JP2020160044A - Distance measuring device and distance measuring method - Google Patents

Distance measuring device and distance measuring method Download PDF

Info

Publication number
JP2020160044A
JP2020160044A JP2019162233A JP2019162233A JP2020160044A JP 2020160044 A JP2020160044 A JP 2020160044A JP 2019162233 A JP2019162233 A JP 2019162233A JP 2019162233 A JP2019162233 A JP 2019162233A JP 2020160044 A JP2020160044 A JP 2020160044A
Authority
JP
Japan
Prior art keywords
light
light receiving
region
distance measuring
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019162233A
Other languages
Japanese (ja)
Other versions
JP7388064B2 (en
Inventor
紀克 新浪
Norikatsu Niinami
紀克 新浪
竹中 博一
Hiroichi Takenaka
博一 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to EP20162213.1A priority Critical patent/EP3719529A1/en
Priority to US16/819,206 priority patent/US11914039B2/en
Publication of JP2020160044A publication Critical patent/JP2020160044A/en
Application granted granted Critical
Publication of JP7388064B2 publication Critical patent/JP7388064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

To obtain a distance measuring device and a distance measuring method that can extend the range where distance is measurable.SOLUTION: A distance measuring device comprises: a light source that has light emitting areas arranged in a two-dimensional manner; and a light receiving unit that receives reflected light reflected by an object of distance measurement present in a distance measurement area. An area-classified light quantity control unit 41 performs preliminary light emission by simultaneously emitting light emission points of the light source with the same quantity of light, and controls the quantity of the light emission based on the quantity of received light of each of light receiving areas measured by an area light quantity measuring unit through the preliminary light emission. A distance measuring unit 42 measures the distance to the object of distance measurement for each of the light receiving areas through the light emission.SELECTED DRAWING: Figure 1

Description

本発明は、測距装置および測距方法に関するものである。 The present invention relates to a distance measuring device and a distance measuring method.

撮像領域に向けてレーザー光を照射し、撮像領域に存在する物体からの反射光を受光して、出射から受光までの時間差から物体までの距離を算出する測距方法が知られている。かかる測距方式はTOF(タイム・オブ・フライト)方式として既に知られている。TOF方式によって測距する測距装置のことをTOFカメラあるいは測距カメラということがある。また、特許文献1では撮像装置と記載しているが、特許文献1の記載されている撮像装置はTOFカメラの一例である。 A distance measuring method is known in which a laser beam is irradiated toward an imaging region, reflected light from an object existing in the imaging region is received, and the distance to the object is calculated from the time difference between emission and reception. Such a distance measuring method is already known as a TOF (Time of Flight) method. A distance measuring device that measures a distance by the TOF method is sometimes called a TOF camera or a distance measuring camera. Further, although Patent Document 1 describes the image pickup device, the image pickup device described in Patent Document 1 is an example of a TOF camera.

TOF方式によって測距する測距装置(TOFカメラ)では、被写体からの反射光の受光レベル(受光量)が重要である。この受光レベルが低いとセンサ出力信号がノイズに埋もれ、受光レベルが高すぎるとセンサ出力信号が飽和して正確な測距値を得ることができない。特許文献1記載の発明は、測光部による測光エリアを設定し、測光エリアの測光量が正常値になるように照明部による照明光量を制御して、正確な測距値を得ようとするものである。 In a distance measuring device (TOF camera) that measures a distance by the TOF method, the light receiving level (light receiving amount) of the reflected light from the subject is important. If the light receiving level is low, the sensor output signal is buried in noise, and if the light receiving level is too high, the sensor output signal is saturated and an accurate ranging value cannot be obtained. The invention described in Patent Document 1 attempts to obtain an accurate distance measurement value by setting a photometric area by the photometric unit and controlling the photometric light amount by the photometric unit so that the photometric amount in the photometric area becomes a normal value. Is.

前記特許文献1記載の撮像装置(TOFカメラ)は、測距対象領域測光量に基づいて露光制御を行う。すなわち、測光部により露光量を測光し、測光値が正常値以上であれば照明部による照明光量を下げ、測光値が正常値以下であれば照明部による照明光量を上げるようになっている。しかし、特許文献1記載の撮像装置(TOFカメラ)では、照明部によって被写体に照明された照射光が被写体により反射され撮像装置(TOFカメラ)に到達する反射光の光量について、この反射光の光量が撮像装置(TOFカメラ)から被写体までの距離に応じて変動することについて、考慮されていない。そのため、測距可能な範囲を拡張する、という観点で改善の余地がある。 The imaging device (TOF camera) described in Patent Document 1 performs exposure control based on the photometric amount in the distance measurement target area. That is, the exposure amount is measured by the photometric unit, and if the photometric value is equal to or more than the normal value, the amount of illumination light by the illumination unit is decreased, and if the photometric value is equal to or less than the normal value, the amount of illumination light by the illumination unit is increased. However, in the image pickup device (TOF camera) described in Patent Document 1, the amount of reflected light that is reflected by the subject and reaches the image pickup device (TOF camera) after the irradiation light illuminated by the illumination unit on the subject is the amount of the reflected light. Is not considered to vary depending on the distance from the image pickup device (TOF camera) to the subject. Therefore, there is room for improvement from the viewpoint of expanding the range that can be measured.

本発明は、以上述べたような従来技術の課題を解消するためになされたもので、測距可能な範囲を拡張することができる測距装置および測距方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a distance measuring device and a distance measuring method capable of expanding the range that can be measured.

本発明に係る撮像装置は、
複数の発光領域を2次元に配置してなる光源と、
前記光源から出射された出射光を測距領域へ導く光学素子と、
前記出射光が前記測距領域に存在する測距対象により反射された反射光を受光する受光部と、
を備えた測距装置であって、
前記受光部は複数の受光領域に分けられており、
前記複数の受光領域に対応する前記光源の各発光領域の発光量を各発光領域毎に制御する領域別光量制御部と、
前記受光領域毎に受光量を計測する領域光量計測部と、
前記光源の発光から前記受光部による受光までの時間を前記受光領域ごとに計測することで前記受光領域ごとに前記測距対象までの距離を計測する測距部と、
を有し、
前記領域別光量制御部は、前記光源の各発光点を同じ光量で同時発光させて予備発光を行い、前記予備発光によって前記領域光量計測部で計測された受光領域毎の受光量に基づき本発光の発光量を制御し、
前記測距部は、前記本発光によって前記受光領域ごとに前記測距対象までの距離を計測することを最も主要な特徴とする。
The imaging device according to the present invention is
A light source in which multiple light emitting regions are arranged in two dimensions,
An optical element that guides the emitted light emitted from the light source to the ranging region,
A light receiving unit that receives the reflected light that the emitted light is reflected by the distance measuring object existing in the distance measuring region.
It is a distance measuring device equipped with
The light receiving portion is divided into a plurality of light receiving regions.
An area-specific light amount control unit that controls the amount of light emitted from each light source of the light source corresponding to the plurality of light receiving areas for each light source.
A region light amount measuring unit that measures the amount of received light for each light receiving area,
A distance measuring unit that measures the distance to the distance measuring target for each light receiving region by measuring the time from the light emission of the light source to the light reception by the light receiving unit for each light receiving region.
Have,
The region-specific light amount control unit simultaneously emits light at the same light amount at each light emitting point of the light source to perform preliminary light emission, and the main light emission is based on the light receiving amount for each light receiving region measured by the region light amount measuring unit by the preliminary light emission. Controls the amount of light emitted from
The most main feature of the distance measuring unit is to measure the distance to the distance measuring target for each light receiving region by the main light emission.

本発明に係る撮像方法は、
複数の発光領域を2次元に配置してなる光源と、
前記光源から出射された出射光を測距領域へ導く光学素子と、
前記出射光が前記測距領域に存在する測距対象により反射された反射光を受光する受光部と、
を備えた測距装置を用いた測距方法であって、
前記受光部は複数の受光領域に分けられており、
前記複数の受光領域に対応する前記光源の各発光領域の発光量を各発光領域毎に制御する領域別光量制御工程と、
前記受光領域毎に受光量を計測する領域光量計測工程と、
前記光源の発光から前記受光部による受光までの時間を前記受光領域毎に計測することで前記受光領域毎に前記計測対象までの距離を計測する測距工程と、
を有し、
前記領域別光量制御工程は、前記光源の各発光点を同じ光量で同時発光させて予備発光を行い、前記予備発光によって領域光量計測工程で計測された領域毎の受光量に基づき本発光の発光量を制御し、
前記測距工程は、前記本発光によって前記受光領域ごとに前記測距対象までの距離を計測することを最も主要な特徴とする。
The imaging method according to the present invention is
A light source in which multiple light emitting regions are arranged in two dimensions,
An optical element that guides the emitted light emitted from the light source to the ranging region,
A light receiving unit that receives the reflected light that the emitted light is reflected by the distance measuring object existing in the distance measuring region.
It is a distance measuring method using a distance measuring device equipped with.
The light receiving portion is divided into a plurality of light receiving regions.
A region-specific light amount control step for controlling the light emission amount of each light emission region of the light source corresponding to the plurality of light receiving regions for each light emission region.
A region light amount measuring step for measuring the amount of received light for each light receiving area, and
A distance measuring step of measuring the distance to the measurement target in each light receiving area by measuring the time from the light emission of the light source to the light receiving by the light receiving unit in each light receiving area.
Have,
In the region-specific light amount control step, each light emitting point of the light source is simultaneously emitted with the same amount of light to perform preliminary light emission, and the light emission of the main light emission is based on the received light amount for each region measured in the region light amount measuring step by the preliminary light emission. Control the amount,
The most main feature of the distance measuring step is to measure the distance to the distance measuring target for each light receiving region by the main light emission.

本発明によれば、遠距離の被写体に対しても近距離の被写体に対しても測距可能な範囲を拡張することができる。 According to the present invention, it is possible to extend the range that can be measured for both a long-distance subject and a short-distance subject.

本発明に係る測距装置および測距方法の実施例の光学系および制御系を概略的に示す模式図である。It is a schematic diagram which shows schematic the optical system and the control system of the Example of the distance measuring device and distance measuring method which concerns on this invention. 複数の発光領域を2次元アレイ状に配置してなるレーザー光源の例を示す正面図および縦と横方向の照度分布図である。It is a front view and the illuminance distribution map in the vertical and horizontal directions which show an example of the laser light source which arranges a plurality of light emitting regions in a two-dimensional array. レーザー光源の発光量を一定にした場合に測距可能および測距不可能範囲を示すグラフである。It is a graph which shows the range which can measure the distance and the range which cannot measure the distance when the amount of light emission of a laser light source is made constant. TOFセンサ出力に対するレーザー光源の出力制御の例を示すグラフである。It is a graph which shows the example of the output control of a laser light source with respect to the TOF sensor output. レーザー光源を予備発光させたときの各撮像領域におけるTOFセンサ出力の分布を示す図である。It is a figure which shows the distribution of the TOF sensor output in each image pickup region when a laser light source is preliminarily emitted. レーザー光源を予備発光させたときの各撮像領域におけるTOFセンサ出力の分布に対応するレーザー光源の本発光時の発光量分布を示す図である。It is a figure which shows the light emission amount distribution at the time of the main light emission of the laser light source corresponding to the distribution of the TOF sensor output in each image pickup region when the laser light source is pre-emitted. 本発明による通常撮影時の動作を示すフローチャートである。It is a flowchart which shows the operation at the time of a normal shooting by this invention. 本発明による複数回撮影時の動作を示すフローチャートである。It is a flowchart which shows the operation at the time of a plurality of times shooting by this invention. 被写体距離が近すぎる場合と遠すぎる場合の測距精度劣化および測距不能の理由を説明するタイミングチャートである。It is a timing chart explaining the reason why distance measurement accuracy deteriorates and distance measurement is impossible when the subject distance is too close and too far.

以下、本発明に係る測距装置および測距方法の実施例を、図面を参照しながら説明する。 Hereinafter, examples of the distance measuring device and the distance measuring method according to the present invention will be described with reference to the drawings.

[実施例1]
図1は、本発明に係る測距装置の実施例であるTOFカメラ10を示す。図1において、TOFカメラ10は、メガヘルツ[MHz]程度に周波数変調された矩形波もしくはサイン波状のレーザー光を投光する投光系20と、投射光が物体すなわち被写体に当たって反射してきた光を受光する受光系30を備えている。
[Example 1]
FIG. 1 shows a TOF camera 10 which is an example of the distance measuring device according to the present invention. In FIG. 1, the TOF camera 10 receives a light projecting system 20 that emits a rectangular wave or sine wave-shaped laser beam frequency-modulated to about megahertz [MHz] and light that is reflected by the projected light hitting an object, that is, a subject. The light receiving system 30 is provided.

投光系20は、光源として垂直共振器面発光レーザー(以下「VCSEL」という)21を有する。本実施例におけるVCSEL21は、複数の発光領域を2次元に配置している。VCSEL21は、その各発光領域による発光動作が発光制御部50によって制御される。投光系20はまた、VCSEL21の各発光点から発光される光を必要な画角に広げて投光するレンズ22を有する。 The floodlight system 20 has a vertical resonator surface emitting laser (hereinafter referred to as “VCSEL”) 21 as a light source. In the VCSEL 21 in this embodiment, a plurality of light emitting regions are arranged two-dimensionally. The light emitting operation of each light emitting region of the VCSEL 21 is controlled by the light emitting control unit 50. The light projecting system 20 also has a lens 22 that spreads the light emitted from each light emitting point of the VCSEL 21 to a required angle of view and projects the light.

TOFカメラ10は判断部40を有している。判断部40は、発光制御部50を制御することによって、VCSEL21の各発光領域による発光タイミング、発光量などを制御する。 The TOF camera 10 has a determination unit 40. By controlling the light emission control unit 50, the determination unit 40 controls the light emission timing, the light emission amount, and the like in each light emission region of the VCSEL 21.

受光系30は、被写体に当たって反射してきた光を集光する受光レンズ31と、受光レンズ31で集められた光を受光して光電変換する受光センサ32を有する。本実施例では、受光センサ32としてTOFセンサを用いている。受光センサ32は、センサ素子による受光領域がVCSEL21の各発光領域の配置と同じ2次元に配置され、検出信号がセンサ各素子から決められた領域ごとに分割して出力される。 The light receiving system 30 includes a light receiving lens 31 that collects the light reflected by the subject and a light receiving sensor 32 that receives the light collected by the light receiving lens 31 and performs photoelectric conversion. In this embodiment, a TOF sensor is used as the light receiving sensor 32. In the light receiving sensor 32, the light receiving region by the sensor element is arranged in the same two dimensions as the arrangement of each light emitting region of the VCSEL 21, and the detection signal is divided and output for each region determined by each sensor element.

以上説明したように、TOFカメラ10は、複数の発光領域を2次元に配置したレーザー光源を用い、撮像素子の撮像面を、上記複数の発光領域と同じ数で同じ配置の複数の領域にメッシュ状に分割することで撮像領域を複数の領域に分け、各領域について測距する。 As described above, the TOF camera 10 uses a laser light source in which a plurality of light emitting regions are arranged two-dimensionally, and meshes the image pickup surface of the image pickup device into a plurality of regions having the same number and the same arrangement as the plurality of light emitting regions. The imaging area is divided into a plurality of areas by dividing the image into a shape, and the distance is measured for each area.

受光センサ32の検出信号は測光/制御部60に入力される。測光/制御部60は、TOFセンサからなる受光センサ32の各検出領域からのセンサ出力値を統計処理し、撮像領域毎に受光レベル(受光量)を計測する領域光量計測部として機能する。測光/制御部60はまた、受光センサ32の受光時間、受光感度、タイミング等を、VCSEL21の各発光領域からの投光制御と同期して制御する。上記領域光量計測部としての機能は、VCSEL21によるレーザー光の予備発光時も撮像領域毎に受光レベル(受光量)を計測し、この撮像領域毎の受光量に基づいて本発光時の発光量が後で説明する領域別光量制御部41によって制御される。 The detection signal of the light receiving sensor 32 is input to the metering / control unit 60. The photometric / control unit 60 functions as a region light amount measuring unit that statistically processes sensor output values from each detection area of the light receiving sensor 32 composed of a TOF sensor and measures the light receiving level (light receiving amount) for each imaging region. The metering / control unit 60 also controls the light receiving time, light receiving sensitivity, timing, etc. of the light receiving sensor 32 in synchronization with the light projection control from each light emitting region of the VCSEL 21. The function as the region light amount measuring unit measures the light receiving level (light receiving amount) for each imaging region even during the preliminary emission of the laser light by the VCSEL21, and the light emitting amount at the time of the main light emission is based on the received light amount for each imaging region. It is controlled by the area-specific light amount control unit 41, which will be described later.

判断部40は、受光センサ32の受光領域毎のセンサ出力統計値から、撮影時のVCSEL21の発光領域毎の発光量および受光センサ32の受光感度を決定する領域別光量制御部41を有する。また、判断部40は、VCSEL21によるレーザー光の発光から、受光センサ32による受光までの時間を撮像領域ごとに計測することで撮像領域ごとの測距対象までの距離を計測する測距部42を有する。 The determination unit 40 has a region-specific light amount control unit 41 that determines the light emission amount for each light emission region of the VCSEL 21 and the light reception sensitivity of the light reception sensor 32 at the time of photographing from the sensor output statistical value for each light reception region of the light reception sensor 32. Further, the determination unit 40 measures the distance to the distance measurement target for each imaging region by measuring the time from the emission of the laser light by the VCSEL 21 to the reception by the light receiving sensor 32 for each imaging region. Have.

TOFカメラ10による距離測定動作は、一般的な位相検出方式のTOFカメラ動作と同等であり、周知の技術である。例えば、特開2018−077143号公報に記載されているTOFカメラと同様の技術を用いることができる。よって、TOFカメラ10による詳細な距離測定動作の説明は省略する。 The distance measurement operation by the TOF camera 10 is equivalent to the TOF camera operation of a general phase detection method, and is a well-known technique. For example, the same technique as the TOF camera described in JP-A-2018-077143 can be used. Therefore, a detailed description of the distance measurement operation by the TOF camera 10 will be omitted.

次に、図2に示す光源として使用するVCSEL21の、2次元アレイの素子配置について説明する。図2は、VCSEL21の発光面を模式的に示した図であり、黒丸が発光領域を示しており、縦方向および横方向にそれぞれ8個、合計64個の発光領域が配列されている。また、各発光領域内に、複数のVCSEL素子が等間隔で配置されている。 Next, the element arrangement of the two-dimensional array of VCSEL21 used as the light source shown in FIG. 2 will be described. FIG. 2 is a diagram schematically showing the light emitting surface of the VCSEL 21, in which black circles indicate light emitting regions, and eight light emitting regions are arranged in each of the vertical and horizontal directions, for a total of 64 light emitting regions. Further, a plurality of VCSEL elements are arranged at equal intervals in each light emitting region.

図2では、VCSEL素子の上側の縁部と左側の縁部に沿って、それぞれ横方向の照度分布曲線と縦方向の照度分布曲線が示されている。これらの照度分布曲線のうち、点線は各素子の照度分布曲線、実線は全素子を同時に発光させた場合の照度分布曲線を示す。これらの照度分布曲線からわかるように、全素子同時発光時には、ほぼ均一な面発光となる。換言すると、素子の配置間隔は、均一な面発光となるように決められている。VCSEL素子の仕様によって異なるが、1辺がおおよそ50μm程度のスケールである。 In FIG. 2, a horizontal illuminance distribution curve and a vertical illuminance distribution curve are shown along the upper edge portion and the left side edge portion of the VCSEL element, respectively. Of these illuminance distribution curves, the dotted line shows the illuminance distribution curve of each element, and the solid line shows the illuminance distribution curve when all the elements emit light at the same time. As can be seen from these illuminance distribution curves, when all elements emit light at the same time, surface emission is almost uniform. In other words, the arrangement interval of the elements is determined so that the surface emission is uniform. Although it depends on the specifications of the VCSEL element, the scale is about 50 μm on one side.

図3は、VCSEL21の全領域を同じ光量で発光させ、被写体からの反射光を受光センサ32で受光し、受光センサ32から出力される検出信号について示したもので、被写体距離に対する受光センサ32の出力の関係を示す。図3の横軸は被写体距離、縦軸は受光センサ32の出力を0から255までのレベルで表している。当然ながら、被写体は受光センサ32の視野内にある被写体である。 FIG. 3 shows a detection signal in which the entire region of the VCSEL 21 is emitted with the same amount of light, the reflected light from the subject is received by the light receiving sensor 32, and the light receiving sensor 32 outputs the detection signal. The output relationship is shown. The horizontal axis of FIG. 3 represents the subject distance, and the vertical axis represents the output of the light receiving sensor 32 at a level from 0 to 255. As a matter of course, the subject is a subject within the field of view of the light receiving sensor 32.

ここで、受光センサ32における受光面の横方向をX方向、縦方向をY方向、受光面と直交し受光面から離れる方向をZ方向と定義すると、受光面はXY平面となる。受光センサ32から測距する領域(測距領域)を見た場合、測距領域に存在する物体がXY平面と平行な平面でない限り、XY平面上の各分割領域に存在する物体までの距離すなわち被写体までの距離は分割領域ごとに異なる。 Here, if the horizontal direction of the light receiving surface in the light receiving sensor 32 is defined as the X direction, the vertical direction is defined as the Y direction, and the direction orthogonal to the light receiving surface and away from the light receiving surface is defined as the Z direction, the light receiving surface becomes an XY plane. When looking at the distance measuring area (distance measuring area) from the light receiving sensor 32, the distance to the object existing in each divided area on the XY plane, that is, unless the object existing in the distance measuring area is a plane parallel to the XY plane. The distance to the subject differs for each divided area.

そして、TOF方式による測距光の光量を均一にして撮像領域に向けて発光すると、近距離の被写体が存在する領域では反射光のレベルが高くなり、受光センサ32の出力レベルが飽和する。また、遠距離の被写体が存在する領域では反射光のレベルが低くなり、受光センサ32の出力信号がノイズに埋もれる。つまり、被写体位置が近すぎる場合と遠すぎる場合のいずれでも、測距不可能となりあるいは測距精度が劣化し、結果として、測距可能な被写体の距離範囲が制限される Then, when the amount of the distance measurement light by the TOF method is made uniform and emitted toward the imaging region, the level of the reflected light becomes high in the region where a subject at a short distance exists, and the output level of the light receiving sensor 32 is saturated. Further, in a region where a long-distance subject exists, the level of reflected light becomes low, and the output signal of the light receiving sensor 32 is buried in noise. That is, whether the subject position is too close or too far, distance measurement becomes impossible or the distance measurement accuracy deteriorates, and as a result, the distance range of the subject that can be measured is limited.

具体的に説明する。VCSEL21がアレイ状に配置された全画素につき同じ光量で発光すると、図3に示すように、遠方の被写体による反射光は減衰し受光センサ32の出力は小さくなる。図3に示す例では、被写体距離が7mを超えるとセンサ出力と被写体距離の関係が非線形となり、測距精度が劣化するため、受光センサ32の出力は無効とする。近距離被写体に対しては、反射光の減衰は少ないため、受光センサ32の出力は大きくなる。 This will be described in detail. When the VCSEL 21 emits light with the same amount of light for all the pixels arranged in an array, the reflected light from a distant subject is attenuated and the output of the light receiving sensor 32 becomes small, as shown in FIG. In the example shown in FIG. 3, when the subject distance exceeds 7 m, the relationship between the sensor output and the subject distance becomes non-linear and the distance measurement accuracy deteriorates, so that the output of the light receiving sensor 32 is invalid. Since the reflected light is less attenuated for a short-distance subject, the output of the light receiving sensor 32 is large.

図8は、近距離または遠距離被写体において、受光センサ32による測距精度が劣化し、あるいは測距不能となる理由について説明している。図8(a)は、VCSEL21の発光量と時間を示している。発光波形は矩形状の波形である。 FIG. 8 explains the reason why the distance measurement accuracy by the light receiving sensor 32 deteriorates or the distance measurement becomes impossible in a short-distance or long-distance subject. FIG. 8A shows the amount of light emitted from VCSEL21 and the time. The emission waveform is a rectangular waveform.

図8(b)は、被写体距離が中間距離(1〜7m)での受光センサ32の出力波形を示す。受光波形は矩形ではなく、少し遅延を持つ正弦波状の波形となり、発光と受光の位相差Δtを測定するポイントを決めるため、受光センサ32に出力判断閾値を設け、このレベルに達するまでの時間を計測し、その位相差を距離に換算する。中間距離にある被写体については精度の良い測距が可能である。 FIG. 8B shows the output waveform of the light receiving sensor 32 when the subject distance is an intermediate distance (1 to 7 m). The light-receiving waveform is not a rectangle, but a sinusoidal waveform with a slight delay. In order to determine the point at which the phase difference Δt between light emission and light reception is measured, an output determination threshold is set in the light-receiving sensor 32, and the time required to reach this level is set. Measure and convert the phase difference into distance. Accurate distance measurement is possible for subjects at intermediate distances.

図8(c)は、被写体距離が近距離時(1m以内)の受光センサ32の出力波形を示す。被写体が近距離にあると、受光センサ32の出力が大きく飽和するため、波形の立ち上がりが急峻となる。このため、本来想定された正弦波形に対して、受光センサ32の出力が判断閾値(この例では50%)に達する時間に誤差が生じる。この誤差成分は図2(b)中のEで示される。この誤差Eの影響は、前記位相差Δtが小さい近距離ほど大きくなるため、近距離で受光センサ32の出力が飽和する場合には測距誤差が大きくなる。そのため、受光センサ32の出力が飽和する場合は測距演算を行わない。 FIG. 8C shows the output waveform of the light receiving sensor 32 when the subject distance is short (within 1 m). When the subject is at a short distance, the output of the light receiving sensor 32 is greatly saturated, so that the rising edge of the waveform becomes steep. Therefore, an error occurs in the time when the output of the light receiving sensor 32 reaches the determination threshold value (50% in this example) with respect to the originally assumed sine waveform. This error component is indicated by E in FIG. 2 (b). The effect of this error E becomes larger as the phase difference Δt is smaller at a short distance, so that the distance measurement error becomes large when the output of the light receiving sensor 32 is saturated at a short distance. Therefore, when the output of the light receiving sensor 32 is saturated, the distance measurement calculation is not performed.

図8(d)は、被写体が遠距離(7m以遠)にある場合の受光センサ32の出力を示す。被写体が遠距離になるほど、受光センサ32の受光量が低下する。このため、受光センサ32の出力が位相差計測に必要な判断閾値を超えることがなく、前記位相差Δtの計測ができなくなる。この場合も、測距演算は行わない。 FIG. 8D shows the output of the light receiving sensor 32 when the subject is at a long distance (7 m or more). The farther the subject is, the lower the amount of light received by the light receiving sensor 32. Therefore, the output of the light receiving sensor 32 does not exceed the determination threshold value required for the phase difference measurement, and the phase difference Δt cannot be measured. In this case as well, the distance measurement calculation is not performed.

図8から明らかなように、VCSEL21の全素子による1回の同じ光量、同時発光で測距可能な被写体距離は一定の範囲に限られる。 As is clear from FIG. 8, the subject distance that can be measured by the same amount of light and simultaneous light emission by all the elements of the VCSEL 21 is limited to a certain range.

図4は、受光センサ32の出力に応じたVCSEL21の発光量制御について示している。図4の横軸は受光センサ32の出力で、最大レベルを255、最小レベルを0で表している。縦軸はVCSEL21の発光量で、最大3Wである。 FIG. 4 shows the light emission amount control of the VCSEL 21 according to the output of the light receiving sensor 32. The horizontal axis of FIG. 4 is the output of the light receiving sensor 32, and the maximum level is 255 and the minimum level is 0. The vertical axis is the amount of light emitted from VCSEL21, which is a maximum of 3 W.

図4に示すように、VCSEL21の全素子を同じ光量で同時に発光したとき(1回目の発光、予備発光)の受光センサ32の出力に応じて2回目の発光すなわち本発光におけるVCSEL21の発光量を制御する。被写体までの距離が遠く、予備発光において受光センサ32の出力が微小で測距ができない場合には、本発光におけるVCSEL21の発光量を大きくする。被写体までの距離が近く、予備発光において受光センサ32の出力が飽和してしまい、測距ができない場合には、本発光におけるVCSEL21の発光量を小さくする。このような本発光における発光量の制御は、前記領域別光量制御部41が前記発光制御部50を制御することによって行われる。 As shown in FIG. 4, when all the elements of the VCSEL 21 emit light at the same time (first light emission, preliminary light emission), the light emission amount of the VCSEL 21 in the second light emission, that is, the main light emission is determined according to the output of the light receiving sensor 32. Control. When the distance to the subject is long and the output of the light receiving sensor 32 is too small to measure the distance in the preliminary light emission, the amount of light emitted by the VCSEL 21 in the main light emission is increased. When the distance to the subject is short and the output of the light receiving sensor 32 is saturated in the preliminary light emission and the distance cannot be measured, the light emission amount of the VCSEL 21 in the main light emission is reduced. The control of the light emission amount in the main light emission is performed by the area-specific light amount control unit 41 controlling the light emission control unit 50.

図5(a)及び図5(b)は、受光センサ32の受光領域毎の測光値に応じたVCSEL21の発光量制御について説明している。図5(a)は、受光センサ32の受光領域を8×8分割したときの予備発光における各領域の受光センサ32の出力分布例を塗りつぶしパターンを変えることで表している。具体的には、受光センサ32の出力に応じて、出力が大きい領域を濃度が薄い塗りつぶしパターンで表現し、出力が小さい領域を濃度が濃い塗りつぶしパターンで表現している。換言すると、濃度が薄い塗りつぶしパターンで表現された領域は、この領域にある被写体までの距離が近いことを示しており、濃度が濃い塗りつぶしパターンで表現された領域は、この領域にある被写体までの距離が遠いことを示している。被写体が実質的に無限遠の位置にある領域は最も濃度が濃い塗りつぶしパターンで表現しており、被写体が最至近の位置にある領域、換言すると、受光センサ32の出力が最大となる領域(受光センサ32の出力が飽和している領域)は塗りつぶしパターンを用いず、白色で示している。なお、図5(a)では、説明を簡素化するために、白色を含めた5種類の塗りつぶしパターンで表現しているが、実際の受光センサ32の出力が5段階であることを示しているものではない。 5A and 5B describe the light emission amount control of the VCSEL 21 according to the photometric value for each light receiving region of the light receiving sensor 32. FIG. 5A shows an example of the output distribution of the light receiving sensor 32 in each region in the preliminary light emission when the light receiving region of the light receiving sensor 32 is divided into 8 × 8 by changing the fill pattern. Specifically, according to the output of the light receiving sensor 32, a region having a large output is represented by a fill pattern having a low density, and a region having a low output is represented by a fill pattern having a high density. In other words, the area represented by the light-dense fill pattern indicates that the distance to the subject in this area is short, and the area represented by the dark-dense fill pattern is to the subject in this area. It indicates that the distance is long. The area where the subject is substantially infinite is represented by the darkest fill pattern, and the area where the subject is closest to the subject, in other words, the area where the output of the light receiving sensor 32 is maximum (light receiving). The region where the output of the sensor 32 is saturated) is shown in white without using a fill pattern. In FIG. 5A, for simplification of the explanation, five types of fill patterns including white are used, but the actual output of the light receiving sensor 32 is shown in five stages. It's not a thing.

図5(b)は、予備発光において受光センサ32の出力分布が図5(a)に示す例のようになった場合にVCSEL21に対して設定される領域毎の発光量を塗りつぶしパターンを変えることで表している。塗りつぶしパターンの濃度が薄くなるほど発光量が大きいことを表している。図5(a)に対応して、被写体が近距離にあると思われる領域では、VCSEL21の発光量が小さく、被写体が遠距離にあると思われる領域については、VCSEL21の発光量が大きくなるように、制御する。なお、図5(a)と同様に図5(b)では、説明を簡素化するために、白色を含めた5種類の塗りつぶしパターンで表現しているが、実際のVCSEL21の発光量が5段階であることを示しているものではない。 FIG. 5B shows that when the output distribution of the light receiving sensor 32 becomes as shown in the example shown in FIG. 5A in the preliminary light emission, the light emission amount for each region set for the VCSEL 21 is filled and the pattern is changed. It is represented by. The thinner the density of the fill pattern, the larger the amount of light emitted. Corresponding to FIG. 5A, the light emission amount of the VCSEL 21 is small in the region where the subject is considered to be at a short distance, and the light emission amount of the VCSEL 21 is large in the region where the subject is considered to be at a long distance. To control. Similar to FIG. 5 (a), in FIG. 5 (b), in order to simplify the explanation, five types of fill patterns including white are used, but the actual emission amount of VCSEL 21 is five levels. It does not indicate that.

図6は、受光センサ32を標準感度に設定した通常撮影の処理フローを示す。STEP1では撮影前の予備発光を行う。このときVCSEL21の発光量は全画素共通とし、全領域均一の発光量となるように設定する。 FIG. 6 shows a processing flow of normal photographing in which the light receiving sensor 32 is set to the standard sensitivity. In STEP 1, preliminary light emission is performed before shooting. At this time, the light emission amount of the VCSEL 21 is set to be common to all pixels, and the light emission amount is set to be uniform in all areas.

STEP2では、予備発光の反射光を受光センサ32で受光し検知する。受光センサ32の受光領域は前述の通り分割されていて、それぞれの領域におけるセンサ出力値から各領域の統計値を算出する。 In STEP2, the reflected light of the preliminary emission is received and detected by the light receiving sensor 32. The light receiving region of the light receiving sensor 32 is divided as described above, and the statistical value of each region is calculated from the sensor output value in each region.

STEP3では、STEP2で算出された各受光領域の統計値から、本撮影時のVCSEL21の各領域における発光量を設定する。VCSEL21の発光量については、図5(a)及び図5(b)において説明した通りである。 In STEP3, the amount of light emitted in each region of VCSEL21 at the time of main shooting is set from the statistical value of each light receiving region calculated in STEP2. The amount of light emitted from the VCSEL 21 is as described in FIGS. 5 (a) and 5 (b).

STEP4では、STEP3で設定されたVCSEL21の発光量で発光させ本発光を行う。STEP5では、発光タイミングに合わせて受光センサ32のデータを取得する。 In STEP4, the light emission amount of VCSEL21 set in STEP3 is emitted to perform the main light emission. In STEP 5, the data of the light receiving sensor 32 is acquired according to the light emission timing.

STEP6では、STEP5で取得された受光センサ32のデータから、測距処理を実行し、画角内の被写体の距離情報を算出する。以上のとおり、VCSEL21の発光領域ごとに適正な発光量を設定することで、測距可能な被写体距離のレンジを拡大することが可能になる。 In STEP 6, distance measurement processing is executed from the data of the light receiving sensor 32 acquired in STEP 5, and the distance information of the subject within the angle of view is calculated. As described above, by setting an appropriate amount of light emission for each light emission region of the VCSEL 21, it is possible to expand the range of the subject distance that can be measured.

[実施例2]
図7は、受光センサ32の感度を設定し直す場合であって、高感度による撮影の処理フローの例を示す。図7におけるSTEP1〜5は、図6の処理フローにおけるSTEP1〜5と同様であり、撮影データ取得まで実行する。STEP6で、本発光時の反射光を受光センサ32で検知し、受光領域毎のセンサ出力の統計値を算出し、センサ出力が小さく測距できない領域すなわち要感度アップ領域を検知する。
[Example 2]
FIG. 7 shows a case where the sensitivity of the light receiving sensor 32 is reset, and shows an example of a processing flow of photographing with high sensitivity. STEPs 1 to 5 in FIG. 7 are the same as STEPs 1 to 5 in the processing flow of FIG. 6, and the acquisition of shooting data is executed. In STEP 6, the light receiving sensor 32 detects the reflected light at the time of the main light emission, calculates the statistical value of the sensor output for each light receiving area, and detects the area where the sensor output is small and the distance cannot be measured, that is, the area where sensitivity is required to be increased.

STEP7では、STEP6で検知された要感度アップ領域のみについて受光センサ32の受光感度を上げる。STEP8では、VCSEL21の発光領域ごとに発光量を設定し、この設定に従いSTEP9でVCSEL21の各発光領域を発光させる。 In STEP 7, the light receiving sensitivity of the light receiving sensor 32 is increased only in the sensitivity increasing region detected in STEP 6. In STEP 8, the amount of light emitted is set for each light emitting region of VCSEL 21, and each light emitting region of VCSEL 21 is made to emit light in STEP 9 according to this setting.

STEP10では、受光センサ32で受光領域ごとに測光する。STEP11では、STEP10における測光の結果、要感度アップ領域があるか否かを確認し、要感度アップ領域が残っている場合はSTEP7に戻りその領域の感度を高めて再測光する。要感度アップ領域が無い場合はSTEP12に進んで撮影処理を行い、受光センサ32による検出データを格納する。STEP11では、要感度アップ領域が残っていればSTEP7からのフローを繰り返し、撮影回数がN回を上限とし、STEP12の撮影処理を行う。 In STEP 10, the light receiving sensor 32 measures the light for each light receiving region. In STEP 11, it is confirmed whether or not there is a sensitivity increasing region as a result of the photometry in STEP 10, and if the sensitivity increasing region remains, the process returns to STEP 7 to increase the sensitivity of the region and perform rephotometry. If there is no sensitivity-requiring region, the process proceeds to STEP 12 to perform shooting processing, and the detection data by the light receiving sensor 32 is stored. In STEP 11, if the sensitivity-requiring region remains, the flow from STEP 7 is repeated, the number of times of photographing is limited to N times, and the photographing process of STEP 12 is performed.

STEP13では、STEP12で取得された受光センサ32のデータから、測距処理を実行し、画角内の被写体の距離情報を算出する。 In STEP 13, distance measurement processing is executed from the data of the light receiving sensor 32 acquired in STEP 12, and the distance information of the subject within the angle of view is calculated.

以上のように処理することで、VCSEL21の発光領域ごとの適正な発光量、受光センサ32の受光領域ごとの適正な感度となり、測距可能な被写体距離のレンジを図6にしめすレンジよりも更に拡大することが可能になる。 By processing as described above, the appropriate amount of light emitted for each light emitting region of the VCSEL 21 and the appropriate sensitivity for each light receiving region of the light receiving sensor 32 are obtained, and the range of the subject distance that can be measured is further increased than the range shown in FIG. It will be possible to expand.

以上説明した実施例では、複数の発光領域を2次元に配置してなるレーザー光源として、複数の発光領域を2次元に配置したVCSELを用いて説明した。しかし、複数の発光領域を2次元に配置してなる光源であれば、VCSELに限定されるものではない。 In the above-described embodiment, as a laser light source in which a plurality of light emitting regions are arranged two-dimensionally, a VCSEL in which a plurality of light emitting regions are arranged two-dimensionally is used. However, the light source is not limited to the VCSEL as long as it is a light source in which a plurality of light emitting regions are arranged two-dimensionally.

20 投光系
22 光学素子
30 受光系
32 受光センサ
41 領域別光量制御部
42 測距部
50 発光制御部
20 Floodlight system 22 Optical element 30 Light receiving system 32 Light receiving sensor 41 Area-specific light amount control unit 42 Distance measuring unit 50 Light emission control unit

特願2012−198337号公報Japanese Patent Application No. 2012-198337

Claims (8)

複数の発光領域を2次元に配置してなる光源と、
前記光源から出射された出射光を測距領域へ導く光学素子と、
前記出射光が前記測距領域に存在する測距対象により反射された反射光を受光する受光部と、
を備えた測距装置であって、
前記受光部は複数の受光領域に分けられており、
前記複数の受光領域に対応する前記光源の各発光領域の発光量を各発光領域毎に制御する領域別光量制御部と、
前記受光領域毎に受光量を計測する領域光量計測部と、
前記光源の発光から前記受光部による受光までの時間を前記受光領域ごとに計測することで前記受光領域ごとに前記測距対象までの距離を計測する測距部と、
を有し、
前記領域別光量制御部は、前記光源の各発光点を同じ光量で同時発光させて予備発光を行い、前記予備発光によって前記領域光量計測部で計測された受光領域毎の受光量に基づき本発光の発光量を制御し、
前記測距部は、前記本発光によって前記受光領域ごとに前記測距対象までの距離を計測することを特徴とする測距装置。
A light source in which multiple light emitting regions are arranged in two dimensions,
An optical element that guides the emitted light emitted from the light source to the ranging region,
A light receiving unit that receives the reflected light that the emitted light is reflected by the distance measuring object existing in the distance measuring region.
It is a distance measuring device equipped with
The light receiving portion is divided into a plurality of light receiving regions.
An area-specific light amount control unit that controls the amount of light emitted from each light source of the light source corresponding to the plurality of light receiving areas for each light source.
A region light amount measuring unit that measures the amount of received light for each light receiving area,
A distance measuring unit that measures the distance to the distance measuring target for each light receiving region by measuring the time from the light emission of the light source to the light reception by the light receiving unit for each light receiving region.
Have,
The region-specific light amount control unit simultaneously emits light at the same light amount at each light emitting point of the light source to perform preliminary light emission, and the main light emission is based on the light receiving amount for each light receiving region measured by the region light amount measuring unit by the preliminary light emission. Controls the amount of light emitted from
The distance measuring unit is a distance measuring device characterized in that the distance to the distance measuring target is measured for each light receiving region by the main light emission.
前記受光部の受光領域毎の受光感度を制御する制御部を有し、
前記測距部は、前記領域光量計測部で計測した受光量が不足する受光領域の受光感度を前記制御部により上げて、測距を行う請求項1記載の撮像装置。
It has a control unit that controls the light receiving sensitivity of each light receiving region of the light receiving unit.
The imaging device according to claim 1, wherein the distance measuring unit raises the light receiving sensitivity of a light receiving region in which the light receiving amount measured by the region light quantity measuring unit is insufficient by the control unit to perform distance measurement.
前記受光部の受光領域毎の受光感度を制御する制御部を有し、
前記測距部は、前記領域光量計測部で計測した受光量が飽和する受光領域の受光感度を前記制御部により下げて測距を行う請求項1記載の測距装置。
It has a control unit that controls the light receiving sensitivity of each light receiving region of the light receiving unit.
The distance measuring device according to claim 1, wherein the distance measuring unit reduces the light receiving sensitivity of the light receiving region where the light receiving amount measured by the region light quantity measuring unit is saturated by the control unit to perform distance measurement.
前記光源は、垂直共振器面発光レーザーである請求項1乃至3のいずれかに記載の測距装置。 The distance measuring device according to any one of claims 1 to 3, wherein the light source is a vertical resonator surface emitting laser. 前記光学素子は、広角レンズである請求項1乃至4のいずれかに記載の測距装置。 The distance measuring device according to any one of claims 1 to 4, wherein the optical element is a wide-angle lens. 複数の発光領域を2次元に配置してなる光源と、
前記光源から出射された出射光を測距領域へ導く光学素子と、
前記出射光が前記測距領域に存在する測距対象により反射された反射光を受光する受光部と、
を備えた測距装置を用いた測距方法であって、
前記受光部は複数の受光領域に分けられており、
前記複数の受光領域に対応する前記光源の各発光領域の発光量を各発光領域毎に制御する領域別光量制御工程と、
前記受光領域毎に受光量を計測する領域光量計測工程と、
前記光源の発光から前記受光部による受光までの時間を前記受光領域毎に計測することで前記受光領域毎に前記計測対象までの距離を計測する測距工程と、
を有し、
前記領域別光量制御工程は、前記光源の各発光点を同じ光量で同時発光させて予備発光を行い、前記予備発光によって領域光量計測工程で計測された領域毎の受光量に基づき本発光の発光量を制御し、
前記測距工程は、前記本発光によって前記受光領域ごとに前記測距対象までの距離を計測することを特徴とする測距方法。
A light source in which multiple light emitting regions are arranged in two dimensions,
An optical element that guides the emitted light emitted from the light source to the ranging region,
A light receiving unit that receives the reflected light that the emitted light is reflected by the distance measuring object existing in the distance measuring region.
It is a distance measuring method using a distance measuring device equipped with.
The light receiving portion is divided into a plurality of light receiving regions.
A region-specific light amount control step for controlling the light emission amount of each light emission region of the light source corresponding to the plurality of light receiving regions for each light emission region.
A region light amount measuring step for measuring the amount of received light for each light receiving area, and
A distance measuring step of measuring the distance to the measurement target in each light receiving area by measuring the time from the light emission of the light source to the light receiving by the light receiving unit in each light receiving area.
Have,
In the region-specific light amount control step, each light emitting point of the light source is simultaneously emitted with the same amount of light to perform preliminary light emission, and the light emission of the main light emission is based on the received light amount for each region measured in the region light amount measuring step by the preliminary light emission. Control the amount,
The distance measuring step is a distance measuring method characterized in that the distance to the distance measuring target is measured for each light receiving region by the main light emission.
前記受光部の受光領域毎の受光感度を制御する制御部を有し、
前記測距工程は、前記領域光量計測工程で計測した受光量が不足する受光領域の受光感度を前記制御部により上げて測距を行う請求項6記載の測距方法。
It has a control unit that controls the light receiving sensitivity of each light receiving region of the light receiving unit.
The distance measuring method according to claim 6, wherein the distance measuring step is performed by increasing the light receiving sensitivity of the light receiving region where the light receiving amount measured in the region light quantity measuring step is insufficient by the control unit.
前記受光部の受光領域毎の受光感度を制御する制御部を有し、
前記測距工程は、前記領域光量計測工程で計測した受光量が飽和する受光領域の受光感度を前記制御部により下げて測距を行う請求項6記載の測距装置。
It has a control unit that controls the light receiving sensitivity of each light receiving region of the light receiving unit.
The distance measuring device according to claim 6, wherein in the distance measuring step, the light receiving sensitivity of the light receiving region where the light receiving amount measured in the region light quantity measuring step is saturated is lowered by the control unit to perform distance measurement.
JP2019162233A 2019-03-20 2019-09-05 Distance measuring device and method Active JP7388064B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20162213.1A EP3719529A1 (en) 2019-03-20 2020-03-10 Range finding device and range finding method
US16/819,206 US11914039B2 (en) 2019-03-20 2020-03-16 Range finding device and range finding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053171 2019-03-20
JP2019053171 2019-03-20

Publications (2)

Publication Number Publication Date
JP2020160044A true JP2020160044A (en) 2020-10-01
JP7388064B2 JP7388064B2 (en) 2023-11-29

Family

ID=72643017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019162233A Active JP7388064B2 (en) 2019-03-20 2019-09-05 Distance measuring device and method

Country Status (1)

Country Link
JP (1) JP7388064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166523A1 (en) * 2020-02-21 2021-08-26 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and distance measurement method
WO2023281810A1 (en) * 2021-07-07 2023-01-12 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and distance measurement method
WO2023234033A1 (en) * 2022-05-31 2023-12-07 ソニーセミコンダクタソリューションズ株式会社 Ranging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090144A (en) * 2015-11-06 2017-05-25 株式会社リコー Object detection device, sensing device and moving body device
JP2017173298A (en) * 2016-03-16 2017-09-28 株式会社リコー Object detection device and mobile entity device
US20180059221A1 (en) * 2016-08-31 2018-03-01 Qualcomm Incorporated Hybrid scanning lidar systems
US20190041522A1 (en) * 2017-08-02 2019-02-07 GM Global Technology Operations LLC Method and Apparatus Cross Segment Detection in a Lidar System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130954A (en) 2001-10-24 2003-05-08 Nikon Corp Range finder
JP5190663B2 (en) 2007-03-27 2013-04-24 スタンレー電気株式会社 Distance image generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090144A (en) * 2015-11-06 2017-05-25 株式会社リコー Object detection device, sensing device and moving body device
JP2017173298A (en) * 2016-03-16 2017-09-28 株式会社リコー Object detection device and mobile entity device
US20180059221A1 (en) * 2016-08-31 2018-03-01 Qualcomm Incorporated Hybrid scanning lidar systems
US20190041522A1 (en) * 2017-08-02 2019-02-07 GM Global Technology Operations LLC Method and Apparatus Cross Segment Detection in a Lidar System

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166523A1 (en) * 2020-02-21 2021-08-26 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and distance measurement method
WO2023281810A1 (en) * 2021-07-07 2023-01-12 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and distance measurement method
WO2023234033A1 (en) * 2022-05-31 2023-12-07 ソニーセミコンダクタソリューションズ株式会社 Ranging device

Also Published As

Publication number Publication date
JP7388064B2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
US20210181317A1 (en) Time-of-flight-based distance measurement system and method
CN111830530B (en) Distance measuring method, system and computer readable storage medium
US11662433B2 (en) Distance measuring apparatus, recognizing apparatus, and distance measuring method
JP6528447B2 (en) Disparity calculation system and distance measuring device
US9921312B2 (en) Three-dimensional measuring device and three-dimensional measuring method
JP5190663B2 (en) Distance image generator
CN110709722B (en) Time-of-flight camera
US6721679B2 (en) Distance measuring apparatus and distance measuring method
US11859976B2 (en) Automatic locating of target marks
CN111742241A (en) Optical distance measuring device
JP2020160044A (en) Distance measuring device and distance measuring method
CN111766596A (en) Distance measuring method, system and computer readable storage medium
CN111025321B (en) Variable-focus depth measuring device and measuring method
CN111796295B (en) Collector, manufacturing method of collector and distance measuring system
JP2009192499A (en) Apparatus for generating distance image
CN111965658B (en) Distance measurement system, method and computer readable storage medium
CN113466836A (en) Distance measurement method and device and laser radar
CN111025319B (en) Depth measuring device and measuring method
JP7007637B2 (en) Laser ranging device, laser ranging method and position adjustment program
US11914039B2 (en) Range finding device and range finding method
CN112740065A (en) Enhanced depth mapping using visual inertial ranging
CN213091889U (en) Distance measuring system
JP2022168956A (en) Laser measuring device, and measurement method thereof
CN111796296A (en) Distance measuring method, system and computer readable storage medium
CN111965659A (en) Distance measuring system, method and computer readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7388064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151