JP6548065B2 - Normally-off type nitride semiconductor field effect transistor with improved ohmic characteristics - Google Patents

Normally-off type nitride semiconductor field effect transistor with improved ohmic characteristics Download PDF

Info

Publication number
JP6548065B2
JP6548065B2 JP2014256754A JP2014256754A JP6548065B2 JP 6548065 B2 JP6548065 B2 JP 6548065B2 JP 2014256754 A JP2014256754 A JP 2014256754A JP 2014256754 A JP2014256754 A JP 2014256754A JP 6548065 B2 JP6548065 B2 JP 6548065B2
Authority
JP
Japan
Prior art keywords
layer
type
gan
effect transistor
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014256754A
Other languages
Japanese (ja)
Other versions
JP2015159274A (en
Inventor
彰男 分島
彰男 分島
江川 孝志
孝志 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2014256754A priority Critical patent/JP6548065B2/en
Publication of JP2015159274A publication Critical patent/JP2015159274A/en
Application granted granted Critical
Publication of JP6548065B2 publication Critical patent/JP6548065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

本発明は、電界効果トランジスタ(FET)、特にノーマリオフ型HEMT素子に係る。   The present invention relates to a field effect transistor (FET), in particular to a normally-off type HEMT device.

窒化物半導体電界効果トランジスタをパワーデバイスに用いる場合、安全性ならびに従来のSiパワーデバイスとの互換性の観点から、ノーマリオフ型であることが強く求められている。窒化物半導体電界効果トランジスタにおいて、ノーマリオフを実現する方法の一つとして、高速電子移動度トランジスタ(High Electron Mobility Transistor: HEMT)構造のゲート部をそれ以外の部分に対して掘り下げたリセスゲート構造が知られている(非特許文献1参照)。このリセス構造を用いたGaN/AlGaNヘテロ構造の場合、トランジスタの閾値を決定するチャネル層(GaN層)上のAlGaN層の膜厚を制御しなければならないが、これまでは、エッチングに用いるプラズマ密度、ガス密度、基板表面温度によりエッチング速度が決定されるため、エッチングの深さを基板面内で制御することが困難であった。特に、大口径ウェーハの面内では、エッチング深さの制御はより一層困難になる。 When a nitride semiconductor field effect transistor is used for a power device, it is strongly demanded that it is a normally-off type from the viewpoint of safety and compatibility with conventional Si power devices. In nitride semiconductor field effect transistors, a recess gate structure in which the gate portion of a high electron mobility transistor (HEMT) structure is dug down with respect to other portions is known as one of methods for achieving normally-off. (See Non-Patent Document 1). In the case of a GaN / AlGaN heterostructure using this recess structure, it is necessary to control the film thickness of the AlGaN layer on the channel layer (GaN layer) which determines the threshold of the transistor, but until now, the plasma density used for etching Since the etching rate is determined by the gas density and the substrate surface temperature, it has been difficult to control the etching depth in the substrate plane. In particular, within the plane of a large-diameter wafer, control of the etching depth becomes even more difficult.

基板表面での条件の不均一性によらずエッチング深さを制御する方法として選択ドライエッチングという手法が従来から提案されている。これは、被エッチング材料の種類によるエッチング速度の違いを利用して、材料が異なる界面でエッチングを止めるものである。結晶成長により、GaN(基板側)/AlGaN/GaN(表面側)構造を作製し、フッ素系のエッチングガスを用いることによって、表面側のGaNをエッチングした後、露出するAlGaN層ではAlのフッ化物が生成し、これによりエッチングをストップする方法が用いられる(非特許文献2参照)。 Conventionally, a method called selective dry etching has been proposed as a method of controlling the etching depth regardless of the nonuniformity of the conditions on the substrate surface. This is to use the difference in etching rate depending on the type of material to be etched to stop the etching at the interface where the materials are different. A GaN (substrate side) / AlGaN / GaN (surface side) structure is produced by crystal growth, and after etching GaN on the surface side by using a fluorine-based etching gas, Al fluoride is exposed in the exposed AlGaN layer Is used to stop the etching (see Non-Patent Document 2).

しかしながら、AlGaN/GaN(表面側)の界面のGaN側には正電荷が誘起され、AlGaN側には負電荷が誘起されるために、伝導帯に大きなノッチが発生し、ソース電極およびドレイン電極において良好なオーミック電極を形成することが難しい。これを回避するために、非特許文献2のオーミック接触は、電子走行層(チャネル層)に電極金属を直接接触させる構造としているが、オーミック接触が点で形成されており、半導体表面上に面で電極を形成する場合と比較して、接触抵抗が大きくなるという問題がある。   However, a positive charge is induced on the GaN side of the AlGaN / GaN (surface side) interface and a negative charge is induced on the AlGaN side, so a large notch is generated in the conduction band and the source and drain electrodes are It is difficult to form a good ohmic electrode. In order to avoid this, the ohmic contact in Non-Patent Document 2 has a structure in which the electrode metal is in direct contact with the electron transit layer (channel layer), but the ohmic contact is formed at a point and the surface is on the semiconductor surface. There is a problem that the contact resistance is increased as compared with the case where the electrode is formed.

Wataru Saito他 IEEE Trans. Electron Devices, p. 356-362, Vol. 53、No. 2, 2006Wataru Saito et al. IEEE Trans. Electron Devices, p. 356-362, Vol. 53, No. 2, 2006 Lu Bin他 IEEE Electron Device Letts., p. 369-371, Vol. 34、No. 3, 2013Lu Bin et al. IEEE Electron Device Letts., P. 369-371, Vol. 34, No. 3, 2013

本発明の課題は、窒化物半導体のHEMT素子のリセス構造によって、ノーマリオフ化を実現した場合に生じるソース電極およびドレイン電極でのオーミック特性を改善することである。   An object of the present invention is to improve the ohmic characteristics of the source electrode and the drain electrode which occur when the normally off is realized by the recess structure of the nitride semiconductor HEMT device.

本発明者らは、AlGan/GaN(表面側)の界面に生じるバンドのノッチを低減するため、前記AlGaN/GaN(表面側)の界面のAlGaN側に誘起される負の分極電荷を相殺することを創案した。このため、表面側のGaN層のAlGan層との界面近傍に、高濃度にn型にドープした層を設け、この層によるキャリア(電子)を素子表面方面に拡散させることで前記界面近傍に局所的に正に帯電した領域を形成し、この正電荷によりAlGaN側に誘起される負の分極電荷を相殺することを創案した。すなわち、本発明によれば、以下の電界効果トランジスタが提供される。   The present inventors offset the negative polarization charge induced on the AlGaN side of the AlGaN / GaN (surface side) interface in order to reduce the band notch generated at the AlGan / GaN (surface side) interface. Was drafted. Therefore, a highly doped n-type doped layer is provided in the vicinity of the interface between the GaN layer on the front surface side and the AlGan layer, and carriers (electrons) from this layer are diffused toward the device surface to localize near the interface. It has been proposed to form a region that is positively charged and to offset the negative polarization charge induced on the AlGaN side by this positive charge. That is, according to the present invention, the following field effect transistor is provided.

[1]基板上に少なくともチャネル層、バリア層、n型不純物ドープ層が順次積層され、当該n型不純物ドープ層上にソース電極およびドレイン電極が形成され、n型不純物ドープ層が除去されたバリア層上にゲート電極が形成されたGaN系電界効果トランジスタであって、前記n型不純物ドープ層内の膜厚方向の少なくとも一部において、不純物濃度が他の部位より高濃度の部位があるGaN系電界効果トランジスタ。 [1] A barrier in which at least a channel layer, a barrier layer, and an n-type impurity doped layer are sequentially stacked on a substrate, a source electrode and a drain electrode are formed on the n-type impurity doped layer, and the n-type impurity doped layer is removed A GaN-based field effect transistor having a gate electrode formed on a layer, wherein at least a part of the n-type impurity-doped layer in the film thickness direction has a portion having a higher impurity concentration than other portions. Field effect transistor.

[2]前記チャネル層、バリア層、n型不純物ドープ層をチャネル層/バリア層/n型不純物ドープ層なる積層構造として表した場合において、積層構造がGaN/AlGa1−XN(X>0)/n型GaN、AlGa1−XN/AlGa1−YN/n型GaN(0<X<Y)、またはGaN/InAl1−XN(X>0)/n型GaNのいずれかである前記[1]に記載のGaN系電界効果トランジスタ。 [2] When the channel layer, the barrier layer, and the n-type impurity doped layer are represented as a laminated structure of channel layer / barrier layer / n-type impurity doped layer, the laminated structure is GaN / Al x Ga 1 -xN (X > 0) / n-type GaN, Al X Ga 1-X n / Al Y Ga 1-Y n / n -type GaN (0 <X <Y) , or GaN / In X Al 1-X n (X> 0) The GaN-based field effect transistor according to the above [1], which is any of / n-type GaN.

[3]前記n型不純物ドープ層の不純物濃度がソース電極およびドレイン電極側で低く、バリア層側で高くなり、その濃度変化がステップ状あるいは連続的である、前記[1]または[2]に記載のGaN系電界効果トランジスタ。 [3] In the above [1] or [2], the impurity concentration of the n-type impurity doped layer is low on the source electrode and drain electrode side and is high on the barrier layer side, and the concentration change is stepped or continuous. The GaN-type field effect transistor of description.

[4]前記n型不純物ドープ層の不純物濃度が、ソース電極およびドレイン電極近接部、ならびにバリア層近接部よりも中央部において高く、その濃度変化がステップ状あるいは連続的である、前記[1]または[2]に記載のGaN系電界効果トランジスタ。 [4] The impurity concentration of the n-type impurity-doped layer is higher in the central portion than in the source electrode and drain electrode proximity portions and the barrier layer proximity portion, and the concentration change is stepped or continuous. Or the GaN-based field effect transistor according to [2].

[5]前記n型不純物ドープ層が、前記バリア層内の分極電荷の少なくとも10%の面密度Ns2でn型不純物がドープされた領域と、当該領域のn型不純物面密度よりも低い面密度でn型不純物がドープされた領域とを有する、前記[4]に記載のGaN系電界効果トランジスタ。 [5] A region in which the n-type impurity-doped layer is a region doped with an n-type impurity at a surface density Ns2 of at least 10% of polarization charge in the barrier layer, and a surface density lower than the n-type impurity surface density of the region The GaN-based field effect transistor according to [4], having a region doped with n-type impurities.

[6]前記面密度Ns2が1012cm−2以上である、前記[5]に記載のGaN系電界効果トランジスタ。 [6] The GaN-based field effect transistor according to [5], wherein the surface density Ns2 is 10 12 cm −2 or more.

[7]前記バリア層の厚みが1〜10nmであり、前記n型不純物ドープ層の厚みが3〜15nmである、前記[1]〜[6]に記載のGaN系電界効果トランジスタ。 [7] The GaN-based field effect transistor according to [1] to [6], wherein the thickness of the barrier layer is 1 to 10 nm, and the thickness of the n-type impurity doped layer is 3 to 15 nm.

[8]前記ゲート電極がショットキー型である、前記[1]〜[7]に記載のGaN系電界効果トランジスタ。 [8] The GaN-based field effect transistor according to [1] to [7], wherein the gate electrode is a Schottky type.

[9]前記ゲート電極が金属‐絶縁膜‐半導体のMIS型である、前記[1]〜[7]に記載のGaN系電界効果トランジスタ。
[9] The GaN-based field effect transistor according to [1] to [7], wherein the gate electrode is a metal-insulator-semiconductor MIS type.

本発明の第1実施形態における電界効果トランジスタの断面構造を示す図である。It is a figure which shows the cross-section of the field effect transistor in 1st Embodiment of this invention. 本発明の第2実施形態における電界効果トランジスタの断面構造を示す図である。It is a figure which shows the cross-section of the field effect transistor in 2nd Embodiment of this invention. 従来のリセスゲート型電界効果トランジスタの断面構造を示す図である。It is a figure which shows the cross-section of the conventional recess gate type | mold field effect transistor. 本発明の第1実施形態における電界効果トランジスタのバイアスを印加しない状態でのオーミック電極直下の縦方向の伝導帯プロファイルを示す図である。It is a figure which shows the conduction band profile of the vertical direction directly under an ohmic electrode in the state which does not apply the bias of the field effect transistor in 1st Embodiment of this invention. 本発明の第2実施形態における電界効果トランジスタのバイアスを印加しない状態でのオーミック電極直下の縦方向の伝導帯プロファイルを示す図である。It is a figure which shows the conduction band profile of the vertical direction directly under an ohmic electrode in the state which does not apply the bias of the field effect transistor in 2nd Embodiment of this invention. 従来例のリセスゲート型電界効果トランジスタのバイアスを印加しない状態でのオーミック電極直下の縦方向の伝導帯プロファイルを示す図である。It is a figure which shows the conduction band profile of the vertical direction directly under an ohmic electrode in the state which does not apply the bias of the recess gate type | mold field effect transistor of a prior art example. 本発明の第2実施形態に含まれる実施例1の製造工程フローを示す図である。It is a figure which shows the manufacturing process flow of Example 1 contained in 2nd Embodiment of this invention. 表面側n型GaN層にSiドープした積層構造の深さ方向のSi分布を示す図である。It is a figure which shows Si distribution of the depth direction of the laminated structure Si-doped to the surface side n-type GaN layer. 本発明の第2実施形態に含まれる実施例2の製造工程フローを示す図である。It is a figure which shows the manufacturing process flow of Example 2 contained in 2nd Embodiment of this invention. 本発明の第2実施形態に含まれる実施例3の製造工程フローを示す図である。It is a figure which shows the manufacturing process flow of Example 3 contained in 2nd Embodiment of this invention. GaN/Al0.15Ga0.85N/高濃度Siドープn型GaNなる積層構造のホール効果測定を示す図である。Is a diagram showing a Hall effect measurement of GaN / Al 0.15 Ga 0.85 N / high concentration Si-doped n-type GaN becomes laminated structure. 本発明の第2実施形態の実施例3の積層構造のFETにおけるドレインI−V測定結果を示す図である。It is a figure which shows the drain IV measurement result in FET of the laminated structure of Example 3 of 2nd Embodiment of this invention. 本発明の第2実施形態の実施例3の積層構造のFETにおけるId−Vg測定結果を示す図である。It is a figure which shows the Id-Vg measurement result in FET of the laminated structure of Example 3 of 2nd Embodiment of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be made without departing from the scope of the invention.

本発明において基板は、その上に形成するバッファ層(緩衝層)、チャネル層、バリア層、n型不純物ドープ層、あるいは各層の形成手法に応じて適宜に選択される。例えば、基板としては、シリコン、ゲルマニウム、サファイア、炭化ケイ素、酸化物(ZnO、LiAlO,LiGaO,MgAl,(LaSr)(AlTa)O,NdGaO,MgOなど)、Si-Ge合金、周期律表の第3族−第5族化合物(GaAs,AlN,GaN,AlGaN、AlInN)、ホウ化物(ZrB2など)、などを用いることができる。ただし、室温〜1200℃における前記基板の熱膨張係数が基板上に形成するAlGa1−XNからなる膜の熱膨張係数より小さいことが好ましく、なかでもSi基板が品質およびコストの点で好ましく、Si基板の厚みとしては0.42〜1.00mmが好適である。 In the present invention, the substrate is appropriately selected according to the buffer layer (buffer layer), the channel layer, the barrier layer, the n-type impurity doped layer, or each layer formation method to be formed thereon. For example, as the substrate, silicon, germanium, sapphire, silicon carbide, oxides (ZnO, LiAlO 2 , LiGaO 2 , MgAl 2 O 4 , (LaSr) (AlTa) O 3 , NdGaO 3 , MgO, etc.), Si—Ge Alloys, Group 3-Group 5 compounds of the periodic table (GaAs, AlN, GaN, AlGaN, AlInN), borides (such as ZrB2), and the like can be used. However, the thermal expansion coefficient of the substrate at room temperature to 1200 ° C. is preferably smaller than the thermal expansion coefficient of the film made of Al x Ga 1-x N formed on the substrate, and in particular the quality and cost of the Si substrate Preferably, the thickness of the Si substrate is 0.42 to 1.00 mm.

バッファ層は、その上に形成するデバイス層の組成や構造、あるいは各層の形成手法に応じて、様々な第3族窒化物半導体からなる単一層または複数層から形成される。本発明では、バッファ層はAlGa1−XNからなり、X≧0.2の1層または複数層からなり,合計の厚みとして30〜500nmが好ましく、50〜150nmがより好ましい。このバッファ層は、例えばMOCVD法やMBE法などの公知の成膜手法にて形成される。歪や転位密度ができるだけ少ない膜構造とすることが好ましく、後に形成される膜の品質に影響するため、転位密度は1×1011/cm以下に形成することが好ましい。なお、バッファ層とチャネル層の間に、更なる格子歪低減のため、前記組成傾斜層または超格子層を形成してもよい。組成傾斜層としては、膜成長方向に連続的に減少する、あるいは膜成長方向に膜厚10nm〜100nm毎に階段状に減少することが好ましい。超格子層を形成する場合は、一方の組成がAlNであり、他方の組成がAlX3Ga1−X3Nであり、X3が0〜0.2であることが好ましい。そして、超格子の一対がAlNとAlX3Ga1−X3Nの場合、その膜厚比が1:2〜1:4が好ましい。 The buffer layer is formed of a single layer or a plurality of layers of various Group III nitride semiconductors, depending on the composition and structure of the device layer to be formed thereon, or the formation method of each layer. In the present invention, the buffer layer is made of Al X Ga 1-X N, consists of one or more layers of X ≧ 0.2, 30 to 500 nm are preferred as the thickness of the total, 50 to 150 nm is more preferable. The buffer layer is formed, for example, by a known film forming method such as the MOCVD method or the MBE method. It is preferable to form a film structure with as little strain and dislocation density as possible, and in order to affect the quality of a film to be formed later, it is preferable to form the dislocation density at 1 × 10 11 / cm 3 or less. The composition gradient layer or the superlattice layer may be formed between the buffer layer and the channel layer for further reduction of lattice strain. It is preferable that the composition graded layer is continuously reduced in the film growth direction or stepwise reduced every 10 nm to 100 nm in the film growth direction. When forming a superlattice layer, it is preferable that one composition is AlN, the other composition is Al X3 Ga 1-X3 N, and X3 is 0 to 0.2. When the superlattice pair is AlN and Al X3 Ga 1-X3 N, the film thickness ratio is preferably 1: 2 to 1: 4.

本発明の電界効果トランジスタ(FET)、特にHEMT素子の場合は、バッファ層に引き続き、チャネル層、バリア層、およびn型不純物ドープ層が形成される。チャネル層はi‐GaNで構成することが好ましく、バリア層としてi‐AlGa1−XN(0.1≦X≦0.3)とすることが好ましい。なお、二次元電子ガスの移動度を改善させるため、チャネル層とバリア層との間に0.5〜1.5nm厚のAlNスペーサ層が適宜形成される。なお、チャネル層のi‐GaNに対して、バリア層としてi‐InAl1−XN(0.1≦X≦0.3)を用いることもできる。チャネル層、バリア層、n型不純物ドープ層をチャネル層/バリア層/n型不純物ドープ層なる積層構造として表した場合において、積層構造がGaN/AlGa1−XN(X>0)/n型GaN、AlGa1−XN/AlGa1−YN/n型GaN(0<X<Y)、またはGaN/InAl1−XN(X>0)/n型GaNのいずれかであることが好ましい。 In the case of the field effect transistor (FET) of the present invention, particularly the HEMT device, a channel layer, a barrier layer, and an n-type impurity doped layer are formed subsequently to the buffer layer. Channel layer is preferably constituted by i-GaN, it is preferable that the i-Al X Ga 1-X N (0.1 ≦ X ≦ 0.3) as the barrier layer. In order to improve the mobility of the two-dimensional electron gas, an AlN spacer layer having a thickness of 0.5 to 1.5 nm is appropriately formed between the channel layer and the barrier layer. Incidentally, with respect to i-GaN of the channel layer, i-In X Al 1- X N (0.1 ≦ X ≦ 0.3) can also be used as a barrier layer. In the case where the channel layer, the barrier layer, and the n-type impurity doped layer are represented as a laminated structure of channel layer / barrier layer / n-type impurity doped layer, the laminated structure is GaN / Al x Ga 1 -xN (X> 0) / n-type GaN, Al X Ga 1-X n / Al Y Ga 1-Y n / n -type GaN (0 <X <Y) , or GaN / In X Al 1-X n (X> 0) / n -type GaN It is preferable that it is either.

n型不純物ドープ層の不純物濃度分布は、ソース電極およびドレイン電極側で低く、バリア層側で高くなり、その濃度変化がステップ状あるいは連続的であることが好ましい(第1実施形態)。また他の形態として、n型不純物ドープ層の不純物濃度が、ソース電極およびドレイン電極近接部、ならびにバリア層近接部よりも中央部において高く、その濃度変化がステップ状あるいは連続的であることが好ましい(第2実施形態)。第2実施形態として、n型不純物ドープ層が、バリア層内の分極電荷の少なくとも10%の面密度Ns2でn型不純物がドープされた領域と、当該領域のn型不純物面密度よりも低い面密度でn型不純物がドープされた領域とを有することが特に好ましい。この場合、面密度Ns2が1012cm−2以上であることが好ましい。そして、バリア層の厚みが1〜10nmであり、前記n型不純物ドープ層の厚みが3〜15nmであることが好ましい。バリア層上に形成されるゲート電極がショットキー型、あるいは、金属‐絶縁膜‐半導体のMIS型であることが好ましい。 The impurity concentration distribution of the n-type impurity doped layer is low on the source electrode and drain electrode side and high on the barrier layer side, and the concentration change is preferably stepwise or continuous (first embodiment). As another mode, it is preferable that the impurity concentration of the n-type impurity-doped layer is higher in the central portion than in the source electrode and drain electrode proximity portions and in the barrier layer proximity portion, and the concentration change is stepwise or continuous. (Second Embodiment). As a second embodiment, the n-type impurity-doped layer is a region in which n-type impurities are doped at an area density Ns2 of at least 10% of polarization charges in the barrier layer, and a plane lower than the n-type impurity area density of the regions It is particularly preferred to have a region doped with n-type impurities at a density. In this case, the surface density Ns2 is preferably 10 12 cm −2 or more. The thickness of the barrier layer is preferably 1 to 10 nm, and the thickness of the n-type impurity doped layer is preferably 3 to 15 nm. The gate electrode formed on the barrier layer is preferably a Schottky type or a metal-insulator-semiconductor MIS type.

本発明、例えば実施形態1の構造において、バイアスを印加しない状態でのオーミック電極直下の縦方向の伝導帯プロファイル(図4参照)は、高濃度均一ドープn型GaN層のオーミック電極直下の縦方向の伝導帯プロファイル(図6参照)に比べて、電子障壁が小さくなり、良いオーミック特性が期待できる。さらに、実施形態2の構造においては、実施形態1の構造よりもオーミック電極直下の縦方向の伝導帯プロファイルの電子障壁が小さくなり、より良いオーミック特性が期待できる(図5参照)。 In the structure of the present invention, for example, the first embodiment, the conduction band profile in the vertical direction immediately below the ohmic electrode (see FIG. 4) in the state where no bias is applied is the vertical direction just below the ohmic electrode in the high concentration uniformly doped n-type GaN layer. As compared with the conduction band profile of (see FIG. 6), the electron barrier becomes smaller, and good ohmic characteristics can be expected. Furthermore, in the structure of the second embodiment, the electron barrier of the conduction band profile in the vertical direction immediately below the ohmic electrode is smaller than that of the structure of the first embodiment, and better ohmic characteristics can be expected (see FIG. 5).

以下、第2実施形態に含まれる実施例1〜3について詳細に説明する。
(実施例1:オーミック電極間にリセスしたゲート電極を形成する構造)
8インチ径、厚み525μmの(111)面シリコン(Si)基板上にバッファ層として膜厚100nm、チャネル層として膜厚1μmのGaN層、バリア層として膜厚6nmのAl0.15Ga0.85N層、Siを1×1018cm−3添加した膜厚1nmのn型GaN層、Siをシート状に面密度として1×1013cm−2添加した層、Siを1×1018cm−3添加した膜厚20nmのn型GaN層をこの順に有機金属気層成長法(MOCVD法)にて形成した(図7‐(a))。なお、バッファ層形成時は1030℃、他の層の形成時は1130℃に基板加熱を行った。次に、CFをエッチングガスとした反応性イオンエッチングのイオン注入にて、半導体表面からチャネル層であるGaN層の途中までエッチングすることで素子間分離を行った(図7‐(b))。n型GaN層の表面にTi/Alを蒸着し、800℃で30秒の加熱により、n型GaN層上にオーミック電極を形成した(図7‐(c))。次に、オーミック電極の間で、ゲート電極を形成する部位をエッチングガスとしてSFを用いた反応性イオンエッチングにより、表面側n型GaN層、シート状のSi層、およびその下層のn型GaN層を選択的にエッチングする(図7‐(d))。さらに、その開口部にNi/Auを蒸着およびリフトオフすることで、HEMT素子を作製した(図7‐(e))。本実施例にもとづいて作製したエピタキシャル構造におけるSiドーピング分布をSIMS装置により測定した。この結果、素子表面側n型GaN層とAl0.15Ga0.85N層との界面近傍のn型GaN層側にSi濃度のピークがあることが確認できた(図8参照)。Si濃度のピークの体積密度はほぼ狙い通りであり、0.9×1020cm−3(設計値:1×1020cm−3)であった。なお、素子表面側にSiの拡散があった。
Hereinafter, Examples 1 to 3 included in the second embodiment will be described in detail.
(Example 1: Structure for forming a gate electrode recessed between ohmic electrodes)
GaN layer of 100 nm thick as a buffer layer, GaN layer of 1 μm thick as a channel layer, and Al 0.15 Ga 0.85 of 6 nm thick as a barrier layer on an 8 inch diameter, 525 μm thick (111) surface silicon (Si) substrate N layer, n-type GaN layer of 1 nm in film thickness with 1 × 10 18 cm −3 of Si added, layer of 1 × 10 13 cm −2 of Si in sheet form as surface density, 1 × 10 18 cm − of Si An n-type GaN layer with a film thickness of 20 nm doped with 3 was formed in this order by the metalorganic vapor phase epitaxy (MOCVD method) (FIG. 7- (a)). The substrate was heated to 1030 ° C. when the buffer layer was formed, and to 1130 ° C. when the other layers were formed. Next, element separation was performed by etching from the semiconductor surface to the middle of the GaN layer which is the channel layer by reactive ion etching ion implantation using CF 4 as the etching gas (FIG. 7-(b)). . By depositing Ti / Al on the surface of the n-type GaN layer and heating at 800 ° C. for 30 seconds, an ohmic electrode was formed on the n-type GaN layer (FIG. 7- (c)). Next, between the ohmic electrodes, reactive ion etching using SF 6 as the etching gas at the portion forming the gate electrode, the surface-side n-type GaN layer, the sheet-like Si layer, and the lower n-type GaN layer The layer is selectively etched (FIG. 7- (d)). Furthermore, a HEMT device was fabricated by depositing and lifting off Ni / Au at the opening (FIG. 7-(e)). The Si doping distribution in the epitaxial structure fabricated based on this example was measured by a SIMS apparatus. As a result, it was confirmed that there is a peak of Si concentration on the n-type GaN layer side in the vicinity of the interface between the element surface-side n-type GaN layer and the Al 0.15 Ga 0.85 N layer (see FIG. 8). The volume density of the Si concentration peak was almost as targeted, and was 0.9 × 10 20 cm −3 (design value: 1 × 10 20 cm −3 ). Incidentally, there was diffusion of Si on the element surface side.

(実施例2:FP構造といって絶縁膜上にゲートの一部がせり出した構造)
実施例1と全く同じプロセスにて、(111)面Si基板上にバッファ層、GaN層1μm、Al0.15Ga0.85N層6nm、Siを1×1018cm−3添加したn型GaN層1nm、Siをシート状に面密度として1×1013cm−2添加した層、Siを1×1018cm−3添加したn型GaN層20nmをこの順にMOCVD法にて形成し、CFをエッチングガスとした反応性イオンエッチングのイオン注入にて、半導体表面から1μmのGaN層の途中までエッチングすることで素子間分離を行い、さらにn型GaN層の表面にTi/Alを蒸着し、800度30秒の加熱により、n‐GaN層上にオーミック電極を形成した(図9‐(a)〜図9‐(c))。次に、素子表面全体に原子層オーダー堆積法(ALD法)にてAlを膜厚10nm形成した(図9図(d))。次に、オーミック電極の間で、ゲート電極を形成する部位のAlを除去したのち(図9‐(e))、その開口マスクにSFをエッチングガスとした反応性イオンエッチングをもちいて、表面側n型GaN層、シート状のSi層、およびその下層のn−GaN層を選択的にエッチングする(図9‐(f))。その電極開口部にNi/Auを蒸着およびリフトオフすることによりゲート電極を形成して、HEMT素子(図9‐(g))を作製した。
Example 2: A structure in which a part of the gate is protruded on the insulating film in the FP structure
N-type with a buffer layer, GaN layer 1 μm, Al 0.15 Ga 0.85 N layer 6 nm, Si 1 × 10 18 cm −3 added on a (111) plane Si substrate in the completely same process as Example 1 A GaN layer of 1 nm, a layer of 1 × 10 13 cm −2 of Si as a sheet density, and an n-type GaN layer of 20 nm of 1 × 10 18 cm −3 of Si are sequentially formed by MOCVD in this order. Interelement isolation is achieved by etching to the middle of the 1 μm GaN layer from the semiconductor surface by reactive ion etching ion implantation using 4 as the etching gas, and Ti / Al is vapor deposited on the surface of the n-type GaN layer. Ohmic electrodes were formed on the n-GaN layer by heating at 800 ° C. for 30 seconds (FIG. 9- (a) to FIG. 9- (c)). Next, Al 2 O 3 was formed to a film thickness of 10 nm on the entire element surface by atomic layer order deposition (ALD) (FIG. 9 (d)). Next, after removing the Al 2 O 3 in the portion where the gate electrode is to be formed between the ohmic electrodes (FIG. 9-(e)), reactive ion etching using SF 6 as an etching gas is used for the opening mask. The surface-side n-type GaN layer, the sheet-like Si layer, and the lower n-GaN layer are selectively etched (FIG. 9- (f)). A gate electrode was formed by vapor deposition and lift-off of Ni / Au at the electrode opening, to fabricate a HEMT device (FIG. 9- (g)).

(実施例3:MIS−FET構造)
実施例1および実施例2と全く同様のプロセスと膜構成にて、n型GaN層上にオーミック電極を形成した(図10‐(a)〜図10‐(c))。次に、オーミック電極の間で、ゲート電極を形成する部位を、SFをエッチングガスとした反応性イオンエッチングをもちいて、素子表面側n型GaN層、シート状のSi層、およびその下層のn型GaN層を選択的にエッチングした(図10‐(d))。素子表面全体に原子層オーダー堆積法(ALD)にてAlを堆膜厚10nm形成した(図10‐(e))。その電極開口部にNi/Auを蒸着およびリフトオフによりゲート電極を形成することで、HEMT素子を作製した(図10‐(f))。
Example 3 MIS-FET Structure
Ohmic electrodes were formed on the n-type GaN layer by the same process and film configuration as in Example 1 and Example 2 (FIG. 10- (a) to FIG. 10- (c)). Next, between the ohmic electrodes, the portion forming the gate electrode is reactive ion etching using SF 6 as an etching gas to form an element surface side n-type GaN layer, a sheet-like Si layer, and its lower layer. The n-type GaN layer was selectively etched (FIG. 10- (d)). Al 2 O 3 was deposited to a thickness of 10 nm by atomic layer deposition (ALD) over the entire device surface (FIG. 10- (e)). A HEMT device was manufactured by forming a gate electrode by vapor deposition and liftoff of Ni / Au at the electrode opening (FIG. 10- (f)).

図8に示す高濃度SiドープGaN/Al0.15Ga0.85N/n型GaNなる積層構造のホール効果測定を行った。その結果、電子移動度μ:560cm/Vs(表面側n型GaN層へのSiドープ量:1.5×1013cm−2)であり、n型ドープGaN層をエッチングにより除去すると、電子移動度μは測定できなかった。表面側n型GaN層のみに電子が流れているとすると、その電子移動度が高過ぎるので、チャネル層であるGaN層とバリア層であるAl0.15Ga0.85Nとの界面近傍で電子が流れ、オーミックコンタクトがとれているものと考えられる(図11参照)。なお、n型GaN層へのSi均一ドープ構造ではオーミックコンタクトがとれない。 The Hall effect measurement of the stacked structure of high concentration Si-doped GaN / Al 0.15 Ga 0.85 N / n-type GaN shown in FIG. 8 was performed. As a result, the electron mobility μ: 560 cm 2 / Vs (Si doping amount to the surface-side n-type GaN layer: 1.5 × 10 13 cm −2 ), and the n-type doped GaN layer is removed by etching. The mobility μ could not be measured. If electrons flow only in the surface-side n-type GaN layer, the electron mobility is too high, so in the vicinity of the interface between the GaN layer as the channel layer and Al 0.15 Ga 0.85 N as the barrier layer. It is considered that electrons flow and ohmic contact is taken (see FIG. 11). The ohmic contact can not be obtained in the case of the Si uniformly doped structure to the n-type GaN layer.

本発明の第2実施形態の実施例3の積層構造のHEMTにおけるドレインI−V測定結果を図12に示す。サンプル10個の平均値を示す。ゲート電圧8Vでの飽和ドレイン電流は75mA、閾値電圧は2〜3V、通電時比抵抗は17Ωmmであった。 The drain I-V measurement result in the HEMT of the laminated structure of Example 3 of the second embodiment of the present invention is shown in FIG. The average value of 10 samples is shown. The saturated drain current at a gate voltage of 8 V was 75 mA, the threshold voltage was 2 to 3 V, and the on-state specific resistance was 17 Ωmm.

次に、本発明の第2実施形態の実施例3の積層構造のHEMTにおける伝達特性(Id−Vg特性、ドレイン電圧8V)を図13に示す。ノーマリオフになっており、非通電のドレイン電流に対する通電時のドレイン電流は10以上あることがわかった。なお、破線は、ゲート電圧Vgに対してドレイン電流Idがリニアに変化する領域での、ドレイン電流1decadeあたり(1桁変化)のゲート電圧Vgの変化であり、この値が小さいことが好ましい。実際に測定したところ、130mV/decであった。
Next, FIG. 13 shows the transfer characteristics (Id-Vg characteristics, drain voltage 8 V) in the HEMT of the laminated structure of Example 3 of the second embodiment of the present invention. It was found that the normally-off drain current was 10 7 or more at the time of conduction with respect to the non-conduction drain current. The broken line is a change in gate voltage Vg per drain current (one digit change) in a region where the drain current Id changes linearly with respect to the gate voltage Vg, and this value is preferably small. It was 130 mV / dec when it measured in fact.

本発明は、電界効果トランジスタ(FET)、特に接触抵抗の小さいノーマリオフ型HEMT素子に用いられる。
The present invention is used for a field effect transistor (FET), particularly, a normally-off type HEMT device having a small contact resistance.

Claims (9)

基板上に少なくともチャネル層、バリア層、n型Siドープ層が順次積層され、当該n型Siドープ層上にソース電極およびドレイン電極が形成され、n型Siドープ層が除去されたバリア層上にゲート電極が形成されたInAlGaN系電界効果トランジスタであって、前記n型Siドープ層内の膜厚方向の少なくとも一部において、Si濃度が他の部位より高濃度の部位があり、前記チャネル層、バリア層、n型Siドープ層をチャネル層/バリア層/n型Siドープ層なる積層構造として表した場合において、前記積層構造がGaN/Al Ga 1−X N(X>0)/n型GaN、Al Ga 1−X N/Al Ga 1−Y N/n型GaN(0<X<Y)、またはGaN/In Al 1−X N(X>0)/n型GaNのいずれかであり、前記n型Siドープ層のSi濃度が、ソース電極およびドレイン電極近接部、ならびにバリア層近接部よりも中央部において高く、その濃度変化がステップ状あるいは連続的であり、前記中央部はシート状のSi層を含み、前記n型Siドープ層のSi濃度が、SIMS装置による測定により、前記n型Siドープ層とバリア層との界面から2nm以下の前記n型Siドープ層側に、前記Si濃度のピーク(Highly−doped layer)があり、前記n型Siドープ層とバリア層との界面から10nm以上の前記n型Siドープ層側に亘って伝導帯のバレーがあるGaN系電界効果トランジスタ。 At least a channel layer, a barrier layer, and an n-type Si doped layer are sequentially stacked on the substrate, a source electrode and a drain electrode are formed on the n-type Si doped layer, and the n-type Si doped layer is removed on the barrier layer. a InAlGaN-based field effect transistor whose gate electrode is formed, at least part of the thickness direction of the n-type Si-doped layer, Ri site there a high concentration of Si concentration other sites, the channel layer , barrier layers, in the case of representing the n-type Si-doped layer as a channel layer / barrier layer / n-type Si-doped layer made laminated structure, the laminated structure GaN / Al X Ga 1-X n (X> 0) / n -type GaN, Al X Ga 1-X n / Al Y Ga 1-Y n / n -type GaN (0 <X <Y) , or GaN / in X Al 1-X n (X> 0) / n -type GaN Either The concentration of Si in the n-type Si-doped layer is higher in the central portion than in the vicinity of the source electrode and the drain electrode and in the vicinity of the barrier layer, and the concentration change is stepped or continuous. Includes a sheet-like Si layer, and the Si concentration of the n-type Si-doped layer is 2 nm or less from the interface between the n-type Si-doped layer and the barrier layer by measurement with a SIMS device A GaN-based electric field having a peak (Highly-doped layer) of the Si concentration, and a valley of a conduction band extending from the interface between the n-type Si-doped layer and the barrier layer to the n-type Si-doped layer of 10 nm or more Effect transistor. 前記中央部はシート状のSi層である請求項1に記載のGaN系電界効果トランジスタ。The GaN-based field effect transistor according to claim 1, wherein the central portion is a sheet-like Si layer. 前記積層構造はGaN/AlThe laminated structure is GaN / Al X GaGa 1−X1-X N(X>0)/n型GaNである請求項1または2に記載のGaN系電界効果トランジスタ。The GaN-based field effect transistor according to claim 1 or 2, which is N (X> 0) / n-type GaN. 前記積層構造は前記基板とチャネル層の間に緩衝層をさらに備える請求項1〜3に記載のGaN系電界効果トランジスタ。The GaN-based field effect transistor according to any one of claims 1 to 3, wherein the laminated structure further comprises a buffer layer between the substrate and the channel layer. 前記n型Siドープ層が、前記バリア層内の分極電荷の少なくとも10%の面密度Ns2でn型Siがドープされた領域と、当該領域のn型Si面密度よりも低い面密度でn型Siがドープされた領域とを有する、請求項4に記載のGaN系電界効果トランジスタ。 The n-type Si- doped layer is a region doped with n-type Si at a surface density Ns2 of at least 10% of the polarization charge in the barrier layer, and n-type with a surface density lower than the n-type Si surface density of the region The GaN-based field effect transistor according to claim 4, having a region doped with Si . 前記シート状のSi層の面密度Ns2が1012cm−2以上である請求項5に記載のGaN系電界効果トランジスタ。 The GaN-based field effect transistor according to claim 5, wherein the sheet density of the sheet-like Si layer is 10 12 cm -2 or more. 前記バリア層の厚みが1〜10nmであり、前記n型Siドープ層の厚みが3〜15nmである、請求項1〜6に記載のGaN系電界効果トランジスタ。 The GaN-based field effect transistor according to any one of claims 1 to 6, wherein the thickness of the barrier layer is 1 to 10 nm, and the thickness of the n-type Si doped layer is 3 to 15 nm. 前記ゲート電極がショットキー型である、請求項1〜7に記載のGaN系電界効果トランジスタ。 The GaN-based field effect transistor according to claim 1, wherein the gate electrode is a Schottky type. 前記ゲート電極が金属‐絶縁膜‐半導体のMIS型である、請求項1〜7に記載のGaN系電界効果トランジスタ。 The GaN-based field effect transistor according to any one of claims 1 to 7, wherein the gate electrode is a metal-insulator-semiconductor MIS type.
JP2014256754A 2014-01-24 2014-12-19 Normally-off type nitride semiconductor field effect transistor with improved ohmic characteristics Active JP6548065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014256754A JP6548065B2 (en) 2014-01-24 2014-12-19 Normally-off type nitride semiconductor field effect transistor with improved ohmic characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014010850 2014-01-24
JP2014010850 2014-01-24
JP2014256754A JP6548065B2 (en) 2014-01-24 2014-12-19 Normally-off type nitride semiconductor field effect transistor with improved ohmic characteristics

Publications (2)

Publication Number Publication Date
JP2015159274A JP2015159274A (en) 2015-09-03
JP6548065B2 true JP6548065B2 (en) 2019-07-24

Family

ID=54183047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256754A Active JP6548065B2 (en) 2014-01-24 2014-12-19 Normally-off type nitride semiconductor field effect transistor with improved ohmic characteristics

Country Status (1)

Country Link
JP (1) JP6548065B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3753051A4 (en) * 2018-02-14 2021-11-17 Hrl Laboratories, Llc Highly scaled linear gan hemt structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3751791B2 (en) * 2000-03-28 2006-03-01 日本電気株式会社 Heterojunction field effect transistor
JP4663156B2 (en) * 2001-05-31 2011-03-30 富士通株式会社 Compound semiconductor device
JP2008270521A (en) * 2007-04-20 2008-11-06 Matsushita Electric Ind Co Ltd Field-effect transistor
US8519438B2 (en) * 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
JP2010251391A (en) * 2009-04-13 2010-11-04 Mitsubishi Electric Corp Semiconductor device
JP2013131650A (en) * 2011-12-21 2013-07-04 Fujitsu Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2015159274A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
US9520489B2 (en) Semiconductor device
US11289593B2 (en) Breakdown resistant HEMT substrate and device
US8344421B2 (en) Group III-nitride enhancement mode field effect devices and fabrication methods
JP5190923B2 (en) Nitride semiconductor transistor having GaN as channel layer and manufacturing method thereof
US9466684B2 (en) Transistor with diamond gate
US8344422B2 (en) Semiconductor device
WO2009116283A1 (en) Semiconductor device and method for manufacturing said device
JP6035721B2 (en) Manufacturing method of semiconductor device
US20140252371A1 (en) Heterojunction transistor and method of fabricating the same
KR101545065B1 (en) Semiconductor device and method for manufacturing the same
US10516023B2 (en) High electron mobility transistor with deep charge carrier gas contact structure
JP5655424B2 (en) Compound semiconductor device
JPWO2009110254A1 (en) Field effect transistor and manufacturing method thereof
US20220093779A1 (en) Gallium nitride enhancement mode device
TW201535739A (en) Semiconductor device
KR20110067409A (en) Enhancement normally off nitride semiconductor device and manufacturing method thereof
US20150228773A1 (en) Switching element
US20240088284A1 (en) High electron mobility transistor (hemt) with a back barrier layer
JP2015192004A (en) Mis type normally-off hemt element of recess structure having drain current density/transconductance improved greatly
JP5100002B2 (en) Nitride semiconductor device
KR101172857B1 (en) Enhancement normally off nitride smiconductor device and manufacturing method thereof
JP6548065B2 (en) Normally-off type nitride semiconductor field effect transistor with improved ohmic characteristics
KR101200274B1 (en) Enhancement normally off nitride vertical semiconductor device and manufacturing method thereof
JP2015126034A (en) Field effect semiconductor element
JP2014110320A (en) Hetero junction field effect transistor and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190613

R150 Certificate of patent or registration of utility model

Ref document number: 6548065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150