JP6652559B2 - 光学装置及び光学方法 - Google Patents

光学装置及び光学方法 Download PDF

Info

Publication number
JP6652559B2
JP6652559B2 JP2017517354A JP2017517354A JP6652559B2 JP 6652559 B2 JP6652559 B2 JP 6652559B2 JP 2017517354 A JP2017517354 A JP 2017517354A JP 2017517354 A JP2017517354 A JP 2017517354A JP 6652559 B2 JP6652559 B2 JP 6652559B2
Authority
JP
Japan
Prior art keywords
acousto
frequencies
optic medium
frequency components
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017517354A
Other languages
English (en)
Other versions
JP2017534074A (ja
Inventor
ペレド、イテー
コトラー、ツヴィ
カミンスキ、ロナルド
Original Assignee
オーボテック リミテッド
オーボテック リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーボテック リミテッド, オーボテック リミテッド filed Critical オーボテック リミテッド
Publication of JP2017534074A publication Critical patent/JP2017534074A/ja
Application granted granted Critical
Publication of JP6652559B2 publication Critical patent/JP6652559B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/332Acousto-optical deflection devices comprising a plurality of transducers on the same crystal surface, e.g. multi-channel Bragg cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/24Function characteristic beam steering

Description

本発明は、概して光学デバイスおよびシステムに関し、特に音響光学デバイスに関する。
音響光学デバイスは、音波を用いて光を回折する。典型的なこの種のデバイスでは、圧電トランスデューサなどのトランスデューサが音響光学媒質に、典型的には適切な透過結晶または透過ガラスに取り付けられる。トランスデューサは、電気信号により駆動されて特定の周波数で振動するので、音響光学媒質中で音波を生成する。音波に起因する音響光学媒質の膨張および圧縮により局所の屈折率が変調されるので、駆動信号の周波数により決定される周期で、媒質内に格子構造が生成される。したがって、この格子に入射した光ビームは、デバイスを通過する時に回折されることになる。
様々な種類の音響光学デバイスが当技術分野において公知である。音響光学デフレクタは例えば、入射ビームの回折を用いて出力ビームの角度を誘導する。出力ビームの偏向角度は、音響光学材料における格子構造の周期によって決まるので、駆動信号の周波数を適切にばらつかせることにより調整され得る。
音響光学デフレクタは、入射ビームを異なるそれぞれの角度の複数の出力ビームに回折すべく、マルチ周波数駆動信号で駆動され得る。この種のマルチ周波数駆動のさらなる詳細は例えば、Hechtにより、"Multifrequency Acoustooptic Diffraction," IEEE Transactions on Sonics and Ultrasonics SU−24, pages 7−18 (1977)において説明されており、これは参照により本明細書に組み込まれている。また、Antonovらにより、"Efficient Multiple−Beam Bragg Acoustooptic Diffraction with Phase Optimization of a Multifrequency Acoustic Wave," Technical Physics 52:8, pages 1053−1060 (2007)において説明されており、これは同様に、参照により本明細書に組み込まれている。
複数の出力ビームを備える音響光学デバイスも、特許文献において説明されてきた。例えば、米国特許第5,890,789号は、光源から放射された光ビームを、光学導波管型の音響光学素子等を用いて複数のビームに分割する、異なる周波数の複数の電気信号で駆動されるマルチビーム放射デバイスを説明している。別の例として、米国特許出願公開第2009/0073544号は、ビーム源により生成されたビームを音響光学素子が複数の部分ビームに分割する、単色コヒーレント電磁放射の光学分割および変調用のデバイスを説明している。音響光学素子の下流に配置された音響光学変調器は、分割された部分ビームを供給され、追加の高周波数電気信号で駆動される。
さらに別の例として、米国特許第5,255,257号は、音響光学デフレクタをマルチ周波数モードにおいて高出力レベルで各周波数間の最小相互変調量で使用可能にすると言われる電子回路を説明している。複数の別個の信号周波数間の干渉の低減は、共通基準周波数に対するそれぞれの別個の周波数の個別の位相調整を精密に制御することにより達成される。各周波数の相対位相はまた、音響光学デフレクタに渡された合成された信号について、複数の信号周波数の全体的な平均出力を減らすことなく低い最大出力が達成されるように制御される。
本発明の実施形態は、光学偏向のための改良されたデバイスおよび方法を提供する。
よって、本発明の一実施形態に従って、音響光学媒質と、上記音響光学媒質に取り付けられた複数の圧電トランスデューサのアレイとを含む光学装置が提供される。駆動回路は、それぞれの駆動信号を上記複数の圧電トランスデューサに印加すべく連結され、それぞれの上記駆動信号は、異なるそれぞれの第1および第2周波数にあり、かつ、上記複数の圧電トランスデューサのそれぞれでの少なくとも第1および第2周波数成分について異なるそれぞれの位相オフセットを有する、少なくとも第1および第2周波数成分を含む。
典型的には、上記第1および第2周波数でのそれぞれの上記位相オフセットは、上記第1および第2周波数にある音波が異なるそれぞれの第1および第2波面角度で上記音響光学媒質を伝搬するように選択される。開示される実施形態において、上記音響光学媒質は、放射入力ビームを受け取るよう、かつ、上記第1および第2周波数により決定されるそれぞれの第1および第2ビーム角度で上記入力ビームを少なくとも第1および第2出力ビームに分割するよう構成され、上記第1および第2波面角度は、上記第1および第2ビーム角度でそれぞれのBragg条件を満たすように選択される。
いくつかの実施形態において、上記駆動回路により印加される上記駆動信号は少なくとも、第3周波数にあり、上記第1および第2周波数成分とは異なる位相オフセットを有する第3周波数成分をさらに含む。上記少なくとも第1、第2および第3周波数は、ゴロム定規を定義し得る。
開示される実施形態において、上記駆動回路により印加される上記駆動信号は、上記第1および第2周波数成分の少なくとも1つに起因して上記音響光学媒質内で上記第1および第2周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分をさらに含む。
いくつかの実施形態において、上記装置は、上記音響光学媒質に入射するように放射入力ビームを方向付けるよう構成された放射源を含み、上記音響光学媒質は、上記少なくとも第1および第2周波数成分のそれぞれの上記周波数により決定されたそれぞれのビーム角度で上記入力ビームを複数の出力ビームに分割するよう構成される。上記駆動信号の上記少なくとも第1および第2周波数成分は、上記複数の出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有してもよい。
本発明の一実施形態に従って、放射入力ビームを受け取るよう構成された音響光学媒質と、上記音響光学媒質に取り付けられた少なくとも1つの圧電トランスデューサとを含む光学装置も提供される。駆動回路は、駆動信号を上記少なくとも1つの圧電トランスデューサに印加するよう連結され、上記駆動信号は、ゴロム定規を定義し、かつ、上記音響光学媒質に、それぞれの周波数により決定されるそれぞれのビーム角度で上記入力ビームを複数の出力ビームに分割させるように選定されるそれぞれの上記周波数を有する少なくとも3つの周波数成分を含む。
上記駆動回路により印加される上記駆動信号は、上記音響光学媒質内で上記少なくとも3つの周波数成分のそれぞれの上記周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分をさらに含み得る。追加でまたは代替的に、上記駆動信号の上記少なくとも3つの周波数成分は、上記複数の出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有し得る。
本発明の一実施形態に従って、放射入力ビームを受け取るよう構成された音響光学媒質と、上記音響光学媒質に取り付けられた少なくとも1つの圧電トランスデューサとを含む光学装置が追加で提供される。駆動回路は、複数の周波数成分を含む駆動信号を上記少なくとも1つの圧電トランスデューサに印加するよう連結され、上記複数の周波数成分は少なくとも、上記音響光学媒質に、第1および第2基本周波数により決定されるそれぞれのビーム角度で上記入力ビームを第1および第2出力ビームに分割させるように選定されるそれぞれの第1および第2基本周波数にある第1および第2基本成分と、上記音響光学媒質内で上記基本周波数のそれぞれの倍数で調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分とを含む。
本発明の一実施形態に従って、複数の圧電トランスデューサのアレイが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階を含む光学方法がさらに提供される。それぞれの駆動信号は、上記音響光学媒質に、異なるそれぞれの第1および第2周波数により決定されるそれぞれのビーム角度で上記入力ビームを少なくとも第1および第2出力ビームに分割させるように上記圧電トランスデューサに印加され、それぞれの上記駆動信号は、上記異なるそれぞれの第1および第2周波数にあり、かつ、上記複数の圧電トランスデューサのそれぞれでの少なくとも第1および第2周波数成分について異なるそれぞれの位相オフセットを有する、少なくとも第1および第2周波数成分を含む。
本発明の一実施形態に従って、少なくとも1つの圧電トランスデューサが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階を含む光学方法がそのほかに提供される。駆動信号は、上記少なくとも1つの圧電トランスデューサに印加され、上記駆動信号は、ゴロム定規を定義し、かつ、上記音響光学媒質に、それぞれの周波数により決定されるそれぞれのビーム角度で上記入力ビームを複数の出力ビームに分割させるように選定されるそれぞれの上記周波数を有する少なくとも3つの周波数成分を含む。
本発明の一実施形態に従って、少なくとも1つの圧電トランスデューサが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階を含む光学方法がさらに提供される。複数の周波数成分を有する駆動信号は、少なくとも1つの圧電トランスデューサに印加され、上記複数の周波数成分は少なくとも、上記音響光学媒質に、第1および第2基本周波数により決定されるそれぞれのビーム角度で上記入力ビームを第1および第2出力ビームに分割させるように選定されるそれぞれの第1および第2基本周波数にある第1および第2基本成分と、上記音響光学媒質内で上記基本周波数のそれぞれの倍数で調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分とを含む。
本発明は、図面とひとまとめにした以下の本発明の実施形態の詳細な説明からより完全に理解されよう。
本発明の一実施形態に従ったマルチビーム偏向システムの概略図である。 本発明の一実施形態に従った、複数の出力ビームの生成に用いられる音響光学デフレクタの概略断面図である。 本発明の一実施形態に従った、トランスデューサのフェーズドアレイにより駆動される音響光学デフレクタの概略断面図である。 本発明の一実施形態に従った音響光学デフレクタ用のマルチ周波数駆動回路を概略的に示すブロック図である。 本発明の一実施形態に従ったマルチビーム音響光学デフレクタの出力ビーム間の強度のばらつきを概略的に示すプロットである。 本発明の一実施形態に従ったマルチビーム音響光学デフレクタの出力ビーム間の強度のばらつきを概略的に示すプロットである。 本発明の一実施形態に従ったマルチビーム音響光学デフレクタの出力ビーム間の強度のばらつきを概略的に示すプロットである。 本発明の一実施形態に従ったマルチビーム音響光学デフレクタの出力ビーム間の強度のばらつきを概略的に示すプロットである。 本発明の一実施形態に従ったマルチビーム音響光学デフレクタの出力ビーム間の強度のばらつきを概略的に示すプロットである。 本発明の一実施形態に従ったトランスデューサのアレイに適用される位相遅延を概略的に示すプロットである。 本発明の一実施形態に従って駆動される音響光学デフレクタの周波数スペクトルを概略的に示すプロットである。 本発明の一実施形態に従った、音響光学デフレクタからの複数の出力ビームの強度を均一化する方法を概略的に示すフローチャートである。
概要 その高速性および角度範囲が理由で、音響光学デバイスは、単入力放射源を用いて複数の光放射ビームを生成し、偏向させるための魅力的な手段である。しかしながら、そのようなデバイスは、その大部分は変調器の音響光学応答における低回折効率および非線形性の問題に起因して、実際には広く採用されてこなかった。これらの非線形性の結果として、駆動周波数の高調波で、かつ、和および差の周波数で、音響光学変調器内に波が生成され、それにより、望ましくない回折次数にまでビーム出力が損なわれ、異なる出力ビームの出力レベルの制御が不十分になる。
本明細書において説明される本発明の実施形態はこれらの問題に対処しているので、音響光学デバイスが、高効率で、かつ出力ビームに分配される電力を精密に制御して複数の出力ビームを生成することが可能になる。開示される実施形態において、そのようなデバイスは、放射入力ビームを受け取る音響光学媒質と、音響光学媒質に取り付けられた少なくとも1つの圧電トランスデューサとを備える。駆動回路は、(複数の)圧電トランスデューサに、新規かつ有利な特性を有する複数の周波数成分を含む駆動信号を印加する。開示される実施形態において、駆動信号は、それぞれの基本周波数にある複数の基本成分を含む。それぞれの基本周波数は、音響光学媒質に、対応する基本周波数により決定されるそれぞれのビーム角度で入力ビームを複数の出力ビームに分割させるように選定される。駆動信号におけるこれらの周波数は、出力ビームを誘導すべく変調され得る。
いくつかの実施形態において、非線形性から生じる上記で説明される問題を無くすべく、駆動信号は、音響光学媒質において複数の基本周波数で調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する高調波周波数成分も含む。結果として、そうしないとそのような調和波に起因して望ましくない角度の寄生ビームとなって損なわれるであろう、入力ビームからのエネルギーは、代わりに、所望の出力ビームに振り向けられる。
追加でまたは代替的に、この種の信号キャンセレーション技術を適用して、基本周波数の和および差に対応する角度での寄生回折が抑制され得る。基本周波数が均等に離れている場合、しかしながらまたは無作為に離れている場合でも、特定の和および差の周波数は、基本周波数の1または複数に一致し得る。これは、制御が困難な出力ビーム間の振幅のばらつきをもたらす。和および差の周波数が確実に基本周波数から十分に離れているようにすべく、本発明のいくつかの実施形態において、基本周波数は、2組の周波数が同じ距離だけ離れていないゴロム定規を定義するように選択される。
いくつかの実施形態において、複数の圧電トランスデューサのアレイが、音響光学媒質に取り付けられ、フェーズドアレイとして駆動される。この目的で、駆動回路は、上記で説明されるとおり様々な周波数にあり、複数のトランスデューサのそれぞれでの異なる周波数成分について異なるそれぞれの位相オフセットを有する、成分、を含む駆動信号を印加する。これらの位相オフセットは典型的に、異なる周波数にある音波が異なるそれぞれの波面角度で音響光学媒質を伝搬するように選択される。波面角度は、異なるそれぞれのビーム角度の複数の出力ビームがこれらのビーム角度でそれぞれのBragg条件を満たすように(位相オフセットを適切に選択することにより)選択され得る。 システムの説明
図1は、本発明の一実施形態に従ったマルチビーム偏向システム20の概略図である。レーザー22などの放射源は、可視光、紫外光または赤外光を含み得る、パルス性または連続的な光放射単入力ビーム23を放射する。入力ビーム23は、音響光学デフレクタ24に入射する。音響光学デフレクタ24は、入力ビームを複数の出力ビーム30に分割する。駆動回路28(単に「ドライバ」とも称される)は、マルチ周波数駆動信号を1または複数の圧電トランスデューサ26に印加する。圧電トランスデューサ26は、入力ビームを複数の出力ビーム30に分割する音響光学媒質内に音波を生成すべく、デフレクタ24を駆動する。デフレクタ24は、クォーツ、二酸化テルル(TeO)、ゲルマニウム、または溶融石英ガラスもしくはカルコゲナイドガラス等のガラス材料、などの結晶材料を含む、当技術分野において公知の任意の適切な音響光学媒質を備え得る。結晶媒質を特定の好ましい結晶方向に沿って切断して、例えば音速および複屈折に関して、所望の音響光学特性を取得し得る。トランスデューサ26は同様に、ニオブ酸リチウムなどの、典型的には金属接合層を介して音響光学媒質に取り付けられる任意の適切な1または複数の圧電材料を含み得る。駆動回路28、および駆動回路28が生成する駆動信号の動作の詳細は、下記の図面および以下の説明において示される。
図示される実施形態において、スキャンミラー32は、スキャンレンズ34を介し、目標表面36に対して出力ビーム30をスキャンする。この種の構成は、マルチビームレーザーによる穴あけおよび印刷など、様々な適用例において用いられ得る。本図には単一のミラー32のみが示されているが、代替的な実施形態(不図示)では、一緒にまたは単独でスキャンされ得る二軸ミラー、および/または当技術分野において公知の任意の他の適切な種類のビームスキャナを採用してもよい。代替的な実施形態において、入力ビーム23を一方が第1方向に分離される複数の出力ビームに分割し、他方がその複数のビームを直交方向にスキャンする2つの音響光学デフレクタが直列に配置され得る。全てのそのような実施形態は、本明細書において説明されるマルチ周波数駆動スキームを利用し得、本発明の範囲内にあるものとみなされる。
図2は、本発明の一実施形態に従った音響光学デフレクタ24の概略断面図である。本図は、駆動回路28および圧電トランスデューサ26により提供されるマルチ周波数駆動の効果および動作を示す。駆動回路28からのマルチ周波数駆動信号は、圧電トランスデューサ26に複数の駆動周波数で音波を生成させる。音波は、デフレクタ24内の音響光学媒質を伝搬する。異なる駆動周波数のそれぞれは、対応する空間周波数で結晶内に音響光学回折格子を構築する。すなわち、結晶は、異なる空間周波数の複数の重畳格子を含有する。
入力ビーム23がデフレクタ24に入射した場合、デフレクタ内の格子のそれぞれは、格子周波数に応じて、入力ビームを異なる角度で回折させる。したがって、デフレクタ24は、異なる周波数f,f,…に対応する異なる角度θ2, …で入力ビーム23を複数の出力ビーム30に分割する。光学部品34は、出力ビームを集束させて、目標表面36にスポット1,2…の対応するアレイを形成する。対応する周波数で信号の振幅を変調させることにより、入力ビーム23のパルスと適切に同期させたうえで、駆動回路26は、入力ビームの各パルスにより生成された対応する出力ビーム30の強度を制御し得る。より具体的には、駆動回路28は、各パルスで生成する出力ビーム30の組み合わせを選択すべく、対応する周波数成分を開放および遮断し得る。追加でまたは代替的に、駆動回路26は、対応する角度θ,θ,…を変調すべく成分周波数f,f,…を変調し得るので、表面36上でのスポットの位置を変更し得る。
図3は、本発明の一実施形態に従った、デフレクタの音響光学媒質に取り付けられたトランスデューサ40のフェーズドアレイを備える音響光学デフレクタ24の概略断面図である。先行する図ではトランスデューサ26が単体のブロックとして示されているが、実際には、本発明の実施形態は全て、トランスデューサ40のアレイを用いて、この手法で実施され得る。
駆動回路28は概念上、周波数発生器42を備えるものとして図示される。周波数発生器42は、それぞれの位相シフタ44を通じてトランスデューサ40を駆動する。これにより、信号は、異なるそれぞれの位相オフセットでトランスデューサに供給される。結果として、デフレクタ24の音響媒質を伝搬する音波46の波面は、トランスデューサ40が取り付けられた媒質の面と平行ではなくなる。波面角度は典型的に、入力ビーム23と波面との間の角度θが所与の駆動周波数についてBragg条件、すなわち、sinθ=nλ/2dを満たすよう位相シフタ44を適切に設定することにより選択される。式中、λは入力ビームの波長であり、nは回折次数(典型的にはn=1)であり、dは所与の周波数の音波の波長である。このように波面角度を選択することにより、デフレクタ24による回折の効率が、特に、パッシブ遅延線が位相差と十分に適合し得ないf(隣接するチャネル間の位相差がゼロである周波数)から離れた周波数で向上する。隣接するトランスデューサ間の位相オフセットの設定の基準は、図6を参照して以下でさらに説明される。
本明細書に開示される実施形態において、駆動回路28は、複数の異なる周波数にある周波数成分を有するそれぞれの駆動マルチ周波数信号を圧電トランスデューサ40に印加する。これらの周波数のそれぞれについて、Bragg条件は異なる回折角度をもたらす。よって、全ての周波数でのデフレクタ24の最適性能のために、位相シフタ44は、トランスデューサ40のそれぞれでの各周波数について異なる位相オフセットを適用する。結果的に、各周波数の音波46は、対応する出力ビーム30の対応する周波数f,f,…、および偏向角度θ,θ,…についてそれぞれのBragg条件を満たすように選択される異なるそれぞれの波面角度で音響光学媒質を伝搬する。
図4は、本発明の一実施形態に従った音響光学デフレクタ24の駆動回路28の機能構成要素を概略的に示すブロック図である。駆動回路28のデジタル構成要素は典型的に、プログラマブルゲートアレイ内など、ハードワイヤードロジック内またはプログラマブルロジック内に実装され得る。概念上の明確性のために図4のブロックは別個の構成要素として示されているが、実際には、これらの構成要素の機能は、単一のロジックデバイスにまとめられ得る。代替的に、回路28のデジタル構成要素の少なくともいくつかは、コンピュータまたは専用マイクロプロセッサで動作するソフトウェアに実装され得る。
周波数選定ブロック50は、対応する偏向角度θ,θ,…で出力ビーム30を生成すべく、デフレクタ24を駆動する際に印加される複数の基本周波数f,f,…を選定する。出力ビームの角度が(図1に示されるシステム20におけるように)横断的にスキャンされる場合、ブロック50は、これらの周波数のそれぞれを最大で±Δfの量だけ継時的に変調するようプログラムされ得、最大±Δθの各ビームの角度スキャンをもたらす。したがって、典型的には、ブロック50は一連の周波数ベクトルを生成する。各ベクトルは、対応する角度{θ+δθ}でm個の出力ビーム30を生成すべく特定の時刻にデフレクタ24に印加されるm個の基本周波数値{f+δf}を有する。式中、δfおよびδθはそれぞれ、範囲±Δfおよび±Δθ内の周波数のばらつきおよび角度のばらつきである。実際には、システム20の全周波数範囲ΔFにNmax個の別個の出力ビームが存在し得る。Nmax=ΔF・D/Vである(式中、Dは光学開口であり、Vは音響媒質内の音速である)。周波数シフト±Δfは、2つの隣接する周波数間の範囲である(ΔF=2Δf・Nmax)。典型的に、存在し得るNmax個のビームのアレイ内でm個のサブビームが選定される。
図5A〜5Eは、本発明の複数の実施形態に従って生成される、音響光学デフレクタ24の出力ビーム30間の強度のばらつきを概略的に示すプロットである。これらのプロットは、出力ビームのそれぞれの強度に対する、デフレクタ24における周波数の非線形性の効果を示す。図において、効果は、出力ビームの平均強度に対する出力ビームの強度の変動量(標準偏差(STD))間の比率に関して、縦軸に定量化されている。縦軸は、周波数選定ブロック50により様々な周波数選定スキームで生成される基本周波数を示す。その全てが10個の基本周波数を含む。代替的に、より多い、またはより少ない数の基本周波数が用いられ得る。プロットにおける変動量は、選択された周波数の集合について、その集合の各周波数に対応付けられた無作為に選択された位相でビーム強度を数多く試験することにより得られた。
図5Aの棒62は、隣接する周波数間に相対的な小さな間隔(約2MHz)があり、均等に離された基本周波数の集合が用いられた場合の強度分散を示す。異なる周波数の間の和および差の効果により、他の周波数を犠牲にしていくつかの周波数の強調がもたらされる。これにより、出力ビーム30の相対強度は、100%ほども広くばらつく。この種の制御されない強度のばらつきは、マルチビームの多くの産業上の適用例において不適切である。この問題の深刻さは、図5Bに示されるように約6MHzの間隔で周波数を棒64により示されるようにより離れて分散させることにより低減され得るが、ビーム間の実質的な強度のばらつきは依然として残る。
図5Cおよび5Dの棒66および68は、基本周波数が有効範囲(本例では60〜120MHz)に任意の間隔で分散された別のアプローチを示す。このアプローチにより出力ビーム30間の強度分散がおおよそ20%未満に低減されるが、このばらつきレベルは依然として、精密な適用例には高過ぎる。
図5Eの棒70により示されるスキームにおいて、基本周波数は、ゴロム定規を定義するように選択される。これは、いずれの2組の周波数も同じ距離離れていないことを意味する。定規は、ΔF/(Nmax−1)だけ離れて配置されたシステム20のNmax個の有効分解点に対して定義される。この周波数の分布が理由で、所与の一組の基本周波数の和および差は、任意の他の一組の基本周波数のそれぞれの和または差とは一致しないことになり、形式2・f1−f2またはf1+f2−f3の基本周波数の組み合わせは、任意の他の基本周波数とは一致しないことになるが、むしろ棒70間の間隔内に入ることになる。よって、図5Eに示されるように、出力ビーム30間の強度のばらつきは、おおよそ2%未満である。これはNmax個の有効出力ビームから選定された10個のビームの定規の一例に過ぎず、他のm個のビームの定規は、これらの基準を満たすように異なる定規周波数分布で定義され得る。さらに、音響光学デフレクタ24における、定規周波数の和および差の周波数の寄生波は、これらの周波数の寄生波をキャンセルするように選択されるそれぞれの振幅および位相を有する和および差の周波数の周波数成分を加えることにより、以下に説明される高調波キャンセレーション技術に類似する手法でキャンセルされ得る。
ここで図4に戻ると、ブロック50により選定される周波数の集合は、高調波キャンセレーションブロック52により追加される。上記で説明されるとおり、デフレクタ24の音響光学媒質の非線形性により、基本周波数の倍数の調和波が発生し、基本周波数間の和および差により与えられる中間周波数でも波が発生し得る。これらの非線形成分はデフレクタ24の性能に寄生効果を及ぼす。これは、入力ビーム23のエネルギーの一部分を望ましくない角度で回折させる格子成分をこれらの非線形成分がデフレクタ内に生成するからである。
ブロック52は、ブロック50により生成される周波数ベクトルに補正用高調波周波数成分を加えることにより、この問題に対処する。これらの補正成分のそれぞれの振幅および位相は、音響光学媒質内の寄生(調和ならびに和/差の)波をキャンセルするように選択される。具体的には、ブロック52は、寄生波の期待振幅および期待位相を計算し、寄生周波数で同じ振幅であるが位相が反対である補正成分を加える。補正成分の振幅および位相は、デフレクタ24の挙動の数学的モデルに基づいて先験的に計算されてもよく、経験的に設定されてもよい。いずれの場合も、最終的な結果として、音響光学媒質において格子成分の振幅が寄生周波数で実質的に低減することになり、したがって、出力ビーム30への入力ビームのエネルギーのより大きい部分が所望の角度方向に分岐することになる。
位相調整ブロック54は、ブロック50および54により提供される周波数成分に対応する時間領域サンプルの複数のストリームを生成する。各ストリームは、トランスデューサ40のそれぞれに方向付けられており、同じ周波数成分を含有するが、異なるそれぞれの位相オフセットを有する。これらの位相オフセットは、デフレクタ24における各周波数での音波46の所望の波面角度に従って選択される。典型的には、サンプルストリーム間の相対位相オフセットは、周波数範囲全体にわたって均一なのではなく、むしろ、上記で説明されるように各周波数でBragg条件を満たすべく、波面角度が同様に周波数と共に増大するように、周波数と共に増大する。
具体的には、ブロック54は、以下の公式に従って、異なる周波数で位相オフセットを設定し得る。
Figure 0006652559
この式において、Δφ(f)は周波数fでのブロック54の2つの隣接する出力チャネル間の位相差であり、Sは隣接するトランスデューサ40の中心間の距離であり、λは光学ビームの波長であり、Vは音響光学媒質内での音響速度であり、fは隣接するチャネル間にゼロ位相差を与え、光学出力ビームについてのBragg条件を満たす印加周波数である。
図6は、本発明の一実施形態に従った、ブロック54によりトランスデューサ40に適用される位相遅延を概略的に示すプロットである。図の曲線72は、f=200MHzとした周波数の関数としての実際に測定された位相遅延を表す。比較のために、線74は、固定された1メートルの遅延線についての、周波数の関数としての位相遅延を示す。ブロック54により提供される周波数に依存した位相調整の利益は、特に高周波数で顕著である。
図4に戻ると、ブロック50、52および54は、上記で説明されるように、典型的にはデジタルロジックおよび/またはソフトウェアに実装される。ブロック54からのデジタルサンプルストリームは、マルチチャネルデジタル/アナログコンバータ56のそれぞれのチャネルに入力される。マルチチャネルデジタル/アナログコンバータ56は、トランスデューサ40を駆動するための対応する出力信号を生成する。周波数成分および位相オフセットが適切に選択されたものと仮定すると、音響光学媒質内での非線形処理により生成される寄生波が抑制されつつ、トランスデューサがデフレクタ24内に異なる基本周波数かつ異なる波面角度の音波の重ね合わせを生成することになる。
図7は、本発明の複数の実施形態に従って駆動された場合の音響光学デフレクタ24の周波数スペクトルを概略的に示すプロットである。具体的には、このプロットは、デフレクタの駆動周波数の関数としてのデフレクタの回折効率(すなわち、所望の角度で回折された入力ビーム23からの有効エネルギーの割合)を示す。
第1曲線80は、高調波キャンセレーションがなく、固定された遅延線により設定されたトランスデューサ40間の位相遅延がある(すなわち、ブロック52および54が動作していない)状態でデフレクタ24が駆動された場合の基線回折効率を示す。第2曲線82は、より高い周波数で、それだけではないが主に回折効率を向上させる、位相調整(ブロック54)による波面角度調整の効果を示す。第3曲線84は、ブロック52による有効高調波キャンセレーションに起因する、主に低周波数での効率の向上を示す。最終的な結果として、デフレクタ24の有効帯域幅がおおよそ50%向上する。
図8は、本発明の一実施形態に従った音響光学デフレクタ24からの出力ビーム30間の強度の均一化の方法を概略的に示すフローチャートである。レーザー印刷およびレーザーマシニングなどのシステム20の多くの適用例において、出力ビーム30が(予め定められた許容差内で)等しいそれぞれの強度を有することは重要である。図8の方法は、この基準を満たすべく、駆動信号の周波数成分の相対振幅を設定する際にドライバ28により適用され得る。これらの設定は算出されたモデルに基づいて先験的に行われ得るが、実際には、較正フェーズにおける本均一化アルゴリズムへの入力として適切な測定デバイス(例えば、不図示のカメラ)を用いて、生成された出力ビーム30の実強度を測定することが概して好ましい。
図8の方法は、定規周波数の集合外の可能な駆動周波数の各非空部分集合について実行され得る。そのような各部分集合について、一連の解が生成される。各解は、反復処理において、前の解により生成されたビームよりもわずかに強い強度を有する、均一強度の出力ビームの集合を生成する。換言すれば、それぞれの連続する解は、前の解を始点として用いる。強度は、その回折効率に関して表され、(連続する反復処理の)目標効率Eのリストは、認められる解許容差Δと共に、その処理への入力として提供される。
算出は、駆動信号の周波数成分を等しい小さな振幅に設定したうえで、最小目標強度(または効率)で開始する。駆動回路28は、m個の異なる周波数成分のm個の振幅Xのベクトルを有する駆動信号を印加する。測定デバイスは、測定ステップ90で、m個の出力ビーム30のそれぞれの光学強度のベクトルMを測定する。プロセッサ(不図示)は、Mの(すなわち、全てのビームの)平均効率Mavgを計算し、効率評価ステップ92で、Mの効率のそれぞれのMavgからの偏差を評価する。
ステップ92で計算された最大偏差がΔより大きい場合、増分測定ステップ94で、入力振幅を[X・(1+δ)]に設定して追加の測定値Mが取得され、入力振幅を[X・(1−δ)]に設定して別の測定値Mが取得される(式中、δは小さな増分であり、測定処理におけるノイズの量によって決まる。例えば、δ=0.05)。プロセッサはその後、モデル化ステップ96で、測定された強度(M、M)およびXからの相対的変化を所与として、各ビームに対して別々に線形モデルを当てはめ、各ビームiについてモデルを解いて、目標効率Eを生成するはずの相対的変化uを求める(代替的に、より多い数の測定値をステップ94で取得してもよく、プロセッサはその後、二次モデルなどのより高い次数のモデルを計算してもよい)。全ての算出された変化uのベクトルとなるUを取得して、プロセッサは、振幅更新ステップ98で、ベクトル
Figure 0006652559
を計算する(各ビームについて別々に乗算が行われる)。計算結果は、ステップ90の間、次の反復用の振幅ベクトルXとして用られる。
Mの測定された強度のMavgからの最大偏差がΔ未満であることがステップ92で分かった場合、プロセッサは、効率評価ステップ100で、現在の解Xを確認して、現在の反復についてMが目標効率Eからの許容差Δ以内であるかどうかを判定する。解がEからの許容差Δ以内でなかった場合には、現在の振幅ベクトルXは、振幅更新ステップ102で、例えば値
Figure 0006652559
に従って更新される(代替的に、E/Mavgの異なる指数などの他の更新因子がこのステップで用いられてもよい。)。この処理はその後、ステップ90に再び戻る。
MがEのΔ以内であることがステップ100で分かった場合、プロセッサは、リスト確認ステップ104で、目標効率Eのリスト全体に到達したかどうかを確認する。そうでなかった場合、効率更新ステップ106で、現在のベクトルXは先行するステップを通して次の反復の始点になり、Eはリストの次の目標効率に設定される。リスト中の最後の効率の値に到達した場合、均一化処理は、終了ステップ108で終了する。しかしながら、非現実的な目標効率が選択された場合、この処理は、ステップ108に到達する前に失敗し得る。
上記で説明される実施形態が例として挙げられていること、および本発明が特に本明細書の上記で示され説明されたことに限定されない旨が理解されよう。むしろ、本発明の範囲は、本明細書の上記で説明された様々な特徴の組み合わせおよび部分的組み合わせの両方、ならびに当業者であれば前述の説明を読んで想到するであろう、従来技術に開示されていないそれらの変形および修正を含む。本明細書によれば、以下の各項目に記載の事項もまた開示される。
[項目1]
音響光学媒質と、
前記音響光学媒質に取り付けられた複数の圧電トランスデューサのアレイと、
それぞれの駆動信号を前記複数の圧電トランスデューサに印加すべく連結された駆動回路であって、それぞれの前記駆動信号は少なくとも、異なるそれぞれの第1および第2周波数にあり、かつ、前記複数の圧電トランスデューサのそれぞれでの第1および第2周波数成分について異なるそれぞれの位相オフセットを有する、第1および第2周波数成分、を含む、駆動回路と
を備える光学装置。
[項目2]
前記第1および第2周波数でのそれぞれの前記位相オフセットは、前記第1および第2周波数にある音波が異なるそれぞれの第1および第2波面角度で前記音響光学媒質を伝搬するように選択される、項目1に記載の装置。
[項目3]
前記音響光学媒質は、放射入力ビームを受け取り、前記第1および第2周波数により決定されるそれぞれの第1および第2ビーム角度で前記放射入力ビームを少なくとも第1および第2出力ビームに分割し、前記第1および第2波面角度は、前記第1および第2ビーム角度でそれぞれのBragg条件を満たすように選択される、項目2に記載の装置。
[項目4]
前記駆動回路により印加される前記駆動信号は少なくとも、第3周波数にあり、前記第1および第2周波数成分とは異なる位相オフセットを有する、第3周波数成分、をさらに含む、項目1から3のいずれか一項に記載の装置。
[項目5]
前記少なくとも第1、第2および第3周波数は、ゴロム定規を定義する、項目4に記載の装置。
[項目6]
前記駆動回路により印加される前記駆動信号は、前記第1および第2周波数成分の少なくとも1つに起因して前記音響光学媒質内で前記第1および第2周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分をさらに含む、項目1から5のいずれか一項に記載の装置。
[項目7]
前記音響光学媒質に入射するように放射入力ビームを方向付ける放射源を備え、前記音響光学媒質は、前記少なくとも第1および第2周波数成分のそれぞれの前記周波数により決定されたそれぞれのビーム角度で前記放射入力ビームを複数の出力ビームに分割する、項目1から6のいずれか一項に記載の装置。
[項目8]
前記駆動信号の前記少なくとも第1および第2周波数成分は、前記複数の出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有する、項目7に記載の装置。
[項目9]
放射入力ビームを受け取る音響光学媒質と、
前記音響光学媒質に取り付けられた少なくとも1つの圧電トランスデューサと、
少なくとも3つの周波数成分を含む駆動信号を前記少なくとも1つの圧電トランスデューサに印加するよう連結された駆動回路であって、前記少なくとも3つの周波数成分は、ゴロム定規を定義し、かつ、前記音響光学媒質に、それぞれの周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを複数の出力ビームに分割させるように選定されるそれぞれの周波数を有する、駆動回路と
を備える光学装置。
[項目10]
前記駆動回路により印加される前記駆動信号は、前記音響光学媒質内で前記少なくとも3つの周波数成分のそれぞれの前記周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分をさらに含む、項目9に記載の装置。
[項目11]
前記駆動信号の前記少なくとも3つの周波数成分は、前記複数の出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有する、項目9または10に記載の装置。
[項目12]
放射入力ビームを受け取る音響光学媒質と、
前記音響光学媒質に取り付けられた少なくとも1つの圧電トランスデューサと、
複数の周波数成分を含む駆動信号を前記少なくとも1つの圧電トランスデューサに印加するよう連結された駆動回路であって、前記複数の周波数成分は少なくとも、前記音響光学媒質に、第1および第2基本周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを第1および第2出力ビームに分割させるように選定されるそれぞれの第1および第2基本周波数にある第1および第2基本成分と、前記音響光学媒質内で前記基本周波数のそれぞれの倍数で調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分とを含む、駆動回路と
を備える光学装置。
[項目13]
複数の圧電トランスデューサのアレイが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階と、
前記音響光学媒質に、異なるそれぞれの第1および第2周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを少なくとも第1および第2出力ビームに分割させるようにそれぞれの駆動信号を前記複数の圧電トランスデューサに印加する段階であって、それぞれの前記駆動信号は少なくとも、前記異なるそれぞれの第1および第2周波数にあり、かつ、前記複数の圧電トランスデューサのそれぞれでの第1および第2周波数成分について異なるそれぞれの位相オフセットを有する、第1および第2周波数成分、を含む、印加する段階と
を備える光学方法。
[項目14]
前記第1および第2周波数でのそれぞれの前記位相オフセットは、前記第1および第2周波数にある音波が異なるそれぞれの第1および第2波面角度で前記音響光学媒質を伝搬するように選択される、項目13に記載の方法。
[項目15]
前記第1および第2波面角度は、前記第1および第2周波数により決定されるそれぞれの前記ビーム角度でそれぞれのBragg条件を満たすように選択される、項目14に記載の方法。
[項目16]
それぞれの前記駆動信号を印加する前記段階は、第3周波数にあり、前記第1および第2周波数成分とは異なる位相オフセットを有する少なくとも第3周波数成分を印加する段階をさらに有する、項目13から15のいずれか一項に記載の方法。
[項目17]
前記少なくとも第1、第2および第3周波数は、ゴロム定規を定義する、項目16に記載の方法。
[項目18]
それぞれの前記駆動信号を印加する前記段階は、前記第1および第2周波数成分の少なくとも1つに起因して前記音響光学媒質内で前記第1および第2周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分を印加する段階をさらに有する、項目13から17のいずれか一項に記載の方法。
[項目19]
前記駆動信号を印加する前記段階は、前記少なくとも第1および第2出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有するよう前記駆動信号の前記少なくとも第1および第2周波数成分を設定する段階を有する、項目13から18のいずれか一項に記載の方法。
[項目20]
少なくとも1つの圧電トランスデューサが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階と、
駆動信号を前記少なくとも1つの圧電トランスデューサに印加する段階であって、前記駆動信号は、ゴロム定規を定義し、かつ、前記音響光学媒質に、それぞれの周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを複数の出力ビームに分割させるように選定されるそれぞれの周波数を含む少なくとも3つの周波数成分を有する、印加する段階と
を備える光学方法。
[項目21]
前記駆動信号を印加する前記段階は、前記音響光学媒質内で前記少なくとも3つの周波数成分のそれぞれの前記周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分を印加する段階をさらに有する、項目20に記載の方法。
[項目22]
前記駆動信号を印加する前記段階は、前記複数の出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有するよう前記駆動信号の前記少なくとも3つの周波数成分を設定する段階を有する、項目20または21に記載の方法。
[項目23]
少なくとも1つの圧電トランスデューサが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階と、
複数の周波数成分を含む駆動信号を前記少なくとも1つの圧電トランスデューサに印加する段階であって、前記複数の周波数成分は少なくとも、前記音響光学媒質に、第1および第2基本周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを第1および第2出力ビームに分割させるように選定されるそれぞれの第1および第2基本周波数にある第1および第2基本成分と、前記音響光学媒質内で前記基本周波数のそれぞれの倍数で調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分とを含む、印加する段階と
を備える光学方法。

Claims (19)

  1. 音響光学媒質と、
    前記音響光学媒質に取り付けられた複数の圧電トランスデューサのアレイと、
    それぞれの駆動信号を前記複数の圧電トランスデューサに印加すべく連結された駆動回路であって、それぞれの前記駆動信号は少なくとも、異なるそれぞれの第1および第2周波数にあり、かつ、前記複数の圧電トランスデューサのそれぞれでの第1および第2周波数成分について異なるそれぞれの位相オフセットを有する、第1および第2周波数成分、を含む、駆動回路と
    を備え、
    前記駆動回路により印加される前記駆動信号は、前記第1および第2周波数成分の少なくとも1つに起因して前記音響光学媒質内で前記第1および第2周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分をさらに含む、光学装置。
  2. 前記第1および第2周波数でのそれぞれの前記位相オフセットは、前記第1および第2周波数にある音波が異なるそれぞれの第1および第2波面角度で前記音響光学媒質を伝搬するように選択される、請求項1に記載の装置。
  3. 前記音響光学媒質は、放射入力ビームを受け取り、前記第1および第2周波数により決定されるそれぞれの第1および第2ビーム角度で前記放射入力ビームを少なくとも第1および第2出力ビームに分割し、前記第1および第2波面角度は、前記第1および第2ビーム角度でそれぞれのBragg条件を満たすように選択される、請求項2に記載の装置。
  4. 前記駆動回路により印加される前記駆動信号は少なくとも、第3周波数にあり、前記第1および第2周波数成分とは異なる位相オフセットを有する、第3周波数成分、をさらに含む、請求項1から3のいずれか一項に記載の装置。
  5. 前記少なくとも第1、第2および第3周波数は、ゴロム定規を定義する、請求項4に記載の装置。
  6. 前記音響光学媒質に入射するように放射入力ビームを方向付ける放射源を備え、前記音響光学媒質は、前記少なくとも第1および第2周波数成分のそれぞれの前記周波数により決定されたそれぞれのビーム角度で前記放射入力ビームを複数の出力ビームに分割する、請求項1からのいずれか一項に記載の装置。
  7. 前記駆動信号の前記少なくとも第1および第2周波数成分は、前記複数の出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有する、請求項に記載の装置。
  8. 放射入力ビームを受け取る音響光学媒質と、
    前記音響光学媒質に取り付けられた少なくとも1つの圧電トランスデューサと、
    少なくとも3つの周波数成分を含む駆動信号を前記少なくとも1つの圧電トランスデューサに印加するよう連結された駆動回路であって、前記少なくとも3つの周波数成分は、ゴロム定規を定義し、かつ、前記音響光学媒質に、それぞれの周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを複数の出力ビームに分割させるように選定されるそれぞれの周波数を有する、駆動回路と
    を備え、
    前記駆動回路により印加される前記駆動信号は、前記音響光学媒質内で前記少なくとも3つの周波数成分のそれぞれの前記周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分をさらに含む、光学装置。
  9. 前記駆動信号の前記少なくとも3つの周波数成分は、前記複数の出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有する、請求項に記載の装置。
  10. 放射入力ビームを受け取る音響光学媒質と、
    前記音響光学媒質に取り付けられた少なくとも1つの圧電トランスデューサと、
    複数の周波数成分を含む駆動信号を前記少なくとも1つの圧電トランスデューサに印加するよう連結された駆動回路であって、前記複数の周波数成分は少なくとも、前記音響光学媒質に、第1および第2基本周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを第1および第2出力ビームに分割させるように選定されるそれぞれの第1および第2基本周波数にある第1および第2基本成分と、前記音響光学媒質内で前記基本周波数のそれぞれの倍数で調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分とを含む、駆動回路と
    を備える光学装置。
  11. 複数の圧電トランスデューサのアレイが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階と、
    前記音響光学媒質に、異なるそれぞれの第1および第2周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを少なくとも第1および第2出力ビームに分割させるようにそれぞれの駆動信号を前記複数の圧電トランスデューサに印加する段階
    を備え、
    それぞれの前記駆動信号は少なくとも、前記異なるそれぞれの第1および第2周波数にあり、かつ、前記複数の圧電トランスデューサのそれぞれでの第1および第2周波数成分について異なるそれぞれの位相オフセットを有する、第1および第2周波数成分、を含み、
    それぞれの前記駆動信号を印加する前記段階は、前記第1および第2周波数成分の少なくとも1つに起因して前記音響光学媒質内で前記第1および第2周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分を印加する段階をさらに有する、光学方法。
  12. 前記第1および第2周波数でのそれぞれの前記位相オフセットは、前記第1および第2周波数にある音波が異なるそれぞれの第1および第2波面角度で前記音響光学媒質を伝搬するように選択される、請求項11に記載の方法。
  13. 前記第1および第2波面角度は、前記第1および第2周波数により決定されるそれぞれの前記ビーム角度でそれぞれのBragg条件を満たすように選択される、請求項12に記載の方法。
  14. それぞれの前記駆動信号を印加する前記段階は、第3周波数にあり、前記第1および第2周波数成分とは異なる位相オフセットを有する少なくとも第3周波数成分を印加する段階をさらに有する、請求項11から13のいずれか一項に記載の方法。
  15. 前記少なくとも第1、第2および第3周波数は、ゴロム定規を定義する、請求項14に記載の方法。
  16. 前記駆動信号を印加する前記段階は、前記少なくとも第1および第2出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有するよう前記駆動信号の前記少なくとも第1および第2周波数成分を設定する段階を有する、請求項11から15のいずれか一項に記載の方法。
  17. 少なくとも1つの圧電トランスデューサが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階と、
    駆動信号を前記少なくとも1つの圧電トランスデューサに印加する段階
    を備え、
    前記駆動信号は、ゴロム定規を定義し、かつ、前記音響光学媒質に、それぞれの周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを複数の出力ビームに分割させるように選定されるそれぞれの周波数を含む少なくとも3つの周波数成分を有し、
    前記駆動信号を印加する前記段階は、前記音響光学媒質内で前記少なくとも3つの周波数成分のそれぞれの前記周波数の少なくとも1つの倍数で生成された調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分を印加する段階をさらに有する、光学方法。
  18. 前記駆動信号を印加する前記段階は、前記複数の出力ビームが等しいそれぞれの強度を有するように選択される異なるそれぞれの振幅を有するよう前記駆動信号の前記少なくとも3つの周波数成分を設定する段階を有する、請求項17に記載の方法。
  19. 少なくとも1つの圧電トランスデューサが取り付けられた音響光学媒質に入射するように放射入力ビームを方向付ける段階と、
    複数の周波数成分を含む駆動信号を前記少なくとも1つの圧電トランスデューサに印加する段階
    を備え、
    前記複数の周波数成分は少なくとも、前記音響光学媒質に、第1および第2基本周波数により決定されるそれぞれのビーム角度で前記放射入力ビームを第1および第2出力ビームに分割させるように選定されるそれぞれの第1および第2基本周波数にある第1および第2基本成分と、前記音響光学媒質内で前記基本周波数のそれぞれの倍数で調和波をキャンセルするように選択されるそれぞれの振幅および位相を有する1または複数の高調波周波数成分とを含む
    学方法。
JP2017517354A 2014-11-12 2015-11-05 光学装置及び光学方法 Active JP6652559B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462078450P 2014-11-12 2014-11-12
US62/078,450 2014-11-12
PCT/IL2015/051068 WO2016075681A1 (en) 2014-11-12 2015-11-05 Acousto-optic deflector with multiple output beams

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020009345A Division JP7003166B2 (ja) 2014-11-12 2020-01-23 複数の出力ビームを備える音響光学デフレクタ

Publications (2)

Publication Number Publication Date
JP2017534074A JP2017534074A (ja) 2017-11-16
JP6652559B2 true JP6652559B2 (ja) 2020-02-26

Family

ID=55953821

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017517354A Active JP6652559B2 (ja) 2014-11-12 2015-11-05 光学装置及び光学方法
JP2020009345A Active JP7003166B2 (ja) 2014-11-12 2020-01-23 複数の出力ビームを備える音響光学デフレクタ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020009345A Active JP7003166B2 (ja) 2014-11-12 2020-01-23 複数の出力ビームを備える音響光学デフレクタ

Country Status (6)

Country Link
US (2) US10451953B2 (ja)
JP (2) JP6652559B2 (ja)
KR (1) KR102446523B1 (ja)
CN (1) CN107111205B (ja)
TW (1) TWI674470B (ja)
WO (1) WO2016075681A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253936A3 (en) 2014-03-18 2024-03-20 The Regents of The University of California Parallel flow cytometer using radiofrequency mulitplexing, and method
HUP1500264A2 (en) * 2015-06-01 2018-05-02 Femtonics Kft Layered structured acousto-optical deflector and method for optical beam deflection with deflectior
KR102600559B1 (ko) 2015-10-13 2023-11-10 벡톤 디킨슨 앤드 컴퍼니 다중모드 형광 이미징 유동 세포 계측 시스템
BR112018068866B1 (pt) 2016-03-17 2022-11-29 Bd Biosciences Classificação de células utilizando um citômetro de fluxo de fluorescência de alto rendimento
JP7023244B2 (ja) 2016-05-12 2022-02-21 ビーディー バイオサイエンス 画像解像度が改良された蛍光イメージングフローサイトメトリー
EP3513167B1 (en) * 2016-09-13 2023-05-24 Becton, Dickinson and Company Flow cytometer with optical equalization
EP3602189B1 (de) * 2017-04-25 2024-05-01 Leica Microsystems CMS GmbH Verfahren und signalgenerator zum ansteuern eines akustooptischen elements
EP3646113A4 (en) * 2017-06-30 2021-06-16 The Board of Trustees of the Leland Stanford Junior University ACOUSTO-OPTICAL BEAM SYSTEM
US11281069B2 (en) * 2017-07-03 2022-03-22 Electro Scientific Industries, Inc. Optically contacted acousto-optic device and method of making the same
DE102017121926A1 (de) * 2017-09-21 2019-03-21 Leica Microsystems Cms Gmbh Verfahren und eine Vorrichtung zur Ansteuerung eines akusto-optischen Elements
US11118903B2 (en) * 2018-10-17 2021-09-14 Kla Corporation Efficient illumination shaping for scatterometry overlay
US11187962B2 (en) * 2018-12-14 2021-11-30 Mycronic AB Reducing impact of cross-talk between modulators that drive a multi-channel AOM
WO2020178813A1 (en) * 2019-03-06 2020-09-10 Orbotech Ltd. High-speed dynamic beam shaping
CN114303050A (zh) 2019-07-10 2022-04-08 贝克顿·迪金森公司 用于调整细胞分选分类的可重构集成电路
CN116209888A (zh) 2020-05-19 2023-06-02 贝克顿·迪金森公司 用于调制激光束的强度分布的方法及其系统
CN116171383A (zh) 2020-06-26 2023-05-26 贝克顿·迪金森公司 用于照射流体流中的样品的双激励光束及其使用方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567206B2 (ja) * 1972-10-11 1981-02-17
US3935566A (en) 1973-10-26 1976-01-27 Zenith Radio Corporation Multiple-channel information translation system and method
JPS5584913A (en) 1978-12-20 1980-06-26 Ricoh Co Ltd Multibeam laser recorder
US5138482A (en) 1989-09-25 1992-08-11 Fuji Photo Film Co., Ltd. Light modular and recording device employing same
JPH03179326A (ja) 1989-09-25 1991-08-05 Fuji Photo Film Co Ltd 光変調装置および記録装置
US5255257A (en) 1992-03-04 1993-10-19 Lasertape Systems, Inc. Frequency, phase and amplitude control apparatus and method for acousto-optic deflector optimization
US5890789A (en) 1996-11-18 1999-04-06 Minolta Co., Ltd. Multi-beam emitting device having an acoustooptic element
JP3825112B2 (ja) * 1996-12-25 2006-09-20 アークレイ株式会社 音響光学可変調フィルタ
US5963569A (en) * 1997-03-28 1999-10-05 International Business Machines Corporation Multiple channel acousto-optic modulators
US7116907B1 (en) * 1998-02-20 2006-10-03 Fujitsu Limited Acousto-optical tunable filters cascaded together
US6412143B1 (en) 2001-01-08 2002-07-02 Cheng-Lu Chen Structure of material for forming a stop at an end of lashing string
US20020141039A1 (en) 2001-04-02 2002-10-03 Michael Mermelstein Spatial light modulation
DE10210146A1 (de) 2002-03-07 2003-09-25 Aurentum Innovationstechnologi Qualitätsdruckverfahren und Druckmaschine sowie Drucksbustanz hierfür
US6873398B2 (en) 2003-05-21 2005-03-29 Esko-Graphics A/S Method and apparatus for multi-track imaging using single-mode beams and diffraction-limited optics
US7521651B2 (en) 2003-09-12 2009-04-21 Orbotech Ltd Multiple beam micro-machining system and method
US7027199B2 (en) * 2004-06-07 2006-04-11 Electro Scientific Industries, Inc. AOM modulation techniques for facilitating pulse-to-pulse energy stability in laser systems
AU2006286782B2 (en) 2005-08-31 2009-12-03 Heidelberg Instruments Mikrotechnik Gmbh Device for the optical splitting and modulation of electromagnetic radiation
US7375819B2 (en) * 2005-11-01 2008-05-20 Agilent Technologies, Inc. System and method for generating beams of light using an anisotropic acousto-optic modulator
US7894125B2 (en) * 2006-05-30 2011-02-22 Bae Systems Acousto-optic devices
US7667888B2 (en) 2007-04-06 2010-02-23 Harris Corporation Low cost system and method that implements acousto-optic (AO) RF signal excitation
US7538929B2 (en) 2007-04-06 2009-05-26 Harris Corporation RF phase modulation technique for performing acousto-optic intensity modulation of an optical wavefront
US8728589B2 (en) 2007-09-14 2014-05-20 Photon Dynamics, Inc. Laser decal transfer of electronic materials
US20090130427A1 (en) 2007-10-22 2009-05-21 The Regents Of The University Of California Nanomaterial facilitated laser transfer
KR101540137B1 (ko) 2008-01-10 2015-07-28 오르보테크 엘티디. 다중 빔 천공 시스템
US8058598B2 (en) * 2008-03-05 2011-11-15 Trex Enterprises Corp. Fourier telescopic imaging system and method
EP2299784A4 (en) 2008-06-16 2012-05-30 Toray Industries CONTOUR MODELING METHOD, DEVICE MANUFACTURING METHOD USING THE CONTOUR MODELING METHOD, AND DEVICE
WO2010032224A2 (en) 2008-09-22 2010-03-25 Asml Netherlands B.V. Lithographic apparatus, programmable patterning device and lithographic method
IL197349A0 (en) 2009-03-02 2009-12-24 Orbotech Ltd A method and system for electrical circuit repair
US8681412B2 (en) * 2010-06-09 2014-03-25 Leica Microsystems Cms Gmbh Acousto-optical system, microscope and method of use of the acousto-optical system
WO2012136434A2 (en) 2011-04-08 2012-10-11 Asml Netherlands B.V. Lithographic apparatus, programmable patterning device and lithographic method
JP5753320B2 (ja) 2011-08-16 2015-07-22 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
CN102566193A (zh) * 2012-01-16 2012-07-11 华中科技大学 一种具有相控式换能器阵列的声光偏转器
WO2013124114A1 (en) 2012-02-23 2013-08-29 Asml Netherlands B.V. Device, lithographic apparatus, method for guiding radiation and device manufacturing method
EP2660352A1 (en) 2012-05-02 2013-11-06 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Donor sheet and method for light induced forward transfer manufacturing
KR101680130B1 (ko) 2012-06-08 2016-12-12 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조 방법
EP3203318A1 (en) 2013-02-12 2017-08-09 CARBON3D, Inc. Continuous liquid interphase printing
KR102279622B1 (ko) 2013-10-14 2021-07-20 오르보테크 엘티디. 다중 복합 재료 구조 lift 인쇄
US10018889B2 (en) 2013-11-28 2018-07-10 Femtonics Kft. Acousto-optic deflector comprising multiple electro-acoustic transducers

Also Published As

Publication number Publication date
JP7003166B2 (ja) 2022-02-10
JP2020074033A (ja) 2020-05-14
JP2017534074A (ja) 2017-11-16
KR20170085484A (ko) 2017-07-24
US20170336697A1 (en) 2017-11-23
TWI674470B (zh) 2019-10-11
US11409184B2 (en) 2022-08-09
US10451953B2 (en) 2019-10-22
TW201621444A (zh) 2016-06-16
WO2016075681A1 (en) 2016-05-19
US20190369459A1 (en) 2019-12-05
CN107111205B (zh) 2020-12-15
CN107111205A (zh) 2017-08-29
KR102446523B1 (ko) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6652559B2 (ja) 光学装置及び光学方法
JP2007514305A (ja) 高エネルギーの任意波形ソース
US9958711B1 (en) Control system using a phase modulation capable acousto-optic modulator for diverting laser output intensity noise to a first order laser light beam and related methods
JP2016504199A5 (ja)
JP2005303309A (ja) 波長可変光源、及び波長可変光源を動作させる方法
EP0018150B1 (en) Circuit arrangement for controlling a multi-beam acousto-optical cell
TWI583262B (zh) 驅動器雷射配置、euv輻射產生設備及用於放大脈衝雷射輻射的方法
KR20130106362A (ko) 한 옥타브의 음향 광학 변류기
US20240069406A1 (en) Acousto-optic device and method
JP5994285B2 (ja) 光パルス圧縮装置および光パルス圧縮方法
WO2011075851A1 (en) System and method for the spatial tailoring of laser light using temporal phase modulation
JP2006026699A (ja) レーザ加工装置および方法
Antonov et al. Acousto-optic control of the energy profile of Laser Radiation
RU2650854C1 (ru) Устройство для измерения переходных характеристик оптических усилителей
CN114631054A (zh) 声光装置的热稳定化
EP3531197B1 (en) Control system including a beam stabilizer and a phase modulation capable acousto-optic modulator for diverting laser output intensity noise to a first order laser light beam and related methods
Keskin et al. Modelling an Acousto-Optic Beam Shaping Device for a DIRCM Laser Laboratory Setup
JP3837564B2 (ja) 広帯域光サイドバンド生成方法、及び広帯域光サイドバンド生成装置
US20220276477A1 (en) Laser Light Scanning Device and Laser Light Scanning Method
WO2023164390A1 (en) Method and apparatus for thermally stable operation of aods
RU2367987C1 (ru) Широкополосный акустооптический измеритель параметров радиосигналов
Antonov et al. Diffraction of pulsed laser radiation from an acoustic wave with frequency-and phase-shift keying
JPH03127026A (ja) 光変調装置
JPS5946364B2 (ja) 任意波形光パルス発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200123

R150 Certificate of patent or registration of utility model

Ref document number: 6652559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250