JP6961550B2 - Chlorine dioxide gas generation and extinction method and chlorine dioxide gas generation and extinction kit - Google Patents

Chlorine dioxide gas generation and extinction method and chlorine dioxide gas generation and extinction kit Download PDF

Info

Publication number
JP6961550B2
JP6961550B2 JP2018147030A JP2018147030A JP6961550B2 JP 6961550 B2 JP6961550 B2 JP 6961550B2 JP 2018147030 A JP2018147030 A JP 2018147030A JP 2018147030 A JP2018147030 A JP 2018147030A JP 6961550 B2 JP6961550 B2 JP 6961550B2
Authority
JP
Japan
Prior art keywords
agent
chlorine dioxide
gas
dioxide gas
clo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018147030A
Other languages
Japanese (ja)
Other versions
JP2020019696A (en
Inventor
博正 藤田
哲悠 藤田
征士 藤田
廣志 ▲高▼富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amatera Inc
Original Assignee
Amatera Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amatera Inc filed Critical Amatera Inc
Priority to JP2018147030A priority Critical patent/JP6961550B2/en
Priority to PCT/JP2019/029681 priority patent/WO2020027060A1/en
Priority to CN201980050345.9A priority patent/CN112512963A/en
Priority to TW108127365A priority patent/TWI778284B/en
Publication of JP2020019696A publication Critical patent/JP2020019696A/en
Application granted granted Critical
Publication of JP6961550B2 publication Critical patent/JP6961550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

本発明は、花粉、塵、皮屑(ひせつ)、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などに広く使用される二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅キットに関する。 The present invention provides treatment of allergens such as pollen, dust, husks and fungi, treatment of harmful substances such as pathogens, viruses and harmful chemicals (eg tobacco smoke, formaldehyde), environmental purification, and shop. The present invention relates to a method for generating and extinguishing chlorine dioxide gas and a kit for generating and extinguishing chlorine dioxide gas, which are widely used for deodorizing, mold prevention and antiseptic of domestic and foreign foods.

二酸化塩素(ClO2)は、強い酸化力を有していることから、花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などに広く使用される。このように広い用途に使用される有用な二酸化塩素を持続的に発生させる方法およびそのための組成物が提案されている。 Chlorine dioxide (ClO 2 ) has a strong oxidizing power, so it treats allergens such as pollen, dust, skin dust and fungi, pathogens, viruses and harmful chemicals (eg tobacco smoke, formaldehyde). Widely used for treatment of harmful substances such as, environmental purification, indoor / outdoor and food deodorization, antifungal and antiseptic. A method for continuously generating useful chlorine dioxide used in such a wide range of applications and a composition for that purpose have been proposed.

たとえば、特開平11−278808号公報(特許文献1)は、溶存二酸化塩素ガス、亜塩素酸塩およびpH調整剤を構成成分に有する純粋二酸化塩素液剤、上記純粋二酸化塩素液剤および高吸水性樹脂を含有するゲル状組成物、上記純粋二酸化塩素液剤および泡剤を含有する発泡性組成物、ならびに上記純粋二酸化塩素液剤、上記ゲル状組成物、および上記発泡性組成物を入れるための容器を提案する。 For example, Japanese Patent Application Laid-Open No. 11-278808 (Patent Document 1) describes a pure chlorine dioxide solution containing dissolved chlorine dioxide gas, chlorite and a pH adjuster as constituents, the pure chlorine dioxide solution and a highly water-absorbent resin. We propose a gel-like composition containing, an effervescent composition containing the pure chlorine dioxide solution and a foaming agent, and a container for containing the pure chlorine dioxide solution, the gel-like composition, and the effervescent composition. ..

また、特開2005−29430号公報(特許文献2)は、亜塩素酸塩水溶液に、有機酸または無機酸と、粉状のガス発生調節剤またはガス発生調節剤と、吸水性樹脂と、を添加し、ゲル化させて二酸化塩素ガスを持続的に発生させる二酸化塩素ガスの発生方法を提案する。 Further, Japanese Patent Application Laid-Open No. 2005-29430 (Patent Document 2) contains an organic acid or an inorganic acid, a powdery gas generation regulator or gas generation regulator, and a water-absorbent resin in an aqueous chlorite solution. We propose a method for generating chlorine dioxide gas, which is added and gelled to continuously generate chlorine dioxide gas.

特開平11−278808号公報Japanese Unexamined Patent Publication No. 11-278808 特開2005−29430号公報Japanese Unexamined Patent Publication No. 2005-29430

特開平11−278808号公報(特許文献1)および特開2005−29430号公報(特許文献2)によれば、二酸化塩素ガスを連続的に発生させる方法が提案されているが、発生する二酸化塩素ガスは強い刺激臭を有しているため、使用後の二酸化塩素ガスによる刺激臭が問題となっている。このため、人が多く集まる場所(たとえば、室内、自動車内など)においては、花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などへの二酸化塩素ガスの使用には、使用中のみならず使用後も人の退避が必要であるなどの問題があり、多くの制約があった。 According to JP-A-11-278808 (Patent Document 1) and JP-A-2005-29430 (Patent Document 2), a method for continuously generating chlorine dioxide gas has been proposed, but chlorine dioxide generated is generated. Since the gas has a strong pungent odor, the pungent odor caused by chlorine dioxide gas after use has become a problem. For this reason, in places where many people gather (for example, indoors, in automobiles, etc.), treatment of allergens such as pollen, dust, skin dust, and fungi, pathogens, viruses, and harmful chemical substances (for example, tobacco smoke, formaldehyde, etc.) ), Etc., environmental purification, indoor / outdoor and food deodorization, antifungal and antiseptic, etc., it is necessary to evacuate people not only during use but also after use. There were problems and many restrictions.

本発明は、発生させた二酸化塩素ガスを使用後に消滅させることにより、上記問題を解決することができる二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キットを提供することを目的とする。 An object of the present invention is to provide a method for generating and extinguishing chlorine dioxide gas and a kit for generating and extinguishing chlorine dioxide gas, which can solve the above problems by extinguishing the generated chlorine dioxide gas after use.

本発明は、ある局面に従えば、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させるガス発生工程と、二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させるガス消滅工程と、を備える二酸化塩素ガスの発生消滅方法である。 According to a certain aspect, the present invention has a gas generation step of generating chlorine dioxide gas by bringing an agent A containing chlorite and an agent B containing a gas generating agent into contact with each other, and reducing chlorine dioxide to chlorine dioxide gas. This is a method for generating and extinguishing chlorine dioxide gas, which comprises a gas extinguishing step of extinguishing chlorine dioxide gas by bringing an agent C containing an agent into contact with the agent.

本発明のかかる局面における二酸化塩素ガスの発生消滅方法において、二酸化塩素還元剤は、過酸化水素、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含むことができる。 In the method for generating and extinguishing chlorine dioxide gas in such an aspect of the present invention, the chlorine dioxide reducing agent may contain at least one selected from the group consisting of hydrogen peroxide, erythorbic acid and salts thereof, and ascorbic acid and salts thereof. can.

本発明は、別の局面に従えば、亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、A剤とB剤とを接触させることにより二酸化塩素ガスを発生させ、二酸化塩素ガスにC剤を接触させることにより二酸化塩素ガスを消滅させる二酸化塩素ガス発生消滅用キットである。 According to another aspect, the present invention is composed of an agent A containing a chlorite, an agent B containing a gas generating agent, and an agent C containing a chlorine dioxide reducing agent. It is a kit for generating and extinguishing chlorine dioxide gas, which generates chlorine dioxide gas by contacting the chlorine dioxide gas and extinguishes the chlorine dioxide gas by contacting the C agent with the chlorine dioxide gas.

本発明のかかる局面における二酸化塩素ガス発生消滅用キットにおいて、二酸化塩素還元剤は、過酸化水素、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含むことができる。 In the chlorine dioxide gas generation and extinction kit in such an aspect of the present invention, the chlorine dioxide reducing agent may contain at least one selected from the group consisting of hydrogen peroxide, erythorbic acid and salts thereof, and ascorbic acid and salts thereof. can.

本発明によれば、発生させた二酸化塩素ガスを使用後に消滅させることにより、使用後の二酸化塩素ガスによる刺激臭を低減できる二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キットを提供できる。 According to the present invention, it is possible to provide a method for generating and extinguishing chlorine dioxide gas and a kit for generating and extinguishing chlorine dioxide gas, which can reduce the irritating odor caused by the chlorine dioxide gas after use by extinguishing the generated chlorine dioxide gas after use. ..

図1は、二酸化塩素ガスの発生消滅方法を示すフローチャートである。FIG. 1 is a flowchart showing a method of generating and extinguishing chlorine dioxide gas.

<実施形態1:二酸化塩素ガスの発生消滅方法>
図1を参照して、本発明のある実施形態である二酸化塩素ガスの発生消滅方法は、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させるガス発生工程S10と、二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させるガス消滅工程S20と、を備える。本実施形態の二酸化塩素ガスの発生消滅方法は、上記のガス発生工程S10と上記のガス消滅工程S20とを備えることにより、発生させた二酸化塩素ガスを使用後に消滅させることができるため、使用後の二酸化塩素ガスによる刺激臭を低減できる。これにより、二酸化塩素ガス使用後の人の退避を早期に解除できる。ここで、二酸化塩素ガスの使用とは、被処理体の処理に有効な使用であれば特に制限はなく、二酸化塩素ガスを花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などへの広い範囲での使用を含む。
<Embodiment 1: Method of generating and extinguishing chlorine dioxide gas>
With reference to FIG. 1, in the method for generating and extinguishing chlorine dioxide gas according to an embodiment of the present invention, chlorine dioxide gas is produced by bringing an agent A containing chlorite and an agent B containing a gas generating agent into contact with each other. The gas generating step S10 to generate the chlorine dioxide gas and the gas extinguishing step S20 for extinguishing the chlorine dioxide gas by bringing the C agent containing the chlorine dioxide reducing agent into contact with the chlorine dioxide gas are provided. The chlorine dioxide gas generation / extinction method of the present embodiment includes the gas generation step S10 and the gas extinction step S20, so that the generated chlorine dioxide gas can be extinguished after use. The pungent odor caused by chlorine dioxide gas can be reduced. As a result, the evacuation of people after using chlorine dioxide gas can be released at an early stage. Here, the use of chlorine dioxide gas is not particularly limited as long as it is effectively used for the treatment of the object to be treated, and the chlorine dioxide gas is used for treatment of allergens such as pollen, dust, skin dust, and fungi, pathogens, and so on. Includes widespread use in the treatment of harmful substances such as viruses, harmful chemicals (eg tobacco smoke, formaldehyde), environmental purification, indoor and outdoor and food deodorization, antifungal and antiseptic.

二酸化塩素ガスについて、米国の労働安全衛生局(OSHA)は、1日8時間の暴露(PEL−TWA:時間加重平均値)で0.1ppmを暴露限界として設定している。日本においては、暴露限界に関する基準値は存在しないが、二酸化塩素ガスによる空間消毒の暫定的な安全基準と想定されている。これらのことから、二酸化塩素ガスの使用後に人の退避を解除するためには、二酸化塩素ガスの濃度を0.1ppm以下にする必要があると考えられる。 For chlorine dioxide gas, the US Occupational Safety and Health Administration (OSHA) has set an exposure limit of 0.1 ppm for 8 hours a day (PEL-TWA: time-weighted average). In Japan, there is no standard value for exposure limits, but it is assumed to be a provisional safety standard for space disinfection with chlorine dioxide gas. From these facts, it is considered that it is necessary to reduce the concentration of chlorine dioxide gas to 0.1 ppm or less in order to release the evacuation of people after using chlorine dioxide gas.

[ガス発生工程]
ガス発生工程S10は、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させる工程である。かかるガス発生工程S10により、上記使用に供する二酸化塩素ガスを効率よく発生させることができる。
[Gas generation process]
The gas generation step S10 is a step of generating chlorine dioxide gas by bringing the agent A containing chlorite and the agent B containing a gas generating agent into contact with each other. By the gas generation step S10, chlorine dioxide gas to be used can be efficiently generated.

(A剤)
A剤は、亜塩素酸塩を含む。A剤は、亜塩素酸塩を含むものであれば特に制限はないが、後述するB剤と効率よく接触して効率よく二酸化塩素ガスを発生させる観点から、亜塩素酸塩を含む液体であることが好ましく、亜塩素酸塩を含む水性液がより好ましい。ここで、水性液とは、亜塩素酸塩などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。A液は、上記観点から、亜塩素酸塩を含む水性液であることがさらに好ましく、亜塩素酸塩水性液であることが特に好ましい。
A剤に含まれる亜塩素酸塩は、後述するB剤に含まれるガス発生剤との接触により二酸化塩素ガスを発生させる亜塩素酸塩であれば特に制限はなく、たとえば、亜塩素酸ナトリウム(NaClO2)、亜塩素酸カリウム(KClO2)、亜塩素酸リチウム(LiClO2)などの水素を除く第1族元素(アルカリ金属元素)の亜塩素酸塩、亜塩素酸カルシウム(Ca(ClO22)、亜塩素酸ストロンチウム(Sr(ClO22)、亜塩素酸バリウム(Ba(ClO22)、亜塩素酸マグネシウム(Mg(ClO22)などの第2族元素の亜塩素酸塩などが挙げられる。これらの中で、市販されている亜塩素酸ナトリウムが入手しやすく使用上も問題がない。なお、A剤は、後述するB剤と接触して二酸化塩素ガスを発生することが阻害されない限り、および、有害な副生成物を発生させない限り、亜塩素酸塩以外の物質を含んでいてもよい。A剤に含まれる亜塩素酸塩以外の物質としては、水酸化ナトリウム(NaOH)などのアルカリなどが挙げられる。たとえば、80質量%以上のNaClO2を含有するシルブライト(日本カーリット社製シルブライト80)が、A剤として好適に用いられる。
(Agent A)
Agent A contains chlorite. The agent A is not particularly limited as long as it contains chlorite, but is a liquid containing chlorite from the viewpoint of efficiently contacting agent B, which will be described later, to efficiently generate chlorine dioxide gas. It is preferable, and an aqueous solution containing chlorite is more preferable. Here, the aqueous liquid means that the solvent and / or the dispersion medium excluding the solute and / or the dispersoid such as chlorite is the main component of water (the content of water in the solvent and / or the dispersion medium is 50 mass by mass). % Or more) means an aqueous solution and / or an aqueous dispersion. From the above viewpoint, the liquid A is more preferably an aqueous liquid containing chlorite, and particularly preferably an aqueous chlorite liquid.
The chlorite contained in the agent A is not particularly limited as long as it is a chlorite that generates chlorine dioxide gas by contact with the gas generating agent contained in the agent B, which will be described later. For example, sodium chlorite ( Chlorite of Group 1 elements (alkali metal elements) excluding hydrogen such as NaClO 2 ), potassium chlorite (KClO 2 ), lithium chlorite (LiClO 2 ), calcium chlorite (Ca (ClO 2) ) 2 ), Strontium chlorite (Sr (ClO 2 ) 2 ), Barium chlorite (Ba (ClO 2 ) 2 ), Magnesium chlorite (Mg (ClO 2 ) 2 ) Examples include chlorite. Among these, commercially available sodium chlorite is easily available and there is no problem in use. The agent A may contain a substance other than chlorite as long as it does not inhibit the generation of chlorine dioxide gas in contact with the agent B described later and does not generate harmful by-products. good. Examples of the substance other than the chlorite contained in the agent A include alkalis such as sodium hydroxide (NaOH). For example, Sylbrite (Silbrite 80 manufactured by Carlit Japan Co., Ltd.) containing 80% by mass or more of NaClO 2 is preferably used as the agent A.

亜塩素酸塩水性液は、水性の溶媒および/または分散媒に、上記の少なくとも1つの亜塩素酸塩を所定濃度で溶解および/または分散させることにより得られる。亜塩素酸ナトリウムを水に溶解させる場合としては、液体では漂白剤として使用させる市販の25質量%の亜塩素酸ナトリウム水溶液や、固体では市販の86質量%品、80質量%品、79質量%品または76質量%品が好適に用いられる。また、亜塩素酸塩水性液の濃度は、劇毒物および危険物に該当せず取り扱いが容易な観点から25質量%以下であることが好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。 The aqueous chlorite solution is obtained by dissolving and / or dispersing at least one of the above chlorites in an aqueous solvent and / or dispersion medium at a predetermined concentration. When sodium chlorite is dissolved in water, a commercially available 25% by mass sodium chlorite aqueous solution used as a bleaching agent for liquids and a commercially available 86% by mass, 80% by mass, 79% by mass for solids A product or a 76% by mass product is preferably used. The concentration of the aqueous chlorate solution is preferably 25% by mass or less, more preferably 15% by mass or less, and 10% by mass or less, from the viewpoint that it does not correspond to a toxic substance or a dangerous substance and is easy to handle. More preferred.

(B剤)
B剤は、ガス発生剤を含む。B剤は、ガス発生剤を含むものであれば特に制限はないが、上記A剤と効率よく接触して効率よく二酸化塩素ガスを発生させる観点から、ガス発生剤を含む液体であることが好ましく、ガス発生剤を含む水性液がより好ましい。ここで、水性液とは、ガス発生剤などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。B液は、上記観点から、ガス発生剤を含む水溶液またはガス発生剤を含む水分散液であることがさらに好ましく、ガス発生剤水溶液またはガス発生剤水分散液であることが特に好ましい。
(Agent B)
Agent B contains a gas generating agent. The agent B is not particularly limited as long as it contains a gas generating agent, but is preferably a liquid containing a gas generating agent from the viewpoint of efficiently contacting the agent A and efficiently generating chlorine dioxide gas. , An aqueous liquid containing a gas generating agent is more preferable. Here, the aqueous liquid means that the solvent and / or the dispersion medium excluding the solute and / or the dispersoid such as a gas generating agent is mainly composed of water (the content of water in the solvent and / or the dispersion medium is 50% by mass). The above) means an aqueous solution and / or an aqueous dispersion. From the above viewpoint, the liquid B is more preferably an aqueous solution containing a gas generating agent or an aqueous dispersion containing a gas generating agent, and particularly preferably an aqueous solution of a gas generating agent or an aqueous dispersion of a gas generating agent.

B剤に含まれるガス発生剤は、上記のA剤に含まれる亜塩素酸塩との接触により、二酸化塩素ガスを発生させるガス発生剤であれば特に制限はなく、たとえば、塩酸などの無機酸、クエン酸、乳酸、リンゴ酸などの有機酸などが挙げられる。これらの中で、塩酸、クエン酸などが入手しやすく使用上も問題がない。なお、B剤は、上記のA剤と接触して二酸化塩素ガスを発生することが阻害されない限り、および、有害な副生成物を発生させない限り、ガス発生剤以外の物質を含んでいてもよい。 The gas generating agent contained in the agent B is not particularly limited as long as it is a gas generating agent that generates chlorine dioxide gas by contact with the chlorite contained in the agent A described above. For example, an inorganic acid such as hydrochloric acid. , Organic acids such as citric acid, lactic acid, malic acid and the like. Among these, hydrochloric acid, citric acid, etc. are easily available and there is no problem in use. The agent B may contain a substance other than the gas generating agent as long as it does not inhibit the generation of chlorine dioxide gas in contact with the above agent A and does not generate harmful by-products. ..

ガス発生剤水性液は、水性の溶媒および/または分散媒に、上記の少なくとも1つのガス発生剤を所定濃度で溶解および/または分散させることにより得られる。塩酸を水に溶解させる場合としては、市販の塩酸(35質量%品)を水で希釈して、5質量%以上15質量%以下の塩酸水溶液が好適に用いられる。クエン酸を水に溶解させる場合としては、20質量%以上40質量%以下のクエン酸水溶液が好適に用いられる。ここで、希釈水は、二酸化塩素ガスの発生を阻害しないかぎり特に制限はないが、不純物が少ない観点から、蒸留水、イオン交換水、RO(逆浸透)水などの精製水が好ましい。 The gas generating agent aqueous liquid is obtained by dissolving and / or dispersing at least one of the above gas generating agents in an aqueous solvent and / or a dispersion medium at a predetermined concentration. When hydrochloric acid is dissolved in water, a commercially available hydrochloric acid (35% by mass product) is diluted with water, and an aqueous hydrochloric acid solution of 5% by mass or more and 15% by mass or less is preferably used. When citric acid is dissolved in water, an aqueous citric acid solution of 20% by mass or more and 40% by mass or less is preferably used. Here, the diluted water is not particularly limited as long as it does not inhibit the generation of chlorine dioxide gas, but purified water such as distilled water, ion-exchanged water, and RO (reverse osmosis) water is preferable from the viewpoint of having few impurities.

(A剤とB剤との接触)
A剤とB剤との接触により、A剤に含まれる亜塩素酸塩とB剤に含まれるガス発生剤とが反応して二酸化塩素ガスを発生する。A剤とB剤とを接触させる比は、特に制限はないが、効率的に反応させて効率的に二酸化塩素ガスを発生させる観点から、(A剤に含まれる亜塩素酸塩):(B剤に含まれるガス発生剤)は、モル比で、ガス発生剤が塩酸の場合は1:3から3:1までの範囲が好ましく、ガス発生剤がクエン酸の場合は1:2から4:1までの範囲が好ましい。
(Contact between agent A and agent B)
When the agent A and the agent B come into contact with each other, the chlorite contained in the agent A reacts with the gas generating agent contained in the agent B to generate chlorine dioxide gas. The ratio of the A agent and the B agent in contact with each other is not particularly limited, but from the viewpoint of efficiently reacting and efficiently generating chlorine dioxide gas, (chlorite contained in the A agent): (B). The gas generating agent contained in the agent) is preferably in the range of 1: 3 to 3: 1 when the gas generating agent is hydrochloric acid, and 1: 2 to 4: when the gas generating agent is citric acid. The range up to 1 is preferable.

A剤とB剤とを接触させる方法は、A剤に含まれる亜塩素酸塩とB剤に含まれるガス発生剤とが反応するように接触させる方法であれば特に制限はなく、たとえば、A剤およびB剤のいずれもが固体の場合は、水性溶媒(水の含有量が50質量%以上の溶媒をいう、以下同じ)および/または水性分散媒(水の含有量が50質量%以上の分散媒をいう、以下同じ)を加えて、A剤とB剤とを混合する方法が挙げられる。また、A剤およびB剤のいずれか一方が水性液(水性溶液および/または水性分散液)であり、他方が固体の場合は、その水性液とその固体とを混合する方法が挙げられる。また、A剤およびB剤がいずれもが水性液である場合は、両方の水性液を混合する方法が挙げられる。A剤に含まれる亜塩素酸塩とB剤に含まれるガス発生剤とを効率よく反応させることにより効率的に二酸化塩素ガスを発生させる観点から、A剤およびB剤は、いずれか一方が水性溶液であることが好ましく、いずれもが水性溶液であることがより好ましい。 The method of contacting the agent A and the agent B is not particularly limited as long as the chlorite contained in the agent A and the gas generating agent contained in the agent B are brought into contact with each other so as to react with each other. When both the agent and the agent B are solid, an aqueous solvent (meaning a solvent having a water content of 50% by mass or more, the same applies hereinafter) and / or an aqueous dispersion medium (a water content of 50% by mass or more). A method of mixing the agent A and the agent B by adding a dispersion medium (the same applies hereinafter) can be mentioned. When either the agent A or the agent B is an aqueous liquid (aqueous solution and / or aqueous dispersion) and the other is a solid, a method of mixing the aqueous liquid and the solid can be mentioned. When both Agent A and Agent B are aqueous liquids, a method of mixing both aqueous liquids can be mentioned. From the viewpoint of efficiently generating chlorine dioxide gas by efficiently reacting the chlorite contained in the A agent with the gas generating agent contained in the B agent, either the A agent or the B agent is aqueous. It is preferably a solution, and more preferably an aqueous solution.

[ガス消滅工程]
ガス消滅工程S20は、二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させる工程である。かかるガス消滅工程S20により、発生させて使用させた後の二酸化塩素ガスを効率的に消滅させることにより、使用後の二酸化塩素ガスによる刺激臭を低減することができる。
[Gas extinction process]
The gas extinguishing step S20 is a step of extinguishing the chlorine dioxide gas by bringing the C agent containing the chlorine dioxide reducing agent into contact with the chlorine dioxide gas. By efficiently extinguishing the chlorine dioxide gas after being generated and used by the gas extinguishing step S20, the pungent odor due to the chlorine dioxide gas after use can be reduced.

(C剤)
使用後の二酸化塩素ガスの消滅に用いられるC剤は、二酸化塩素還元剤を含む。C剤は、二酸化塩素還元剤を含むものであれば特に制限はないが、二酸化塩素ガスに効率よく接触して効率よく二酸化塩素ガスを消滅させる観点から、二酸化塩素還元剤を含む液体であることが好ましく、二酸化塩素還元剤を含む水性液がより好ましい。ここで、水性液とは、二酸化塩素還元剤などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。C液は、上記観点から、二酸化塩素還元剤を含む水性溶液が好ましく、二酸化塩素還元剤水性溶液がより好ましい。
(C agent)
The C agent used for extinguishing chlorine dioxide gas after use contains a chlorine dioxide reducing agent. Agent C is not particularly limited as long as it contains a chlorine dioxide reducing agent, but is a liquid containing a chlorine dioxide reducing agent from the viewpoint of efficiently contacting chlorine dioxide gas and efficiently extinguishing chlorine dioxide gas. Is preferable, and an aqueous liquid containing a chlorine dioxide reducing agent is more preferable. Here, the aqueous liquid means that the solvent and / or the dispersion medium excluding the solute and / or the dispersoid such as the chlorine dioxide reducing agent is mainly composed of water (the content of water in the solvent and / or the dispersion medium is 50 mass by mass). % Or more) means an aqueous solution and / or an aqueous dispersion. From the above viewpoint, the solution C is preferably an aqueous solution containing a chlorine dioxide reducing agent, and more preferably an aqueous solution of a chlorine dioxide reducing agent.

C剤に含まれる二酸化塩素還元剤は、二酸化塩素を還元することにより二酸化塩素ガスを消滅する二酸化塩素還元剤であれば特に制限はなく、過酸化水素、エリソルビン酸およびその塩、アスコルビン酸およびその塩などが挙げられる。二酸化塩素を還元する能力が高いため二酸化塩素ガスの刺激臭を抑制する能力が高く、当該二酸化塩素還元剤自体の毒性が低く、かつ二酸化塩素を還元する際にも有毒物質の発生がなく安全性が高い観点から、二酸化塩素還元剤は、過酸化水素、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含むことが好ましい。さらに、二酸化塩素還元剤は、二酸化塩素を還元する際にも有毒物質の発生がないことによる安全性がより高い観点から、過酸化水素がより好ましく、二酸化塩素を還元する能力がより高いとともに当該二酸化塩素還元剤自体が食品添加物であることによる安全性がより高い観点から、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つが好ましい。ここで、エリソルビン酸塩は、二酸化塩素の還元を阻害しないかぎり特に制限はないが、入手が容易な観点からエリソルビン酸ナトリウム、エリソルビン酸カリウムなどのエリソルビン酸アルカリ金属塩が好ましい。また、アスコルビン酸塩は、二酸化塩素の還元を阻害しないかぎり特に制限はないが、入手が容易な観点からアスコルビン酸ナトリウム、アスコルビン酸カリウムなどのアスコルビン酸アルカリ金属塩が好ましい。さらにアスコルビン酸には、互いに鏡像異性体であるD体のD−アスコルビン酸とL体のL−アスコルビン酸(ビタミンC)とがあり、入手が容易な観点から、L−アスコルビン酸がより好ましい。なお、C剤は、二酸化塩素を還元することにより二酸化塩素ガスを消滅することが阻害されない限り、および、有害な副生成物を発生させない限り、二酸化塩素還元剤以外の物質を含んでいてもよい。 The chlorine dioxide reducing agent contained in Agent C is not particularly limited as long as it is a chlorine dioxide reducing agent that eliminates chlorine dioxide gas by reducing chlorine dioxide, and hydrogen peroxide, erythorbic acid and its salts, ascorbic acid and its salts. Examples include salt. Since it has a high ability to reduce chlorine dioxide, it has a high ability to suppress the pungent odor of chlorine dioxide gas, the toxicity of the chlorine dioxide reducing agent itself is low, and there is no generation of toxic substances when reducing chlorine dioxide, making it safe. From a high point of view, the chlorine dioxide reducing agent preferably contains at least one selected from the group consisting of hydrogen peroxide, erythorbic acid and salts thereof, and ascorbic acid and salts thereof. Further, as the chlorine dioxide reducing agent, hydrogen peroxide is more preferable, and the ability to reduce chlorine dioxide is higher, and the chlorine dioxide reducing agent is said to be more preferable from the viewpoint of higher safety due to the absence of generation of toxic substances when reducing chlorine dioxide. From the viewpoint of higher safety due to the chlorine dioxide reducing agent itself being a food additive, at least one selected from the group consisting of erythorbic acid and its salt, and ascorbic acid and its salt is preferable. Here, the erythorbic acid salt is not particularly limited as long as it does not inhibit the reduction of chlorine dioxide, but an alkali metal erythorbic acid salt such as sodium erythorbate and potassium erythorbate is preferable from the viewpoint of easy availability. The ascorbic acid salt is not particularly limited as long as it does not inhibit the reduction of chlorine dioxide, but an alkali metal ascorbic acid salt such as sodium ascorbate or potassium ascorbate is preferable from the viewpoint of easy availability. Further, ascorbic acid includes D-form D-ascorbic acid and L-form L-ascorbic acid (vitamin C), which are enantiomers of each other, and L-ascorbic acid is more preferable from the viewpoint of easy availability. The agent C may contain a substance other than the chlorine dioxide reducing agent as long as the elimination of chlorine dioxide gas is not inhibited by reducing chlorine dioxide and as long as no harmful by-products are generated. ..

ここで、還元剤として一般的に用いられる亜硫酸ナトリウム、チオ硫酸ナトリウムは、弱酸性雰囲気中で有毒な二酸化硫黄ガス、亜硫酸ガス、硫化水素ガスなどを発生させる場合があるため、好ましくない。また、強い還元剤である塩酸ヒドロキシルアミンは、蒸気の毒性が高く、また高温に加熱されると爆発の危険性があるため、好ましくない。 Here, sodium sulfite and sodium thiosulfate, which are generally used as reducing agents, are not preferable because they may generate toxic sulfur dioxide gas, sulfite gas, hydrogen sulfide gas, etc. in a weakly acidic atmosphere. Hydroxylamine hydrochloride, which is a strong reducing agent, is not preferable because it has high vapor toxicity and has a risk of explosion when heated to a high temperature.

二酸化塩素還元剤水性液は、水性の溶媒および/または分散媒に、上記の少なくとも1つの二酸化塩素還元剤を所定濃度で溶解および/または分散させることにより得られる。過酸化水素を水に溶解させる場合としては、1質量%以上5質量以下の過酸化水素水溶液(過酸化水素水)が好適に用いられる。エリソルビン酸またはその塩を水に溶解させる場合としては、1質量%以上5質量%以下のエリソルビン酸またはその塩の水溶液が好適に用いられる。アスコルビン酸またはその塩を水に溶解させる場合としては、1質量%以上5質量%以下のアスコルビン酸またはその塩の水溶液が好適に用いられる。 The chlorine dioxide reducing agent aqueous solution is obtained by dissolving and / or dispersing at least one of the above chlorine dioxide reducing agents in an aqueous solvent and / or a dispersion medium at a predetermined concentration. When hydrogen peroxide is dissolved in water, a hydrogen peroxide aqueous solution (hydrogen peroxide solution) having a mass of 1% by mass or more and 5% by mass or less is preferably used. When erythorbic acid or a salt thereof is dissolved in water, an aqueous solution of erythorbic acid or a salt thereof in an amount of 1% by mass or more and 5% by mass or less is preferably used. When ascorbic acid or a salt thereof is dissolved in water, an aqueous solution of ascorbic acid or a salt thereof in an amount of 1% by mass or more and 5% by mass or less is preferably used.

(二酸化塩素ガスとC剤との接触)
A剤とB剤との接触により二酸化塩素ガスが発生する。発生した二酸化塩素ガスは空気中に発散して被処理体(アレルギー誘発物質、有害物質など)の処理に使用される。使用後の二酸化塩素ガスとC剤とを接触させることにより、二酸化塩素ガスを還元により消滅させて、二酸化塩素ガスによる刺激臭を低減できる。特に発生した使用後の二酸化塩素ガスが多い場合は、発生した二酸化塩素ガスとC剤との接触により、二酸化塩素ガスによる刺激臭を大きく低減できる。これにより、二酸化塩素ガス使用後の人の退避を早期に解除できる。
(Contact between chlorine dioxide gas and agent C)
Chlorine dioxide gas is generated by the contact between the agent A and the agent B. The generated chlorine dioxide gas is released into the air and used for the treatment of substances to be treated (allergens, harmful substances, etc.). By bringing the chlorine dioxide gas after use into contact with the agent C, the chlorine dioxide gas can be eliminated by reduction and the pungent odor caused by the chlorine dioxide gas can be reduced. In particular, when a large amount of chlorine dioxide gas is generated after use, the irritating odor caused by the chlorine dioxide gas can be greatly reduced by the contact between the generated chlorine dioxide gas and the agent C. As a result, the evacuation of people after using chlorine dioxide gas can be released at an early stage.

発生した二酸化塩素ガスとC剤とを接触させる比は、特に制限はないが、効率的に二酸化塩素ガスを消滅させる観点から、(A剤とB剤との接触により発生した二酸化塩素):(C剤に含まれる二酸化塩素還元剤)が、モル比で、100:1から1:3までの範囲が好ましく、50:1から2:3までの範囲が好ましい。このようにA剤とB剤との接触により発生した二酸化塩素に対するC剤に含まれる二酸化塩素還元剤の好適なモル比の範囲が広いのは、二酸化塩素ガスを発生および消滅させる空間の大きさによって二酸化塩素ガスと二酸化塩素還元剤との接触効率が大きく異なるからである。二酸化塩素ガスを発生および消滅させる空間が大きくなるほど、二酸化塩素ガスおよび二酸化塩素還元剤の空間への拡散および壁への吸着が大きくなることにより、二酸化塩素ガスと二酸化塩素還元剤との接触効率が低下するため、A剤とB剤との接触により発生した二酸化塩素に対するC剤に含まれる二酸化塩素還元剤の好適なモル比が大きくなる。また、過酸化水素は、エリソルビン酸およびその塩ならびにアスコルビン酸およびその塩に比べて二酸化塩素の還元力が小さいため、A剤とB剤との接触により発生した二酸化塩素に対するC剤に含まれる二酸化塩素還元剤の好適なモル比が大きくなる。 The ratio of the generated chlorine dioxide gas to the agent C is not particularly limited, but from the viewpoint of efficiently extinguishing the chlorine dioxide gas (chlorine dioxide generated by the contact between the agent A and the agent B) :( The chlorine dioxide reducing agent contained in the agent C) is preferably in the range of 100: 1 to 1: 3 and preferably in the range of 50: 1 to 2: 3 in terms of molar ratio. The wide range of suitable molar ratios of the chlorine dioxide reducing agent contained in the C agent to the chlorine dioxide generated by the contact between the A agent and the B agent is the size of the space for generating and extinguishing the chlorine dioxide gas. This is because the contact efficiency between the chlorine dioxide gas and the chlorine dioxide reducing agent differs greatly depending on the type. The larger the space for generating and extinguishing chlorine dioxide gas, the greater the diffusion of chlorine dioxide gas and chlorine dioxide reducing agent into the space and the greater adsorption to the wall, resulting in higher contact efficiency between chlorine dioxide gas and chlorine dioxide reducing agent. Therefore, the preferable molar ratio of the chlorine dioxide reducing agent contained in the agent C to the chlorine dioxide generated by the contact between the agent A and the agent B increases. Further, since hydrogen peroxide has a smaller reducing power of chlorine dioxide than erythorbic acid and its salt and ascorbic acid and its salt, the dioxide contained in the C agent with respect to the chlorine dioxide generated by the contact between the A agent and the B agent. The suitable molar ratio of the chlorine reducing agent increases.

発生した二酸化塩素ガスとC剤とを接触させる方法は、特に制限はないが、発生した後空気中に発散した二酸化塩素ガスと効率よく接触して効率よく二酸化塩素ガスを消滅させる観点から、発生した後空気中に飛散した二酸化塩素ガスにC剤をミスト状にして接触させる方法、たとえば二酸化塩素ガスにC剤を噴霧する方法が好ましい。また、上記観点から、C剤は二酸化塩素還元剤を含む水性溶液であることが好ましく、二酸化塩素還元剤水性溶液であることがより好ましい。 The method of contacting the generated chlorine dioxide gas with the agent C is not particularly limited, but it is generated from the viewpoint of efficiently contacting the generated chlorine dioxide gas and then efficiently extinguishing the chlorine dioxide gas. A method in which the C agent is brought into contact with the chlorine dioxide gas scattered in the air in the form of a mist, for example, a method in which the C agent is sprayed on the chlorine dioxide gas is preferable. From the above viewpoint, the agent C is preferably an aqueous solution containing a chlorine dioxide reducing agent, and more preferably an aqueous solution of a chlorine dioxide reducing agent.

発生した二酸化塩素ガスとC剤とを接触させる回数は、特に制限はないが、発生した後空気中に発散した二酸化塩素ガスと効率よく接触して効率よく二酸化塩素ガスを消滅させる観点から、複数回であることが好ましい。特に、二酸化塩素ガスが存在する空間が大きいほど、また、二酸化塩素ガスの濃度が高いほど、C剤と接触させる回数は多いことが好ましい。 The number of times the generated chlorine dioxide gas and the C agent are brought into contact with each other is not particularly limited, but from the viewpoint of efficiently contacting the generated chlorine dioxide gas and then efficiently contacting the chlorine dioxide gas emitted into the air to efficiently extinguish the chlorine dioxide gas. It is preferably times. In particular, it is preferable that the larger the space in which the chlorine dioxide gas exists and the higher the concentration of the chlorine dioxide gas, the greater the number of times of contact with the agent C.

<実施形態2:二酸化塩素ガス発生消滅用キット>
図1を参照して、本発明の別の実施形態である二酸化塩素ガス発生消滅用キットは、亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、A剤とB剤とを接触させることにより二酸化塩素ガスを発生させ、二酸化塩素ガスにC剤を接触させることにより二酸化塩素ガスを消滅させる。本実施形態の二酸化塩素ガス発生消滅用キットは、上記のA剤、B剤、およびC剤で構成され、それらを一定の順序で接触させることにより、発生させた二酸化塩素ガスを使用後に消滅させることができるため、使用後の二酸化塩素ガスによる刺激臭を低減できる。ここで、二酸化塩素ガスの使用とは、被処理体の処理に有効な使用であれば特に制限はなく、二酸化塩素ガスを花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などへの広い範囲での使用を含む。
<Embodiment 2: Kit for extinguishing chlorine dioxide gas generation>
With reference to FIG. 1, a chlorine dioxide gas generation and extinction kit according to another embodiment of the present invention contains an agent A containing a chlorite, an agent B containing a gas generating agent, and a chlorine dioxide reducing agent. It is composed of agent C, and chlorine dioxide gas is generated by contacting agent A and agent B, and chlorine dioxide gas is extinguished by contacting agent C with chlorine dioxide gas. The chlorine dioxide gas generation and extinction kit of the present embodiment is composed of the above agents A, B, and C, and by contacting them in a certain order, the generated chlorine dioxide gas is extinguished after use. Therefore, the irritating odor caused by chlorine dioxide gas after use can be reduced. Here, the use of chlorine dioxide gas is not particularly limited as long as it is effectively used for the treatment of the object to be treated, and the chlorine dioxide gas is used for treatment of allergens such as pollen, dust, skin dust, and fungi, pathogens, and so on. Includes widespread use in the treatment of harmful substances such as viruses, harmful chemicals (eg tobacco smoke, formaldehyde), environmental purification, indoor and outdoor and food deodorization, antifungal and antiseptic.

本実施形態の二酸化塩素ガス発生消滅用キットを構成するA剤、B剤、およびC剤、A剤とB剤との接触による二酸化塩素ガスの発生、ならびに二酸化塩素ガスとC剤との接触による二酸化塩素ガスの消滅は、実施形態1の二酸化塩素ガスの発生消滅方法において説明したA剤、B剤、およびC剤、ガス発生工程、ならびにガス消滅工程と同じであるため、それらの説明を繰り返さない。 Agents A, B, and C constituting the chlorine dioxide gas generation and extinction kit of the present embodiment, chlorine dioxide gas generated by contact between agent A and agent B, and chlorine dioxide gas generated by contact with agent C. Since the extinction of chlorine dioxide gas is the same as the agent A, the agent B, and the agent C, the gas generation step, and the gas extinction step described in the method for generating and extinguishing chlorine dioxide gas of the first embodiment, those explanations are repeated. No.

(実施例1)
本実施例は、3人のパネラー全てが強く認めるタバコなどによる悪臭がある乗用車(テスラ社製モデルS)内でエアコンを「中」で動作させることによる空気循環雰囲気下において、A剤とB剤との接触によるClO2ガス(二酸化塩素ガス、以下同じ)の発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
(Example 1)
In this example, agents A and B are used in an air circulation atmosphere by operating the air conditioner "inside" in a passenger car (Tesla Model S) that has a foul odor such as cigarettes, which is strongly recognized by all three panelists. ClO 2 gas (chlorine dioxide gas, the same shall apply hereinafter) was generated by contact with, and ClO 2 gas was extinguished by contact between the generated ClO 2 gas and the agent C.

1.ClO2ガス発生消滅用キットの作製
A剤として25質量%の亜塩素酸ナトリウム水溶液10gと、B剤として10質量%の塩酸水溶液17gと、C剤として2.5質量%のエリソルビン酸ナトリウム水溶液300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
1. 1. Preparation of ClO 2 gas generation and extinction kit 10 g of 25 mass% sodium chlorite aqueous solution as agent A, 17 g of 10 mass% hydrochloric acid aqueous solution as agent B, and 300 g of 2.5 mass% sodium erythorbate aqueous solution as agent C And prepared. The reason why the amount of C agent is 300 g is to put it in a trigger type atomizer for spraying, and the amount of C agent required to extinguish ClO 2 gas and reduce its concentration to 0.1 ppm or less is as described later. It was a very small amount.

2.A剤とB剤との接触によるClO2ガスの発生
底面が58mm×58mmで開口面が83mm×83mmで高さが30mmの逆正四角錐台形状のPET(ポリエチレンテレフタレート)製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と上記乗用車内のClO2ガスの濃度を表1にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。ClO2ガスの濃度測定は、上記乗用車内の気密性を確保した状態で上記の検知管の測定部を上記乗用車内に挿入することにより行った。
2. Generation of ClO 2 gas due to contact between Agent A and Agent B Agent A in an inverted quadrangular pyramid-shaped PET (polyethylene terephthalate) container with a bottom surface of 58 mm x 58 mm, an opening surface of 83 mm x 83 mm, and a height of 30 mm. The total amount of the agent B and the total amount of the agent B were mixed and brought into contact with each other to generate ClO 2 gas. Table 1 summarizes the elapsed time from the time when the agent A and the agent B were brought into contact with each other and the concentration of ClO 2 gas in the passenger car. The concentration of ClO 2 gas was measured using a Kitagawa type detector tube for concentrations of 1.0 ppm or more, and No. 1 of the Gastec low concentration detector tube for concentrations less than 1.0 ppm. 23M or No. It was measured using 23 L. The concentration of ClO 2 gas was measured by inserting the measuring unit of the detector tube into the passenger car while ensuring the airtightness inside the passenger car.

3.発生したClO2ガスとC剤との接触によるClO2ガスの消滅
上記のA剤とB剤との混合により接触させた時から90分間経過時にClO2ガス濃度を測定した後に、発生したClO2ガスが残存している上記乗用車内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記乗用車内で5回(全体で4.75g)噴霧した。上記のA剤とB剤との混合により接触させた時から95分間経過後(すなわちC剤の噴霧時から5分間経過後)における乗用車内のClO2ガス濃度を表1に示した。表1に示すように、このときのClO2ガスの濃度は、0.05ppmであり、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL−TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記乗用車内のClO2ガスによる刺激臭は、3人のパネラー全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、乗用車内のタバコなどによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。
3. 3. After measuring the ClO 2 gas concentration at after 90 minutes when contacted by mixing with ClO 2 gas annihilation above A agent and the B agent by contact with generated ClO 2 gas and C agents, ClO 2 generated Agent A and agent B after contact were taken out from the inside of the passenger car in which gas remained, and agent C contained in the trigger type atomizer was sprayed 5 times (4.75 g in total) in the passenger car. Table 1 shows the ClO 2 gas concentration in the passenger car after 95 minutes have passed from the time when the agent A and the agent B were brought into contact with each other (that is, 5 minutes after the spraying of the agent C). As shown in Table 1, the concentration of ClO 2 gas at this time is 0.05 ppm, which is the allowable exposure concentration in the 8-hour exposure (PEL-TWA) set by the US Occupational Safety and Health Administration (OSHA). It was less than 1 ppm. At this time, the pungent odor caused by the ClO 2 gas in the passenger car was reduced to the extent that all three panelists recognized it very slightly but did not feel any discomfort. At this time, the bad odor caused by cigarettes in the passenger car was not recognized by all three panelists and disappeared. The drain odor of the air conditioner was not recognized by all three panelists and disappeared.

Figure 0006961550
Figure 0006961550

(実施例2)
本実施例は、3人のパネラー全てが強く認めるタバコなどによる悪臭がある乗用車(トヨタ社製アクア)内でエアコンを「中(表示値24)」で動作させることによる空気循環雰囲気下において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
(Example 2)
In this embodiment, A is performed in an air circulation atmosphere by operating the air conditioner at "medium (display value 24)" in a passenger car (Toyota Aqua) that has a foul odor such as cigarettes, which is strongly recognized by all three panelists. The ClO 2 gas was generated by the contact between the agent and the agent B, and the ClO 2 gas was extinguished by the contact between the generated ClO 2 gas and the agent C.

1.ClO2ガス発生消滅用キットの作製
A剤として25質量%の亜塩素酸ナトリウム水溶液10gと、B剤として10質量%の塩酸水溶液17gと、C剤として2.5質量%のL−アスコルビン酸水溶液300gと、を準備した。ここで、C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
1. 1. Preparation of ClO 2 gas generation and extinction kit 10 g of 25 mass% sodium chlorite aqueous solution as agent A, 17 g of 10 mass% hydrochloric acid aqueous solution as agent B, and 2.5 mass% L-ascorbic acid aqueous solution as agent C 300 g and so on were prepared. Here, the reason why the amount of C agent is 300 g is to put it in a trigger type atomizer for spraying, and the amount of C agent required to extinguish ClO 2 gas and reduce its concentration to 0.1 ppm or less will be described later. It was an extremely small amount.

2.A剤とB剤との接触によるClO2ガスの発生
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と上記乗用車内のClO2ガスの濃度を表2にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。ClO2ガスの濃度測定は、上記乗用車内の気密性を確保した状態で上記の検知管の測定部を上記乗用車内に挿入することにより行った。
2. Generation of ClO 2 gas by contact between Agent A and Agent B In a PET container of the same shape and size as in Example 1, the total amount of Agent A and the total amount of Agent B are mixed and brought into contact with each other to make ClO 2 Generated gas. Table 2 summarizes the elapsed time from the time when the agent A and the agent B were brought into contact with each other and the concentration of ClO 2 gas in the passenger car. The concentration of ClO 2 gas was measured using a Kitagawa type detector tube for concentrations of 1.0 ppm or more, and No. 1 of the Gastec low concentration detector tube for concentrations less than 1.0 ppm. 23M or No. It was measured using 23 L. The concentration of ClO 2 gas was measured by inserting the measuring unit of the detector tube into the passenger car while ensuring the airtightness inside the passenger car.

3.発生したClO2ガスとC剤との接触によるClO2ガスの消滅
上記のA剤とB剤との混合により接触させた時から90分間経過時にClO2ガス濃度を測定した後に、発生したClO2ガスが残存している上記乗用車内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記乗用車内で5回(全体で4.75g)噴霧した。上記のA剤とB剤との混合により接触させた時から95分間経過後(すなわちC剤の噴霧時から5分間経過後)における上記乗用車内のClO2ガス濃度を表2に示した。表2に示すように、このときのClO2ガスの濃度は、0.05ppmであり、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL−TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記乗用車内のClO2ガスによる刺激臭は、3人のパネラー全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、上記乗用車内のタバコなどによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。
3. 3. After measuring the ClO 2 gas concentration at after 90 minutes when contacted by mixing with ClO 2 gas annihilation above A agent and the B agent by contact with generated ClO 2 gas and C agents, ClO 2 generated Agent A and agent B after contact were taken out from the inside of the passenger car in which gas remained, and agent C contained in the trigger type atomizer was sprayed 5 times (4.75 g in total) in the passenger car. Table 2 shows the ClO 2 gas concentration in the passenger car 95 minutes after the contact by mixing the A agent and the B agent (that is, 5 minutes after the spraying of the C agent). As shown in Table 2, the concentration of ClO 2 gas at this time is 0.05 ppm, which is the allowable exposure concentration in the 8-hour exposure (PEL-TWA) set by the US Occupational Safety and Health Administration (OSHA). It was less than 1 ppm. At this time, the pungent odor caused by the ClO 2 gas in the passenger car was reduced to the extent that all three panelists recognized it very slightly but did not feel any discomfort. At this time, the bad odor caused by cigarettes in the passenger car was not recognized by all three panelists and disappeared. The drain odor of the air conditioner was not recognized by all three panelists and disappeared.

Figure 0006961550
Figure 0006961550

(実施例3)
本実施例は、3人のパネラー全てが強く認めるホルムアルデヒドによる悪臭がある6畳室(容量21.7m3:2.93m×3.37m×2.2m)内において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
(Example 3)
In this example, in a 6 tatami room (capacity 21.7 m 3 : 2.93 m x 3.37 m x 2.2 m), which is strongly recognized by all three panelists and has a foul odor due to formaldehyde, agents A and B are used. The ClO 2 gas was generated by the contact and the ClO 2 gas was extinguished by the contact between the generated ClO 2 gas and the agent C.

1.ClO2ガス発生消滅用キットの作製
A剤として25質量%の亜塩素酸ナトリウム水溶液18gと、B剤として30質量%のクエン酸水溶液30gと、C剤として2.5質量%のエリソルビン酸ナトリウム水溶液300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように少量であった。
1. 1. Preparation of ClO 2 gas generation and extinction kit 18 g of 25 mass% sodium chlorite aqueous solution as agent A, 30 g of 30 mass% citric acid aqueous solution as agent B, and 2.5 mass% sodium erythorbate aqueous solution as agent C 300 g and so on were prepared. The reason why the amount of C agent is 300 g is to put it in a trigger type atomizer for spraying, and the amount of C agent required to extinguish ClO 2 gas and reduce its concentration to 0.1 ppm or less is as described later. It was a small amount.

2.A剤とB剤との接触によるClO2ガスの発生
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と6畳室内のClO2ガスの濃度を表3にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。
2. Generation of ClO 2 gas by contact between Agent A and Agent B In a PET container of the same shape and size as in Example 1, the total amount of Agent A and the total amount of Agent B are mixed and brought into contact with each other to make ClO 2 Generated gas. Table 3 summarizes the elapsed time from the time when the agent A and the agent B were brought into contact with each other and the concentration of ClO 2 gas in the 6 tatami mat room. The concentration of ClO 2 gas was measured using a Kitagawa type detector tube for concentrations of 1.0 ppm or more, and No. 1 of the Gastec low concentration detector tube for concentrations less than 1.0 ppm. 23M or No. It was measured using 23 L.

3.発生したClO2ガスとC剤との接触によるClO2ガスの消滅
上記のA剤とB剤との混合により接触させた時から6.25時間経過後に、発生したClO2ガスが残存している上記6畳室内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記6畳室内で35回(全体で33.25g)噴霧した(C剤の1次噴霧という、以下同じ)。ここで、C剤の1次噴霧は以下の要領で行なった。上記6畳室内を、出入口ドアから奥に向かって、それぞれ同じ大きさの領域の表領域、中領域、および奥領域に分けて、奥領域の表側から奥側に向けて均一に広がるように15回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように10回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように10回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から7.25時間経過後(すなわちC剤の1次噴霧時から1時間経過後)における上記6畳室内のClO2ガス濃度は、表3に示すように、0.75ppmに低減した。
3. 3. Extinction of ClO 2 gas by contact between the generated ClO 2 gas and agent C The generated ClO 2 gas remains 6.25 hours after the contact by mixing the above agent A and agent B. Agent A and agent B after contact were taken out from the above 6 tatami room, and agent C placed in the trigger type atomizer was sprayed 35 times (33.25 g in total) in the above 6 tatami room (referred to as primary spraying of agent C). ,same as below). Here, the primary spraying of the C agent was carried out in the following manner. The 6 tatami mat room is divided into a front area, a middle area, and a back area of the same size from the entrance door to the back, and spreads uniformly from the front side to the back side of the back area. Spray at different places 10 times each so that it spreads evenly from the front side to the back side of the middle area, and spray 10 times each so that it spreads evenly from the back side to the front side of the front area. Sprayed in different places. The ClO 2 gas concentration in the 6 tatami room is shown in the table after 7.25 hours have passed since the contact was made by mixing the A agent and the B agent (that is, 1 hour after the first spraying of the C agent). As shown in 3, it was reduced to 0.75 ppm.

次に、A剤とB剤との混合により接触させた時から7.5時間経過後に、上記C剤を上記6畳室内で10回(全体で9.5g)噴霧した(C剤の2次噴霧という、以下同じ)。ここで、C剤の2次噴霧は、上記奥領域の表側から奥側に向けて均一に広がるように4回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように3回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように3回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から8.5時間経過後(すなわちC剤の2次噴霧時から1時間経過後)における上記6畳室内のClO2ガス濃度は、表3に示すように、0.10ppmに低減し、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL−TWA)における許容暴露濃度の上限である0.1ppmmまで低減した。 Next, 7.5 hours after the contact by mixing the A agent and the B agent, the C agent was sprayed 10 times (9.5 g in total) in the 6 tatami room (secondary of the C agent). The same applies to spraying). Here, the secondary spray of the C agent is sprayed four times at different locations so as to spread uniformly from the front side to the back side of the inner region, and spread evenly from the front side to the back side of the middle region. Was sprayed three times at different locations, and sprayed three times at different locations so as to spread evenly from the back side to the front side of the table area. The ClO 2 gas concentration in the 6 tatami room is shown in the table after 8.5 hours have passed since the contact was made by mixing the A agent and the B agent (that is, 1 hour after the secondary spraying of the C agent). As shown in 3, it was reduced to 0.10 ppm and reduced to 0.1 ppmm, which is the upper limit of the allowable exposure concentration in the 8-hour exposure (PEL-TWA) set by the US Occupational Safety and Health Administration (OSHA).

さらに、A剤とB剤との混合により接触させた時から8.75時間経過後に、上記C剤を上記6畳室内でC剤を2回(全体で1.9g)噴霧した(C剤の3次噴霧という、以下同じ)。ここで、C剤の3次噴霧は以下の要領で行なった。上記6畳室内を、出入口ドアから奥に向かって、それぞれ同じ大きさの領域の表側領域および奥側領域に分けて、奥側領域の表側から奥側に向けて1回噴霧し、表側領域の奥側から表側に向けて1回噴霧した。上記のA剤とB剤との混合により接触させた時から9.0時間経過後(すなわちC剤の3次噴霧時から0.25時間経過後)における上記6畳室内のClO2ガス濃度は、表3に示すように、0.05ppmに低減し、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL−TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記6畳室内のClO2ガスによる刺激臭は、3人のパネラーが全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、上記6畳室内のホルムアルデヒドによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。 Further, after 8.75 hours had passed from the time when the A agent and the B agent were brought into contact with each other, the C agent was sprayed twice (1.9 g in total) in the 6 tatami room (the C agent). The same applies hereinafter as the tertiary spray). Here, the tertiary spraying of the C agent was carried out in the following manner. The above 6 tatami mat room is divided into a front side area and a back side area of the same size area from the entrance door to the back, and sprayed once from the front side to the back side of the back side area, and the front side area It was sprayed once from the back side to the front side. The ClO 2 gas concentration in the 6 tatami room is 9.0 hours after the contact by mixing the A and B agents (that is, 0.25 hours after the third spraying of the C agent). As shown in Table 3, it was reduced to 0.05 ppm, which was 0.1 ppm or less, which is the allowable exposure concentration at the 8-hour exposure (PEL-TWA) set by the US Occupational Safety and Health Administration (OSHA). At this time, the pungent odor caused by the ClO 2 gas in the 6 tatami mat room was reduced to the extent that all three panelists recognized it very slightly but did not feel any discomfort. At this time, the bad odor caused by formaldehyde in the 6 tatami mat room was not recognized by all three panelists and disappeared. The drain odor of the air conditioner was not recognized by all three panelists and disappeared.

Figure 0006961550
Figure 0006961550

(実施例4)
本実施例は、3人のパネラー全てが強く認めるホルムアルデヒドによる悪臭がある6畳室(容量21.7m3:2.93m×3.37m×2.2m)内において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
(Example 4)
In this example, in a 6 tatami room (capacity 21.7 m 3 : 2.93 m x 3.37 m x 2.2 m), which is strongly recognized by all three panelists and has a foul odor due to formaldehyde, agents A and B are used. The ClO 2 gas was generated by the contact and the ClO 2 gas was extinguished by the contact between the generated ClO 2 gas and the agent C.

1.ClO2ガス発生消滅用キットの作製
A剤として25質量%の亜塩素酸ナトリウム水溶液18gと、B剤として30質量%のクエン酸水溶液30gと、C剤として3.0質量/体積%(w/v%とも表記する。100mLの水溶液中に3gの過酸化水素が存在する濃度をいう)の過酸化水素水溶液(健栄製薬社製オキシドール)300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
1. 1. Preparation of ClO 2 gas generation and extinction kit 18 g of 25 mass% sodium chlorite aqueous solution as agent A, 30 g of 30 mass% citrate aqueous solution as agent B, and 3.0 mass / volume% (w / by volume) of agent C Also referred to as v%. 300 g of a hydrogen peroxide aqueous solution (Oxidol manufactured by Kenei Pharmaceutical Co., Ltd.) of 3 g of hydrogen peroxide in a 100 mL aqueous solution was prepared. The reason why the amount of C agent is 300 g is to put it in a trigger type atomizer for spraying, and the amount of C agent required to extinguish ClO 2 gas and reduce its concentration to 0.1 ppm or less is as described later. It was a very small amount.

2.A剤とB剤との接触によるClO2ガスの発生
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と6畳室内のClO2ガスの濃度を表4にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。
2. Generation of ClO 2 gas by contact between Agent A and Agent B In a PET container of the same shape and size as in Example 1, the total amount of Agent A and the total amount of Agent B are mixed and brought into contact with each other to make ClO 2 Generated gas. Table 4 summarizes the elapsed time from the time when the agent A and the agent B were brought into contact with each other and the concentration of ClO 2 gas in the 6 tatami mat room. The concentration of ClO 2 gas was measured using a Kitagawa type detector tube for concentrations of 1.0 ppm or more, and No. 1 of the Gastec low concentration detector tube for concentrations less than 1.0 ppm. 23M or No. It was measured using 23 L.

3.発生したClO2ガスとC剤との接触によるClO2ガスの消滅
上記のA剤とB剤との混合により接触させた時から6.33時間経過後に、発生したClO2ガスが残存している上記6畳室内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記6畳室内で35回(全体で25.9g)噴霧した(C剤の1次噴霧という、以下同じ)。ここで、C剤の1次噴霧は以下の要領で行なった。上記6畳室内を、出入口ドアから奥に向かって、それぞれ同じ大きさの領域の表領域、中領域、および奥領域に分けて、奥領域の表側から奥側に向けて均一に広がるように15回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように10回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように10回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から7.35時間経過後(すなわちC剤の1次噴霧時から1.02時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、1.40ppmに低減した。
3. 3. Disappearance of ClO 2 gas by contact between the generated ClO 2 gas and agent C The generated ClO 2 gas remains after 6.33 hours have passed from the time of contact by the above mixing of agent A and agent B. Agent A and agent B after contact were taken out from the above 6 tatami room, and agent C placed in the trigger type atomizer was sprayed 35 times (25.9 g in total) in the above 6 tatami room (referred to as primary spraying of agent C). ,same as below). Here, the primary spraying of the C agent was carried out in the following manner. The 6 tatami mat room is divided into a front area, a middle area, and a back area of the same size from the entrance door to the back, and spreads uniformly from the front side to the back side of the back area. Spray at different places 10 times each so that it spreads evenly from the front side to the back side of the middle area, and spray 10 times each so that it spreads evenly from the back side to the front side of the front area. Sprayed in different places. The ClO 2 gas concentration in the 6 tatami room is 7.35 hours after the contact by mixing the A and B agents (that is, 1.02 hours after the primary spraying of the C agent). As shown in Table 4, the concentration was reduced to 1.40 ppm.

次に、A剤とB剤との混合により接触させた時から7.75時間経過後に、上記C剤を上記6畳室内で10回(全体で7.4g)噴霧した(C剤の2次噴霧という、以下同じ)。ここで、C剤の2次噴霧は、上記奥領域の表側から奥側に向けて均一に広がるように4回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように3回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように3回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から8.85時間経過後(すなわちC剤の2次噴霧時から1.1時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、0.55ppmに低減した。 Next, after 7.75 hours had passed from the time when the A agent and the B agent were brought into contact with each other, the C agent was sprayed 10 times (7.4 g in total) in the 6 tatami room (secondary of the C agent). The same applies to spraying). Here, the secondary spray of the C agent is sprayed four times at different locations so as to spread uniformly from the front side to the back side of the inner region, and spread evenly from the front side to the back side of the middle region. Was sprayed three times at different locations, and sprayed three times at different locations so as to spread evenly from the back side to the front side of the table area. The ClO 2 gas concentration in the 6 tatami room is 8.85 hours after the contact by mixing the A and B agents (that is, 1.1 hours after the secondary spraying of the C agent). , As shown in Table 4, it was reduced to 0.55 ppm.

さらに、A剤とB剤との混合により接触させた時から9.0時間経過後に、上記C剤を上記6畳室内で10回(全体で7.4g)噴霧した(C剤の3次噴霧という、以下同じ)。ここで、C剤の3次噴霧は、記奥領域の表側から奥側に向けて均一に広がるように4回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように3回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように3回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から10.0時間経過後(すなわちC剤の3次噴霧時から1.0時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、0.23ppmに低減した。 Further, after 9.0 hours had passed from the time when the A agent and the B agent were brought into contact with each other, the C agent was sprayed 10 times (7.4 g in total) in the 6 tatami room (the third spray of the C agent). The same applies below). Here, the tertiary spray of the C agent is sprayed four times at different locations so as to spread uniformly from the front side to the back side of the back area, and spread evenly from the front side to the back side of the middle area. Was sprayed three times at different locations, and sprayed three times at different locations so as to spread evenly from the back side to the front side of the table area. The ClO 2 gas concentration in the 6 tatami room is 10.0 hours after the contact between the A agent and the B agent (that is, 1.0 hour after the third spraying of the C agent). , As shown in Table 4, it was reduced to 0.23 ppm.

さらに、A剤とB剤との混合により接触させた時から10.05時間経過後に、上記C上記6畳室内でC剤を10回(全体で7.4g)噴霧した(C剤の4次噴霧という、以下同じ)。ここで、C剤の4次噴霧は、記奥領域の表側から奥側に向けて均一に広がるように4回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように3回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように3回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から11.0時間経過後(すなわちC剤の4次噴霧時から0.95時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、0.05ppmに低減し、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL−TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記6畳室内のClO2ガスによる刺激臭は、3人のパネラーが全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、上記6畳室内のホルムアルデヒドによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。 Further, after 10.05 hours had passed from the time when the agent A and the agent B were brought into contact with each other, the agent C was sprayed 10 times (7.4 g in total) in the above 6 tatami mat room of the agent C (the fourth order of the agent C). The same applies to spraying). Here, the fourth spray of the C agent is sprayed four times at different locations so as to spread uniformly from the front side to the back side of the back area, and spread evenly from the front side to the back side of the middle area. Was sprayed three times at different locations, and sprayed three times at different locations so as to spread evenly from the back side to the front side of the table area. The ClO 2 gas concentration in the 6 tatami room is 11.0 hours after the contact by mixing the A and B agents (that is, 0.95 hours after the fourth spraying of the C agent). As shown in Table 4, the concentration was reduced to 0.05 ppm, which was 0.1 ppm or less, which is the allowable exposure concentration at the 8-hour exposure (PEL-TWA) set by the US Occupational Safety and Health Administration (OSHA). At this time, the pungent odor caused by the ClO 2 gas in the 6 tatami mat room was reduced to the extent that all three panelists recognized it very slightly but did not feel any discomfort. At this time, the bad odor caused by formaldehyde in the 6 tatami mat room was not recognized by all three panelists and disappeared. The drain odor of the air conditioner was not recognized by all three panelists and disappeared.

Figure 0006961550
Figure 0006961550

実施例1−4について表1−4のそれぞれに示すように、亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、A剤とB剤とを接触させることによりClO2ガスを発生させ、ClO2ガスに、C剤を接触させることによりClO2ガスを消滅させるClO2ガス発生消滅用キット、ならびに、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることによりClO2ガスを発生させるガス発生工程と、ClO2ガスに二酸化塩素還元剤を含むC剤を接触させることによりClO2ガスを消滅させるガス消滅工程と、を備えるClO2ガスの発生消滅方法によれば、発生させたClO2ガスを使用後に消滅させることにより、使用後のClO2ガスによる刺激臭を低減できる。このため、ClO2ガスの使用後は人の退避などの問題がなく、人が多く集まる室内および自動車内などであっても、花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、脱臭、防カビおよび防腐などの処理にClO2ガスを広く使用することができる。 As shown in Table 1-4 with respect to Example 1-4, it is composed of an agent A containing a chlorite, an agent B containing a gas generating agent, and an agent C containing a chlorine dioxide reducing agent. to generate ClO 2 gas by contacting the a agent and the B agent, the ClO 2 gas, ClO 2 gas generated annihilation kit to extinguish the ClO 2 gas by contacting the C agent, as well as chlorite A gas generation step of generating ClO 2 gas by contacting Agent A containing a gas generating agent with Agent B containing a gas generating agent, and ClO 2 gas by contacting Agent C containing a chlorine dioxide reducing agent with ClO 2 gas. According to the method for generating and extinguishing ClO 2 gas, which comprises a gas extinguishing step for extinguishing the generated ClO 2 gas, the pungent odor caused by the ClO 2 gas after use can be reduced by extinguishing the generated ClO 2 gas after use. Therefore, after using ClO 2 gas, there is no problem such as evacuation of people, and even in indoors where many people gather and in automobiles, treatment of allergens such as pollen, dust, skin dust, fungi, and pathogenic bacteria ClO 2 gas can be widely used for treatment of harmful substances such as viruses, harmful chemical substances (for example, tobacco smoke, formaldehyde), environmental purification, deodorization, antifungal and antiseptic treatment.

上記実施例1−4に示すように、発生したClO2ガスにC剤を接触させることにより、ClO2ガスを消滅させて、ClO2ガスによる刺激臭を低減することができた。 As shown in the above Examples 1-4, by the ClO 2 gas generated by contacting the C agent, thereby eliminating the ClO 2 gas, it was possible to reduce the irritating odor due to ClO 2 gas.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered to be exemplary and not restrictive in all respects. The scope of the present invention is shown by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

S10 ガス発生工程、S20 ガス消滅工程。 S10 gas generation step, S20 gas extinction step.

Claims (2)

25質量%以下の亜塩素酸塩を含む水性液であるA剤とガス発生剤を含む水性液であるB剤とを接触させることにより二酸化塩素ガスを発生させるガス発生工程と、
前記二酸化塩素ガスに1質量%以上5質量%以下の二酸化塩素還元剤を含む水性液であるC剤を接触させることにより前記二酸化塩素ガスを消滅させて残存する前記二酸化塩素ガスの濃度を0.1ppm以下とする消滅工程と、を備え、
前記二酸化塩素還元剤は、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含む二酸化塩素ガスの発生消滅方法。
A gas generation step of generating chlorine dioxide gas by contacting agent A, which is an aqueous liquid containing 25% by mass or less of chlorite, with agent B, which is an aqueous liquid containing a gas generating agent.
By contacting the chlorine dioxide gas with Agent C, which is an aqueous liquid containing a chlorine dioxide reducing agent of 1% by mass or more and 5% by mass or less, the chlorine dioxide gas is extinguished and the concentration of the remaining chlorine dioxide gas is reduced to 0. It is equipped with an extinction step of 1 ppm or less.
The chlorine dioxide reducing agent, e Risorubin acid and its salts and ascorbic acid and at least generation disappearance process of chlorine dioxide gas containing one of selected from the group consisting of a salt thereof,.
25質量%以下の亜塩素酸塩を含む水性液であるA剤と、ガス発生剤を含む水性液であるB剤と、1質量%以上5質量%以下の二酸化塩素還元剤を含む水性液であるC剤と、で構成され、
前記二酸化塩素還元剤は、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含み、
前記A剤と前記B剤とを接触させることにより二酸化塩素ガスを発生させ、
前記二酸化塩素ガスに前記C剤を接触させることにより前記二酸化塩素ガスを消滅させて残存する前記二酸化塩素ガスの濃度を0.1ppm以下とする二酸化塩素ガス発生消滅用キット。
Agent A, which is an aqueous liquid containing 25% by mass or less of chlorite, Agent B, which is an aqueous liquid containing a gas generating agent, and an aqueous liquid containing 1% by mass or more and 5% by mass or less of a chlorine dioxide reducing agent. Consists of a certain C agent
The chlorine dioxide reducing agent comprises at least one member selected from the group consisting of d Risorubin acid and its salts and ascorbic acid and its salts,
Chlorine dioxide gas is generated by bringing the agent A and the agent B into contact with each other.
A kit for generating and extinguishing chlorine dioxide gas, in which the chlorine dioxide gas is extinguished by bringing the agent C into contact with the chlorine dioxide gas, and the concentration of the remaining chlorine dioxide gas is 0.1 ppm or less.
JP2018147030A 2018-08-03 2018-08-03 Chlorine dioxide gas generation and extinction method and chlorine dioxide gas generation and extinction kit Active JP6961550B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018147030A JP6961550B2 (en) 2018-08-03 2018-08-03 Chlorine dioxide gas generation and extinction method and chlorine dioxide gas generation and extinction kit
PCT/JP2019/029681 WO2020027060A1 (en) 2018-08-03 2019-07-29 Method for producing and eliminating chlorine dioxide gas, and kit for producing and eliminating chlorine dioxide gas
CN201980050345.9A CN112512963A (en) 2018-08-03 2019-07-29 Method for generating and eliminating chlorine dioxide gas and kit for generating and eliminating chlorine dioxide gas
TW108127365A TWI778284B (en) 2018-08-03 2019-08-01 Method for generating and eliminating chlorine dioxide gas and kit for generating and eliminating chlorine dioxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018147030A JP6961550B2 (en) 2018-08-03 2018-08-03 Chlorine dioxide gas generation and extinction method and chlorine dioxide gas generation and extinction kit

Publications (2)

Publication Number Publication Date
JP2020019696A JP2020019696A (en) 2020-02-06
JP6961550B2 true JP6961550B2 (en) 2021-11-05

Family

ID=69232227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018147030A Active JP6961550B2 (en) 2018-08-03 2018-08-03 Chlorine dioxide gas generation and extinction method and chlorine dioxide gas generation and extinction kit

Country Status (4)

Country Link
JP (1) JP6961550B2 (en)
CN (1) CN112512963A (en)
TW (1) TWI778284B (en)
WO (1) WO2020027060A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241274B (en) * 2002-03-15 2005-10-11 West King Technology Co Ltd A process and equipment for the treatment of chlorine dioxide from sodium
JP4575234B2 (en) * 2005-04-10 2010-11-04 株式会社タイコー Generation method of chlorine dioxide gas
JP2010077004A (en) * 2008-09-29 2010-04-08 Taikoo:Kk Method for stabilizing chlorite solution, stabilized chlorite solution, method for generating chlorine dioxide and method for removing the same
CN102458487B (en) * 2009-06-04 2015-11-25 萨布尔知识产权控股有限责任公司 Gaseous chlorine dioxide is used to depollute to besieged space
WO2015136478A1 (en) * 2014-03-12 2015-09-17 Aqua Ecologic Stable chlorine dioxide composition and method of preparation
EP3153184A3 (en) * 2015-09-16 2017-07-12 Aqua Ecologic Method and system for disinfecting with chlorine dioxide gas

Also Published As

Publication number Publication date
CN112512963A (en) 2021-03-16
TW202007640A (en) 2020-02-16
TWI778284B (en) 2022-09-21
WO2020027060A1 (en) 2020-02-06
JP2020019696A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
US20210030908A1 (en) Apparatus and process for focused gas phase application of biocide
US20070172412A1 (en) Thickened fluid composition comprising chlorine dioxide
JPS6119561B2 (en)
US20060280665A1 (en) Vapor phase hydrogen peroxide deodorizer
JP2010077004A (en) Method for stabilizing chlorite solution, stabilized chlorite solution, method for generating chlorine dioxide and method for removing the same
JP2020073428A (en) Producing method of chlorous acid water by adsorption of chlorine dioxide
JP2018090547A (en) Bactericidal agent and method of manufacturing the same
WO1989003179A1 (en) Chlorine dioxide germicidal composition
JP6961550B2 (en) Chlorine dioxide gas generation and extinction method and chlorine dioxide gas generation and extinction kit
CN101143225B (en) Air purifying agent and its preparing process
KR101189527B1 (en) Apparatus and method for clarifying air
KR101159694B1 (en) Composition for producting chlorine dioside
KR20220012774A (en) Solid type composition for releasing chlorine dioxide gas and sterilizer/deodorant using the same
WO2005000368A1 (en) Disinfecting deodorizers, disinfecting deodorizer solutions, and method of disinfecting and deodorizing with the same
JP5666520B2 (en) Chlorine dioxide-containing composition, chlorine dioxide-containing sheet, chlorine dioxide-containing mask, and method for treating harmful substances
JP6298620B2 (en) Method for stopping generation of chlorine dioxide gas and chlorine dioxide gas generator
JP2018183468A (en) Atomizer
JP6133527B1 (en) Deodorization method
KR20180074271A (en) foaming type perfume
JPH0352802A (en) Alcohol formulation containing chlorine dioxide
JP2005329101A (en) Deodorization and method for preventing bad smell from being generated
JPS6058903A (en) Deodorizing germicide useful for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200313

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200317

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200417

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200422

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210224

C141 Inquiry by the administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C141

Effective date: 20210406

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C54 Written response to inquiry

Free format text: JAPANESE INTERMEDIATE CODE: C54

Effective date: 20210524

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210706

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210831

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211005

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6961550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150