JP6444692B2 - Polyvalent hydroxy compound and method for producing the same - Google Patents

Polyvalent hydroxy compound and method for producing the same Download PDF

Info

Publication number
JP6444692B2
JP6444692B2 JP2014216590A JP2014216590A JP6444692B2 JP 6444692 B2 JP6444692 B2 JP 6444692B2 JP 2014216590 A JP2014216590 A JP 2014216590A JP 2014216590 A JP2014216590 A JP 2014216590A JP 6444692 B2 JP6444692 B2 JP 6444692B2
Authority
JP
Japan
Prior art keywords
epoxy resin
reaction
compound
polyhydric
alkylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014216590A
Other languages
Japanese (ja)
Other versions
JP2016084295A (en
Inventor
輝久 山田
輝久 山田
賢三 鬼塚
賢三 鬼塚
範洋 谷口
範洋 谷口
齋藤 一
一 齋藤
田中 宏和
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Nicca Chemical Co Ltd
Original Assignee
Asahi Kasei Corp
Nicca Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Nicca Chemical Co Ltd filed Critical Asahi Kasei Corp
Priority to JP2014216590A priority Critical patent/JP6444692B2/en
Publication of JP2016084295A publication Critical patent/JP2016084295A/en
Application granted granted Critical
Publication of JP6444692B2 publication Critical patent/JP6444692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、多価ヒドロキシ化合物及びその製造方法に関する。   The present invention relates to a polyvalent hydroxy compound and a method for producing the same.

エポキシ樹脂と硬化剤とからなるエポキシ樹脂組成物の硬化物は、半導体パッケージや半導体チップの電子部材等をはじめとする、様々な用途に使用されている。例えば、特許文献1には、アルキレンオキシ基からなる繰り返し単位が6未満のポリエーテル基を有するエポキシ樹脂の製造方法が記載されている。   A cured product of an epoxy resin composition composed of an epoxy resin and a curing agent is used in various applications including semiconductor packages and electronic components of semiconductor chips. For example, Patent Document 1 describes a method for producing an epoxy resin having a polyether group in which the repeating unit composed of an alkyleneoxy group is less than 6.

特開2003−246837号公報JP 2003-246837 A

近年、半導体パッケージや半導体チップについては、小型化及び薄型化の要請が強くなっている。そのため、これらの材料として用いられるエポキシ樹脂については、低粘度でありながら優れた接着性を有し、その硬化物は優れた可撓性を有することが望まれている。さらには、耐熱性や電気信頼性の観点から、エポキシ樹脂は硬化時に優れた反応性を有し、かつその硬化物は高いガラス転移温度を有することが求められている。しかしながら、従来のエポキシ樹脂では、このような要求に十分に応えることができず、未だ開発の余地がある。   In recent years, there has been a strong demand for miniaturization and thinning of semiconductor packages and semiconductor chips. Therefore, it is desired that the epoxy resin used as these materials has excellent adhesiveness while having low viscosity, and the cured product has excellent flexibility. Furthermore, from the viewpoints of heat resistance and electrical reliability, epoxy resins are required to have excellent reactivity during curing, and the cured product is required to have a high glass transition temperature. However, the conventional epoxy resin cannot sufficiently meet such a demand, and there is still room for development.

例えば、特許文献1に開示されたエポキシ樹脂の硬化物は、可撓性が十分でない場合があり、さらなる耐熱性の向上が望まれる。さらに、このエポキシ樹脂は、両末端エポキシ基の含有割合が少ないため反応性が十分でない場合がある。   For example, the cured epoxy resin disclosed in Patent Document 1 may not have sufficient flexibility, and further improvement in heat resistance is desired. Furthermore, since this epoxy resin has a small content ratio of both terminal epoxy groups, the reactivity may not be sufficient.

本発明は上記事情に鑑みなされたものであり、例えば、液状でありながら優れた反応性を有するエポキシ樹脂であって、その硬化物が優れた可撓性及び耐熱性を有する、エポキシ樹脂を製造可能な多価ヒドロキシ化合物を提供することを目的とする。   The present invention has been made in view of the above circumstances. For example, it is an epoxy resin having excellent reactivity while being in a liquid state, and its cured product has excellent flexibility and heat resistance. The object is to provide possible polyhydroxy compounds.

本発明者らは鋭意検討した結果、特定の工程により製造された多価ヒドロキシ化合物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the above problems can be solved by using a polyvalent hydroxy compound produced by a specific process, and have completed the present invention.

すなわち、本発明は以下のとおりである。   That is, the present invention is as follows.

[1]
下記一般式(1)で表される多価ヒドロキシ化合物であって、多価フェノール化合物にアルキレンオキシドを付加させることにより製造され、多価フェノール化合物に対して付加させたアルキレンオキシドのモル数(下記式(1)中のa+b+cに相当する)の平均値が、5以上7.5以下の範囲である、多価ヒドロキシ化合物。

Figure 0006444692
(式(1)中、a、b及びcは、それぞれ独立に、0〜3の整数であり、(a+b+c)個のR1は、それぞれ独立に、エチレン基又はプロピレン基を表す。)
[2]
下記一般式(2)で表される多価フェノール化合物に、反応溶媒を用いてアルキレンオキシドを付加させる第一の付加工程と、
前記第一の付加工程で得られた付加物に、さらにアルキレンオキシドを付加させることにより、多価フェノール化合物に対するアルキレンオキシドの合計付加モル数の平均値を、5以上7.5以下の範囲とする第二の付加工程と、
を含む、前記[1]に記載の多価ヒドロキシ化合物の製造方法。
Figure 0006444692
[3]
前記第一及び第二の付加工程の間に、反応溶媒を留去させる工程を含む、前記[2]に記載の多価ヒドロキシ化合物の製造方法。
[4]
前記第一及び/又は第二の付加工程が、アルカリ性化合物の存在下で行われる、前記[2]又は[3]に記載の多価ヒドロキシ化合物の製造方法。 [1]
The polyhydric hydroxy compound represented by the following general formula (1), which is produced by adding an alkylene oxide to a polyhydric phenol compound, and the number of moles of alkylene oxide added to the polyhydric phenol compound (following A polyvalent hydroxy compound having an average value of (corresponding to a + b + c in the formula (1)) in the range of 5 to 7.5.
Figure 0006444692
(In formula (1), a, b and c are each independently an integer of 0 to 3, and (a + b + c) R 1 s each independently represent an ethylene group or a propylene group.)
[2]
A first addition step of adding an alkylene oxide to a polyhydric phenol compound represented by the following general formula (2) using a reaction solvent;
By adding alkylene oxide to the adduct obtained in the first addition step, the average value of the total number of moles of alkylene oxide added to the polyhydric phenol compound is in the range of 5 to 7.5. A second addition step;
The manufacturing method of the polyvalent hydroxy compound as described in said [1] containing.
Figure 0006444692
[3]
The method for producing a polyvalent hydroxy compound according to the above [2], comprising a step of distilling off the reaction solvent between the first and second addition steps.
[4]
The method for producing a polyvalent hydroxy compound according to [2] or [3], wherein the first and / or second addition step is performed in the presence of an alkaline compound.

本発明の多価ヒドロキシ化合物によれば、例えば、液状でありながら優れた反応性を有するエポキシ樹脂であって、その硬化物が優れた可撓性及び耐熱性を有する、エポキシ樹脂を提供することができる。   According to the polyvalent hydroxy compound of the present invention, for example, an epoxy resin having excellent reactivity while being in a liquid form, the cured product having excellent flexibility and heat resistance is provided. Can do.

比較例1で得られたエポキシ樹脂のUPLCチャートである。3 is a UPLC chart of an epoxy resin obtained in Comparative Example 1. 比較例1で得られたエポキシ樹脂のマススペクトルである。3 is a mass spectrum of the epoxy resin obtained in Comparative Example 1. 比較例1で得られたエポキシ樹脂のマススペクトルから求められるα+β+γの個数別のUPLC面積比である。It is UPLC area ratio according to the number of α + β + γ obtained from the mass spectrum of the epoxy resin obtained in Comparative Example 1.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明はその趣旨の範囲内で適宜に変形して実施できる。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. This embodiment is an example for explaining the present invention, and is not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the gist.

≪多価ヒドロキシ化合物≫
本実施形態の多価ヒドロキシ化合物は、下記一般式(1)で表される多価ヒドロキシ化合物であって、多価フェノール化合物にアルキレンオキシドを付加させることにより製造され、多価フェノール化合物に対して付加させたアルキレンオキシドのモル数(下記式(1)中のa+b+cに相当する)の平均値が、5以上7.5以下の範囲である。
≪Polyvalent hydroxy compound≫
The polyhydric hydroxy compound of the present embodiment is a polyhydric hydroxy compound represented by the following general formula (1), which is produced by adding an alkylene oxide to a polyhydric phenol compound. The average value of the number of moles of added alkylene oxide (corresponding to a + b + c in the following formula (1)) is in the range of 5 to 7.5.

Figure 0006444692
(式(1)中、a、b及びcは、それぞれ独立に、0〜3の整数であり、(a+b+c)個のR1は、それぞれ独立に、エチレン基又はプロピレン基を表す。)
Figure 0006444692
(In formula (1), a, b and c are each independently an integer of 0 to 3, and (a + b + c) R 1 s each independently represent an ethylene group or a propylene group.)

また、本実施形態の多価ヒドロキシ化合物の製造方法は、
下記一般式(2)で表される多価フェノール化合物に、反応溶媒を用いてアルキレンオキシドを付加させる第一の付加工程と、
前記第一の付加工程で得られた付加物に、さらにアルキレンオキシドを付加させることにより、多価フェノール化合物に対するアルキレンオキシドの合計付加モル数の平均値を、5以上7.5以下の範囲とする第二の付加工程と、
を含む。
In addition, the method for producing the polyvalent hydroxy compound of the present embodiment includes:
A first addition step of adding an alkylene oxide to a polyhydric phenol compound represented by the following general formula (2) using a reaction solvent;
By adding alkylene oxide to the adduct obtained in the first addition step, the average value of the total number of moles of alkylene oxide added to the polyhydric phenol compound is in the range of 5 to 7.5. A second addition step;
including.

Figure 0006444692
Figure 0006444692

また、本実施形態の多価ヒドロキシ化合物の製造方法は、前記第一及び第二の付加工程の間に、反応溶媒を留去させる工程を含むことが好ましい。   Moreover, it is preferable that the manufacturing method of the polyvalent hydroxy compound of this embodiment includes the process of distilling a reaction solvent between said 1st and 2nd addition processes.

なお、本実施形態の多価ヒドロキシ化合物は、上記アルキレンオキシドの付加モル数(上記式(1)中のa+b+cに相当する)が同じ1種単独で存在していてもよいが、通常、当該アルキレンオキシドの付加モル数が異なる2種以上が混合した状態で存在する。   In addition, the polyvalent hydroxy compound of the present embodiment may be present alone in the same number of added moles of the alkylene oxide (corresponding to a + b + c in the above formula (1)). Two or more types having different added moles of oxide exist in a mixed state.

以下、当該第一及び第二の付加工程について詳細に説明する。   Hereinafter, the first and second addition steps will be described in detail.

本実施形態の多価ヒドロキシ化合物の製造方法の具体例としては、特に限定されないが、例えば、フェノール性水酸基を3つ有する多価フェノール化合物に、反応溶媒とアルカリ性化合物とを加えた後、密閉加圧下で、かつ加熱条件下でアルキレンオキシドを付加させて製造する方法が挙げられる。   A specific example of the method for producing a polyvalent hydroxy compound of the present embodiment is not particularly limited. For example, after adding a reaction solvent and an alkaline compound to a polyhydric phenol compound having three phenolic hydroxyl groups, a sealed addition is performed. Examples thereof include a method in which an alkylene oxide is added under pressure and under heating conditions.

第一の付加工程及び第二の付加工程の反応圧力は、好ましくは、0.5MPa以下である。当該反応圧力が0.5MPa以下の場合、反応制御が容易となり、内圧の上昇や内温の上昇を抑制できる。本実施形態に用いるアルキレンオキシドは、エチレンオキシド又はプロピレンオキシドである。   The reaction pressure in the first addition step and the second addition step is preferably 0.5 MPa or less. When the said reaction pressure is 0.5 Mpa or less, reaction control becomes easy and the raise of internal pressure and the raise of internal temperature can be suppressed. The alkylene oxide used in this embodiment is ethylene oxide or propylene oxide.

前記第一の付加工程は、具体的には、例えば、融点が248℃であり高結晶体である多価フェノール化合物を反応溶媒に分散させ、多価フェノール化合物にアルキレンオキシドを付加反応させることにより、多価フェノール化合物のフェノール性水酸基をアルコール性水酸基へ変換する工程である。   Specifically, in the first addition step, for example, a polyphenol compound having a melting point of 248 ° C. and a highly crystalline substance is dispersed in a reaction solvent, and an alkylene oxide is added to the polyhydric phenol compound. The step of converting a phenolic hydroxyl group of a polyhydric phenol compound into an alcoholic hydroxyl group.

本実施形態に用いる反応溶媒は、特に制限されず、例えば、テトラヒドロフラン等のエーテル;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン;酢酸エチル、酢酸ブチル等のエステル;メタノール、エタノール、n−プロパノール、2−プロパノール、n−ブタノール、2−ブタノール、ヘキサノール、シクロヘキサノールなどの炭素数1〜6のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル;ヘキサン、ヘプタン等の脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、1,2−ジクロロエタン、クロロホルム等のハロゲン化炭化水素;アセトニトリル、N,N−ジメチルホルムアミド、ジメトルスルホキシド等の極性非プロトン性溶媒が挙げられる。   The reaction solvent used in the present embodiment is not particularly limited, and examples thereof include ethers such as tetrahydrofuran; ketones such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone; esters such as ethyl acetate and butyl acetate; methanol, ethanol, and n-propanol. C1-C6 alcohols such as 2-propanol, n-butanol, 2-butanol, hexanol, cyclohexanol; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether; hexane, heptane Aliphatic hydrocarbons such as cyclohexane; Cycloaliphatic hydrocarbons such as cyclohexane; Aromatic hydrocarbons such as benzene, toluene and xylene; Dichloromethane, 1,2-dichloroethane, Halogenated hydrocarbons such as beam; acetonitrile, N, N- dimethylformamide, and a polar aprotic solvent such as di marries sulfoxide.

反応溶媒の使用量は、多価フェノール化合物の質量に対して20〜200質量%とすることが好ましく、30〜100質量%とすることがより好ましい。反応溶媒の使用量が前記下限値以上であると反応系内が十分に攪拌され、多価フェノール化合物を均一に分散できるため反応効率が向上する傾向があり、反応溶媒の使用量が前記上限値以下であるとコストに見合う効果が得られ易い。   The amount of the reaction solvent used is preferably 20 to 200% by mass and more preferably 30 to 100% by mass with respect to the mass of the polyhydric phenol compound. If the amount of the reaction solvent used is equal to or higher than the lower limit, the reaction system is sufficiently stirred, and the polyphenol compound can be uniformly dispersed, so that the reaction efficiency tends to improve. If it is below, it is easy to obtain an effect commensurate with the cost.

第一の付加工程におけるアルキレンオキシドの使用量は、多価フェノール化合物に対して3.0〜3.9当量、すなわち、多価フェノール化合物のフェノール性水酸基に対して1.0〜1.3当量とすることが好ましい。   The amount of alkylene oxide used in the first addition step is 3.0 to 3.9 equivalents relative to the polyhydric phenol compound, that is, 1.0 to 1.3 equivalents relative to the phenolic hydroxyl group of the polyhydric phenol compound. It is preferable that

第一の付加工程における反応温度は、100℃〜150℃の範囲が好ましく、110〜130℃がさらに好ましい。この温度範囲であれば、フェノール性水酸基へのアルキレンオキシドの付加反応がほぼ選択的に進行し、アルコール性水酸基へ変換することができる。一方、反応温度が前記下限値未満であると付加反応の進行が遅くなる傾向があり、前記上限値を超えると、多価フェノール化合物の分解が生じ、その分解物に由来する副生成物が生成しやすい傾向がある。   The reaction temperature in the first addition step is preferably in the range of 100 ° C to 150 ° C, more preferably 110 to 130 ° C. If it is this temperature range, the addition reaction of the alkylene oxide to a phenolic hydroxyl group will advance substantially selectively, and it can convert into an alcoholic hydroxyl group. On the other hand, if the reaction temperature is less than the lower limit value, the progress of the addition reaction tends to be slow. If the reaction temperature exceeds the upper limit value, decomposition of the polyphenol compound occurs, and a by-product derived from the decomposition product is generated. It tends to be easy to do.

また、本実施形態の多価ヒドロキシ化合物の製造方法において、第一及び/又は第二の付加工程は、アルカリ性化合物の存在下で行われることが好ましい。   Moreover, in the manufacturing method of the polyvalent hydroxy compound of this embodiment, it is preferable that a 1st and / or 2nd addition process is performed in presence of an alkaline compound.

アルカリ性化合物としては、特に限定されないが、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物類;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物類が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。アルカリ性化合物として好適には水酸化カリウムが用いられる。アルカリ性化合物の状態は、特に限定されず、例えば、固体状、液状、水溶液、アルコール溶液等であってもよい。アルカリ性化合物の添加量は、多価フェノール化合物に対し好ましくは、0.5〜15mol%であり、より好ましくは0.7〜10mol%であり、さらに好ましくは1〜3mol%である。アルカリ性化合物の添加量がこの範囲であると、アルキレンオキシドの付加反応の制御が容易である。一方、アルカリ性化合物の添加量が0.5mol%未満では、反応の進行が遅く最後まで付加が進行しないおそれがある。また、アルカリ性化合物の添加量が15mol%より多くなると多価フェノール化合物が分解したり、得られる多価ヒドロキシ化合物が著しく着色するおそれがある。   Although it does not specifically limit as an alkaline compound, For example, alkali metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; Alkali, such as magnesium hydroxide, calcium hydroxide, barium hydroxide Examples include earth metal hydroxides. These may be used individually by 1 type and may use 2 or more types together. Potassium hydroxide is preferably used as the alkaline compound. The state of the alkaline compound is not particularly limited, and may be, for example, solid, liquid, aqueous solution, alcohol solution or the like. The addition amount of the alkaline compound is preferably 0.5 to 15 mol%, more preferably 0.7 to 10 mol%, still more preferably 1 to 3 mol% with respect to the polyhydric phenol compound. When the addition amount of the alkaline compound is within this range, the addition reaction of the alkylene oxide is easily controlled. On the other hand, if the addition amount of the alkaline compound is less than 0.5 mol%, the reaction proceeds slowly and the addition may not proceed to the end. Moreover, when the addition amount of an alkaline compound exceeds 15 mol%, there exists a possibility that a polyhydric phenol compound may decompose | disassemble and the polyhydric hydroxy compound obtained may color remarkably.

第一の付加工程の付加反応が終了した後、必要に応じて、反応溶媒を留去することができる。反応溶媒を留去する方法は、特に限定されないが、例えば、減圧下で昇温する方法が挙げられる。   After completion of the addition reaction in the first addition step, the reaction solvent can be distilled off as necessary. The method for distilling off the reaction solvent is not particularly limited, and examples thereof include a method of raising the temperature under reduced pressure.

次に、本実施形態の多価ヒドロキシ化合物の製造方法では、第二段階目のアルキレンオキシドの付加を行う。この第二の付加工程においては、第一の付加工程でフェノール性水酸基から変換されたアルコール性水酸基にアルキレンオキシドを適当量付加させることにより、多価フェノール化合物に対するアルキレンオキシドの合計付加モル数(上記式(1)中のa+b+cに相当する)の平均値を5以上7.5以下の範囲とした多価ヒドロキシ化合物を得ることができる。当該アルキレンオキシドの合計付加モル数の平均値は、5.50〜7.25であることが好ましく、6.0〜7.0であることがより好ましい。当該アルキレンオキシドの合計付加モル数の平均値が前記範囲内である多価ヒドロキシ化合物は、液状でありながら優れた反応性を有するエポキシ樹脂であって、その硬化物が優れた可撓性及び耐熱性を有する、エポキシ樹脂を提供することができる。   Next, in the method for producing a polyvalent hydroxy compound of this embodiment, the second stage alkylene oxide is added. In this second addition step, by adding an appropriate amount of alkylene oxide to the alcoholic hydroxyl group converted from the phenolic hydroxyl group in the first addition step, the total number of added moles of alkylene oxide to the polyhydric phenol compound (above) A polyvalent hydroxy compound having an average value of (corresponding to a + b + c in the formula (1)) in the range of 5 to 7.5 can be obtained. The average value of the total number of added moles of the alkylene oxide is preferably 5.50 to 7.25, and more preferably 6.0 to 7.0. The polyvalent hydroxy compound having an average value of the total number of added moles of the alkylene oxide within the above range is an epoxy resin having excellent reactivity while being liquid, and its cured product has excellent flexibility and heat resistance. The epoxy resin which has property can be provided.

第二の付加工程の反応温度は、120℃〜170℃の範囲が好ましく、130〜160℃とすることがさらに好ましい。第二の付加工程は、第一の付加工程でフェノール性水酸基から変換されたアルコール性水酸基へのアルキレンオキシドの付加であるため、第一の付加工程より反応温度を高くすることができる。第二の付加工程の反応温度が上記範囲内であると反応の制御が容易となる。第二の付加工程の反応温度が前記下限温度より低い場合には付加反応の進行が遅く、前記上限温度より高い場合には副生成物が生成し、反応物が着色するおそれがある。   The reaction temperature in the second addition step is preferably in the range of 120 ° C to 170 ° C, more preferably 130 to 160 ° C. Since the second addition step is addition of alkylene oxide to the alcoholic hydroxyl group converted from the phenolic hydroxyl group in the first addition step, the reaction temperature can be made higher than in the first addition step. When the reaction temperature in the second addition step is within the above range, the reaction can be easily controlled. When the reaction temperature in the second addition step is lower than the lower limit temperature, the addition reaction proceeds slowly. When the reaction temperature is higher than the upper limit temperature, a by-product is generated, and the reaction product may be colored.

第二の付加工程におけるアルキレンオキシドの添加量は、最初の多価フェノール化合物のフェノール性水酸基に対して0.60〜1.50当量とすることが好ましく、0.62〜1.45当量とすることがより好ましく、0.64〜1.40当量とすることがさらに好ましい。   The amount of alkylene oxide added in the second addition step is preferably 0.60 to 1.50 equivalents relative to the phenolic hydroxyl group of the first polyphenol compound, and is 0.62 to 1.45 equivalents. It is more preferable that the amount be 0.64 to 1.40 equivalent.

本実施形態の多価ヒドロキシ化合物の製造方法は、触媒としてアルカリ性化合物を用いた場合、付加反応の終了後に触媒であるアルカリ性化合物を除去する工程を有してもよい。触媒を除去する工程としては、通常のアルキレンオキシドの付加反応により得られるポリエーテルポリオールの方法を用いればよい。具体的には、例えば、触媒がアルカリ金属水酸化物の場合には、合成珪酸マグネシウムや合成珪酸アルミニウムなどのアルカリ金属イオンの吸着剤を用いるか、あるいは、触媒をリン酸、酢酸及び硫酸などで中和し、生じた塩をろ過により除去する方法などが挙げられる。触媒を除去した後、次工程での反応に与える影響を考慮し、減圧状態下110〜140℃で脱水を行い、水分は0.1%以下にするのが好ましい。   The manufacturing method of the polyhydric hydroxy compound of this embodiment may have the process of removing the alkaline compound which is a catalyst after completion | finish of addition reaction, when an alkaline compound is used as a catalyst. As the step of removing the catalyst, a method of a polyether polyol obtained by an ordinary alkylene oxide addition reaction may be used. Specifically, for example, when the catalyst is an alkali metal hydroxide, an adsorbent of alkali metal ions such as synthetic magnesium silicate or synthetic aluminum silicate is used, or the catalyst is phosphoric acid, acetic acid, sulfuric acid, or the like. Examples include a method of neutralizing and removing the generated salt by filtration. After removing the catalyst, in consideration of the influence on the reaction in the next step, it is preferable to perform dehydration at 110 to 140 ° C. under reduced pressure to make the water content 0.1% or less.

次いで、例えば、反応液を常圧或いは減圧下で加熱することによって、残留する溶媒や過剰量のアルキレンオキシドを反応液から除去し、多価ヒドロキシ化合物を回収する工程を有していてもよい。   Next, for example, the reaction solution may be heated under normal pressure or reduced pressure to remove the remaining solvent and excess amount of alkylene oxide from the reaction solution, thereby recovering the polyvalent hydroxy compound.

≪エポキシ樹脂≫
本実施形態のエポキシ樹脂は、上記多価ヒドロキシ化合物を用いて得られ、下記一般式(3)で表される。
≪Epoxy resin≫
The epoxy resin of this embodiment is obtained using the said polyvalent hydroxy compound, and is represented by following General formula (3).

Figure 0006444692
Figure 0006444692

式(3)中、R1は、樹脂の粘度や硬化後の弾性率の観点から、エチレン基、プロピレン基であり、硬化後の靱性の観点からより好ましくはエチレン基である。 In formula (3), R 1 is an ethylene group or a propylene group from the viewpoint of the viscosity of the resin or the elastic modulus after curing, and more preferably an ethylene group from the viewpoint of toughness after curing.

式(3)中のα、β及びγは、それぞれ独立に、0〜3の整数である。   Α, β and γ in the formula (3) are each independently an integer of 0 to 3.

また、本実施形態のエポキシ樹脂は、式(3)中の(α+β+γ)の平均値が5以上7.5以下の範囲であることが好ましく、5.50〜7.25の範囲であることがより好ましく、6.0〜7.0の範囲であることがさらに好ましい。   In the epoxy resin of this embodiment, the average value of (α + β + γ) in the formula (3) is preferably in the range of 5 to 7.5, and preferably in the range of 5.50 to 7.25. More preferably, it is in the range of 6.0 to 7.0.

本実施形態のエポキシ樹脂は、式(3)中の(α+β+γ)の平均値が前記下限値以上であると、粘度が低くなり、さらに硬化物にした際に、十分な可撓性が得られる傾向にある。また、本実施形態のエポキシ樹脂は、式(3)中の(α+β+γ)の平均値が前記上限値以下であると、硬化物にした際に、十分な耐熱性が得られる傾向にある。   When the average value of (α + β + γ) in the formula (3) is equal to or higher than the lower limit, the epoxy resin of the present embodiment has a low viscosity, and when it is made into a cured product, sufficient flexibility is obtained. There is a tendency. Moreover, when the average value of (α + β + γ) in the formula (3) is equal to or less than the upper limit, the epoxy resin of the present embodiment tends to have sufficient heat resistance when formed into a cured product.

本実施形態のエポキシ樹脂の製造方法は、特に限定されないが、例えば、上記多価ヒドロキシ化合物とエピハロヒドリンとを、アルカリ性化合物の存在下で反応させる方法等が挙げられる。この方法の場合、反応促進の観点から、アルカリ性化合物と相間移動触媒とを併用することが好ましい。以下、当該方法について詳細に説明する。   Although the manufacturing method of the epoxy resin of this embodiment is not specifically limited, For example, the method etc. with which the said polyhydric hydroxy compound and epihalohydrin are made to react in presence of an alkaline compound are mentioned. In the case of this method, it is preferable to use an alkaline compound and a phase transfer catalyst in combination from the viewpoint of promoting the reaction. Hereinafter, the method will be described in detail.

エピハロヒドリンとしては、特に限定されないが、例えば、エピクロロヒドリン、エピブロモヒドリン等が挙げられる。エピハロヒドリンの添加量は、上記多価ヒドロキシ化合物の水酸基1当量に対し、好ましくは、1〜10当量であり、より好ましくは2〜8当量である。   Although it does not specifically limit as epihalohydrin, For example, epichlorohydrin, epibromohydrin, etc. are mentioned. The amount of epihalohydrin added is preferably 1 to 10 equivalents, more preferably 2 to 8 equivalents, relative to 1 equivalent of the hydroxyl group of the polyvalent hydroxy compound.

アルカリ性化合物としては、特に限定されないが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、炭酸カリウム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。アルカリ性化合物の状態は、特に限定されず、例えば、固体状、液状、水溶液であってもよい。アルカリ性化合物の添加量は、上記多価ヒドロキシ化合物の水酸基1当量に対し、通常、0.8〜10当量であり、好ましくは1.0〜7.5当量であり、より好ましくは1.2〜5当量である。   Although it does not specifically limit as an alkaline compound, For example, sodium hydroxide, potassium hydroxide, barium hydroxide, potassium carbonate etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. The state of the alkaline compound is not particularly limited, and may be, for example, a solid, liquid, or aqueous solution. The addition amount of the alkaline compound is usually 0.8 to 10 equivalents, preferably 1.0 to 7.5 equivalents, more preferably 1.2 to 1 equivalent to 1 equivalent of the hydroxyl group of the polyvalent hydroxy compound. 5 equivalents.

本実施形態では、反応を促進させる観点から、エポキシ樹脂の製造の際、相間移動触媒を用いることが好ましい。特に、上記したアルカリ性化合物と相間移動触媒とを併用することがより好ましい。   In this embodiment, from the viewpoint of promoting the reaction, it is preferable to use a phase transfer catalyst during the production of the epoxy resin. In particular, it is more preferable to use the alkaline compound and the phase transfer catalyst in combination.

相間移動触媒としては、特に限定されないが、例えば、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラプロピルアンモニウムクロリド、テトラプロピルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムヨージド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリド、ベンジルトリエチルアンモニウムブロミド、フェニルトリメチルアンモニウムクロリド等の四級アンモニウム塩類;テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の四級アンモニウム水酸化物類;15−クラウン−5、18−クラウン−6、ジベンゾ−18−クラウン−6、ジシクロヘキシル−18−クラウン−6、ジアザ−18−クラウン−6等のクラウンエーテル類;[2.1.1]−クリプタンド、[2.2.1]−クリプタンド、[2.2.2]クリプタンド、[2.2.2]−デシルクリプタンド、[2.2.2]−ベンゾクリプタンド等のクリプタンド類が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。相間移動触媒の状態は、特に限定されず、例えば、固体状、液状、水溶液、アルコール溶液等であってもよい。   The phase transfer catalyst is not particularly limited. For example, tetramethylammonium chloride, tetramethylammonium bromide, tetrapropylammonium chloride, tetrapropylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, benzyl Quaternary ammonium salts such as trimethylammonium chloride, benzyltrimethylammonium bromide, benzyltriethylammonium chloride, benzyltriethylammonium bromide, phenyltrimethylammonium chloride; four such as tetramethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide Grade ammonium hydroxides; Crown ethers such as 5-crown-5, 18-crown-6, dibenzo-18-crown-6, dicyclohexyl-18-crown-6, diaza-18-crown-6; [2.1.1] -cryptand , [2.2.1] -cryptand, [2.2.2] cryptand, [2.2.2] -decyl cryptand, [2.2.2] -benzocryptand, and the like. . These may be used individually by 1 type and may use 2 or more types together. The state of the phase transfer catalyst is not particularly limited, and may be, for example, solid, liquid, aqueous solution, alcohol solution or the like.

相間移動触媒の添加量は、上記多価ヒドロキシ化合物の水酸基1モルに対し、好ましくは、0.001〜0.1モルであり、より好ましくは0.005〜0.05モルである。   The amount of the phase transfer catalyst added is preferably 0.001 to 0.1 mol, more preferably 0.005 to 0.05 mol, per 1 mol of the hydroxyl group of the polyvalent hydroxy compound.

上記多価ヒドロキシ化合物とエピハロヒドリンとの反応温度は、好ましくは、20〜100℃であり、より好ましくは30〜80℃である。当該反応温度を20℃以上とすることで反応の進行が早くなるため、上記多価ヒドロキシ化合物にエピハロヒドリンのグリシジル基を効率よく導入できる傾向にある。当該反応温度を100℃以下とすることで、エピハロヒドリン同士の高分子化反応を効率よく抑制できるため、上記多価ヒドロキシ化合物にエピハロヒドリンのグリシジル基を効率よく導入できる傾向にある。   The reaction temperature of the polyvalent hydroxy compound and epihalohydrin is preferably 20 to 100 ° C, more preferably 30 to 80 ° C. Since the reaction proceeds faster by setting the reaction temperature to 20 ° C. or higher, the glycidyl group of epihalohydrin tends to be efficiently introduced into the polyvalent hydroxy compound. By making the said reaction temperature 100 degrees C or less, since the polymerization reaction of epihalohydrins can be suppressed efficiently, it exists in the tendency which can introduce | transduce the glycidyl group of an epihalohydrin into the said polyvalent hydroxy compound efficiently.

上記多価ヒドロキシ化合物とエピハロヒドリンとの反応時間は、好ましくは、1〜12時間であり、より好ましくは1.5〜8時間であり、さらに好ましくは2〜6時間である。   The reaction time of the polyvalent hydroxy compound and epihalohydrin is preferably 1 to 12 hours, more preferably 1.5 to 8 hours, and further preferably 2 to 6 hours.

上記多価ヒドロキシ化合物とエピハロヒドリンとの反応終了後、水洗等によって、生成塩、残留するアルカリ性化合物や相間移動触媒等を反応液から除去する。次いで、常圧或いは減圧下で加熱することによって、残留するエピハロヒドリンを除去し、エポキシ樹脂を回収することができる。   After the reaction between the polyvalent hydroxy compound and the epihalohydrin is completed, the product salt, the remaining alkaline compound, the phase transfer catalyst, and the like are removed from the reaction solution by washing or the like. Next, by heating under normal pressure or reduced pressure, the remaining epihalohydrin can be removed and the epoxy resin can be recovered.

エポキシ樹脂の全塩素量を一層低減したい場合には、例えば、上記で回収したエポキシ樹脂を、トルエンやメチルイソブチルケトン等の溶媒に溶解させた後、アルカリ性化合物(固体状でも、液状でも、溶液等でもよい)を新たに加える。これにより、エピハロヒドリンの閉環反応が進行し、加水分解性塩素量を一層低減させることもできる。この場合、アルカリ性化合物の添加量は、加水分解性塩素1当量に対し、好ましくは、0.5〜5当量であり、より好ましくは1〜3当量である。通常、エピハロヒドリンの閉環反応の反応温度は60〜120℃であることが好ましく、エピハロヒドリンの閉環反応の反応時間は0.5〜3時間であることが好ましい。   To further reduce the total chlorine content of the epoxy resin, for example, the epoxy resin recovered above is dissolved in a solvent such as toluene or methyl isobutyl ketone, and then an alkaline compound (solid or liquid, solution, etc. You can add it). Thereby, the ring closure reaction of epihalohydrin proceeds, and the amount of hydrolyzable chlorine can be further reduced. In this case, the addition amount of the alkaline compound is preferably 0.5 to 5 equivalents, more preferably 1 to 3 equivalents with respect to 1 equivalent of hydrolyzable chlorine. Usually, the reaction temperature of the ring closure reaction of epihalohydrin is preferably 60 to 120 ° C., and the reaction time of the ring closure reaction of epihalohydrin is preferably 0.5 to 3 hours.

本実施形態のエポキシ樹脂は、相溶性に優れるため、その他の成分を添加したエポキシ樹脂組成物としても、好適に用いることができる。以下、エポキシ樹脂組成物について説明する。   Since the epoxy resin of this embodiment is excellent in compatibility, it can be suitably used as an epoxy resin composition to which other components are added. Hereinafter, the epoxy resin composition will be described.

≪エポキシ樹脂組成物≫
本実施形態のエポキシ樹脂組成物は、例えば、上述のエポキシ樹脂と硬化剤と組み合わせることにより得ることができる。すなわち、本実施形態のエポキシ樹脂組成物は、例えば、上述のエポキシ樹脂と、硬化剤と、を含有する。本実施形態のエポキシ樹脂組成物は、必要に応じて、上述のエポキシ樹脂以外の他のエポキシ樹脂成分、硬化促進剤等を更に含有してもよい。
≪Epoxy resin composition≫
The epoxy resin composition of this embodiment can be obtained by combining with the above-mentioned epoxy resin and a hardening | curing agent, for example. That is, the epoxy resin composition of the present embodiment contains, for example, the above-described epoxy resin and a curing agent. The epoxy resin composition of this embodiment may further contain other epoxy resin components other than the above-described epoxy resin, a curing accelerator, and the like, as necessary.

硬化剤としては、例えば、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、フェノール系硬化剤等が挙げられるが、これらに限定されるものではない。   Examples of the curing agent include amine-based curing agents, amide-based curing agents, acid anhydride-based curing agents, and phenol-based curing agents, but are not limited thereto.

硬化剤の具体例としては、特に限定されないが、例えば、イミダゾール類、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、ポリアルキレングリコールポリアミン、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミン系硬化剤;ジシアンジアミド等のアミド系硬化剤;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物系硬化剤;フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性フェノールアラルキル樹脂、ジシクロペンタジエン変性フェノール樹脂、アミノトリアジン変性フェノール樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮合ノボラック樹脂、ナフトール−クレゾール共縮合ノボラック樹脂等の多価フェノール化合物類及びこれらの変性物等のフェノール系硬化剤;BF3−アミン錯体、グアニジン誘導体等が挙げられる。これらの硬化剤は1種単独で使用してもよいし、2種以上を併用してもよい。 Although it does not specifically limit as a specific example of a hardening | curing agent, For example, it synthesize | combines from the dimer and ethylenediamine of imidazoles, diamino diphenylmethane, diamino diphenyl sulfone, diethylenetriamine, triethylenetetramine, isophorone diamine, polyalkylene glycol polyamine, linolenic acid. Amide curing agents such as polyamide resins; Amide curing agents such as dicyandiamide; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl anhydride Acid anhydride curing agents such as nadic acid, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride; phenol novolac resin, cresol novolac resin, phenol aralkyl resin, cresol aralate Kill resin, naphthol aralkyl resin, biphenyl modified phenol resin, biphenyl modified phenol aralkyl resin, dicyclopentadiene modified phenol resin, aminotriazine modified phenol resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin And the like, and phenolic curing agents such as polyphenol compounds such as these and modified products thereof; BF 3 -amine complexes, guanidine derivatives and the like. These curing agents may be used alone or in combination of two or more.

上記硬化剤の中でも、可撓性や反応性を重視する場合は、アミン系硬化剤が好ましい。また、耐熱性を重視する場合は、フェノール系硬化剤が好ましい。   Among the hardeners, amine-based hardeners are preferable when importance is attached to flexibility and reactivity. Moreover, when importance is attached to heat resistance, a phenolic curing agent is preferable.

本実施形態のエポキシ樹脂組成物において、硬化剤の含有量は、エポキシ樹脂のグリシジル基1当量に対して、0.7〜1.5当量であることが好ましい。硬化剤の含有量がこの範囲内であれば、硬化反応が効率よく進み、一層良好な硬化物性が発現する傾向にある。   In the epoxy resin composition of this embodiment, it is preferable that content of a hardening | curing agent is 0.7-1.5 equivalent with respect to 1 equivalent of glycidyl groups of an epoxy resin. If content of a hardening | curing agent exists in this range, hardening reaction will advance efficiently and it exists in the tendency for much better hardened | cured physical property to express.

他のエポキシ樹脂成分として併用することができるエポキシ樹脂成分の構造の具体例としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、テトラブロモビフェニル型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ベンゾフェノン型エポキシ樹脂、フェニルベンゾエート型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルスルホキシド型エポキシ樹脂、ジフェニルスルホン型エポキシ樹脂、ジフェニルジスルフィド型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、メチルヒドロキノン型エポキシ樹脂、ジブチルヒドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、メチルレゾルシン型エポキシ樹脂、カテコール型エポキシ樹脂、N,N−ジグリシジルアニリン型エポキシ樹脂等の2官能型エポキシ樹脂類;N,N−ジグリシジルアミノベンゼン型エポキシ樹脂、o−(N,N−ジグリシジルアミノ)トルエン型エポキシ樹脂、トリアジン型エポキシ樹脂等の3官能型エポキシ樹脂類;テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂、ジアミノベンゼン型エポキシ樹脂等の4官能型エポキシ樹脂類;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ブロモ化フェノールノボラック型エポキシ樹脂等の多官能型エポキシ樹脂類;及び脂環式エポキシ樹脂類が挙げられる。これらは1種単独で用いてもよく、2種以上併用してもよい。さらに、これらをイソシアネート等で変性したエポキシ樹脂等も併用することができる。   Specific examples of the structure of the epoxy resin component that can be used in combination with other epoxy resin components are not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol M type Epoxy resin, bisphenol P type epoxy resin, tetrabromobisphenol A type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, tetrabromobiphenyl type epoxy resin, diphenyl ether type epoxy resin, benzophenone type epoxy resin, phenylbenzoate type epoxy Resin, diphenyl sulfide type epoxy resin, diphenyl sulfoxide type epoxy resin, diphenyl sulfone type epoxy resin, diphenyl disulfide type epoxy resin Naphthalene type epoxy resin, anthracene type epoxy resin, hydroquinone type epoxy resin, methyl hydroquinone type epoxy resin, dibutyl hydroquinone type epoxy resin, resorcin type epoxy resin, methyl resorcin type epoxy resin, catechol type epoxy resin, N, N-diglycidyl aniline Bifunctional epoxy resins such as epoxy resin; trifunctional epoxy such as N, N-diglycidylaminobenzene epoxy resin, o- (N, N-diglycidylamino) toluene epoxy resin, triazine epoxy resin Resins; Tetraglycidyldiaminodiphenylmethane type epoxy resin, tetrafunctional epoxy resins such as diaminobenzene type epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenyl Polyfunctional epoxy resins such as tan type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene type epoxy resin, naphthol aralkyl type epoxy resin, brominated phenol novolac type epoxy resin; and alicyclic epoxy resins It is done. These may be used alone or in combination of two or more. Furthermore, epoxy resins modified with isocyanate or the like can be used in combination.

他のエポキシ樹脂成分の含有量は、本実施形態のエポキシ樹脂組成物中の全エポキシ樹脂成分中の75質量%以下であることが好ましく、50質量%以下であることがより好ましい。   The content of the other epoxy resin component is preferably 75% by mass or less, and more preferably 50% by mass or less, based on the total epoxy resin component in the epoxy resin composition of the present embodiment.

また、本実施形態のエポキシ樹脂組成物は、硬化促進剤を更に含有してもよい。硬化促進剤の具体例としては、特に限定されないが、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4―メチルイミダゾール等のイミダゾール系硬化促進剤;2−(ジメチルアミノメチル)フェノール、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン等の3級アミン系硬化促進剤;トリフェニルホスフィン等のリン系硬化促進剤;有機酸金属塩;ルイス酸;アミン錯塩等が挙げられる。これらは上記した硬化剤と併用することで硬化反応を促進させることができる。上記した硬化剤の種類に応じて、適切な硬化促進剤の種類を選択することができる。   Moreover, the epoxy resin composition of this embodiment may further contain a curing accelerator. Although it does not specifically limit as a specific example of a hardening accelerator, For example, imidazole type hardening accelerators, such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole; 2- (dimethylaminomethyl) phenol Tertiary amine-based curing accelerators such as 1,5-diazabicyclo [4.3.0] non-5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene; A phosphorus curing accelerator; an organic acid metal salt; a Lewis acid; an amine complex salt, and the like. These can promote the curing reaction when used in combination with the above-described curing agent. An appropriate type of curing accelerator can be selected according to the type of curing agent described above.

本実施形態のエポキシ樹脂組成物において、硬化促進剤の含有量は、本実施形態の効果が得られる範囲であれば特に限定されない。硬化促進剤の含有量は、通常、エポキシ樹脂の総量100質量部に対して0.1〜5.0質量部であることが好ましい。硬化促進剤の含有量を上記範囲とすることにより、硬化反応が十分に促進するとともに、一層良好な硬化物性が得られる傾向にある。   In the epoxy resin composition of the present embodiment, the content of the curing accelerator is not particularly limited as long as the effect of the present embodiment is obtained. It is preferable that content of a hardening accelerator is 0.1-5.0 mass parts normally with respect to 100 mass parts of total amounts of an epoxy resin. By setting the content of the curing accelerator in the above range, the curing reaction is sufficiently promoted and more excellent cured properties tend to be obtained.

本実施形態のエポキシ樹脂組成物は、必要に応じて無機充填剤を更に含有してもよい。無機充填剤の具体例としては、特に限定されないが、例えば、溶融シリカ、結晶シリカ、アルミナ、タルク、窒化ケイ素、窒化アルミ等が挙げられる。   The epoxy resin composition of this embodiment may further contain an inorganic filler as necessary. Specific examples of the inorganic filler are not particularly limited, and examples thereof include fused silica, crystalline silica, alumina, talc, silicon nitride, and aluminum nitride.

本実施形態のエポキシ樹脂組成物において、無機充填剤の含有量は、本実施形態の効果が得られる範囲であれば特に限定されない。本実施形態のエポキシ樹脂組成物において、無機充填剤の含有量は、通常、90質量%以下であることが好ましい。無機充填剤の含有量を上記範囲とすることにより、エポキシ樹脂組成物の粘度が十分低く、取扱性に優れる傾向にある。   In the epoxy resin composition of the present embodiment, the content of the inorganic filler is not particularly limited as long as the effect of the present embodiment is obtained. In the epoxy resin composition of the present embodiment, the content of the inorganic filler is usually preferably 90% by mass or less. By making content of an inorganic filler into the said range, it exists in the tendency for the viscosity of an epoxy resin composition to be low enough, and to be excellent in handleability.

本実施形態のエポキシ樹脂組成物は、必要に応じて、難燃剤、シランカップリング剤、離型剤、顔料等の他の配合剤を更に含有してもよい。これらは、本実施形態の効果が得られる範囲であれば、適宜好適なものを選択することができる。難燃剤としては、特に限定されないが、例えば、ハロゲン化物、リン原子含有化合物、窒素原子含有化合物、無機系難燃化合物等が挙げられる。   The epoxy resin composition of this embodiment may further contain other compounding agents, such as a flame retardant, a silane coupling agent, a mold release agent, and a pigment, as needed. Any suitable one can be selected as long as the effects of the present embodiment can be obtained. Although it does not specifically limit as a flame retardant, For example, a halide, a phosphorus atom containing compound, a nitrogen atom containing compound, an inorganic type flame retardant compound, etc. are mentioned.

≪硬化物≫
本実施形態の硬化物は、上記のエポキシ樹脂組成物を硬化してなる硬化物である。
≪Hardened material≫
The cured product of the present embodiment is a cured product obtained by curing the above epoxy resin composition.

本実施形態の硬化物は、上記のエポキシ樹脂組成物を、例えば、従来公知の方法等により熱硬化させることで得られる。具体的には、例えば、以下の方法により本実施形態の硬化物を得ることができる。まず、上記のエポキシ樹脂と、硬化剤と、更に必要に応じて硬化促進剤、無機充填剤、及び/又は配合剤等とを、押出機、ニーダ、ロール等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得る。その後、エポキシ樹脂組成物を注型あるいはトランスファー成形機、コンプレッション成形機、射出成形機等を用いて成形し、80〜200℃程度で2〜10時間程度の条件で更に加熱することにより、硬化物を得ることができる。   The cured product of this embodiment can be obtained by thermally curing the above epoxy resin composition by, for example, a conventionally known method. Specifically, for example, the cured product of the present embodiment can be obtained by the following method. First, the epoxy resin, the curing agent, and, if necessary, a curing accelerator, an inorganic filler, and / or a compounding agent, etc. are sufficiently used until they are uniform using an extruder, kneader, roll, or the like. Mix to obtain an epoxy resin composition. Thereafter, the epoxy resin composition is molded by casting or using a transfer molding machine, a compression molding machine, an injection molding machine, etc., and further heated at about 80 to 200 ° C. for about 2 to 10 hours to obtain a cured product. Can be obtained.

また、例えば、以下の方法により本実施形態の硬化物を得ることができる。まず、上記のエポキシ樹脂組成物を、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させ、溶液を得る。得られた溶液を、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙等の基材に含浸させ加熱乾燥してプリプレグを得る。次に、得られたプリプレグを熱プレス成形することにより、硬化物を得ることもできる。   Further, for example, the cured product of the present embodiment can be obtained by the following method. First, the above epoxy resin composition is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. to obtain a solution. The obtained solution is impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., and dried by heating to obtain a prepreg. Next, the obtained prepreg can be hot press molded to obtain a cured product.

次に、本発明を、合成例、実施例及び比較例により更に具体的に説明するが、本発明はこれらにより何ら限定されるものではない。なお、以下において「部」及び「%」は、特に断りがない限り質量基準である。   Next, although a synthesis example, an Example, and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these. In the following, “part” and “%” are based on mass unless otherwise specified.

各物性の測定法は以下のとおりとした。   The measuring method of each physical property was as follows.

(1)(a+b+c)個数
合成実施例1〜6で得られた多価ヒドロキシ化合物(PH−1〜PH−6)および合成比較例1〜5で得られた多価ヒドロキシ化合物(PH−7〜PH−11)の(a+b+c)個数は、JIS-K0070(1992)の水酸基価の測定に基づき、以下のとおり測定した。
(1) Number of (a + b + c) polyvalent hydroxy compounds (PH-1 to PH-6) obtained in Synthesis Examples 1 to 6 and polyvalent hydroxy compounds (PH-7 to 3) obtained in Synthesis Comparative Examples 1 to 5 The number of (a + b + c) of PH-11) was measured as follows based on the measurement of the hydroxyl value of JIS-K0070 (1992).

電位差滴定法により多価ヒドロキシ化合物の水酸基価を求め、分子量を算出し、アルキレンオキシド付加前の分子量との差から、a、b及びcに基づく(a+b+c)個数の確認を行った。   The hydroxyl value of the polyvalent hydroxy compound was determined by potentiometric titration, the molecular weight was calculated, and the number of (a + b + c) based on a, b and c was confirmed from the difference from the molecular weight before addition of alkylene oxide.

(2)(α+β+γ)個数 (2) (α + β + γ) number

多価ヒドロキシ化合物(PH−1〜PH11)のエポキシ化後のエポキシ樹脂(EP−1〜EP−11)の(α+β+γ)個数は、超高速液体クロマトグラフィー(UPLC)及び質量分析装置(MS)を用いて、α、β及びγに基づく(α+β+γ)個数の確認を行った。   The number of (α + β + γ) of the epoxy resins (EP-1 to EP-11) after the epoxidation of the polyvalent hydroxy compounds (PH-1 to PH11) can be determined using ultra high performance liquid chromatography (UPLC) and a mass spectrometer (MS). The number of (α + β + γ) based on α, β and γ was confirmed.

UPLCの測定条件は、以下のとおりとした。
・日本ウォーターズ株式会社製「ACQUITY UPLC H−Class」システム
・カラム:Phenomenex社製「Kinetex XB−C18 2.6μm」
・移動相:10mM 酢酸アンモニウム水溶液/アセトニトリル(混合割合は、エポキシ樹脂の場合、0分〜10分の間において、10mM 酢酸アンモニウム水溶液/アセトニトリル=55/45〜50/50(体積比)、10分〜20分の間において、10mM 酢酸アンモニウム水溶液/アセトニトリル=55/45となるよう変化させた。)
・流量:0.3mL/分
・分検出器:276nm
・測定サンプルの調製:エポキシ樹脂5mgに対し、アセトニトリル1ml加え、0.5質量%−アセトニトリル溶液に調製した。
The UPLC measurement conditions were as follows.
-“ACQUITY UPLC H-Class” system manufactured by Nippon Waters Co., Ltd. Column: “Kinetex XB-C18 2.6 μm” manufactured by Phenomenex
Mobile phase: 10 mM ammonium acetate aqueous solution / acetonitrile (mixing ratio is 0 to 10 minutes in the case of epoxy resin, 10 mM ammonium acetate aqueous solution / acetonitrile = 55/45 to 50/50 (volume ratio), 10 minutes (Changed to 10 mM ammonium acetate aqueous solution / acetonitrile = 55/45 during ˜20 minutes)
-Flow rate: 0.3 mL / min-Minute detector: 276 nm
-Preparation of measurement sample: 1 ml of acetonitrile was added to 5 mg of epoxy resin to prepare a 0.5 mass% -acetonitrile solution.

MSの測定条件は、以下のとおりとした。
・日本ウォーターズ株式会社製「Synapt G2」装置
・イオン化法:エレクトロスプレーイオン化法(ESI)
・スキャンレンジ:m/z=50〜2000
・測定サンプルの調製:エポキシ樹脂5mgに対し、アセトニトリル1ml加え、0.5質量%−アセトニトリル溶液に調製した。
The measurement conditions for MS were as follows.
・ “Synapt G2” equipment manufactured by Nippon Waters Co., Ltd. ・ Ionization method: Electrospray ionization method (ESI)
Scan range: m / z = 50-2000
-Preparation of measurement sample: 1 ml of acetonitrile was added to 5 mg of epoxy resin to prepare a 0.5 mass% -acetonitrile solution.

なお、上記式(3)の(α+β+γ)の平均値等は、図3に示すように、MSで同定されたUPLCの該当するピーク面積比より求めた。   In addition, the average value of (α + β + γ) in the above formula (3) was obtained from the corresponding peak area ratio of UPLC identified by MS, as shown in FIG.

(3)エポキシ当量
JIS K7236に準拠して、エポキシ当量を測定した。
(3) Epoxy equivalent Based on JIS K7236, the epoxy equivalent was measured.

(4)全塩素量
JIS K7423−3に準拠して、全塩素量を測定した。
(4) Total chlorine content Total chlorine content was measured according to JIS K7423-3.

(5)粘度
JIS K7117−2(E型粘度計)に準拠して、粘度を測定した。
(5) Viscosity Viscosity was measured according to JIS K7117-2 (E-type viscometer).

(6)ゲルタイム
JACT試験法 RS−5及びJIS K−6910−1995に準拠して、ゲルタイムを測定した。具体的には、後述の実施例及び比較例で得られたエポキシ樹脂組成物を測定試料とし、ゲル化試験機を用いてゲルタイムを測定した。測定試料を、170℃のホットプレート上で撹拌しながら加熱し、試料と撹拌棒との間で糸を引かなくなるまでの時間をゲルタイムとした。
(6) Gel time Gel time was measured based on JACT test method RS-5 and JIS K-6910-1995. Specifically, the epoxy resin compositions obtained in Examples and Comparative Examples described later were used as measurement samples, and the gel time was measured using a gelation tester. The measurement sample was heated on a hot plate at 170 ° C. with stirring, and the time until no yarn was pulled between the sample and the stirring bar was defined as gel time.

(7)ガラス転移点(Tg)測定
後述の実施例及び比較例で得られたエポキシ樹脂硬化物から、ダイヤモンドカッターを用いて、10mm×30mm×2mmの試験片を作製した。該試験片を固体粘弾性測定装置(DMA;オリエンテック社製「レオバイブロンDDV−25FP」)にセットし、温度範囲40〜300℃(昇温速度:2℃/分)、周波数10Hzの測定条件で測定した。tanδが最大値になったときの温度をガラス転移点(Tg)とした。
(7) Glass transition point (Tg) measurement The test piece of 10 mm x 30 mm x 2 mm was produced from the epoxy resin hardened material obtained by the below-mentioned Example and comparative example using the diamond cutter. The test piece was set in a solid viscoelasticity measuring apparatus (DMA; “Leovibron DDV-25FP” manufactured by Orientec Co., Ltd.), under the measurement conditions of a temperature range of 40 to 300 ° C. (temperature increase rate: 2 ° C./min) and a frequency of 10 Hz. It was measured. The temperature when tan δ reached the maximum value was defined as the glass transition point (Tg).

(8)引張伸度
JIS K7115に準拠して、後述の実施例及び比較例で得られたエポキシ樹脂硬化物の引張伸度を測定した。
(8) Tensile elongation Based on JIS K7115, the tensile elongation of the cured epoxy resin obtained in Examples and Comparative Examples described below was measured.

(9)粘弾性弾性率(DMA弾性率)
JIS K7115に準拠して、後述の実施例及び比較例で得られたエポキシ樹脂硬化物の粘弾性弾性率(DMA弾性率)を測定した。
(9) Viscoelastic modulus (DMA modulus)
Based on JIS K7115, the viscoelastic modulus (DMA elastic modulus) of the cured epoxy resin obtained in Examples and Comparative Examples described later was measured.

(10)破壊靭性(KIc)試験
JIS K6911に準拠して、後述の実施例及び比較例で得られたエポキシ樹脂硬化物の破壊靱性を測定した。
(10) Fracture toughness ( KIc ) test Based on JIS K6911, the fracture toughness of the cured epoxy resin obtained in Examples and Comparative Examples described later was measured.

[合成実施例1]
EO付加体6.3モル (PH−1)
[Synthesis Example 1]
EO adduct 6.3 mol (PH-1)

第一の付加工程
ガラス製オートクレーブに4,4’,4”−エチリジントリスフェノール(本州化学工業株式会社製:商品名 TrisP−HAP)390.0g(1.27mol)、2−ブタノール160.0g、及び水酸化カリウム水溶液(48質量%)2.3g(TrisP−HAPに対し1.5mol%)を加え、オートクレーブの窒素置換を行った後、オートクレーブの内温を110℃まで昇温した。
First Addition Step In a glass autoclave, 4,4 ′, 4 ″ -ethylidinetrisphenol (manufactured by Honshu Chemical Industry Co., Ltd .: trade name TrisP-HAP) 390.0 g (1.27 mol), 2-butanol 160.0 g And 2.3 g of potassium hydroxide aqueous solution (48% by mass) (1.5 mol% with respect to TrisP-HAP) were added and the autoclave was purged with nitrogen, and then the internal temperature of the autoclave was raised to 110 ° C.

オートクレーブの内容物の攪拌を開始し、TrisP−HAPが分散している状態でエチレンオキシド180g(4.09mol)を、110〜115℃、反応圧0.4MPa以下の範囲でオートクレーブに導入し、TrisP−HAPに付加反応させた。付加反応が進行すると共に内容物は無色透明粘液状になった。エチレンオキシドの導入時間は4時間、オートクレーブの内圧が一定となる熟成時間は2時間であった。   Stirring of the contents of the autoclave was started, and 180 g (4.09 mol) of ethylene oxide was introduced into the autoclave in a range of 110 to 115 ° C. and a reaction pressure of 0.4 MPa or less while TrisP-HAP was dispersed. Addition reaction to HAP was performed. As the addition reaction proceeded, the contents became a colorless and transparent viscous liquid. The introduction time of ethylene oxide was 4 hours, and the aging time at which the internal pressure of the autoclave was constant was 2 hours.

第二の付加工程
オートクレーブの内圧を減圧し、内温を140℃まで昇温し2−ブタノールを留去した。次いで、エチレンオキシド185g(4.20mol)を、140〜145℃、反応圧0.4MPa以下の範囲でオートクレーブに導入し、前記第一の付加工程で得られた付加物に、さらに付加反応させた。エチレンオキシドの導入時間は4時間、オートクレーブの内圧が一定となる熟成時間は2時間であった。オートクレーブの内温を120℃まで降温し、オートクレーブの内圧を減圧にし、低沸点物を留去した。
Second Addition Step The internal pressure of the autoclave was reduced, the internal temperature was raised to 140 ° C., and 2-butanol was distilled off. Next, 185 g (4.20 mol) of ethylene oxide was introduced into the autoclave at a temperature of 140 to 145 ° C. and a reaction pressure of 0.4 MPa or less, and the addition product obtained in the first addition step was further subjected to an addition reaction. The introduction time of ethylene oxide was 4 hours, and the aging time at which the internal pressure of the autoclave was constant was 2 hours. The internal temperature of the autoclave was lowered to 120 ° C., the internal pressure of the autoclave was reduced, and low-boiling substances were distilled off.

精製工程
オートクレーブの内温を80℃まで降温し、オートクレーブの内圧を窒素で常圧に戻してからオートクレーブに水10gを加え内容物を1時間攪拌した。吸着剤としてキョーワード600Sを2.0g(協和化学株式会社製、合成珪酸マグネシウム)、オートクレーブに加え、内容物を80〜90℃で1時間攪拌した後、加圧ろ過処理を行い、ろ液を得た。得られたろ液を、120〜130℃で、内圧を減圧して脱水処理を行い、水分が0.1%以下になったところで冷却し、多価ヒドロキシ化合物(PH−1)717gを得た。
Purification Step The internal temperature of the autoclave was lowered to 80 ° C., the internal pressure of the autoclave was returned to normal pressure with nitrogen, 10 g of water was added to the autoclave, and the contents were stirred for 1 hour. Kyoward 600S as an adsorbent was added to 2.0 g (manufactured by Kyowa Chemical Co., Ltd., synthetic magnesium silicate) and autoclave, and the contents were stirred at 80 to 90 ° C. for 1 hour, followed by pressure filtration, and the filtrate was filtered. Obtained. The obtained filtrate was dehydrated by reducing the internal pressure at 120 to 130 ° C., and cooled when the water content was 0.1% or less to obtain 717 g of a polyvalent hydroxy compound (PH-1).

[合成実施例2]
EO付加体7.2モル(PH−2)
[Synthesis Example 2]
EO adduct 7.2 mol (PH-2)

第一の付加工程
ガラス製オートクレーブに4,4’,4”−エチリジントリスフェノール(本州化学工業株式会社製:商品名 TrisP−HAP)390.0g(1.27mol)、トルエン160.0g、及び水酸化カリウム水溶液(48質量%)2.3g(TrisP−HAPに対し1.5mol%)を加え、オートクレーブの窒素置換を行った後、オートクレーブの内温を120℃まで昇温した。
First Addition Step In a glass autoclave, 4,4 ′, 4 ″ -ethylidinetrisphenol (manufactured by Honshu Chemical Industry Co., Ltd .: trade name TrisP-HAP) 390.0 g (1.27 mol), toluene 160.0 g, and After adding 2.3 g of potassium hydroxide aqueous solution (48 mass%) (1.5 mol% with respect to TrisP-HAP) and replacing the nitrogen in the autoclave, the internal temperature of the autoclave was raised to 120 ° C.

オートクレーブの内容物の攪拌を開始し、TrisP−HAPが分散している状態でエチレンオキシド180g(4.09mol)を、120〜125℃、反応圧0.4MPa以下の範囲でオートクレーブに導入し、TrisP−HAPに付加反応させた。付加反応が進行すると共に内容物は無色透明粘液状になった。エチレンオキシドの導入時間は4時間、オートクレーブの内圧が一定となる熟成時間は2時間であった。   Stirring of the contents of the autoclave was started, and 180 g (4.09 mol) of ethylene oxide was introduced into the autoclave at a temperature of 120 to 125 ° C. and a reaction pressure of 0.4 MPa or less while TrisP-HAP was dispersed. Addition reaction to HAP was performed. As the addition reaction proceeded, the contents became a colorless and transparent viscous liquid. The introduction time of ethylene oxide was 4 hours, and the aging time at which the internal pressure of the autoclave was constant was 2 hours.

第二の付加工程
オートクレーブの内温を135℃まで昇温させ、エチレンオキシド234g(5.32モル)を、135〜140℃、反応圧0.4MPa以下の範囲でオートクレーブに導入し、前記第一の付加工程で得られた付加物に、さらに付加反応させた。エチレンオキシドの導入時間は4時間、オートクレーブの内圧が一定となる熟成時間は2時間であった。オートクレーブの内圧を減圧にし、トルエン及び低沸点物を留去した。
Second addition step The internal temperature of the autoclave is raised to 135 ° C., and 234 g (5.32 mol) of ethylene oxide is introduced into the autoclave in a range of 135 to 140 ° C. and a reaction pressure of 0.4 MPa or less. The adduct obtained in the addition step was further subjected to an addition reaction. The introduction time of ethylene oxide was 4 hours, and the aging time at which the internal pressure of the autoclave was constant was 2 hours. The internal pressure of the autoclave was reduced, and toluene and low-boiling substances were distilled off.

精製工程
オートクレーブの内温を80℃まで降温し、オートクレーブの内圧を窒素で常圧に戻してからオートクレーブに水10gを加え内容物を1時間攪拌した。吸着剤としてキョーワード600Sを2.0g(協和化学株式会社製、合成珪酸マグネシウム)、オートクレーブに加え、内容物を80〜90℃で1時間攪拌した後、加圧ろ過処理を行い、ろ液を得た。得られたろ液を、120〜130℃、内圧を減圧して脱水処理を行い、水分が0.1%以下になったところで冷却し、多価ヒドロキシ化合物(PH−2)763gを得た。
Purification Step The internal temperature of the autoclave was lowered to 80 ° C., the internal pressure of the autoclave was returned to normal pressure with nitrogen, 10 g of water was added to the autoclave, and the contents were stirred for 1 hour. Kyoward 600S as an adsorbent was added to 2.0 g (manufactured by Kyowa Chemical Co., Ltd., synthetic magnesium silicate) and autoclave, and the contents were stirred at 80 to 90 ° C. for 1 hour, followed by pressure filtration, and the filtrate was filtered. Obtained. The obtained filtrate was dehydrated by reducing the internal pressure at 120 to 130 ° C., and cooled when the water content was 0.1% or less to obtain 763 g of a polyvalent hydroxy compound (PH-2).

[合成実施例3]
EO付加体5.2モル(PH−3)
[Synthesis Example 3]
EO adduct 5.2 mol (PH-3)

第二の付加工程に用いるエチレンオキシドの量を128g(2.91モル)に変更した以外は合成実施例1と同様に行い、多価ヒドロキシ化合物(PH−3)663gを得た。   Except having changed the amount of ethylene oxide used for a 2nd addition process into 128 g (2.91 mol), it carried out similarly to the synthesis example 1, and obtained 663g of polyhydric hydroxy compounds (PH-3).

[合成実施例4]
PO付加体6.1モル(PH−4)
[Synthesis Example 4]
PO adduct 6.1 mol (PH-4)

第一の付加工程
ガラス製オートクレーブに4,4’,4”−エチリジントリスフェノール(本州化学工業株式会社製:商品名 TrisP−HAP)390g(1.27mol)、メチルイソブチルケトン160g、及び水酸化カリウム水溶液(48質量%)2.3g(TrisP−HAPに対し2mol%)を加え、オートクレーブの窒素置換を行った後、オートクレーブの内温を110℃まで昇温した。
First Addition Step In a glass autoclave, 390 g (1.27 mol) of 4,4 ′, 4 ″ -ethylidinetrisphenol (Honshu Chemical Industry Co., Ltd .: trade name TrisP-HAP), 160 g of methyl isobutyl ketone, and hydroxylation After adding 2.3 g of potassium aqueous solution (48% by mass) (2 mol% with respect to TrisP-HAP) and replacing the nitrogen in the autoclave, the internal temperature of the autoclave was raised to 110 ° C.

オートクレーブの内容物の攪拌を開始し、TrisP−HAPが分散している状態でプロピレンオキシド244g(4.21mol)を、110〜120℃、反応圧0.4MPa以下の範囲でオートクレーブに導入し、TrisP−HAPに付加反応させた。付加反応が進行すると共に内容物は無色透明粘液状になった。プロピレンオキシドの導入時間は6時間、オートクレーブの内圧が一定となる熟成時間は3時間であった。オートクレーブの内圧を減圧にし、メチルイソブチルケトンを留去した。   The stirring of the contents of the autoclave was started, and 244 g (4.21 mol) of propylene oxide was introduced into the autoclave in a range of 110 to 120 ° C. and a reaction pressure of 0.4 MPa or less in a state where TrisP-HAP was dispersed. -Addition reaction to HAP. As the addition reaction proceeded, the contents became a colorless and transparent viscous liquid. The introduction time of propylene oxide was 6 hours, and the aging time at which the internal pressure of the autoclave was constant was 3 hours. The internal pressure of the autoclave was reduced and methyl isobutyl ketone was distilled off.

第二の付加工程
オートクレーブの内温を130℃まで昇温させ、プロピレンオキシド238g(4.10mol)を、130〜135℃、反応圧0.4MPa以下の範囲でオートクレーブに導入し、前記第一の付加工程で得られた付加物に、さらに付加反応させた。プロピレンオキシドの導入時間は4時間、オートクレーブの内圧が一定となる熟成時間は2時間であった。オートクレーブの内温を120℃まで降温し、オートクレーブの内圧減圧にし、低沸点物を留去した。
Second addition step The internal temperature of the autoclave is raised to 130 ° C., and 238 g (4.10 mol) of propylene oxide is introduced into the autoclave in a range of 130 to 135 ° C. and a reaction pressure of 0.4 MPa or less. The adduct obtained in the addition step was further subjected to an addition reaction. The introduction time of propylene oxide was 4 hours, and the aging time at which the internal pressure of the autoclave was constant was 2 hours. The internal temperature of the autoclave was lowered to 120 ° C., the internal pressure of the autoclave was reduced, and low-boiling substances were distilled off.

精製工程
オートクレーブの内温を80℃まで降温し、オートクレーブの内圧を窒素で常圧に戻してからオートクレーブに水10gを加え内容物を1時間攪拌した。吸着剤としてキョーワード600Sを2g(協和化学株式会社製)、オートクレーブに加え、内容物を80〜90℃で1時間攪拌した後、加圧ろ過処理を行いろ液を得た。得られたろ液を、120〜130℃、内圧を減圧して脱水処理を行い、水分が0.1%以下になったところで冷却し、多価ヒドロキシ化合物(PH−4)810gを得た。
Purification Step The internal temperature of the autoclave was lowered to 80 ° C., the internal pressure of the autoclave was returned to normal pressure with nitrogen, 10 g of water was added to the autoclave, and the contents were stirred for 1 hour. 2 g of Kyoward 600S (manufactured by Kyowa Chemical Co., Ltd.) as an adsorbent was added to the autoclave, and the contents were stirred at 80 to 90 ° C. for 1 hour, followed by pressure filtration treatment to obtain a filtrate. The obtained filtrate was dehydrated by reducing the internal pressure at 120 to 130 ° C., and cooled when the water content was 0.1% or less to obtain 810 g of a polyvalent hydroxy compound (PH-4).

[合成実施例5]
PO付加体7.1モル(PH−5)
[Synthesis Example 5]
PO adduct 7.1 mol (PH-5)

第二の付加工程に用いるプロピレンオキシドの量を302g(5.21モル)に変更した以外は合成実施例4と同様に行い、多価ヒドロキシ化合物(PH−5)870gを得た。   Except having changed the quantity of the propylene oxide used for a 2nd addition process into 302 g (5.21 mol), it carried out similarly to the synthesis example 4, and obtained 870g of polyhydric hydroxy compounds (PH-5).

[合成実施例6]
PO付加体5.1モル(PH−6)
[Synthesis Example 6]
PO adduct 5.1 mol (PH-6)

第二の付加工程に用いるプロピレンオキシドの量を151g(2.60モル)に変更した以外は合成実施例4と同様に行い、多価ヒドロキシ化合物(PH−6)730gを得た。   Except having changed the quantity of the propylene oxide used for a 2nd addition process into 151 g (2.60 mol), it carried out similarly to the synthesis example 4, and obtained 730g of polyhydric hydroxy compounds (PH-6).

[合成比較例1]
温度計、滴下ロート、冷却管及び撹拌機を備えたフラスコに、4,4’,4”−エチリジントリスフェノール(本州化学工業株式会社製:商品名 TrisP−HAP)50g(163mmol)、及びジメチルホルムアミド150gを加え溶解させた。その後、前記フラスコに、炭酸カリウム101.5g(734mmol)を加え、前記フラスコ内の溶液を120℃で撹拌させた。前記フラスコに備えられた滴下ロートに、2−ブロモエタノール20.4g(163mmol)、2−(2−クロロエトキシ)エタノール30.5g(245mmol)及び2−[2−(2−クロロエトキシ)エトキシ]エタノール55.0g(326mmol)を加え、滴下ロート内の混合溶液を1時間かけて前記フラスコに滴下させた。滴下終了後、さらに3時間反応させた。なお、該反応温度は120℃とし、該反応時間は合計4時間とした。得られた反応生成物の水洗を繰り返して反応生成物から無機塩類を除去した。また、反応生成物から、ジメチルホルムアミド、過剰の2−ブロモエタノール、2−(2−クロロエトキシ)エタノール及び2−[2−(2−クロロエトキシ)エトキシ]エタノールを減圧下で蒸留して除去し、多価ヒドロキシ化合物(PH−7)88.6gを得た。
[Synthesis Comparative Example 1]
In a flask equipped with a thermometer, a dropping funnel, a condenser tube and a stirrer, 50 g (163 mmol) of 4,4 ′, 4 ″ -ethylidinetrisphenol (Honshu Chemical Industry Co., Ltd .: trade name TrisP-HAP) and dimethyl 150 g of formamide was added and dissolved, and then 101.5 g (734 mmol) of potassium carbonate was added to the flask, and the solution in the flask was stirred at 120 ° C. A dropping funnel provided in the flask was charged with 2- Add 20.4 g (163 mmol) of bromoethanol, 30.5 g (245 mmol) of 2- (2-chloroethoxy) ethanol and 55.0 g (326 mmol) of 2- [2- (2-chloroethoxy) ethoxy] ethanol, and add a dropping funnel. The mixed solution was dropped into the flask over 1 hour. The reaction was carried out for 3 hours, the reaction temperature was 120 ° C., and the total reaction time was 4 hours, and the resulting reaction product was washed repeatedly with water to remove inorganic salts from the reaction product. Dimethylformamide, excess 2-bromoethanol, 2- (2-chloroethoxy) ethanol and 2- [2- (2-chloroethoxy) ethoxy] ethanol are removed from the product by distillation under reduced pressure. 88.6 g of hydroxy compound (PH-7) was obtained.

[合成比較例2]
反応温度を100℃、反応時間を6時間にした変更した以外は合成比較例1と同様に行い、多価ヒドロキシ化合物(PH−8)66.1gを得た。
[Synthesis Comparative Example 2]
Except that the reaction temperature was changed to 100 ° C. and the reaction time was changed to 6 hours, the same procedure as in Synthesis Comparative Example 1 was carried out to obtain 66.1 g of a polyvalent hydroxy compound (PH-8).

[合成比較例3]
2−ブロモエタノール20.4g(163mmol)、2−(2−クロロエトキシ)エタノール30.5g(245mmol)及び2−[2−(2−クロロエトキシ)エトキシ]エタノール55.0g(326mmol)を、2−ブロモエタノール10.2g(82mmol)、2−(2−クロロエトキシ)エタノール30.5g(245mmol)及び2−[2−(2−クロロエトキシ)エトキシ]エタノール110.0g(652mmol)に変更した以外は合成比較例1と同様に行い、多価ヒドロキシ化合物(PH−9)62.4gを得た。
[Synthesis Comparative Example 3]
20.4 g (163 mmol) of 2-bromoethanol, 30.5 g (245 mmol) of 2- (2-chloroethoxy) ethanol and 55.0 g (326 mmol) of 2- [2- (2-chloroethoxy) ethoxy] ethanol -Other than changing to 10.2 g (82 mmol) of bromoethanol, 30.5 g (245 mmol) of 2- (2-chloroethoxy) ethanol and 110.0 g (652 mmol) of 2- [2- (2-chloroethoxy) ethoxy] ethanol Was carried out in the same manner as in Synthesis Comparative Example 1 to obtain 62.4 g of a polyvalent hydroxy compound (PH-9).

[合成比較例4]
2−ブロモエタノール20.4g(163mmol)、2−(2−クロロエトキシ)エタノール30.5g(245mmol)及び2−[2−(2−クロロエトキシ)エトキシ]エタノール55.0g(326mmol)を、2−[2−(2−クロロエトキシ)エトキシ]エタノール165.2g(980mmol)のみに変更し、反応時間を6時間に延ばした以外は合成比較例1と同様に行い、多価ヒドロキシ化合物(PH−10)80.7gを得た。
[Synthesis Comparative Example 4]
20.4 g (163 mmol) of 2-bromoethanol, 30.5 g (245 mmol) of 2- (2-chloroethoxy) ethanol and 55.0 g (326 mmol) of 2- [2- (2-chloroethoxy) ethoxy] ethanol -[2- (2-Chloroethoxy) ethoxy] ethanol was changed to only 165.2 g (980 mmol), and the reaction time was extended to 6 hours. 10) 80.7 g was obtained.

[合成比較例5]
2−ブロモエタノール20.4g(163mmol)、2−(2−クロロエトキシ)エタノール30.5g(245mmol)及び2−[2−(2−クロロエトキシ)エトキシ]エタノール55.0g(326mmol)を、2−(2−クロロエトキシ)エタノール127.8g(1026mmol)のみに変更した以外は合成比較例1と同様に行い、多価ヒドロキシ化合物(PH−11)63.8gを得た。
[Synthesis Comparative Example 5]
20.4 g (163 mmol) of 2-bromoethanol, 30.5 g (245 mmol) of 2- (2-chloroethoxy) ethanol and 55.0 g (326 mmol) of 2- [2- (2-chloroethoxy) ethoxy] ethanol Except having changed only to-(2-chloroethoxy) ethanol 127.8g (1026mmol), it carried out similarly to the synthesis comparative example 1, and obtained 63.8g of polyhydric hydroxy compounds (PH-11).

[実施例1]
温度計、滴下ロート、冷却管及び撹拌機を備えたフラスコ(反応器)に、多価ヒドロキシ化合物(PH−1)100g、エピクロロヒドリン258.8g(PH−1の水酸基1molに対してエピクロロヒドリン5mol)、及び50質量%テトラメチルアンモニウムクロリド水溶液(5g)を混合し、得られた混合物を、減圧下に加熱して60〜65℃で還流を行った。そして、前記反応器に、50質量%水酸化ナトリウム水溶液134.3gを2時間かけて滴下した。滴下の際、水をエピクロロヒドリンとの共沸混合物として連続的に除去するとともに、凝縮したエピクロロヒドリン層のみを連続的に反応器に戻した。滴下後、さらに2時間反応させた後、混合物(反応生成物)を冷却した。得られた反応生成物の水洗を繰り返して、反応生成物から、副生した塩化ナトリウムを除去した。また、反応生成物から、過剰のエピクロロヒドリンを減圧下で蒸留して除去し、粗樹脂を得た。得られた粗樹脂をメチルイソブチルケトン100gに溶解し、得られた溶液に、0.18gの50質量%水酸化ナトリウム水溶液を加え、80℃で2時間反応させた。反応終了後、反応生成物の水洗を繰り返して、反応生成物から、副生した塩化ナトリウムを除去した。また、反応生成物から、メチルイソブチルケトンを減圧下で蒸留して除去しエポキシ樹脂(EP−1)115.8gを得た。
[Example 1]
In a flask (reactor) equipped with a thermometer, a dropping funnel, a condenser and a stirrer, 100 g of a polyhydroxy compound (PH-1) and 258.8 g of epichlorohydrin (with respect to 1 mol of hydroxyl group of PH-1) Chlorohydrin (5 mol) and a 50 mass% tetramethylammonium chloride aqueous solution (5 g) were mixed, and the resulting mixture was heated under reduced pressure and refluxed at 60 to 65 ° C. And 134.3 g of 50 mass% sodium hydroxide aqueous solution was dripped at the said reactor over 2 hours. During the addition, water was continuously removed as an azeotrope with epichlorohydrin and only the condensed epichlorohydrin layer was continuously returned to the reactor. After the addition, the mixture was further reacted for 2 hours, and then the mixture (reaction product) was cooled. The resulting reaction product was repeatedly washed with water to remove by-produced sodium chloride from the reaction product. Further, excess epichlorohydrin was removed from the reaction product by distillation under reduced pressure to obtain a crude resin. The obtained crude resin was dissolved in 100 g of methyl isobutyl ketone, and 0.18 g of a 50% by mass aqueous sodium hydroxide solution was added to the resulting solution and reacted at 80 ° C. for 2 hours. After completion of the reaction, washing of the reaction product with water was repeated to remove by-produced sodium chloride from the reaction product. Further, methyl isobutyl ketone was removed from the reaction product by distillation under reduced pressure to obtain 115.8 g of an epoxy resin (EP-1).

[実施例2]
多価ヒドロキシ化合物(PH−1)を(PH−2)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−2)117.2gを得た。
[Example 2]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-2), it carried out like Example 1 and obtained 117.2g of epoxy resins (EP-2).

[実施例3]
多価ヒドロキシ化合物(PH−1)を(PH−3)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−3)104.3gを得た。
[Example 3]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-3), it carried out like Example 1 and obtained 104.3g of epoxy resins (EP-3).

[実施例4]
多価ヒドロキシ化合物(PH−1)を(PH−4)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−4)98.2gを得た。
[Example 4]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-4), it carried out similarly to Example 1 and obtained epoxy resin (EP-4) 98.2g.

[実施例5]
多価ヒドロキシ化合物(PH−1)を(PH−5)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−5)97.5gを得た。
[Example 5]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-5), it carried out similarly to Example 1 and obtained epoxy resin (EP-5) 97.5g.

[実施例6]
多価ヒドロキシ化合物(PH−1)を(PH−6)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−6)93.1gを得た。
[Example 6]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-6), it carried out similarly to Example 1 and obtained 93.1 g of epoxy resins (EP-6).

[比較例1]
多価ヒドロキシ化合物(PH−1)を(PH−7)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−7)104.3gを得た。
[Comparative Example 1]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-7), it carried out like Example 1 and obtained 104.3 g of epoxy resins (EP-7).

[比較例2]
多価ヒドロキシ化合物(PH−1)を(PH−8)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−8)106.5gを得た。
[Comparative Example 2]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-8), it carried out like Example 1 and obtained 106.5 g of epoxy resins (EP-8).

[比較例3]
多価ヒドロキシ化合物(PH−1)を(PH−9)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−9)102.1gを得た。
[Comparative Example 3]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-9), it carried out like Example 1 and obtained 102.1 g of epoxy resins (EP-9).

[比較参考例1]
多価ヒドロキシ化合物(PH−1)を(PH−10)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−10)91.7gを得た。
[Comparative Reference Example 1]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-10), it carried out like Example 1 and obtained 91.7g of epoxy resins (EP-10).

[比較参考例2]
多価ヒドロキシ化合物(PH−1)を(PH−11)に変更した以外は実施例1と同様に行い、エポキシ樹脂(EP−11)92.2gを得た。
[Comparative Reference Example 2]
Except having changed polyhydric hydroxy compound (PH-1) into (PH-11), it carried out like Example 1 and obtained 92.2 g of epoxy resins (EP-11).

[各種測定結果]
合成実施例1〜6及び合成比較例1〜5で得られた多価ヒドロキシ化合物(PH−1〜11)の(a+b+c)個数、並びに実施例1〜6で得られたエポキシ樹脂(EP−1〜6)、比較例1〜3で得られたエポキシ樹脂(EP−7〜9)及び比較参考例1、2で得られたエポキシ樹脂(EP−10、11)の(α+β+γ)個数、エポキシ当量、全塩素及び粘度を測定した。この結果を表1に示す。
[Various measurement results]
The number (a + b + c) of the polyvalent hydroxy compounds (PH-1 to 11) obtained in Synthesis Examples 1 to 6 and Synthesis Comparative Examples 1 to 5, and the epoxy resin (EP-1) obtained in Examples 1 to 6 -6), (α + β + γ) number of epoxy resins (EP-7 to 9) obtained in Comparative Examples 1 to 3 and epoxy resins (EP-10 and 11) obtained in Comparative Reference Examples 1 and 2, epoxy equivalent The total chlorine and viscosity were measured. The results are shown in Table 1.

Figure 0006444692
Figure 0006444692

[実施例7〜12]
表2に示すとおり、実施例1〜6で得られたエポキシ樹脂(EP−1〜6)に、エポキシ基1当量に対してジアミノジフェニルメタンをアミノ基1当量の割合で添加し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、180℃、2時間の条件で硬化させてエポキシ樹脂硬化物を得た。このエポキシ樹脂硬化物について、ガラス転移点(Tg)、引張伸度、DMA弾性率、及び破壊靭性(KIc)の測定を行った。そして、硬化前のエポキシ樹脂組成物についてはゲルタイムを測定した。
[Examples 7 to 12]
As shown in Table 2, to the epoxy resins (EP-1 to 6) obtained in Examples 1 to 6, diaminodiphenylmethane was added at a ratio of 1 equivalent of amino group to 1 equivalent of epoxy group, and an epoxy resin composition was obtained. Got. The obtained epoxy resin composition was cured at 180 ° C. for 2 hours to obtain a cured epoxy resin. The epoxy resin cured product was measured for glass transition point (Tg), tensile elongation, DMA elastic modulus, and fracture toughness (K Ic ). And the gel time was measured about the epoxy resin composition before hardening.

[比較例4〜7、比較参考例3、4]
エポキシ樹脂として、比較例1〜3で得られたエポキシ樹脂(EP−7〜9)、比較参考例1、2で得られたエポキシ樹脂(EP−10、11)及びビスフェノールF型エポキシ樹脂(三菱化学株式会社製:商品名 YL983U(エポキシ当量170g/eq.))をそれぞれ用いた点以外は、実施例7〜12と同様にして、エポキシ樹脂組成物及びエポキシ樹脂硬化物を得て、それらの物性を評価した。
[Comparative Examples 4 to 7, Comparative Reference Examples 3 and 4]
As epoxy resins, the epoxy resins (EP-7 to 9) obtained in Comparative Examples 1 to 3, the epoxy resins (EP-10 and 11) obtained in Comparative Reference Examples 1 and 2, and a bisphenol F type epoxy resin (Mitsubishi) Made by Chemical Co., Ltd .: Trade name YL983U (epoxy equivalent 170 g / eq.)) Was used in the same manner as in Examples 7 to 12 to obtain an epoxy resin composition and an epoxy resin cured product. Physical properties were evaluated.

[各種評価結果]
実施例7〜12及び比較例4〜7、比較参考例3、4の評価結果を、表2に示す。
[Various evaluation results]
Table 2 shows the evaluation results of Examples 7 to 12, Comparative Examples 4 to 7, and Comparative Reference Examples 3 and 4.

Figure 0006444692
Figure 0006444692

[実施例13〜18]
実施例1〜6で得られたエポキシ樹脂(EP−1〜6)に、ビスフェノールF型エポキシ樹脂(三菱化学株式会社製:商品名 YL983U(エポキシ当量170g/eq.))を、表3に記載の配合比で混合して、エポキシ樹脂の混合物を調製した。
[Examples 13 to 18]
Table 3 shows bisphenol F type epoxy resins (manufactured by Mitsubishi Chemical Corporation: trade name YL983U (epoxy equivalent 170 g / eq.)) In the epoxy resins (EP-1 to 6) obtained in Examples 1 to 6. A mixture of epoxy resins was prepared by mixing at a blending ratio of

表3に示すとおり、得られたエポキシ樹脂の混合物に、エポキシ基1当量に対してジアミノジフェニルメタンをアミノ基1当量の割合で添加し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、180℃、2時間の条件で硬化させてエポキシ樹脂硬化物を得た。このエポキシ樹脂硬化物について、ガラス転移点(Tg)、引張伸度、DMA弾性率、破壊靭性(KIc)の測定を行った。そして、硬化前のエポキシ樹脂組成物についてはゲルタイムを測定した。 As shown in Table 3, diaminodiphenylmethane was added to the obtained mixture of epoxy resins at a ratio of 1 equivalent of amino groups to 1 equivalent of epoxy groups to obtain an epoxy resin composition. The obtained epoxy resin composition was cured at 180 ° C. for 2 hours to obtain a cured epoxy resin. The epoxy resin cured product was measured for glass transition point (Tg), tensile elongation, DMA elastic modulus, and fracture toughness (K Ic ). And the gel time was measured about the epoxy resin composition before hardening.

[比較例8〜10、比較参考例5、6]
エポキシ樹脂(EP−1〜6)に代えて、比較例1〜3で得られたエポキシ樹脂(EP−7〜9)、比較参考例1、2で得られたエポキシ樹脂(EP−10、11)をそれぞれ用いた点以外は、実施例13〜18と同様にして、エポキシ樹脂組成物及びエポキシ樹脂硬化物を得て、それらの物性を評価した。
[Comparative Examples 8 to 10, Comparative Reference Examples 5 and 6]
Instead of the epoxy resins (EP-1 to 6), the epoxy resins (EP-7 to 9) obtained in Comparative Examples 1 to 3 and the epoxy resins (EP-10 and 11) obtained in Comparative Reference Examples 1 and 2 were used. ) Were used in the same manner as in Examples 13 to 18 except that the epoxy resin composition and the cured epoxy resin were obtained, and their physical properties were evaluated.

[各種評価結果]
実施例13〜18及び比較例7〜10、比較参考例5、6の評価結果を、表3に示す。
[Various evaluation results]
Table 3 shows the evaluation results of Examples 13 to 18, Comparative Examples 7 to 10, and Comparative Reference Examples 5 and 6.

Figure 0006444692
Figure 0006444692

表1の結果から、多価フェノール化合物にアルキレンオキシドを付加させることにより製造された多価ヒドロキシ化合物を用いて製造されたエポキシ樹脂は、塩素量が低く、電子部品接着に用いるのに好適であることがわかった。   From the results in Table 1, an epoxy resin produced using a polyhydric hydroxy compound produced by adding an alkylene oxide to a polyhydric phenol compound has a low chlorine content and is suitable for use in electronic component adhesion. I understood it.

表2及び3の結果から、実施例1〜6で得られたエポキシ樹脂(EP−1〜6)は、液状でありながら優れた反応性を有し、実施例7〜18で得られたエポキシ樹脂硬化物は、少なくとも可撓性に優れ、さらには高耐熱性であることが確認された。   From the results of Tables 2 and 3, the epoxy resins (EP-1 to 6) obtained in Examples 1 to 6 have excellent reactivity while being liquid, and the epoxy resins obtained in Examples 7 to 18 were used. It was confirmed that the cured resin product is at least excellent in flexibility and further has high heat resistance.

Claims (3)

下記一般式(2)で表される多価フェノール化合物に、反応溶媒を用いてアルキレンオキシドを付加させる第一の付加工程と、
前記第一の付加工程で得られた付加物に、さらにアルキレンオキシドを付加させることにより、多価フェノール化合物に対するアルキレンオキシドの合計付加モル数の平均値を、5以上7.5以下の範囲とする第二の付加工程と、
を含み、
前記第一の付加工程における前記アルキレンオキシドの使用量が、前記多価フェノール化合物に対して3.0〜3.9当量であり、
得られる多価ヒドロキシ組成物が、下記一般式(1)で表される多価ヒドロキシ化合物の組成物であり、当該多価ヒドロキシ組成物において、多価フェノール化合物に対して付加させたアルキレンオキシドのモル数(下記式(1)中のa+b+cに相当する)の平均値が、5以上7.5以下の範囲である、多価ヒドロキシ組成物の製造方法。
Figure 0006444692
(式(1)中、a、b及びcは、それぞれ独立に、0〜3の整数であり、(a+b+c)個のR1は、それぞれ独立に、エチレン基又はプロピレン基を表す。)
Figure 0006444692
A first addition step of adding an alkylene oxide to a polyhydric phenol compound represented by the following general formula (2) using a reaction solvent;
By adding alkylene oxide to the adduct obtained in the first addition step, the average value of the total number of moles of alkylene oxide added to the polyhydric phenol compound is in the range of 5 to 7.5. A second addition step;
Including
The amount of the alkylene oxide used in the first addition step is 3.0 to 3.9 equivalents relative to the polyhydric phenol compound,
The polyhydric hydroxy composition obtained is a polyhydric hydroxy compound composition represented by the following general formula (1). In the polyhydric hydroxy composition, an alkylene oxide added to the polyhydric phenol compound. The manufacturing method of the polyhydric hydroxy composition whose average value of the number of moles (equivalent to a + b + c in following formula (1)) is the range of 5 or more and 7.5 or less.
Figure 0006444692
(In formula (1), a, b and c are each independently an integer of 0 to 3, and (a + b + c) R 1 s each independently represent an ethylene group or a propylene group.)
Figure 0006444692
前記第一及び第二の付加工程の間に、反応溶媒を留去させる工程を含む、請求項1に記載の多価ヒドロキシ組成物の製造方法。   The method for producing a polyvalent hydroxy composition according to claim 1, comprising a step of distilling off the reaction solvent between the first and second addition steps. 前記第一及び/又は第二の付加工程が、アルカリ性化合物の存在下で行われる、請求項1又は2に記載の多価ヒドロキシ組成物の製造方法。   The method for producing a polyvalent hydroxy composition according to claim 1 or 2, wherein the first and / or second addition step is performed in the presence of an alkaline compound.
JP2014216590A 2014-10-23 2014-10-23 Polyvalent hydroxy compound and method for producing the same Active JP6444692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014216590A JP6444692B2 (en) 2014-10-23 2014-10-23 Polyvalent hydroxy compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216590A JP6444692B2 (en) 2014-10-23 2014-10-23 Polyvalent hydroxy compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016084295A JP2016084295A (en) 2016-05-19
JP6444692B2 true JP6444692B2 (en) 2018-12-26

Family

ID=55973260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216590A Active JP6444692B2 (en) 2014-10-23 2014-10-23 Polyvalent hydroxy compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP6444692B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104883A (en) * 2017-12-14 2019-06-27 旭化成株式会社 Epoxy resin, epoxy resin composition, cured product, and method for producing epoxy resin
WO2021210587A1 (en) * 2020-04-17 2021-10-21 デンカ株式会社 Polyfunctional compound, composition, adhesive composition, adhesive composition set, adhesion method, and structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300589A (en) * 1993-05-28 1994-04-05 Hoechst Celanese Corporation Substituted triphenyl compounds & processes for preparing the same
US5312988A (en) * 1993-05-28 1994-05-17 Hoechst Celanese Corporation Amines derived from THPE
KR100432152B1 (en) * 2001-04-12 2004-05-17 한국화학연구원 Porogens with polyalkylene oxide multiarms and low dielectric films using them
JP2003246837A (en) * 2002-02-26 2003-09-05 Asahi Kasei Epoxy Kk Epoxy resin and curable resin composition

Also Published As

Publication number Publication date
JP2016084295A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
TWI425019B (en) Liquid epoxy resin, epoxy resin composition and hardened product
JP4742625B2 (en) Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition
JP6444692B2 (en) Polyvalent hydroxy compound and method for producing the same
JP6282515B2 (en) Epoxy resin and production method thereof, epoxy resin composition and cured product thereof
JP3573530B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JP4259834B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
EP1538147B1 (en) Method of producing glycidyl 2-hydroxyisobutyrate
WO2008035515A1 (en) Liquid epoxy resin composition and epoxy resin cured product
JP4863434B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
KR20020031316A (en) Epoxy Resin Composition and Process for Producing the Same
JPH05140138A (en) Epoxy resin, resin composition and cured product
JP3907140B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP4743824B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP2006306900A (en) Curable composition and cured material
JP2016008218A (en) Epoxy resin and its composition, and compound
JP4397084B2 (en) Novel alicyclic group-containing compound and production method thereof
JP4671018B2 (en) Method for producing glycidyl 2-hydroxyisobutyrate
JPH11302508A (en) Epoxy resin component
JP4899257B2 (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof.
JP2009107992A (en) Method for producing purified glycidyl compound, and purified glycidyl compound
JP4463453B2 (en) Epoxy resin composition and cured product thereof
JP4033449B2 (en) Epoxy resin and method for producing the same
JP5132036B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP2005247902A (en) Epoxy resin and epoxy resin composition
JP2004238501A (en) Crystalline phenolic resin, liquid epoxy resin and epoxy resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R150 Certificate of patent or registration of utility model

Ref document number: 6444692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250