm Incorporated Hybrid scanning lidar systems
US20190041522A1 (en) 2017-08-02 2019-02-07 GM Global Technology Operations LLC Method and Apparatus Cross Segment Detection in a Lidar System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130954A (en) 2001-10-24 2003-05-08 Nikon Corp Range finder
JP2008241435A (en) 2007-03-27 2008-10-09 Stanley Electric Co Ltd Distance image generation device
JP2017090144A (en) 2015-11-06 2017-05-25 株式会社リコー Object detection device, sensing device and moving body device
JP2017173298A (en) 2016-03-16 2017-09-28 株式会社リコー Object detection device and mobile entity device
US20180059221A1 (en) 2016-08-31 2018-03-01 Qualcomm Incorporated Hybrid scanning lidar systems
US20190041522A1 (en) 2017-08-02 2019-02-07 GM Global Technology Operations LLC Method and Apparatus Cross Segment Detection in a Lidar System

Also Published As

Publication number Publication date
JP2020160044A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7388064B2 (en) Distance measuring device and method
CN111830530B (en) Distance measuring method, system and computer readable storage medium
KR102134688B1 (en) Optical distance measuring method and optical distance measuring device
US7760338B2 (en) Method for the detection of an object and optoelectronic apparatus
US9134117B2 (en) Distance measuring system and distance measuring method
CN111352120B (en) Flight time ranging system and ranging method thereof
CN108845332B (en) Depth information measuring method and device based on TOF module
CN110709722A (en) Time-of-flight camera
JP2009192499A (en) Apparatus for generating distance image
CN111766596A (en) Distance measuring method, system and computer readable storage medium
JP7321956B2 (en) Method of correcting measurement value of rangefinder
JP2014115264A (en) Three-dimensional shape measuring device and control method therefor
JP7007637B2 (en) Laser ranging device, laser ranging method and position adjustment program
CN111796295A (en) Collector, manufacturing method of collector and distance measuring system
CN111473747B (en) Calibration device, calibration system, electronic device and calibration method
KR20160092137A (en) Controlling method in distance measuring device using TOF
US11914039B2 (en) Range finding device and range finding method
CN102401901B (en) Distance measurement system and distance measurement method
CN111496845B (en) Installation method of TOF module for robot
JP2022168956A (en) Laser measuring device, and measurement method thereof
US11733362B2 (en) Distance measuring apparatus comprising deterioration determination of polarizing filters based on a reflected polarized intensity from a reference reflector
EP4215870A1 (en) Measurement device and measurement method
CN111796296A (en) Distance measuring method, system and computer readable storage medium
KR101961479B1 (en) Apparatus and method for measuring optical center in camera module
KR20190092957A (en) Method for measuring distance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7388064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151