JP6618757B2 - Fluid dynamic bearing - Google Patents

Fluid dynamic bearing Download PDF

Info

Publication number
JP6618757B2
JP6618757B2 JP2015203977A JP2015203977A JP6618757B2 JP 6618757 B2 JP6618757 B2 JP 6618757B2 JP 2015203977 A JP2015203977 A JP 2015203977A JP 2015203977 A JP2015203977 A JP 2015203977A JP 6618757 B2 JP6618757 B2 JP 6618757B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
fluid dynamic
region
fluid
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015203977A
Other languages
Japanese (ja)
Other versions
JP2017075658A (en
Inventor
一久 勝又
一久 勝又
健郎 安達
健郎 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Manufacturing Co Ltd
Original Assignee
Sankyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Manufacturing Co Ltd filed Critical Sankyo Manufacturing Co Ltd
Priority to JP2015203977A priority Critical patent/JP6618757B2/en
Priority to TW105121415A priority patent/TWI708018B/en
Priority to CN201610656400.7A priority patent/CN106594058B/en
Priority to KR1020160121299A priority patent/KR102233913B1/en
Publication of JP2017075658A publication Critical patent/JP2017075658A/en
Application granted granted Critical
Publication of JP6618757B2 publication Critical patent/JP6618757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、高い回転精度と負荷容量を有し、低トルク性に優れる流体動圧軸受に関するものである。   The present invention relates to a fluid dynamic pressure bearing that has high rotational accuracy and load capacity and is excellent in low torque performance.

円筒状の外輪と、外輪に軸心方向に挿入されたスタッドと、外輪とスタッド間に外輪の回転に伴って転動されるころとを備えた転がり軸受のカムフォロアが知られており、その中には、転動されるころを保持するための保持器を備えたカムフォロア、保持器を用いない総ころ形のカムフォロアがある。このような転がり軸受のカムフォロアは、カム機構、例えば、ローラギヤカム機構、バレルカム機構、等に使用されるが、カムとの位置関係により外輪の外径が制約されるため、剛性不足や負荷容量が不足する傾向にある。そこで、転がり軸受のカムフォロアの代替として、すべり軸受のカムフォロアを使用することで、スタッド径を太くしたり、外輪の肉厚を厚くしたりすることができる。   There is known a cam follower of a rolling bearing having a cylindrical outer ring, a stud inserted in the axial direction of the outer ring, and a roller that rolls between the outer ring and the stud as the outer ring rotates. There are a cam follower having a cage for holding a roller to be rolled, and a full-roller type cam follower without using a cage. Such a roller bearing cam follower is used for a cam mechanism such as a roller gear cam mechanism, a barrel cam mechanism, etc., but the outer ring outer diameter is restricted by the positional relationship with the cam, so that the rigidity and load capacity are insufficient. Tend to. Therefore, as an alternative to the cam follower of the rolling bearing, the stud diameter can be increased and the outer ring can be increased in thickness by using the slide bearing cam follower.

特許文献1には、一端部を片持ち支持される軸部材と、軸部材の他端部外周に装着されたすべり軸受とを備えたカムフォロアが開示されている。すべり軸受は、Feの含有量が90wt%以上のFe系の焼結金属材からなる円筒状の母体と、母体の内周面から両端面にかけて形成された摺動層とで構成され、摺動層は、例えばポリエチレン樹脂等のベース材料に、シリコーン油等の潤滑剤およびこの潤滑剤を含浸させた球状多孔質シリカを配合した摺動材組成物で形成されている。   Patent Document 1 discloses a cam follower including a shaft member whose one end is cantilevered and a slide bearing attached to the outer periphery of the other end of the shaft member. A plain bearing is composed of a cylindrical base made of a Fe-based sintered metal material having an Fe content of 90 wt% or more, and a sliding layer formed from the inner peripheral surface to both end faces of the base. The layer is formed of a sliding material composition in which a base material such as polyethylene resin is blended with a lubricant such as silicone oil and spherical porous silica impregnated with the lubricant.

特許文献2には、内周に、複数の動圧溝を円周方向に配列した動圧溝領域を有する軸受スリーブと、軸受スリーブの内周に挿入された軸部材とを備え、軸部材の外周と軸受スリーブ内周の動圧溝領域との間のラジアル軸受隙間に生じた流体の動圧作用で軸部材を正逆回転方向でラジアル方向に非接触支持する動圧軸受が開示されている。軸受スリーブは、焼結金属製で、内周に、軸方向一方側の第1の正回転用の動圧溝領域と軸方向他方側の第1の逆回転用の動圧溝領域とを有し、第1の正回転用の動圧溝領域と第1の逆回転用の動圧溝領域とが、それぞれ軸方向に対して傾斜する動圧溝と、これとは逆向きに傾斜する動圧溝とを軸方向の別位置に備えている。   Patent Document 2 includes a bearing sleeve having a dynamic pressure groove region in which a plurality of dynamic pressure grooves are arranged in the circumferential direction on the inner periphery, and a shaft member inserted in the inner periphery of the bearing sleeve. A hydrodynamic bearing is disclosed in which a shaft member is supported in a non-contact radial direction in the forward / reverse rotation direction by the hydrodynamic action of a fluid generated in a radial bearing gap between an outer periphery and a hydrodynamic groove region on an inner periphery of a bearing sleeve. . The bearing sleeve is made of sintered metal, and has a first dynamic pressure groove region for one forward rotation on the one side in the axial direction and a first dynamic pressure groove region for the first reverse rotation on the other side in the axial direction. In addition, the first dynamic pressure groove region for forward rotation and the first dynamic pressure groove region for reverse rotation are respectively inclined with respect to the axial pressure direction, and are inclined in the opposite direction. A pressure groove is provided at another position in the axial direction.

特開2005−24094号公報JP-A-2005-24094 特開2005−351374号公報JP 2005-351374 A

特許文献1によるカムフォロアは、すべり軸受の母体をFe系の焼結金属材で形成しているので、高い寸法精度及び回転精度を得ることができ、また、摺動層をベース材料としてポリエチレン樹脂を使用して形成しているので、低摩擦性を有することができる。しかし、軸部材とすべり軸受との間の摩擦係数は、0.08であって、転動されるころを備えた転がり軸受のカムフォロアの外輪とスタッドとの間の摩擦係数に比べても大きいために、すべり軸受を軸部材に対して回転させるには大きいトルクが必要であって、負荷容量が小さいという問題がある。   In the cam follower according to Patent Document 1, since the base of the slide bearing is formed of an Fe-based sintered metal material, high dimensional accuracy and rotational accuracy can be obtained, and polyethylene resin is used as a base material for the sliding layer. Since it is used and formed, it can have low friction. However, the coefficient of friction between the shaft member and the plain bearing is 0.08, which is larger than the coefficient of friction between the outer ring of the cam follower and the stud of the rolling bearing provided with the roller to be rolled. In addition, there is a problem that a large torque is required to rotate the plain bearing with respect to the shaft member, and the load capacity is small.

特許文献2による動圧軸受は、軸受スリーブの内周に軸方向に対して傾斜する動圧溝と、これとは逆向きに傾斜する動圧溝とを軸方向の別位置に備えることにより、正逆回転時においても、軸部材と軸受スリーブとの間のラジアル軸受隙間に流体の動圧作用を生じさせている。しかし、軸方向一方側の正回転用の動圧溝領域を有し、軸方向他方側の逆回転用の動圧溝領域を有していることから、流体が、それぞれの領域で逆向きに流動するため、軸受装置の外部に漏洩し、軸部材と軸受スリーブの間の摩擦を充分に小さくすることができないという問題がある。   The hydrodynamic bearing according to Patent Document 2 includes a hydrodynamic groove that is inclined with respect to the axial direction on the inner periphery of the bearing sleeve, and a hydrodynamic groove that is inclined in the opposite direction to the inner circumference of the bearing sleeve. Even during forward and reverse rotation, a fluid dynamic pressure action is generated in the radial bearing gap between the shaft member and the bearing sleeve. However, since it has a dynamic pressure groove region for forward rotation on one side in the axial direction and a dynamic pressure groove region for reverse rotation on the other side in the axial direction, fluid flows in the opposite direction in each region. Since it flows, there is a problem that it leaks to the outside of the bearing device and the friction between the shaft member and the bearing sleeve cannot be made sufficiently small.

従って、本発明の目的は、上記問題点を解決して、高い回転精度を有し、大きな負荷にも支障なく使用が可能であるとともに、トルクを低減することができる流体動圧軸受を提供することである。   Accordingly, an object of the present invention is to provide a fluid dynamic bearing that solves the above-described problems, has high rotational accuracy, can be used without any problem even with a large load, and can reduce torque. That is.

本発明によれば、上記目的は、軸部材と、軸部材の外周面に沿って回転可能な外輪部とを備え、軸部材の外周面と外輪部の内周面との間にラジアル隙間が設けられた流体動圧軸受であって、軸部材の外周面は、第1の表面領域、第2の表面領域、及び、第1の表面領域と第2の表面領域との間に配置された第1の流体動圧保持領域を含み、外輪部が、軸部材の外周面に沿って第1の表面領域から第1の流体動圧保持領域を通って第2の表面領域に向かうように回転している場合に、ラジアル隙間のうちの第1の流体動圧保持領域上に位置する第1の荷重負荷領域において、外輪部の回転に従って第1の表面領域から第1の流体動圧保持領域に流動する流体によって動圧を発生させることができるように、第1の表面領域に動圧溝が形成されている流体動圧軸受によって達成される。   According to the present invention, the above object includes a shaft member and an outer ring portion that is rotatable along the outer peripheral surface of the shaft member, and a radial gap is provided between the outer peripheral surface of the shaft member and the inner peripheral surface of the outer ring portion. In the fluid dynamic pressure bearing provided, the outer peripheral surface of the shaft member is disposed between the first surface region, the second surface region, and the first surface region and the second surface region. A first fluid dynamic pressure holding region is included, and the outer ring portion is rotated along the outer peripheral surface of the shaft member from the first surface region to the second surface region through the first fluid dynamic pressure holding region. In the first load load region located on the first fluid dynamic pressure holding region in the radial gap, the first fluid dynamic pressure holding region is changed from the first surface region according to the rotation of the outer ring portion. A dynamic pressure groove is formed in the first surface region so that dynamic pressure can be generated by the fluid flowing in It is achieved by a fluid dynamic bearing that.

また、上記目的の別の一つは、外輪部が、軸部材の外周面に沿って第2の表面領域から第1の流体動圧保持領域を通って第1の表面領域に向かうように回転している場合に、第1の荷重負荷領域において、外輪部の回転に従って第2の表面領域から第1の流体動圧保持領域に流動する流体によって動圧を発生させることができるように、第2の表面領域に動圧溝が形成されている流体動圧軸受によって達成される。   Another object is to rotate the outer ring portion from the second surface region to the first surface region through the first fluid dynamic pressure holding region along the outer peripheral surface of the shaft member. In the first load application region, the dynamic pressure can be generated by the fluid flowing from the second surface region to the first fluid dynamic pressure holding region according to the rotation of the outer ring portion. This is achieved by a fluid dynamic pressure bearing in which dynamic pressure grooves are formed in the two surface regions.

また、上記目的の別の一つは、第1の表面領域の動圧溝が、複数の略V字形状を有する溝から形成され、略V字形状の頂点部が第2の表面領域に対向するように形成されている流体動圧軸受によって達成される。   Another object of the above object is that the dynamic pressure groove in the first surface region is formed of a plurality of grooves having a substantially V shape, and the vertex portion of the substantially V shape is opposed to the second surface region. This is achieved by a fluid dynamic bearing that is configured to do so.

また、上記目的の別の一つは、第2の表面領域の動圧溝が、複数の略V字形状を有する溝から形成され、略V字形状の頂点部が第1の表面領域に対向するように形成されている流体動圧軸受によって達成される。   In addition, another one of the above objects is that the dynamic pressure groove in the second surface region is formed from a plurality of grooves having a substantially V shape, and the apex portion of the substantially V shape faces the first surface region. This is achieved by a fluid dynamic bearing that is configured to do so.

また、上記目的の別の一つは、第1の流体動圧保持領域において、軸部材の外周面に複数のディンプルが形成されている流体動圧軸受によって達成される。   Another of the above objects is achieved by a fluid dynamic pressure bearing in which a plurality of dimples are formed on the outer peripheral surface of the shaft member in the first fluid dynamic pressure holding region.

また、上記目的の別の一つは、軸部材の外周面に、その円周方向に沿って円弧溝が形成されている流体動圧軸受によって達成される。   Another object is achieved by a fluid dynamic bearing in which an arc groove is formed on the outer peripheral surface of the shaft member along the circumferential direction thereof.

また、上記目的の別の一つは、外輪部に、その外周面から内周面に通ずる油路孔が設けられている流体動圧軸受によって達成される。   Another of the above objects is achieved by a fluid dynamic bearing in which an outer passage portion is provided with an oil passage hole extending from the outer peripheral surface to the inner peripheral surface.

また、上記目的の別の一つは、軸部材の外周面が、更に、第3の表面領域、第4の表面領域、及び、第3の表面領域と第4の表面領域との間に配置された第2の流体動圧保持領域を含み、外輪部が、軸部材の外周面に沿って第1の表面領域から第1の流体動圧保持領域を通って第2の表面領域に向かうように回転している場合に、ラジアル隙間のうちの第2の流体動圧保持領域上に位置する第2の荷重負荷領域において、外輪部の回転に従って第3の表面領域から第2の流体動圧保持領域に流動する流体によって動圧を発生させることができるように、第3の表面領域に動圧溝が形成され、外輪部が、軸部材の外周面に沿って第2の表面領域から第1の流体動圧保持領域を通って第1の表面領域に向かうように回転している場合に、第2の荷重負荷領域において、外輪部の回転に従って第4の表面領域から第2の流体動圧保持領域に流動する流体によって動圧を発生させることができるように、第4の表面領域に動圧溝が形成されている流体動圧軸受によって達成される。   Further, another one of the above objects is that the outer peripheral surface of the shaft member is further disposed between the third surface region, the fourth surface region, and the third surface region and the fourth surface region. A second fluid dynamic pressure holding region, and the outer ring portion extends from the first surface region along the outer peripheral surface of the shaft member to the second surface region through the first fluid dynamic pressure holding region. The second fluid dynamic pressure from the third surface region in accordance with the rotation of the outer ring portion in the second load load region located on the second fluid dynamic pressure holding region in the radial gap. A dynamic pressure groove is formed in the third surface region so that the dynamic pressure can be generated by the fluid flowing in the holding region, and the outer ring portion extends from the second surface region along the outer peripheral surface of the shaft member. The second load when rotating toward the first surface region through the one fluid dynamic pressure holding region. In the load region, a dynamic pressure groove is formed in the fourth surface region so that dynamic pressure can be generated by the fluid flowing from the fourth surface region to the second fluid dynamic pressure holding region in accordance with the rotation of the outer ring portion. This is achieved by a fluid dynamic pressure bearing.

また、上記目的の別の一つは、軸部材の外周面が、第1の表面領域及び第2の表面領域の軸部材の軸線に対する反対側にそれぞれ第3の表面領域及び第4の表面領域を含む流体動圧軸受によって達成される。   In addition, another one of the above objects is that the outer peripheral surface of the shaft member is a third surface region and a fourth surface region on the opposite sides of the first surface region and the second surface region with respect to the axis of the shaft member, respectively. Is achieved by a fluid dynamic pressure bearing including:

また、上記目的の別の一つは、軸部材の外周面の外径が、軸部材の挿入部の外径より大きい流体動圧軸受によって達成される。   Another of the above objects is achieved by a fluid dynamic bearing in which the outer diameter of the outer peripheral surface of the shaft member is larger than the outer diameter of the insertion portion of the shaft member.

また、上記目的の別の一つは、カムフォロア又はローラフォロアである流体動圧軸受によって達成される。   Another of the above objects is achieved by a fluid dynamic bearing that is a cam follower or a roller follower.

更に、上記目的の別の一つは、スクリュー形状のカムリブを有する回転可能なカムと、カムの回転に伴って回転可能な回転部材とを備えるカム機構であって、回転部材が、上記の流体動圧軸受を複数備え、カムリブが複数の流体動圧軸受の少なくとも1つに接触することによって回転部材が回転するようになっているカム機構によって達成される。   Another object of the present invention is a cam mechanism including a rotatable cam having a screw-shaped cam rib and a rotating member that can rotate as the cam rotates. This is achieved by a cam mechanism that includes a plurality of dynamic pressure bearings, and the rotating member rotates when the cam rib contacts at least one of the plurality of fluid dynamic pressure bearings.

また、上記目的の別の一つは、カムリブが複数の流体動圧軸受の各々に接触するときに、複数の流体動圧軸受の各々の第1の流体動圧保持領域がカムリブに対面するように、複数の流体動圧軸受の各々の軸部材が回転部材に固定されているカム機構によって達成される。   Another object of the present invention is that when the cam rib contacts each of the plurality of fluid dynamic pressure bearings, the first fluid dynamic pressure holding region of each of the plurality of fluid dynamic pressure bearings faces the cam rib. In addition, this is achieved by a cam mechanism in which each shaft member of the plurality of fluid dynamic pressure bearings is fixed to the rotating member.

更に、上記目的の別の一つは、回転可能な平面カムと、平面カムの回転に伴って動作可能な部材とを備えるカム機構であって、部材が、その先端に上記の流体動圧軸受を備え、平面カムが流体動圧軸受に接触することによって部材が動作するようになっているカム機構によって達成される。   Another object of the present invention is a cam mechanism including a rotatable planar cam and a member operable in accordance with the rotation of the planar cam, and the member is provided at the tip thereof with the fluid dynamic pressure bearing. And is achieved by a cam mechanism in which the member is operated by the planar cam contacting the fluid dynamic pressure bearing.

また、上記目的の別の一つは、平面カムが流体動圧軸受に接触するときに、流体動圧軸受の第1の流体動圧保持領域が平面カムに対面するように、流体動圧軸受の軸部材が部材に固定されているカム機構によって達成される。   Another object of the present invention is to provide a fluid dynamic pressure bearing such that the first fluid dynamic pressure holding region of the fluid dynamic pressure bearing faces the flat cam when the flat cam contacts the fluid dynamic pressure bearing. This is achieved by a cam mechanism in which the shaft member is fixed to the member.

上記のように、軸部材の外周面の第1の表面領域に動圧溝を形成することにより、ラジアル隙間のうちの第1の荷重負荷領域に流体による動圧を発生させて軸部材と外輪部との摩擦を小さくすることができるので、トルクを低減することができ、高い回転精度を有し、大きな負荷にも支障なく使用が可能である軸受を実現することができる、という効果を奏する。また、軸部材の外周面の第2の表面領域にも動圧溝を形成することにより、外輪部が軸部材に対して正回転・逆回転どちらの場合においてもラジアル隙間のうちの第1の荷重負荷領域に流体による動圧を発生させて軸部材と外輪部との摩擦を小さくすることができる、という効果を奏する。また、動圧溝を略V字形状とすることにより、更に効率的に動圧を発生させることができる、という効果を奏する。また、ディンプル、円弧溝を形成することにより、更に効率的に動圧を発生させることができる、という効果を奏する。
また、本発明の流体動圧軸受をカム機構に使用することにより、高い回転精度と負荷容量を有し、長寿命化に適し、更に、本発明の流体動圧軸受にはころが無いので静粛性が向上するカム機構を実現することができる、という効果を奏する。
As described above, by forming the dynamic pressure groove in the first surface region of the outer peripheral surface of the shaft member, the dynamic pressure due to the fluid is generated in the first load load region of the radial gap, and the shaft member and the outer ring Since the friction with the part can be reduced, the torque can be reduced, and there is an effect that it is possible to realize a bearing that has high rotational accuracy and can be used without any trouble even with a large load. . In addition, by forming a dynamic pressure groove in the second surface region of the outer peripheral surface of the shaft member, the first of the radial gaps in the case where the outer ring portion is rotated forward or backward with respect to the shaft member. There is an effect that the friction between the shaft member and the outer ring portion can be reduced by generating a dynamic pressure by the fluid in the load application region. Further, by making the dynamic pressure groove substantially V-shaped, there is an effect that the dynamic pressure can be generated more efficiently. Further, by forming the dimples and the arc grooves, there is an effect that the dynamic pressure can be generated more efficiently.
Further, by using the fluid dynamic pressure bearing of the present invention for the cam mechanism, it has high rotational accuracy and load capacity, is suitable for extending the life, and the fluid dynamic pressure bearing of the present invention has no rollers, so it is quiet. The cam mechanism with improved performance can be realized.

なお、本発明の他の目的、特徴及び利点は、添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。   Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.

本発明の流体動圧軸受を側面から見た断面図である。It is sectional drawing which looked at the fluid dynamic pressure bearing of this invention from the side surface. 軸部材の一方の側面から見た第一の実施例の概略図である。It is the schematic of the 1st Example seen from one side of the shaft member. 軸部材の一方の側面から見た第二の実施例の概略図である。It is the schematic of the 2nd Example seen from the one side of a shaft member. 軸部材の一方の側面から見た第三の実施例の概略図である。It is the schematic of the 3rd Example seen from the one side of a shaft member. 軸部材の一方の側面から見た第四の実施例の概略図である。It is the schematic of the 4th Example seen from one side of the shaft member. 軸部材の一方の側面から見た第五の実施例の概略図である。It is the schematic of the 5th Example seen from one side of the shaft member. 軸部材の一方の側面から見た第六の実施例の概略図である。It is the schematic of the 6th Example seen from the one side of a shaft member. 軸部材の一方の側面から見た第七の実施例の概略図である。It is the schematic of the 7th Example seen from the one side of a shaft member. 軸部材の一方の側面から見た第八の実施例の概略図である。It is the schematic of the 8th Example seen from the one side of the shaft member. 軸部材の一方の側面から見た第九の実施例の概略図である。It is the schematic of the 9th Example seen from one side of the shaft member. 軸部材の一方の側面から見た第十の実施例の概略図である。It is the schematic of the 10th Example seen from one side of a shaft member. 軸部材の一方の側面から見た第十一の実施例の概略図である。It is the schematic of the 11th Example seen from one side of the shaft member. 軸部材の反対の側面から見た第一の実施例の概略図である。It is the schematic of the 1st Example seen from the opposite side surface of the shaft member. 軸部材の反対の側面から見た第二の実施例の概略図である。It is the schematic of the 2nd Example seen from the opposite side surface of the shaft member. 外輪部の正面から見た断面図である。It is sectional drawing seen from the front of an outer ring | wheel part. 外輪部の側面から見た一部透視図である。It is the partial perspective view seen from the side of an outer ring part. 本発明の流体動圧軸受を使用したカム機構の正面から見た概略図である。It is the schematic seen from the front of the cam mechanism using the fluid dynamic pressure bearing of this invention. 本発明の流体動圧軸受とカム面の接触を下面から見た断面概略図である。It is the cross-sectional schematic which looked at the contact of the fluid dynamic pressure bearing of this invention and a cam surface from the lower surface. 本発明の流体動圧軸受を使用した別のカム機構の正面から見た概略図である。It is the schematic seen from the front of another cam mechanism using the fluid dynamic pressure bearing of this invention.

以下、本発明の実施例について図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited to these examples.

図1〜19を参照して、本発明の流体動圧軸受の実施例及び本発明の流体動圧軸受を使用したカム機構の実施例を説明する。   With reference to FIGS. 1-19, the Example of the fluid dynamic pressure bearing of this invention and the Example of the cam mechanism using the fluid dynamic pressure bearing of this invention are described.

図1に、流体動圧軸受101の断面図を示す。流体動圧軸受101は、軸部材104と、軸部材104の外周面107に沿って回転可能な外輪部102とを備え、軸部材104の外周面107と外輪部102の内周面120との間にはラジアル隙間103が設けられている。図1においては、流体動圧軸受101は、更に、カム機構のタレット等の回転部材に流体動圧軸受101を嵌合するための挿入部105、挿入部105を介してタレットに軸部材104を固定するためのボルト等の固定部材を受容する固定部材受孔106を備えているが、これらの挿入部105、固定部材受孔106は備えていなくてもよい。   FIG. 1 shows a cross-sectional view of the fluid dynamic pressure bearing 101. The fluid dynamic pressure bearing 101 includes a shaft member 104 and an outer ring portion 102 that can rotate along the outer peripheral surface 107 of the shaft member 104. The fluid dynamic pressure bearing 101 includes an outer peripheral surface 107 of the shaft member 104 and an inner peripheral surface 120 of the outer ring portion 102. A radial gap 103 is provided between them. In FIG. 1, the fluid dynamic pressure bearing 101 further includes an insertion portion 105 for fitting the fluid dynamic pressure bearing 101 to a rotating member such as a turret of a cam mechanism, and a shaft member 104 on the turret via the insertion portion 105. Although the fixing member receiving hole 106 for receiving a fixing member such as a bolt for fixing is provided, the insertion portion 105 and the fixing member receiving hole 106 may not be provided.

図2に、図1の流体動圧軸受101の軸部材104について、側面から見た第一の実施例の概略図を示す。軸部材104の外周面107は、第1の正転用動圧生成領域108である第1の表面領域、第1の逆転用動圧生成領域109である第2の表面領域、第1の正転用動圧生成領域108と第1の逆転用動圧生成領域109との間に配置された第1の流体動圧保持領域110を含む。なお、図2〜14で記載された点線は各領域を説明するための便宜上のものである。外輪部102が、軸部材104の外周面107に沿って第1の正転用動圧生成領域108から第1の流体動圧保持領域110を通って第1の逆転用動圧生成領域109に向かうように回転している場合に(正回転)、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域(図18参照)において、外輪部102の回転に従って第1の正転用動圧生成領域108から第1の流体動圧保持領域110に流動する油等の流体によって動圧を発生させることができるように、第1の正転用動圧生成領域108に外周面107に対して窪んでいる動圧溝111が形成されている。このように、第1の正転用動圧生成領域108に動圧溝111が形成されていると、外輪部102の正回転に応じて、油等の流体が、第1の正転用動圧生成領域108の動圧溝111に沿って第1の流体動圧保持領域110に向かってその動圧溝111の尖端部に集約されるように流動し、その集約された流体がその尖端部で堰き止められることによって、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域において圧力の高い流体による膜が形成されて、流体による動圧が発生する。この流体による動圧によって、外輪部102は、第1の流体動圧保持領域110において軸部材104に接触することなく、低摩擦且つ低トルクで回転することができる。   FIG. 2 shows a schematic diagram of the first embodiment of the shaft member 104 of the fluid dynamic bearing 101 shown in FIG. The outer peripheral surface 107 of the shaft member 104 includes a first surface region that is the first normal rotation dynamic pressure generation region 108, a second surface region that is the first reverse rotation dynamic pressure generation region 109, and a first normal rotation purpose. It includes a first fluid dynamic pressure holding region 110 disposed between the dynamic pressure generation region 108 and the first reverse rotation dynamic pressure generation region 109. In addition, the dotted line described in FIGS. 2-14 is a thing for convenience for demonstrating each area | region. The outer ring portion 102 moves from the first normal rotation dynamic pressure generation region 108 to the first reverse rotation dynamic pressure generation region 109 along the outer peripheral surface 107 of the shaft member 104 through the first fluid dynamic pressure holding region 110. In the first load load region (see FIG. 18) located on the first fluid dynamic pressure holding region 110 in the radial gap 103, the outer ring portion 102 The first normal rotation dynamic pressure generation region so that the dynamic pressure can be generated by fluid such as oil flowing from the first normal rotation dynamic pressure generation region 108 to the first fluid dynamic pressure holding region 110 according to the rotation. A dynamic pressure groove 111 that is recessed with respect to the outer peripheral surface 107 is formed in 108. As described above, when the dynamic pressure groove 111 is formed in the first normal rotation dynamic pressure generation region 108, fluid such as oil is generated according to the normal rotation of the outer ring portion 102. The fluid flows along the dynamic pressure groove 111 in the region 108 toward the first fluid dynamic pressure holding region 110 so as to be concentrated at the tip end portion of the dynamic pressure groove 111, and the aggregated fluid is dammed at the tip end portion. By being stopped, in the first load load region located on the first fluid dynamic pressure holding region 110 in the radial gap 103, a film with a high pressure fluid is formed, and dynamic pressure due to the fluid is generated. . Due to the dynamic pressure of the fluid, the outer ring portion 102 can rotate with low friction and low torque without contacting the shaft member 104 in the first fluid dynamic pressure holding region 110.

また、外輪部102が、軸部材104の外周面107に沿って第1の逆転用動圧生成領域109から第1の流体動圧保持領域110を通って第1の正転用動圧生成領域108に向かうように回転している場合に(逆回転)、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域(図18参照)において、外輪部102の回転に従って第1の逆転用動圧生成領域109から第1の流体動圧保持領域110に流動する油等の流体によって動圧を発生させることができるように、第1の逆転用動圧生成領域109に外周面107に対して窪んでいる動圧溝111が形成されていてもよい。このように、第1の逆転用動圧生成領域109に動圧溝111が形成されていると、外輪部102の逆回転に応じて、油等の流体が、第1の逆転用動圧生成領域109の動圧溝111に沿って第1の流体動圧保持領域110に向かってその動圧溝111の尖端部に集約されるように流動し、その集約された流体がその尖端部で堰き止められることによって、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域において圧力の高い流体による膜が形成され、流体による動圧が発生する。この流体による動圧によって、外輪部102は、第1の流体動圧保持領域110において軸部材104に接触することなく、低摩擦且つ低トルクで回転することができる。   Further, the outer ring portion 102 passes from the first reverse rotation dynamic pressure generation region 109 through the first fluid dynamic pressure holding region 110 along the outer peripheral surface 107 of the shaft member 104 to the first forward rotation dynamic pressure generation region 108. In the first load application region (see FIG. 18) located on the first fluid dynamic pressure holding region 110 in the radial gap 103. The first reverse dynamic pressure so that the dynamic pressure can be generated by the fluid such as oil flowing from the first reverse dynamic pressure generating region 109 to the first fluid dynamic pressure holding region 110 according to the rotation of 102. A dynamic pressure groove 111 that is recessed with respect to the outer peripheral surface 107 may be formed in the generation region 109. As described above, when the dynamic pressure groove 111 is formed in the first reverse rotation dynamic pressure generation region 109, fluid such as oil is generated according to the reverse rotation of the outer ring portion 102. The fluid flows along the dynamic pressure groove 111 in the region 109 toward the first fluid dynamic pressure holding region 110 so as to be concentrated at the tip end portion of the dynamic pressure groove 111, and the aggregated fluid is dammed by the tip end portion. By being stopped, in the first load load region located on the first fluid dynamic pressure holding region 110 in the radial gap 103, a film with a high pressure fluid is formed, and dynamic pressure due to the fluid is generated. Due to the dynamic pressure of the fluid, the outer ring portion 102 can rotate with low friction and low torque without contacting the shaft member 104 in the first fluid dynamic pressure holding region 110.

第1の正転用動圧生成領域108である第1の表面領域の動圧溝111は複数の略V字形状を有する溝から形成されていてもよく、その略V字形状の頂点部が第1の逆転用動圧生成領域109に対向するように形成されていてもよい。また、第1の逆転用動圧生成領域109である第2の表面領域の動圧溝111は複数の略V字形状を有する溝から形成されていてもよく、その略V字形状の頂点部が第1の正転用動圧生成領域108に対向するように形成されていてもよい。動圧溝111を略V字形状を有する溝とすることにより、流体が略V字形状の尖端部である頂点部112に集約されるように流動し、その集約された流体がその頂点部112で堰き止められることによって、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域において圧力の高い流体による膜が形成され、流体による動圧が発生する。   The first surface region dynamic pressure groove 111 that is the first normal rotation dynamic pressure generation region 108 may be formed of a plurality of substantially V-shaped grooves, and the substantially V-shaped apex portion is the first portion. 1 may be formed so as to face the reverse rotation dynamic pressure generation region 109. In addition, the dynamic pressure groove 111 in the second surface region, which is the first reverse rotation dynamic pressure generation region 109, may be formed of a plurality of substantially V-shaped grooves, and the substantially V-shaped apex portion thereof. May be formed to face the first normal rotation dynamic pressure generation region 108. By making the dynamic pressure groove 111 into a groove having a substantially V shape, the fluid flows so as to be concentrated at the apex portion 112 which is a substantially V-shaped pointed portion, and the aggregated fluid is the apex portion 112. In the radial gap 103, a film with a high pressure fluid is formed in the first load load region located on the first fluid dynamic pressure holding region 110 in the radial gap 103, and the dynamic pressure due to the fluid is generated. To do.

そして、第1の正転用動圧生成領域108の動圧溝111である略V字形状の頂点部112、及び、第1の逆転用動圧生成領域109の動圧溝111である略V字形状の頂点部112が互いに対向するように形成されることによって、外輪部102が正回転する場合であっても逆回転する場合であっても、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域において圧力の高い流体による膜を形成することができる。   Then, a substantially V-shaped apex portion 112 that is the dynamic pressure groove 111 of the first normal rotation dynamic pressure generation region 108 and a substantially V shape that is the dynamic pressure groove 111 of the first reverse rotation dynamic pressure generation region 109. By forming the apex portions 112 of the shapes so as to face each other, the first fluid movement in the radial gap 103 can be performed regardless of whether the outer ring portion 102 rotates forward or reversely. A film made of a fluid having a high pressure can be formed in the first load application region located on the pressure holding region 110.

図3に示すように、軸部材104の外周面107には、外周面107の円周方向に沿って1つ以上の円弧溝114が形成されていてもよい。また、動圧溝111の尖端部である略V字形状の頂点部112を連結するように円弧溝114を形成してもよく、このように形成すると、第1の正転用動圧生成領域108と第1の逆転用動圧生成領域109の動圧溝111には、互いに対向するヘリングボーン形状の溝が形成される。軸部材104の外周面107に円弧溝114を形成することにより、更に効率的に流体が集約されて、第1の荷重負荷領域において圧力の高い流体による膜が形成され、流体による動圧が発生する。   As shown in FIG. 3, one or more arc grooves 114 may be formed on the outer peripheral surface 107 of the shaft member 104 along the circumferential direction of the outer peripheral surface 107. Further, the arc groove 114 may be formed so as to connect the substantially V-shaped apex portion 112 which is the pointed portion of the dynamic pressure groove 111, and when formed in this way, the first normal rotation dynamic pressure generation region 108 is formed. In the dynamic pressure groove 111 of the first reverse rotation dynamic pressure generation region 109, herringbone-shaped grooves facing each other are formed. By forming the arc groove 114 on the outer peripheral surface 107 of the shaft member 104, the fluid is more efficiently concentrated, and a film made of a fluid having a high pressure is formed in the first load load region, and dynamic pressure is generated by the fluid. To do.

図4に示すように、軸部材104の外周面107には、第1の正転用動圧生成領域108と第1の逆転用動圧生成領域109との間の第1の流体動圧保持領域110において、複数の凹部形状のディンプル113が形成されていてもよい。ディンプル113の外径は、100μm以下、好ましくは50μm以下であることが好ましい。第1の流体動圧保持領域110に複数のディンプル113を形成することにより、外輪部102が軸部材104に対して正回転又は逆回転している場合に、複数のディンプル113が、第1の正転用動圧生成領域108又は第1の逆転用動圧生成領域109から第1の流体動圧保持領域110に向かって流入してくる流体の溜まりとして作用して、流体の膜形成能力を向上させることができる。このために、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域において、更に圧力の高い流体による膜が形成されて、流体による動圧が発生する。この流体による動圧によって、外輪部102は、第1の流体動圧保持領域110において軸部材104に接触することなく、低摩擦且つ低トルクで回転することができる。なお、ディンプル113は、図4に示すように、第1の正転用動圧生成領域108、第1の逆転用動圧生成領域109において形成されていてもよいし、軸部材104の外周面107全体に形成されていてもよい。   As shown in FIG. 4, the first fluid dynamic pressure holding region between the first normal rotation dynamic pressure generation region 108 and the first reverse rotation dynamic pressure generation region 109 is formed on the outer peripheral surface 107 of the shaft member 104. 110, a plurality of concave dimples 113 may be formed. The outer diameter of the dimple 113 is 100 μm or less, preferably 50 μm or less. By forming a plurality of dimples 113 in the first fluid dynamic pressure holding region 110, when the outer ring portion 102 is rotating forward or backward with respect to the shaft member 104, the plurality of dimples 113 are It acts as a pool of fluid flowing in from the normal rotation dynamic pressure generation region 108 or the first reverse rotation dynamic pressure generation region 109 toward the first fluid dynamic pressure holding region 110, thereby improving the fluid film forming ability. Can be made. For this reason, in the first load load region located on the first fluid dynamic pressure holding region 110 in the radial gap 103, a film made of a fluid with higher pressure is formed, and dynamic pressure due to the fluid is generated. To do. Due to the dynamic pressure of the fluid, the outer ring portion 102 can rotate with low friction and low torque without contacting the shaft member 104 in the first fluid dynamic pressure holding region 110. As shown in FIG. 4, the dimple 113 may be formed in the first normal rotation dynamic pressure generation region 108 and the first reverse rotation dynamic pressure generation region 109, or the outer peripheral surface 107 of the shaft member 104. It may be formed entirely.

図5〜10に、第四〜九の実施例を示す。図5は、図3の実施例に対してディンプル113が形成された実施例であり、図6は、図3の実施例に対して形成される動圧溝111、円弧溝の数を増やした実施例であり、図7は、図6の実施例に対してディンプル113が形成された実施例であり、図8は、図6の実施例の円弧溝114が円環状に形成された実施例であり、図9は、図8の実施例に対してディンプル113が形成された実施例であり、図10は、動圧溝のその他の形状を示す実施例である。このように、あらゆる形状の動圧溝、円弧溝、ディンプルを組み合わせることによって、動圧を発生させることができ、モーメント荷重の大きさ等、流体動圧軸受が使用される環境に応じていろいろな形状を選択することができる。なお、外周部107に形成される動圧溝、円弧溝、ディンプルの形状は、これらの実施例に限定されるものではない。   5 to 10 show the fourth to ninth embodiments. FIG. 5 shows an embodiment in which dimples 113 are formed with respect to the embodiment of FIG. 3, and FIG. 6 increases the number of dynamic pressure grooves 111 and arc grooves formed with respect to the embodiment of FIG. 7 is an embodiment in which dimples 113 are formed with respect to the embodiment of FIG. 6, and FIG. 8 is an embodiment in which the arc groove 114 of the embodiment of FIG. 6 is formed in an annular shape. 9 is an embodiment in which dimples 113 are formed with respect to the embodiment of FIG. 8, and FIG. 10 is an embodiment showing other shapes of the dynamic pressure grooves. In this way, dynamic pressure can be generated by combining dynamic pressure grooves, arc grooves, and dimples of any shape, and there are various types depending on the environment in which the fluid dynamic pressure bearing is used, such as the magnitude of moment load. The shape can be selected. The shapes of the dynamic pressure grooves, the arc grooves, and the dimples formed in the outer peripheral portion 107 are not limited to these examples.

図2〜10においては、第1の正転用動圧生成領域108の動圧溝111及び第1の逆転用動圧生成領域109の動圧溝111は、図1に示す軸部材104の軸線104aに対して、対称の形状になるように形成されているが、図11、12に示すように、第1の正転用動圧生成領域108、第1の逆転用動圧生成領域109、第1の流体動圧保持領域110は、軸部材104の軸線104aに対して角度αを有するように軸部材104の外周面107に含まれていてもよい。また、ディンプル113が軸線104aに対して大よそ角度αを有するように分布するように形成されてもよい。なお、角度αは、後述するように流体動圧軸受101がカム機構に使用される場合において、流体動圧軸受101の外輪部102が最も押圧される部分に、流体による動圧を発生させることができるように決定される。このように角度αを有することにより、流体動圧軸受101が使用されるカム機構に応じて、軸部材104と外輪部102との摩擦を小さくすることができる、という効果を奏する。   2 to 10, the dynamic pressure groove 111 of the first normal rotation dynamic pressure generation region 108 and the dynamic pressure groove 111 of the first reverse rotation dynamic pressure generation region 109 are the axis 104a of the shaft member 104 shown in FIG. However, as shown in FIGS. 11 and 12, the first normal rotation dynamic pressure generation region 108, the first reverse rotation dynamic pressure generation region 109, the first The fluid dynamic pressure holding region 110 may be included in the outer peripheral surface 107 of the shaft member 104 so as to have an angle α with respect to the axis 104 a of the shaft member 104. Further, the dimples 113 may be formed so as to be distributed so as to have an angle α with respect to the axis 104a. Note that the angle α causes the dynamic pressure due to the fluid to be generated in the portion where the outer ring portion 102 of the fluid dynamic pressure bearing 101 is most pressed when the fluid dynamic pressure bearing 101 is used in the cam mechanism as described later. Is determined to be able to. By having the angle α in this way, there is an effect that the friction between the shaft member 104 and the outer ring portion 102 can be reduced according to the cam mechanism in which the fluid dynamic pressure bearing 101 is used.

図13、14に示すように、軸部材104の外周面107は、更に、第3の表面領域である第2の正転用動圧生成領域115、第4の表面領域である第2の逆転用動圧生成領域116、第2の正転用動圧生成領域115と第2の逆転用動圧生成領域115との間に配置された第2の流体動圧保持領域117を含んでいてもよい。外輪部102が、軸部材104の外周面107に沿って第2の正転用動圧生成領域115から第2の流体動圧保持領域117を通って第2の逆転用動圧生成領域116に向かうように回転している場合、すなわち、軸部材104の外周面107に沿って第1の正転用動圧生成領域108から第1の流体動圧保持領域110を通って第1の逆転用動圧生成領域109に向かうように回転している場合に(正回転)、ラジアル隙間103のうちの、第2の流体動圧保持領域117上に位置する第2の荷重負荷領域(図18参照)において、外輪部102の回転に従って第2の正転用動圧生成領域115から第2の流体動圧保持領域117に流動する油等の流体によって動圧を発生させることができるように、第2の正転用動圧生成領域115に外周面107に対して窪んでいる動圧溝111が形成されていてもよい。また、外輪部102が、軸部材104の外周面107に沿って第2の逆転用動圧生成領域116から第2の流体動圧保持領域117を通って第2の正転用動圧生成領域115に向かうように回転している場合、すなわち、軸部材104の外周面107に沿って第1の逆転用動圧生成領域109から第1の流体動圧保持領域110を通って第1の正転用動圧生成領域108に向かうように回転している場合に(逆回転)、ラジアル隙間103のうちの、第2の流体動圧保持領域117上に位置する第2の荷重負荷領域(図18参照)において、外輪部102の回転に従って第2の逆転用動圧生成領域116から第2の流体動圧保持領域117に流動する油等の流体によって動圧を発生させることができるように、第2の逆転用動圧生成領域116に外周面107に対して窪んでいる動圧溝111が形成されていてもよい。このように、第2の正転用動圧生成領域115に動圧溝111が、そして、第2の逆転用動圧生成領域116に動圧溝111がそれぞれ形成されると、外輪部102の正回転又は逆回転に応じて、流体が、第2の正転用動圧生成領域115又は第2の逆転用動圧生成領域116の動圧溝111に沿って第2の流体動圧保持領域117に向かってその動圧溝111の尖端部に集約されるように流動し、その集約された流体がその尖端部で堰き止められることによって、ラジアル隙間103のうちの、第1の流体動圧保持領域110とは異なる位置に配置された第2の流体動圧保持領域117上に位置する第2の荷重負荷領域(図18参照)においても、圧力の高い流体による膜が形成され、流体による動圧が発生する。この流体による動圧によって、外輪部102は、第2の流体動圧保持領域117においても軸部材104に接触することなく、低摩擦且つ低トルクで回転することができる。   As shown in FIGS. 13 and 14, the outer peripheral surface 107 of the shaft member 104 is further provided with a second normal rotation dynamic pressure generation region 115 that is a third surface region, and a second reverse rotation direction that is a fourth surface region. The dynamic pressure generation region 116 may include a second fluid dynamic pressure holding region 117 disposed between the second forward dynamic pressure generation region 115 and the second reverse dynamic pressure generation region 115. The outer ring portion 102 travels from the second normal rotation dynamic pressure generation region 115 through the second fluid dynamic pressure holding region 117 to the second reverse rotation dynamic pressure generation region 116 along the outer peripheral surface 107 of the shaft member 104. In other words, that is, the first reverse dynamic pressure through the first fluid dynamic pressure holding region 110 from the first normal dynamic pressure generation region 108 along the outer peripheral surface 107 of the shaft member 104. When rotating toward the generation region 109 (forward rotation), in the second load load region (see FIG. 18) located on the second fluid dynamic pressure holding region 117 in the radial gap 103. The second positive pressure is generated by the fluid such as oil flowing from the second forward dynamic pressure generating region 115 to the second fluid dynamic pressure holding region 117 according to the rotation of the outer ring portion 102. Outside the diversion dynamic pressure generation region 115 Recessed in which dynamic pressure grooves 111 may be formed with respect to the surface 107. Further, the outer ring portion 102 passes through the second fluid dynamic pressure holding region 117 from the second reverse dynamic pressure generating region 116 along the outer peripheral surface 107 of the shaft member 104, and the second normal rotation dynamic pressure generating region 115. In other words, that is, the first forward rotation direction from the first reverse rotation dynamic pressure generation region 109 through the first fluid dynamic pressure holding region 110 along the outer peripheral surface 107 of the shaft member 104. When rotating toward the dynamic pressure generation region 108 (reverse rotation), the second load load region located on the second fluid dynamic pressure holding region 117 in the radial gap 103 (see FIG. 18). ), The second dynamic pressure can be generated by a fluid such as oil flowing from the second reverse dynamic pressure generation region 116 to the second fluid dynamic pressure holding region 117 according to the rotation of the outer ring portion 102. Dynamic pressure generation region 11 for reverse rotation Dynamic pressure groove 111 is recessed relative to the outer peripheral surface 107 may be formed on. As described above, when the dynamic pressure groove 111 is formed in the second normal rotation dynamic pressure generation region 115 and the dynamic pressure groove 111 is formed in the second reverse rotation dynamic pressure generation region 116, the positive pressure of the outer ring portion 102 is increased. In response to the rotation or reverse rotation, the fluid flows into the second fluid dynamic pressure holding region 117 along the dynamic pressure groove 111 of the second forward dynamic pressure generation region 115 or the second reverse dynamic pressure generation region 116. The first fluid dynamic pressure holding region in the radial gap 103 is flowed so as to be concentrated at the tip of the dynamic pressure groove 111 and the collected fluid is dammed up at the tip. Also in the second load load region (see FIG. 18) located on the second fluid dynamic pressure holding region 117 arranged at a position different from 110, a film with a high-pressure fluid is formed, and the dynamic pressure by the fluid Will occur. Due to the dynamic pressure due to the fluid, the outer ring portion 102 can rotate with low friction and low torque without contacting the shaft member 104 even in the second fluid dynamic pressure holding region 117.

なお、第2の正転用動圧生成領域115は、図1に示す軸部材104の軸線104aに対して、第1の正転用動圧生成領域108の反対側に配置されていてもよい。また、第2の逆転用動圧生成領域116は、図1に示す軸部材104の軸線104aに対して第1の逆転用動圧生成領域109の反対側に配置されていてもよい。   The second normal rotation dynamic pressure generation region 115 may be disposed on the opposite side of the first normal rotation dynamic pressure generation region 108 with respect to the axis 104a of the shaft member 104 shown in FIG. Further, the second reverse rotation dynamic pressure generation region 116 may be disposed on the opposite side of the first reverse rotation dynamic pressure generation region 109 with respect to the axis 104a of the shaft member 104 shown in FIG.

また、図1に示すように、挿入部105を備える場合には、軸部材104の外周面107の外径が、軸部材104の挿入部105の外径より大きくてもよい。外周面107の外径を挿入部105の外径より大きくすることにより、流体動圧軸受101をカム機構のタレット等の回転部材に嵌合する場合に、外周面107が回転部材に入り込みすぎないようにストッパーとして作用することができ、これによって、軸部材104の軸線104aの方向に対する外周面107の長さを確保し、軸部材104の外周面107に沿って外輪部102がスムーズに回転できるようにしている。   As shown in FIG. 1, when the insertion portion 105 is provided, the outer diameter of the outer peripheral surface 107 of the shaft member 104 may be larger than the outer diameter of the insertion portion 105 of the shaft member 104. By making the outer diameter of the outer peripheral surface 107 larger than the outer diameter of the insertion portion 105, when the fluid dynamic pressure bearing 101 is fitted to a rotating member such as a turret of the cam mechanism, the outer peripheral surface 107 does not enter the rotating member too much. Thus, the length of the outer peripheral surface 107 with respect to the direction of the axis 104a of the shaft member 104 can be secured, and the outer ring portion 102 can smoothly rotate along the outer peripheral surface 107 of the shaft member 104. I am doing so.

図15、16に示すように、外輪部102には、外輪部102の外周面119から内周面120に通ずる油路孔118が設けられていてもよい。油路孔118を設けることにより、外輪部102の外周面119から軸部材104の外周面107と外輪部102の内周面120との間にあるラジアル隙間103に、油等の流体をスムーズに流出入できるようになる。   As shown in FIGS. 15 and 16, the outer ring portion 102 may be provided with an oil passage hole 118 that communicates from the outer peripheral surface 119 of the outer ring portion 102 to the inner peripheral surface 120. By providing the oil passage hole 118, fluid such as oil can be smoothly passed from the outer peripheral surface 119 of the outer ring portion 102 to the radial gap 103 between the outer peripheral surface 107 of the shaft member 104 and the inner peripheral surface 120 of the outer ring portion 102. It becomes possible to flow in and out.

流体動圧軸受101としては、カムフォロア又はローラフォロアであってもよい。   The fluid dynamic pressure bearing 101 may be a cam follower or a roller follower.

図17、18に、流体動圧軸受101が使用されたカム機構201を示す。図17に示すように、カム機構201は、カム軸の全部又は一部にスクリュー形状のカムリブ204を有するカム軸線203を中心に回転可能なカム202と、カム202の回転に伴って回転部材軸線208を中心に回転可能なタレット等の回転部材207とを備える。なお、図17では、カム機構としてローラギヤ(グロボイダル)カムを用いた減速機構を示しているが、ローラギヤカムを用いたインデックス機構、円筒カム、バレルカムを用いた減速機構やインデックス機構、板カムや溝カム等の平面カムを用いた直動機構や揺動機構、等、その他のカム機構であってもよい。回転部材207には、その外周方向に沿って複数の流体動圧軸受101が備えられている。カム機構201の回転部材207に流体動圧軸受101を取り付ける方法には、例えば、軸部材104の挿入部105を介して流体動圧軸受101を回転部材207に挿入し、固定部材受孔106にボルト等の固定部材を挿入して回転部材207に締め付けて、軸部材104を回転部材207に固定する方法、流体動圧軸受101の挿入部105を回転部材207に挿入し、回転部材207の挿入部105が挿入された箇所に設けられた雌ねじに止めねじを挿入して、軸部材104を回転部材207に固定する方法(この場合、挿入部105には、底が平面状である窪み、V字状の窪み、等が設けられていてもよい)、流体動圧軸受101の挿入部105を回転部材207に対して圧入(しまりばめ)して嵌め合うことによって固定する方法、流体動圧軸受101の挿入部105を回転部材207に対してすきまばめし、隙間にねじ緩み止め接着剤を導入して固定する方法、等、これらには限定されない様々な方法がある。カム202が回転すると、カムリブ204の第1のカム面205又は第2のカム面206と流体動圧軸受101の外輪部102の外周面119との接触によって流体動圧軸受101の外周面119が押圧されて、回転部材207は回転するが、その際、流体動圧軸受101の外輪部102は、軸部材104に支持されて回転可能であるために、カムリブ204に対して転がり接触している。   17 and 18 show a cam mechanism 201 in which the fluid dynamic pressure bearing 101 is used. As shown in FIG. 17, the cam mechanism 201 includes a cam 202 that can rotate around a cam axis 203 having screw-shaped cam ribs 204 on all or part of the cam shaft, and a rotating member axis along with the rotation of the cam 202. And a rotating member 207 such as a turret that can rotate around 208. FIG. 17 shows a speed reduction mechanism using a roller gear (globoidal) cam as a cam mechanism. Other cam mechanisms such as a linear motion mechanism and a swing mechanism using a planar cam may be used. The rotating member 207 is provided with a plurality of fluid dynamic pressure bearings 101 along the outer peripheral direction thereof. In order to attach the fluid dynamic pressure bearing 101 to the rotating member 207 of the cam mechanism 201, for example, the fluid dynamic pressure bearing 101 is inserted into the rotating member 207 via the insertion portion 105 of the shaft member 104, and the fixed member receiving hole 106 is inserted. A method of fixing the shaft member 104 to the rotating member 207 by inserting a fixing member such as a bolt and fastening it to the rotating member 207, inserting the insertion portion 105 of the fluid dynamic pressure bearing 101 into the rotating member 207, and inserting the rotating member 207 A method of fixing the shaft member 104 to the rotating member 207 by inserting a set screw into a female screw provided at a position where the portion 105 is inserted (in this case, the insertion portion 105 has a recess having a flat bottom, V And a method of fixing by inserting the insertion portion 105 of the fluid dynamic pressure bearing 101 into the rotary member 207 by press fitting (fitting). How to Sukimabameshi the insertion portion 105 of the fluid dynamic bearing 101 relative to the rotary member 207, to introduce the screw locking adhesive to gaps fixing, etc., these are a variety of ways including, but not limited. When the cam 202 rotates, the outer peripheral surface 119 of the fluid dynamic pressure bearing 101 is brought into contact with the first cam surface 205 or the second cam surface 206 of the cam rib 204 and the outer peripheral surface 119 of the outer ring portion 102 of the fluid dynamic pressure bearing 101. The rotating member 207 rotates by being pressed. At this time, the outer ring portion 102 of the fluid dynamic pressure bearing 101 is supported by the shaft member 104 and can rotate, so that it is in rolling contact with the cam rib 204. .

図18は、カム機構の、あるタイミングにおける、流体動圧軸受101の外輪部102の外周面119とカムリブ204の第1及び第2のカム面205、206の接触状態を示す断面概略図である。カム202の回転に伴ってカムリブ204が矢印の方向に沿って回転すると、カム202に転がり接触している流体動圧軸受101a、101cの外輪部102は、軸部材104に対して矢印の方向(時計回り或いは反時計回り)に回転し、外輪部102の回転に従いラジアル隙間にある流体も回転する。   FIG. 18 is a schematic cross-sectional view showing a contact state between the outer peripheral surface 119 of the outer ring portion 102 of the fluid dynamic pressure bearing 101 and the first and second cam surfaces 205 and 206 of the cam rib 204 at a certain timing of the cam mechanism. . When the cam rib 204 rotates along the direction of the arrow as the cam 202 rotates, the outer ring portion 102 of the fluid dynamic pressure bearings 101 a and 101 c that are in rolling contact with the cam 202 is in the direction of the arrow ( The fluid in the radial gap also rotates as the outer ring portion 102 rotates.

より詳細には、カムリブ204の第1のカム面205と流体動圧軸受101aの外輪部102との接触によって外輪部102は押圧され、外輪部102の中心軸線が軸部材104の中心軸線に対して傾心した状態で、外輪部102は、軸部材104に支持されながら第1の正転用動圧生成領域108から第1の流体動圧保持領域110を通って第1の逆転用動圧生成領域109に向かうように時計回りに回転する。ラジアル隙間103にある流体も、外輪部102の回転に従って第1の正転用動圧生成領域108から第1の流体動圧保持領域110に流動する。ここで、第1のカム面205から外輪部102への押圧によって、軸部材104の外周面107において負荷を受けるのは、第1のカム面205に対面している部分に限定される。従って、この第1のカム面205に対面される軸部材104の外周面107の部分に、圧力の高い流体による膜を形成させ、流体による動圧を発生させて、軸部材104と外輪部102との摩擦を小さくする必要がある。そこで、軸部材104を、その外周面107に含まれる第1の正転用動圧生成領域108と第1の逆転用動圧生成領域109との間に配置された第1の流体動圧保持領域110が第1のカム面205に対面するように回転部材207に固定すれば、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域121において、流体による動圧を発生させることができ、軸部材104と外輪部102との摩擦を小さくすることができる。また、カム202が逆回転し、外輪部102が軸部材104に支持されながら第1の逆転用動圧生成領域109から第1の流体動圧保持領域110を通って第1の正転用動圧生成領域108に向かうように反時計回りに回転した場合でも、同様に、第1の荷重負荷領域121において、流体による動圧を発生させることができる。   More specifically, the outer ring portion 102 is pressed by the contact between the first cam surface 205 of the cam rib 204 and the outer ring portion 102 of the fluid dynamic pressure bearing 101 a, and the center axis of the outer ring portion 102 is in relation to the center axis of the shaft member 104. In the inclined state, the outer ring portion 102 is supported by the shaft member 104 and passes through the first fluid dynamic pressure holding region 110 from the first forward dynamic pressure generating region 108 to the first reverse dynamic pressure generating region. Rotate clockwise to 109. The fluid in the radial gap 103 also flows from the first normal rotation dynamic pressure generation region 108 to the first fluid dynamic pressure holding region 110 according to the rotation of the outer ring portion 102. Here, the load on the outer peripheral surface 107 of the shaft member 104 due to the pressing from the first cam surface 205 to the outer ring portion 102 is limited to the portion facing the first cam surface 205. Therefore, a film made of a fluid having a high pressure is formed on a portion of the outer peripheral surface 107 of the shaft member 104 facing the first cam surface 205 to generate a dynamic pressure by the fluid, so that the shaft member 104 and the outer ring portion 102 are formed. It is necessary to reduce the friction with. Therefore, the first fluid dynamic pressure holding region in which the shaft member 104 is disposed between the first normal rotation dynamic pressure generation region 108 and the first reverse rotation dynamic pressure generation region 109 included in the outer peripheral surface 107 thereof. If 110 is fixed to the rotating member 207 so as to face the first cam surface 205, in the first load load region 121 located on the first fluid dynamic pressure holding region 110 in the radial gap 103, Dynamic pressure due to fluid can be generated, and friction between the shaft member 104 and the outer ring portion 102 can be reduced. In addition, the cam 202 rotates in the reverse direction, and the outer ring portion 102 is supported by the shaft member 104 while passing through the first fluid dynamic pressure holding region 110 from the first reverse rotation dynamic pressure generating region 109. Even in the case of rotating counterclockwise toward the generation region 108, similarly, the dynamic pressure due to the fluid can be generated in the first load application region 121.

図17、18のように、流体動圧軸受101aの外輪部102の回転方向と流体動圧軸受101cの外輪部102の回転方向とが異なる場合には、流体動圧軸受101bは、カムリブ204に接触しないようにしてもよい。   17 and 18, when the rotation direction of the outer ring portion 102 of the fluid dynamic pressure bearing 101a is different from the rotation direction of the outer ring portion 102 of the fluid dynamic pressure bearing 101c, the fluid dynamic pressure bearing 101b is formed on the cam rib 204. You may make it not contact.

流体動圧軸受101cは、第1のカム面205とは反対側の第2のカム面206に接触、すなわち、流体動圧軸受101aが接触するカム面とは反対側のカム面に接触している。ここで、流体動圧軸受101aと同様に、第2のカム面206から外輪部102への押圧によって、軸部材104の外周面107において負荷を受けるのは、第2のカム面206に対面している部分に限定される。従って、この第2のカム面206に対面される軸部材104の外周面107の部分に、圧力の高い流体による膜を形成させ、流体による動圧を発生させるために、外周面107が、更に第2の正転用動圧生成領域115、第2の逆転用動圧生成領域116、第2の正転用動圧生成領域115と第2の逆転用動圧生成領域116との間に配置された第2の流動動圧保持領域117を含むようにしてもよい。そして、軸部材104を、その外周面107に含まれる第2の正転用動圧生成領域115と第2の逆転用動圧生成領域116との間に配置された第2の流体動圧保持領域117が第2のカム面206に対面するように回転部材207に固定すれば、外輪部102が軸部材104に支持されながら第2の逆転用動圧生成領域116から第2の流体動圧保持領域117を通って第2の正転用動圧生成領域115に向かうように反時計回りに回転した場合でも、またカム202が逆回転し、外輪部102が軸部材104に支持されながら第2の正転用動圧生成領域115から第2の流体動圧保持領域117を通って第2の逆転用動圧生成領域116に向かうように時計回りに回転した場合でも、ラジアル隙間103のうちの、第2の流体動圧保持領域117上に位置する第2の荷重負荷領域122において、流体による動圧を発生させることができ、軸部材104と外輪部102との摩擦を小さくすることができる。   The fluid dynamic pressure bearing 101c is in contact with the second cam surface 206 opposite to the first cam surface 205, that is, in contact with the cam surface opposite to the cam surface with which the fluid dynamic pressure bearing 101a contacts. Yes. Here, as with the fluid dynamic pressure bearing 101 a, the load on the outer peripheral surface 107 of the shaft member 104 due to the pressing from the second cam surface 206 to the outer ring portion 102 faces the second cam surface 206. It is limited to the part. Accordingly, in order to form a film made of a fluid having a high pressure on the portion of the outer circumferential surface 107 of the shaft member 104 facing the second cam surface 206 and to generate a dynamic pressure due to the fluid, the outer circumferential surface 107 is further provided. The second normal rotation dynamic pressure generation region 115, the second reverse rotation dynamic pressure generation region 116, and the second normal rotation dynamic pressure generation region 115 and the second reverse rotation dynamic pressure generation region 116 are arranged. The second fluid dynamic pressure holding region 117 may be included. Then, the second fluid dynamic pressure holding region in which the shaft member 104 is disposed between the second normal rotation dynamic pressure generation region 115 and the second reverse rotation dynamic pressure generation region 116 included in the outer peripheral surface 107 thereof. If 117 is fixed to the rotating member 207 so as to face the second cam surface 206, the second fluid dynamic pressure is maintained from the second reverse dynamic pressure generating region 116 while the outer ring portion 102 is supported by the shaft member 104. Even when rotating counterclockwise through the region 117 toward the second normal rotation dynamic pressure generating region 115, the cam 202 rotates in the reverse direction and the outer ring portion 102 is supported by the shaft member 104, while Even when the forward rotation dynamic pressure generation region 115 rotates clockwise through the second fluid dynamic pressure holding region 117 and toward the second reverse rotation dynamic pressure generation region 116, 2 Fluid dynamic pressure holding area In the second load bearing region 122 located above 117, it is possible to generate a dynamic pressure by the fluid, it is possible to reduce the friction between the shaft member 104 and the outer ring portion 102.

図19に、流体動圧軸受101が使用された別のカム機構301を示す。図19に示すように、カム機構301は、平面カム軸線303を中心に回転可能な平面カム302と、平面カム302の回転に伴って動作可能な部材304とを備える。平面カム302は、板カム、溝カム、等であってもよい。部材304には、その先端に流体動圧軸受101が備えられている。平面カム302が流体動圧軸受101に接触することによって、部材304が動作するようになっている。例えば、図19のように、平面カム302が、平面カム軸線303を中心に回転すると、平面カム302の端部や溝に部材304の先端に備えられた流体動圧軸受101が接触し、その回転による接触に伴って部材304が上下に直動する。平面カム302と流体動圧軸受101とが接触している場合において、部材304の先端に固定された流体動圧軸受101の軸部材104に対して、流体動圧軸受101の外輪部102が回転している。   FIG. 19 shows another cam mechanism 301 in which the fluid dynamic pressure bearing 101 is used. As shown in FIG. 19, the cam mechanism 301 includes a planar cam 302 that can rotate around the planar cam axis 303 and a member 304 that can operate as the planar cam 302 rotates. The planar cam 302 may be a plate cam, a groove cam, or the like. The member 304 is provided with a fluid dynamic pressure bearing 101 at its tip. When the planar cam 302 contacts the fluid dynamic pressure bearing 101, the member 304 is operated. For example, as shown in FIG. 19, when the flat cam 302 rotates around the flat cam axis 303, the fluid dynamic bearing 101 provided at the tip of the member 304 comes into contact with the end or groove of the flat cam 302, The member 304 linearly moves up and down with the contact by rotation. When the flat cam 302 and the fluid dynamic pressure bearing 101 are in contact, the outer ring portion 102 of the fluid dynamic pressure bearing 101 rotates relative to the shaft member 104 of the fluid dynamic pressure bearing 101 fixed to the tip of the member 304. doing.

また、平面カム302と流体動圧軸受101とが接触している場合において、平面カム302から外輪部102への押圧によって、軸部材104の外周面107において負荷を受けるのは、平面カム302の端部、溝に対面している部分である。従って、平面カム302が流体動圧軸受101に接触しているときに、その軸部材104の外周面107に含まれる第1の正転用動圧生成領域108と第1の逆転用動圧生成領域109との間に配置された第1の流体動圧保持領域110が平面カム302の端部、溝に対面するように、流体動圧軸受101の軸部材104を部材304に固定してもよい。このように軸部材104を固定することにより、ラジアル隙間103のうちの、第1の流体動圧保持領域110上に位置する第1の荷重負荷領域において、流体による動圧を発生させることができ、軸部材104と外輪部102との摩擦を小さくすることができる。   Further, when the flat cam 302 and the fluid dynamic pressure bearing 101 are in contact with each other, it is the flat cam 302 that receives a load on the outer peripheral surface 107 of the shaft member 104 due to the pressing from the flat cam 302 to the outer ring portion 102. It is a part facing the end and the groove. Therefore, when the flat cam 302 is in contact with the fluid dynamic pressure bearing 101, the first normal rotation dynamic pressure generation region 108 and the first reverse rotation dynamic pressure generation region included in the outer peripheral surface 107 of the shaft member 104 are provided. 109, the shaft member 104 of the fluid dynamic pressure bearing 101 may be fixed to the member 304 so that the first fluid dynamic pressure holding region 110 disposed between the first and second members 109 faces the end of the flat cam 302 and the groove. . By fixing the shaft member 104 in this way, it is possible to generate dynamic pressure due to fluid in the first load load region located on the first fluid dynamic pressure holding region 110 in the radial gap 103. The friction between the shaft member 104 and the outer ring portion 102 can be reduced.

上記記載は特定の実施例についてなされたが、本発明はそれに限らず、本発明の原理と添付の特許請求の範囲の範囲内で種々の変更及び修正をすることができることは当業者に明らかである。   While the above description has been made with respect to particular embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the scope of the principles of the invention and the appended claims. is there.

101 流体動圧軸受
102 外輪部
103 ラジアル隙間
104 軸部材
105 挿入部
106 固定部材受孔
107 軸部材の外周面
108 第1の正転用動圧生成領域(第1の表面領域)
109 第1の逆転用動圧生成領域(第2の表面領域)
110 第1の流体動圧保持領域
111 動圧溝
112 動圧溝頂点部
113 ディンプル
114 円弧溝
115 第2の正転用動圧生成領域(第3の表面領域)
116 第2の逆転用動圧生成領域(第4の表面領域)
117 第2の流体動圧保持領域
118 油路孔
119 外輪の外周面
120 外輪の内周面
121 第1の荷重負荷領域
122 第2の荷重負荷領域
201 カム機構
202 カム
203 カム軸線
204 カムリブ
205 第1のカム面
206 第2のカム面
207 回転部材
208 回転部材軸線
301 カム機構
302 平面カム
303 平面カム軸線
304 部材
DESCRIPTION OF SYMBOLS 101 Fluid dynamic pressure bearing 102 Outer ring | wheel part 103 Radial clearance 104 Shaft member 105 Insertion part 106 Fixed member receiving hole 107 Outer peripheral surface of a shaft member 108 1st normal rotation dynamic pressure production | generation area | region (1st surface area)
109 First dynamic pressure generation region for reverse rotation (second surface region)
110 First fluid dynamic pressure holding region 111 Dynamic pressure groove 112 Dynamic pressure groove apex 113 Dimple 114 Arc groove 115 Second normal rotation dynamic pressure generation region (third surface region)
116 Second dynamic pressure generation region for reverse rotation (fourth surface region)
117 Second fluid dynamic pressure holding region 118 Oil passage hole 119 Outer ring outer peripheral surface 120 Outer ring inner peripheral surface 121 First load load region 122 Second load load region 201 Cam mechanism 202 Cam 203 Cam axis 204 Cam rib 205 First 1 Cam surface 206 Second cam surface 207 Rotating member 208 Rotating member axis 301 Cam mechanism 302 Planar cam 303 Planar cam axis 304 Member

Claims (15)

カムリブを有する回転可能なカムと、回転可能な回転部材とを備えるカム機構、又は回転可能な平面カムと、動作可能な部材とを備えるカム機構のための流体動圧軸受であって、
前記流体動圧軸受は、軸部材と、前記軸部材の外周面に沿って回転可能な外輪部とを備え、前記軸部材の外周面と前記外輪部の内周面との間にラジアル隙間が設けられ
記軸部材の外周面は、第1の表面領域、第2の表面領域、及び、前記第1の表面領域と前記第2の表面領域との間に配置された第1の流体動圧保持領域を含み、
前記外輪部が、前記軸部材の外周面に沿って前記第1の表面領域から前記第1の流体動圧保持領域を通って前記第2の表面領域に向かうように回転している場合に、前記ラジアル隙間のうちの前記第1の流体動圧保持領域上に位置する第1の荷重負荷領域において、前記外輪部の回転に従って前記第1の表面領域から前記第1の流体動圧保持領域に流動する流体によって動圧を発生させることができるように、前記第1の表面領域に動圧溝が形成され
前記回転可能な回転部材が前記流体動圧軸受を備える場合には、前記カムリブが前記流体動圧軸受に接触するときに、前記第1の流体動圧保持領域が前記カムリブに対面するように、前記軸部材が前記回転可能な回転部材に固定され、
前記動作可能な部材が前記流体動圧軸受を備える場合には、前記平面カムが前記流体動圧軸受に接触するときに、前記第1の流体動圧保持領域が前記平面カムに対面するように、前記軸部材が前記動作可能な部材に固定されることを特徴とする流体動圧軸受。
A fluid dynamic pressure bearing for a cam mechanism comprising a rotatable cam having a cam rib and a rotatable rotating member, or a cam mechanism comprising a rotatable planar cam and an operable member,
The fluid dynamic pressure bearing includes a shaft member and an outer ring portion rotatable along the outer peripheral surface of the shaft member, and a radial gap is formed between the outer peripheral surface of the shaft member and the inner peripheral surface of the outer ring portion. Provided ,
The outer peripheral surface of the front Kijiku member has a first surface region, a second surface region, and the first fluid dynamic retention disposed between the first surface region and the second surface region Including areas,
When the outer ring portion rotates along the outer peripheral surface of the shaft member from the first surface region through the first fluid dynamic pressure holding region toward the second surface region, In the first load application region located on the first fluid dynamic pressure holding region in the radial gap, the first surface region is changed to the first fluid dynamic pressure holding region according to the rotation of the outer ring portion. A dynamic pressure groove is formed in the first surface region so that dynamic pressure can be generated by the flowing fluid ,
When the rotatable rotating member includes the fluid dynamic pressure bearing, when the cam rib comes into contact with the fluid dynamic pressure bearing, the first fluid dynamic pressure holding region faces the cam rib. The shaft member is fixed to the rotatable rotating member;
When the operable member includes the fluid dynamic pressure bearing, the first fluid dynamic pressure holding region faces the planar cam when the planar cam contacts the fluid dynamic pressure bearing. fluid dynamic bearing, wherein Rukoto said shaft member is fixed to the operable member.
前記外輪部が、前記軸部材の外周面に沿って前記第2の表面領域から前記第1の流体動圧保持領域を通って前記第1の表面領域に向かうように回転している場合に、前記第1の荷重負荷領域において、前記外輪部の回転に従って前記第2の表面領域から前記第1の流体動圧保持領域に流動する流体によって動圧を発生させることができるように、前記第2の表面領域に動圧溝が形成されていることを特徴とする請求項1に記載の流体動圧軸受。   When the outer ring portion rotates along the outer peripheral surface of the shaft member from the second surface region to the first surface region through the first fluid dynamic pressure holding region, In the first load application region, the second pressure is generated so that dynamic pressure can be generated by the fluid flowing from the second surface region to the first fluid dynamic pressure holding region in accordance with the rotation of the outer ring portion. The fluid dynamic pressure bearing according to claim 1, wherein a dynamic pressure groove is formed in a surface region of the fluid dynamic bearing. 前記第1の表面領域の動圧溝が、複数の略V字形状を有する溝から形成され、前記略V字形状の頂点部が前記第2の表面領域に対向するように形成されていることを特徴とする請求項1に記載の流体動圧軸受。   The dynamic pressure groove of the first surface region is formed from a plurality of grooves having a substantially V shape, and the apex portion of the substantially V shape is formed to face the second surface region. The fluid dynamic pressure bearing according to claim 1. 前記第2の表面領域の動圧溝が、複数の略V字形状を有する溝から形成され、前記略V字形状の頂点部が前記第1の表面領域に対向するように形成されていることを特徴とする請求項2に記載の流体動圧軸受。   The dynamic pressure groove of the second surface region is formed from a plurality of grooves having a substantially V shape, and the vertex portion of the substantially V shape is formed to face the first surface region. The fluid dynamic pressure bearing according to claim 2. 前記第1の流体動圧保持領域において、前記軸部材の外周面に複数のディンプルが形成されていることを特徴とする請求項1〜4の何れか一項に記載の流体動圧軸受。   5. The fluid dynamic pressure bearing according to claim 1, wherein a plurality of dimples are formed on an outer peripheral surface of the shaft member in the first fluid dynamic pressure holding region. 前記軸部材の外周面に、その円周方向に沿って円弧溝が形成されていることを特徴とする請求項1〜5の何れか一項に記載の流体動圧軸受。   The fluid dynamic pressure bearing according to any one of claims 1 to 5, wherein an arc groove is formed on an outer peripheral surface of the shaft member along a circumferential direction thereof. 前記外輪部に、その外周面から内周面に通ずる油路孔が設けられていることを特徴とする請求項1〜6の何れか一項に記載の流体動圧軸受。   The fluid dynamic pressure bearing according to any one of claims 1 to 6, wherein an oil passage hole is provided in the outer ring portion from the outer peripheral surface to the inner peripheral surface. 前記軸部材の外周面が、更に、第3の表面領域、第4の表面領域、及び、前記第3の表面領域と前記第4の表面領域との間に配置された第2の流体動圧保持領域を含み、
前記外輪部が、前記軸部材の外周面に沿って前記第1の表面領域から前記第1の流体動圧保持領域を通って前記第2の表面領域に向かうように回転している場合に、前記ラジアル隙間のうちの前記第2の流体動圧保持領域上に位置する第2の荷重負荷領域において、前記外輪部の回転に従って前記第3の表面領域から前記第2の流体動圧保持領域に流動する流体によって動圧を発生させることができるように、前記第3の表面領域に動圧溝が形成され、
前記外輪部が、前記軸部材の外周面に沿って前記第2の表面領域から前記第1の流体動圧保持領域を通って前記第1の表面領域に向かうように回転している場合に、前記第2の荷重負荷領域において、前記外輪部の回転に従って前記第4の表面領域から前記第2の流体動圧保持領域に流動する流体によって動圧を発生させることができるように、前記第4の表面領域に動圧溝が形成されていることを特徴とする請求項2〜7の何れか一項の記載の流体動圧軸受。
The outer peripheral surface of the shaft member is further provided with a third surface region, a fourth surface region, and a second fluid dynamic pressure disposed between the third surface region and the fourth surface region. Including holding areas,
When the outer ring portion rotates along the outer peripheral surface of the shaft member from the first surface region through the first fluid dynamic pressure holding region toward the second surface region, In the second load application region located on the second fluid dynamic pressure holding region in the radial gap, the third surface region is changed to the second fluid dynamic pressure holding region according to the rotation of the outer ring portion. A dynamic pressure groove is formed in the third surface region so that dynamic pressure can be generated by the flowing fluid,
When the outer ring portion rotates along the outer peripheral surface of the shaft member from the second surface region to the first surface region through the first fluid dynamic pressure holding region, In the second load application region, the fourth pressure is generated so that dynamic pressure can be generated by the fluid flowing from the fourth surface region to the second fluid dynamic pressure holding region in accordance with the rotation of the outer ring portion. The fluid dynamic pressure bearing according to any one of claims 2 to 7, wherein a dynamic pressure groove is formed in the surface region of the fluid.
前記軸部材の外周面が、前記第1の表面領域及び前記第2の表面領域の前記軸部材の軸線に対する反対側にそれぞれ前記第3の表面領域及び前記第4の表面領域を含むことを特徴とする請求項8に記載の流体動圧軸受。   The outer peripheral surface of the shaft member includes the third surface region and the fourth surface region on opposite sides of the first surface region and the second surface region with respect to the axis of the shaft member, respectively. The fluid dynamic pressure bearing according to claim 8. 前記軸部材の外周面の外径が、前記軸部材の挿入部の外径より大きいことを特徴とする請求項1〜9の何れか一項に記載の流体動圧軸受。   The fluid dynamic pressure bearing according to claim 1, wherein an outer diameter of an outer peripheral surface of the shaft member is larger than an outer diameter of an insertion portion of the shaft member. カムフォロア又はローラフォロアであることを特徴とする請求項1〜10の何れか一項に記載の流体動圧軸受。   It is a cam follower or a roller follower, The fluid dynamic pressure bearing as described in any one of Claims 1-10 characterized by the above-mentioned. ムリブを有する回転可能なカムと、回転可能な回転部材とを備えるカム機構であって、
前記回転部材が、請求項1〜11の何れか一項に記載の流体動圧軸受を複数備え、前記カムリブが前記複数の流体動圧軸受の少なくとも1つに接触することによって前記回転部材及び前記カムが回転するようになっていることを特徴とするカム機構。
A rotatable cam having a mosquito Muribu, a cam mechanism and a rotation that can be rotated member,
The rotating member includes a plurality of fluid dynamic pressure bearings according to any one of claims 1 to 11, and the cam rib contacts at least one of the plurality of fluid dynamic pressure bearings, whereby the rotating member and the a cam mechanism, characterized in that the cam is rotated.
前記カムリブが前記複数の流体動圧軸受の各々に接触するときに、前記複数の流体動圧軸受の各々の前記第1の流体動圧保持領域が前記カムリブに対面するように、前記複数の流体動圧軸受の各々の前記軸部材が前記回転部材に固定されていることを特徴とする請求項12に記載のカム機構。   The plurality of fluids so that the first fluid dynamic pressure holding region of each of the plurality of fluid dynamic pressure bearings faces the cam rib when the cam rib contacts each of the plurality of fluid dynamic pressure bearings. The cam mechanism according to claim 12, wherein each shaft member of the hydrodynamic bearing is fixed to the rotating member. 回転可能な平面カムと、動作可能な部材とを備えるカム機構であって、
前記部材が、その先端に請求項1〜11の何れか一項に記載の流体動圧軸受を備え、前記平面カムが前記流体動圧軸受に接触することによって前記部材が動作し且つ前記平面カムが回転するようになっていることを特徴とするカム機構。
A cam mechanism comprising a flat cam rotatable, and that can operate member,
The said member is equipped with the fluid dynamic pressure bearing as described in any one of Claims 1-11 in the front-end | tip, The said member operate | moves when the said plane cam contacts the said fluid dynamic pressure bearing, and the said plane cam A cam mechanism characterized in that is configured to rotate .
前記平面カムが前記流体動圧軸受に接触するときに、前記流体動圧軸受の前記第1の流体動圧保持領域が前記平面カムに対面するように、前記流体動圧軸受の前記軸部材が前記部材に固定されていることを特徴とする請求項14に記載のカム機構。   When the planar cam contacts the fluid dynamic pressure bearing, the shaft member of the fluid dynamic pressure bearing is arranged such that the first fluid dynamic pressure holding region of the fluid dynamic pressure bearing faces the planar cam. The cam mechanism according to claim 14, wherein the cam mechanism is fixed to the member.
JP2015203977A 2015-10-15 2015-10-15 Fluid dynamic bearing Active JP6618757B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015203977A JP6618757B2 (en) 2015-10-15 2015-10-15 Fluid dynamic bearing
TW105121415A TWI708018B (en) 2015-10-15 2016-07-06 A fluid hydrodynamic bearing and cam mechanism having the same
CN201610656400.7A CN106594058B (en) 2015-10-15 2016-08-11 Fluid dynamic pressure bearing
KR1020160121299A KR102233913B1 (en) 2015-10-15 2016-09-22 A fluid hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203977A JP6618757B2 (en) 2015-10-15 2015-10-15 Fluid dynamic bearing

Publications (2)

Publication Number Publication Date
JP2017075658A JP2017075658A (en) 2017-04-20
JP6618757B2 true JP6618757B2 (en) 2019-12-11

Family

ID=58551219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203977A Active JP6618757B2 (en) 2015-10-15 2015-10-15 Fluid dynamic bearing

Country Status (4)

Country Link
JP (1) JP6618757B2 (en)
KR (1) KR102233913B1 (en)
CN (1) CN106594058B (en)
TW (1) TWI708018B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151219A1 (en) 2018-01-31 2019-08-08 株式会社三共製作所 Lubrication device and cam mechanism provided with lubrication device
CN113153975B (en) * 2021-05-10 2022-12-27 同济大学 Dual mass flywheel spring support structure for reducing friction
CN113153976B (en) * 2021-05-10 2022-12-27 同济大学 Double-mass flywheel spring supporting structural part with stripes

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2624849C3 (en) * 1976-06-03 1981-12-03 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Self-pressure generating radial plain bearing
US4620804A (en) * 1985-05-15 1986-11-04 Goyne Thomas S Bearing and grease seal structure
JP3142644B2 (en) * 1992-07-09 2001-03-07 株式会社三共製作所 Cam device
JP2000199520A (en) * 1999-01-06 2000-07-18 Konica Corp Rotary device
JP2001065569A (en) * 1999-08-27 2001-03-16 Daido Steel Co Ltd Dynamic pressure fluid bearing
JP2003113838A (en) * 2001-10-04 2003-04-18 Nissan Motor Co Ltd Slide bearing and manufacturing method thereof
CN2546470Y (en) * 2002-02-08 2003-04-23 谢仁彬 Thread-crossing plate up-down moving drive oscillating rod for sewing machine
JP2003322162A (en) * 2002-05-07 2003-11-14 Nippon Thompson Co Ltd Stud type track roller bearing
JP2005024094A (en) 2003-06-10 2005-01-27 Ntn Corp Sliding bearing
JP4606781B2 (en) * 2004-06-10 2011-01-05 Ntn株式会社 Hydrodynamic bearing
JP2005351376A (en) * 2004-06-10 2005-12-22 Ntn Corp Dynamic pressure bearing
JP2008002522A (en) * 2006-06-21 2008-01-10 Ntn Corp Follower bearing
JP4387402B2 (en) * 2006-12-22 2009-12-16 株式会社神戸製鋼所 Bearing and liquid-cooled screw compressor
JP5285871B2 (en) * 2007-05-25 2013-09-11 日本電産コパル電子株式会社 Gas dynamic pressure bearing mechanism and motor equipped with the same
JP5674495B2 (en) * 2011-01-31 2015-02-25 Ntn株式会社 Fluid dynamic bearing device
KR20130088355A (en) * 2012-01-31 2013-08-08 삼성전기주식회사 Spindle motor
JP2014114913A (en) * 2012-12-11 2014-06-26 Jtekt Corp Rocker arm bearing
JP6153769B2 (en) * 2013-05-15 2017-06-28 株式会社三共製作所 Cam device
CN104551031B (en) * 2014-12-26 2017-03-01 杭州三共机械有限公司 The lathe tools platform of positioned at arbitrary angles and its operational approach

Also Published As

Publication number Publication date
KR20170044581A (en) 2017-04-25
KR102233913B1 (en) 2021-03-30
TW201713867A (en) 2017-04-16
CN106594058A (en) 2017-04-26
CN106594058B (en) 2020-10-27
JP2017075658A (en) 2017-04-20
TWI708018B (en) 2020-10-21

Similar Documents

Publication Publication Date Title
JP6618757B2 (en) Fluid dynamic bearing
JP2006322564A (en) Bearing
JP2008196582A (en) Tapered roller bearing for planetary rotor
JP4661424B2 (en) Rotation support
JP2010019284A (en) Retainer for conical roller bearing, and conical roller bearing
JP4915346B2 (en) Solid lubricated roller bearing
JP2009121554A (en) Rolling member
JP6504060B2 (en) Cleaner single row ball bearing
JP2006112555A (en) Roller bearing with aligning ring
JP2014190453A (en) Angular ball bearing
JP5909918B2 (en) Roller bearing cage
JP2010025191A (en) Self-aligning roller bearing
CN201137635Y (en) Double row aligning bearing
JP2009024840A (en) Spherical bearing
CN217207354U (en) Composite bearing
JP6485014B2 (en) Rolling bearing
JP2014228079A (en) Rolling bearing
JP2019157884A (en) Oil seal and bearing with seal
JP2010276052A (en) Retainer for ball bearing and ball bearing
JP2005265083A (en) Ball bearing
JP2008267401A (en) Ball bearing
JP2000074074A (en) Ball bearing
WO2016129339A1 (en) Rolling bearing
JP2007092861A (en) Sealing device and roll bearing
JP2003314557A (en) Retainer and roller bearing with incorporated retainer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6618757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250