JP6273917B2 - Thiophene copolymer and aqueous solution thereof, and thiophene monomer composition and production method thereof - Google Patents

Thiophene copolymer and aqueous solution thereof, and thiophene monomer composition and production method thereof Download PDF

Info

Publication number
JP6273917B2
JP6273917B2 JP2014046205A JP2014046205A JP6273917B2 JP 6273917 B2 JP6273917 B2 JP 6273917B2 JP 2014046205 A JP2014046205 A JP 2014046205A JP 2014046205 A JP2014046205 A JP 2014046205A JP 6273917 B2 JP6273917 B2 JP 6273917B2
Authority
JP
Japan
Prior art keywords
thiophene
formula
compound represented
following formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014046205A
Other languages
Japanese (ja)
Other versions
JP2015168793A (en
Inventor
裕一 箭野
裕一 箭野
西山 正一
正一 西山
裕 粟野
裕 粟野
定快 林
定快 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014046205A priority Critical patent/JP6273917B2/en
Publication of JP2015168793A publication Critical patent/JP2015168793A/en
Application granted granted Critical
Publication of JP6273917B2 publication Critical patent/JP6273917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Paints Or Removers (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、チオフェン共重合体及びその水溶液、並びにその原料であるチオフェンモノマー組成物及びその製造方法に関する。   The present invention relates to a thiophene copolymer, an aqueous solution thereof, a thiophene monomer composition that is a raw material thereof, and a method for producing the same.

ポリアセチレン、ポリチオフェン、ポリアニリン、ポリピロール等に代表されるπ共役二重結合を有するポリマーは、アクセプターやドナーによるドーピングにより導電体(導電性ポリマー)となることが知られており、帯電防止剤、コンデンサの固体電解質、導電性塗料、エレクトロクロミック素子、透明電極、透明導電膜、化学センサ、アクチュエータ等への応用が検討されている。従来、導電性ポリマーは不溶不融のため成型加工性に課題があり、溶解させるには環境負荷の大きい極性有機溶媒(例えば、アミド系溶媒等)の使用が必要だった。そのため、環境負荷の小さい水に溶解する、水溶性で成型加工が容易な導電性ポリマーが求められていた。   Polymers having π-conjugated double bonds represented by polyacetylene, polythiophene, polyaniline, polypyrrole, etc. are known to become conductors (conductive polymers) by doping with acceptors and donors. Applications to solid electrolytes, conductive paints, electrochromic elements, transparent electrodes, transparent conductive films, chemical sensors, actuators, etc. are being studied. Conventionally, conductive polymers are insoluble and infusible and thus have a problem in molding processability, and it has been necessary to use a polar organic solvent (for example, an amide solvent) having a large environmental load in order to be dissolved. Therefore, there has been a demand for a water-soluble conductive polymer that can be easily molded and dissolved in water with a small environmental load.

近年、ポリスチレンスルホン酸(PSS)等の水溶性高分子ドーパントの存在下に、3,4−エチレンジオキシチオフェン(EDOT)を重合させた導電性ポリマーであるPEDOT:PSSが報告されている(例えば、特許文献1参照)。   In recent years, PEDOT: PSS, which is a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene (EDOT) in the presence of a water-soluble polymer dopant such as polystyrene sulfonic acid (PSS), has been reported (for example, , See Patent Document 1).

特許文献1によれば、ポリアニオンがドーパント兼水分散剤として取り込まれることで水溶性となり、成型加工性が向上するとされている。しかしながら、特許文献1に記載の導電性ポリマーは、ドーピングに関与していない導電性の低いポリマー部分を多量に含むため、導電性が低くなること、大過剰のスルホ基があることで耐熱性や耐水性が低いこと、強酸性による装置腐食等の課題がある。   According to Patent Document 1, the polyanion is incorporated as a dopant and water dispersant, so that it becomes water-soluble and the molding processability is improved. However, since the conductive polymer described in Patent Document 1 contains a large amount of a low-conductivity polymer part that is not involved in doping, it has low conductivity and a large excess of sulfo groups, which There are problems such as low water resistance and equipment corrosion due to strong acidity.

一方、水溶性導電性ポリマーを得る別法として、水溶性の付与とドーピング作用を兼ね備えた置換基(例えば、スルホ基、スルホネート基等)を、直接又はスペーサを介してポリマー分子鎖中に共有結合で導入した化合物を重合することで、成型加工性に優れた水溶性の自己ドープ型導電性ポリマーになることが提案され、例えば、直鎖のアルキレンスルホン酸基が置換したポリ(4−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イルメトキシ)−1−ブタンスルホン酸)(PEDT−S)は、10−30S/cm程度の導電率を示すことが報告されている(例えば、特許文献2、非特許文献1、2参照)。   On the other hand, as an alternative method for obtaining a water-soluble conductive polymer, a substituent (for example, a sulfo group, a sulfonate group, etc.) having water solubility and a doping action is covalently bonded directly or via a spacer to a polymer molecular chain. It is proposed to polymerize the compound introduced in step 1 into a water-soluble self-doped conductive polymer excellent in molding processability. For example, poly (4- (2 , 3-Dihydrothieno [3,4-b] [1,4] dioxin-2-ylmethoxy) -1-butanesulfonic acid) (PEDT-S) is reported to exhibit a conductivity of about 10-30 S / cm. (For example, refer to Patent Document 2, Non-Patent Documents 1 and 2).

しかしながら、近年の半導体の高集積化に伴い、より微細なパターン形成の要求があり、そのためにより高い導電性(帯電防止能)を有するポリマーが求められていた。   However, with the recent high integration of semiconductors, there has been a demand for finer pattern formation, and therefore a polymer having higher conductivity (antistatic ability) has been demanded.

このため、本件出願人は、水溶化のために導電性向上に寄与しない他の成分を添加することなく良好な成形加工性を付与でき、良好な水溶性と高い導電性を有し、なおかつ水溶液とした場合にポリマーの粒子径が十分に小さい自己ドープ型の水溶性導電性高分子について既に特許出願している(例えば、特許文献3参照)。この高分子を合成するためのチオフェンモノマーは、公知の方法(例えば、非特許文献1参照)に従い、チエノ[3,4−b]−1,4−ジオキシン−2−メタノールと分岐したスルトン化合物とから容易に合成できる。   For this reason, the applicant of the present invention can impart good moldability without adding other components that do not contribute to improvement of conductivity due to water solubilization, have good water solubility and high conductivity, and still have an aqueous solution. In this case, a patent application has already been filed for a self-doped water-soluble conductive polymer having a sufficiently small polymer particle size (see, for example, Patent Document 3). The thiophene monomer for synthesizing this polymer is a sultone compound branched with thieno [3,4-b] -1,4-dioxin-2-methanol according to a known method (for example, see Non-Patent Document 1). Can be easily synthesized.

しかしながら、このチオフェンモノマーを合成するための重要中間体である、2−ヒドロキシメチル−2,3−ジヒドロ−チエノ[3,4−b][1,4]ジオキシン−5,7−ジカルボン酸ジアルキルエステルは、例えば、3,4−ジヒドロキシチオフェン−2,5−ジカルボン酸エステルとエピブロモヒドリンとを反応させてエーテル環化する方法で製造されるが、その際に、環化生成物である3−ヒドロキシ−3,4−ジヒドロ−2H−チエノ[3,4−b][1,4]ジオキセピン−6,8−ジカルボン酸ジアルキルエステルが30%程度副生するという問題を有している(例えば、特許文献4参照)。   However, 2-hydroxymethyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin-5,7-dicarboxylic acid dialkyl ester is an important intermediate for synthesizing this thiophene monomer Is produced, for example, by a method of reacting 3,4-dihydroxythiophene-2,5-dicarboxylic acid ester with epibromohydrin to cyclize the ether, in which case the cyclization product 3 -Hydroxy-3,4-dihydro-2H-thieno [3,4-b] [1,4] dioxepin-6,8-dicarboxylic acid dialkyl ester has a problem of about 30% by-product (for example, , See Patent Document 4).

このため、例えば、2−ヒドロキシメチル−2,3−ジヒドロ−チエノ[3,4−b][1,4]ジオキシン−5,7−ジカルボン酸ジアルキルエステルと3−ヒドロキシ−3,4−ジヒドロ−2H−チエノ[3,4−b][1,4]ジオキセピン−6,8−ジカルボン酸ジアルキルエステルとを一緒にアセチル化して、再結晶することにより、3−ヒドロキシ−3,4−ジヒドロ−2H−チエノ[3,4−b][1,4]ジオキセピン−6,8−ジカルボン酸ジアルキルエステルのアセチル化体を除去することで目的物を精製する必要があり(例えば、特許文献5参照)、工業的な製造方法としては煩雑であり、目的物の大幅な収率低下を伴うものであった。   Thus, for example, 2-hydroxymethyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin-5,7-dicarboxylic acid dialkyl ester and 3-hydroxy-3,4-dihydro- 3-Hydroxy-3,4-dihydro-2H by acetylating 2H-thieno [3,4-b] [1,4] dioxepin-6,8-dicarboxylic acid dialkyl ester together and recrystallizing. -It is necessary to purify the target product by removing the acetylated form of thieno [3,4-b] [1,4] dioxepin-6,8-dicarboxylic acid dialkyl ester (see, for example, Patent Document 5), The industrial production method is complicated and accompanied by a significant yield reduction of the target product.

特許第2636968号明細書Japanese Patent No. 2636968 特許第4974095号明細書Japanese Patent No. 4974095 国際公開特許2014/007299号International Patent Publication No. 2014/007299 米国特許第511327号明細書US Pat. No. 5,11327 特許4049744号明細書Japanese Patent No. 4049744

Chemisty Materials,21,1815−1821(2009)Chemisty Materials, 21, 1815-1821 (2009) Advanced Materials,23(38),4403−4408(2011)Advanced Materials, 23 (38), 4403-4408 (2011)

本発明は、上記の背景技術に鑑みてなされたものであり、その目的は、
(1)工業的な製造方法で得られる、新規なチオフェンモノマー組成物を提供すること、及び
(2)高導電性を有する新規な水溶性のチオフェン共重合体を提供すること、
である。
The present invention has been made in view of the above-described background art, and its purpose is as follows.
(1) To provide a novel thiophene monomer composition obtained by an industrial production method, and (2) To provide a novel water-soluble thiophene copolymer having high conductivity,
It is.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、本発明のチオフェンモノマー組成物が、工業的な製造方法で得られること、及び本発明のチオフェンモノマー組成物から誘導されたチオフェン共重合体が高い導電性と優れた水溶性を有することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have obtained the thiophene monomer composition of the present invention by an industrial production method and derived from the thiophene monomer composition of the present invention. The inventors have found that a thiophene copolymer has high conductivity and excellent water solubility, and have completed the present invention.

すなわち、本発明は以下に示すとおりのチオフェン共重合体及びその水溶液、並びにその原料であるチオフェンモノマー組成物及びその製造方法に関するものである。   That is, this invention relates to the thiophene copolymer as shown below, its aqueous solution, the thiophene monomer composition which is the raw material, and its manufacturing method.

[1]エチレンジオキシ環を有する構造単位(A)とプロピレンジオキシ環を有する構造単位(B)とからなるチオフェン共重合体であって、構造単位(A)が下記式(1)で表される構造単位及び下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種であること、並びに構造単位(B)が下記式(3)で表される構造単位及び下記式(4)で表される構造単位からなる群より選ばれる少なくとも一種であることを特徴とするチオフェン共重合体。   [1] A thiophene copolymer comprising a structural unit (A) having an ethylenedioxy ring and a structural unit (B) having a propylenedioxy ring, wherein the structural unit (A) is represented by the following formula (1). The structural unit and at least one selected from the group consisting of the structural unit represented by the following formula (2), and the structural unit (B) represented by the following formula (3) and the following formula A thiophene copolymer, which is at least one selected from the group consisting of structural units represented by (4).

Figure 0006273917
Figure 0006273917

Figure 0006273917
Figure 0006273917

Figure 0006273917
Figure 0006273917

Figure 0006273917
Figure 0006273917

[上記式(1)〜(4)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。Mは水素原子、Li、Na及びKからなる群より選ばれるアルカリ金属、NH(R又はHNCを表す。Rは各々独立して水素原子、又は置換基を有していてもよい炭素数1〜6のアルキル基を表す。]
[2]チオフェン共重合体の重量平均分子量が、ポリスチレンスルホン酸換算で1千〜100万の範囲であることを特徴とする上記[1]に記載のチオフェン共重合体。
[In said formula (1)-(4), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom. M represents a hydrogen atom, an alkali metal selected from the group consisting of Li, Na and K, NH (R 1 ) 3 or HNC 5 H 5 . Each R 1 independently represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms. ]
[2] The thiophene copolymer according to the above [1], wherein the thiophene copolymer has a weight average molecular weight in the range of 1,000 to 1,000,000 in terms of polystyrene sulfonic acid.

[3]上記式(2)で表される構造単位に対する、上記式(1)で表される構造単位の比(モル比)が、少なくとも70/30であることを特徴とする上記[1]又は[2]に記載のチオフェン共重合体。   [3] The above-mentioned [1], wherein the ratio (molar ratio) of the structural unit represented by the formula (1) to the structural unit represented by the formula (2) is at least 70/30. Or the thiophene copolymer as described in [2].

[4]下記式(5)で表されるチオフェン化合物と下記式(6)で表されるチオフェン化合物とを含むチオフェンモノマー組成物。   [4] A thiophene monomer composition comprising a thiophene compound represented by the following formula (5) and a thiophene compound represented by the following formula (6).

Figure 0006273917
Figure 0006273917

Figure 0006273917
Figure 0006273917

[上記式(5)、(6)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。Mは水素原子、Li、Na及びKからなる群より選ばれるアルカリ金属、NH(R又はHNCを表す。Rは各々独立して水素原子、又は置換基を有していてもよい炭素数1〜6のアルキル基を表す。]
[5]上記式(6)で表されるチオフェン化合物に対する、上記式(5)で表されるチオフェン化合物の比(モル比)が、少なくとも70/30であることを特徴とする上記[4]に記載のチオフェンモノマー組成物。
[In said formula (5), (6), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom. M represents a hydrogen atom, an alkali metal selected from the group consisting of Li, Na and K, NH (R 1 ) 3 or HNC 5 H 5 . Each R 1 independently represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms. ]
[5] The above [4], wherein the ratio (molar ratio) of the thiophene compound represented by the above formula (5) to the thiophene compound represented by the above formula (6) is at least 70/30. The thiophene monomer composition described in 1.

[6]上記[4]又は[5]に記載のチオフェンモノマー組成物を、水又はアルコール溶媒中、酸化剤の存在下に重合させることを特徴とする上記[1]乃至[3]のいずれかに記載のチオフェン共重合体の製造法。   [6] Any of [1] to [3] above, wherein the thiophene monomer composition according to [4] or [5] is polymerized in water or an alcohol solvent in the presence of an oxidizing agent. A method for producing the thiophene copolymer described in 1.

[7]下記式(6)で表されるチオフェン化合物。   [7] A thiophene compound represented by the following formula (6).

Figure 0006273917
Figure 0006273917

[上記式(6)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。Mは水素原子、Li、Na及びKからなる群より選ばれるアルカリ金属、NH(R又はHNCを表す。Rは各々独立して水素原子、又は置換基を有していてもよい炭素数1〜6のアルキル基を表す。]
[8]下記式(7)で表される化合物及び下記式(8)で表される化合物と、下記式(9)で表される化合物とを、MH(Mは、Li、Na又はKを表す。)の存在下、反応させることを特徴とする、上記[4]において、Mが、Li、Na又はKを表すチオフェンモノマー組成物の製造方法。
[In said formula (6), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom. M represents a hydrogen atom, an alkali metal selected from the group consisting of Li, Na and K, NH (R 1 ) 3 or HNC 5 H 5 . Each R 1 independently represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms. ]
[8] A compound represented by the following formula (7) and a compound represented by the following formula (8) and a compound represented by the following formula (9) are mixed with MH (M is Li, Na or K). In the above [4], the method for producing a thiophene monomer composition, wherein M represents Li, Na, or K.

Figure 0006273917
Figure 0006273917

Figure 0006273917
Figure 0006273917

Figure 0006273917
Figure 0006273917

[上記式(9)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。]
[9]上記式(8)で表される化合物に対する、上記式(7)で表される化合物の比(モル比)が、少なくとも70/30であることを特徴とする上記[8]に記載の製造方法。
[In said Formula (9), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom. ]
[9] The ratio of the compound represented by the formula (7) to the compound represented by the formula (8) (molar ratio) is at least 70/30. Manufacturing method.

[10]上記[1]乃至[3]のいずれかに記載のチオフェン共重合体の水溶液からなる水溶性導電性高分子水溶液。   [10] A water-soluble conductive polymer aqueous solution comprising an aqueous solution of the thiophene copolymer according to any one of [1] to [3].

[11]上記[10]に記載の水溶液を基材に塗布し乾燥することを特徴とする導電性被膜の製造方法。   [11] A method for producing a conductive coating, comprising applying the aqueous solution according to [10] to a substrate and drying.

本発明によれば、良好な導電性と成型加工に十分な水溶性を兼ね備えた新規なチオフェン共重合体と、その原料であるチオフェンモノマー組成物とを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the novel thiophene copolymer which has favorable electroconductivity and water solubility sufficient for a shaping | molding process, and the thiophene monomer composition which is the raw material can be provided.

本発明のチオフェン共重合体は、スルホ基のα位に置換基を有するチオフェン部と3,4−プロピレンチオフェン部を有すること、及びそれらの共重合体であるという点で、特許文献2に記載されているPEDT−Sとは異なり、その導電率もPEDT−Sに比べ向上するため、産業上極めて有用である。   The thiophene copolymer of the present invention is described in Patent Document 2 in that it has a thiophene portion having a substituent at the α-position of a sulfo group and a 3,4-propylenethiophene portion, and is a copolymer thereof. Unlike PEDT-S, which has a higher conductivity than PEDT-S, it is extremely useful in the industry.

また、本発明のチオフェンモノマー組成物は、工業的な製造方法で得られ、モノマー合成時の煩雑な単離精製を省略できるため、時間短縮や収率向上が見込まれ、経済的効果も大きい。   In addition, the thiophene monomer composition of the present invention is obtained by an industrial production method and can eliminate complicated isolation and purification at the time of monomer synthesis, so that time reduction and yield improvement are expected, and the economic effect is great.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のチオフェン共重合体は、エチレンジオキシ環を有する構造単位(A)とプロピレンジオキシ環を有する構造単位(B)とからなり、
構造単位(A)が上記式(1)で表される構造単位及び上記式(2)で表される構造単位からなる群より選ばれる少なくとも1種であること、並びに
構造単位(B)が上記式(3)で表される構造単位及び上記式(4)で表される構造単位からなる群より選ばれる少なくとも一種であること、
をその特徴とする。
The thiophene copolymer of the present invention comprises a structural unit (A) having an ethylenedioxy ring and a structural unit (B) having a propylene dioxy ring,
The structural unit (A) is at least one selected from the group consisting of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), and the structural unit (B) is the above It is at least one selected from the group consisting of a structural unit represented by formula (3) and a structural unit represented by formula (4) above;
Is the feature.

上記式(3)、式(4)で表される構造単位は、それぞれ上記式(1)、式(2)で表される構造単位のドーピング状態を表す。   The structural units represented by the above formulas (3) and (4) represent doping states of the structural units represented by the above formulas (1) and (2), respectively.

ドーピングにより絶縁体−金属転移を引き起こすドーパントは、アクセプタとドナーに分けられる。前者は、ドーピングにより導電性ポリマーの高分子鎖の近くに入り主鎖の共役系からπ電子を奪う。結果として、主鎖上に正電荷(正孔、ホール)が注入されるため、p型ドーパントとも呼ばれる。具体的には、ハロゲン類(Br、I、Cl)、ルイス酸(BF、PF、AsF)、プロトン酸(HSO、HCl、CFSOH)、遷移金属ハライド(FeCl)、有機物質(TCNQ)等が例示される。 The dopant causing the insulator-metal transition by doping is divided into an acceptor and a donor. The former enters near the polymer chain of the conductive polymer by doping and takes π electrons from the conjugated system of the main chain. As a result, since positive charges (holes, holes) are injected onto the main chain, it is also called a p-type dopant. Specifically, halogens (Br 2 , I 2 , Cl 2 ), Lewis acid (BF 3 , PF 5 , AsF 5 ), protonic acid (H 2 SO 4 , HCl, CF 3 SO 3 H), transition metal Examples include halide (FeCl 3 ), organic substance (TCNQ), and the like.

また、後者は、逆に主鎖の共役系に電子を与えることになり、この電子が主鎖の共役系を動くことになるため、n型ドーパントとも呼ばれる。具体的には、アルカリ金属(Li、Na、K、Cs)、アルキルアンモニウムイオン等が例示される。   The latter is also referred to as an n-type dopant because it gives electrons to the conjugated system of the main chain, which moves in the conjugated system of the main chain. Specific examples include alkali metals (Li, Na, K, Cs), alkylammonium ions, and the like.

本発明におけるドーパントは、ポリマー分子内に共有結合で結びついたスルホ基又はスルホナート基であり、p型ドーパントである。このように外部からドーパントを添加することなく導電性を発現するポリマーは自己ドープ型ポリマーと呼ばれている。   The dopant in the present invention is a sulfo group or a sulfonate group that is covalently bonded in the polymer molecule, and is a p-type dopant. Such a polymer that exhibits conductivity without externally adding a dopant is called a self-doped polymer.

上記式(1)〜(4)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。   In said formula (1)-(4), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom.

炭素数1〜6の鎖状、分岐状アルキル基としては、特に限定するものではないが、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、n−へキシル基、2−エチルブチル基、シクロヘキシル基、n−オクチル基等が挙げられる。   The chain or branched alkyl group having 1 to 6 carbon atoms is not particularly limited. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Examples include a butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a cyclopentyl group, an n-hexyl group, a 2-ethylbutyl group, a cyclohexyl group, and an n-octyl group.

上記式(1)〜(4)中、Mは、水素原子、Li、Na及びKからなる群より選ばれるアルカリ金属、NH(R又はHNCを表す。その際、Rは各々独立して水素原子、又は置換基を有していてもよい炭素数1〜6のアルキル基を表す。置換基Rとしては、具体的には、上記した置換基Rと同じものを例示することができ、より好ましくは水素原子、メチル基である。また、Rが置換基を有するアルキル基である場合の当該置換基としては、例えば、炭素数1〜6のアルキル基又はアルコキシ基、炭素数1〜20のアリール基、ヒドロキシ基、アミノ基、カルボキシル基等が挙げることができ、より好ましくは、2−ヒドロキシエチル基、3−ヒドロキシプロピル基、2−ヒドロキシプロピル基、2,3−ジヒドロキシプロピル基等のヒドロキシ基を有するアルキル基である。 In the above formulas (1) to (4), M represents an alkali metal selected from the group consisting of a hydrogen atom, Li, Na and K, NH (R 1 ) 3 or HNC 5 H 5 . At that time, R 1 is each independently represent a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms. Specific examples of the substituent R 1 include the same as the above-described substituent R, and more preferably a hydrogen atom or a methyl group. In addition, as the substituent in the case where R 1 is an alkyl group having a substituent, for example, an alkyl group having 1 to 6 carbon atoms or an alkoxy group, an aryl group having 1 to 20 carbon atoms, a hydroxy group, an amino group, A carboxyl group etc. can be mentioned, More preferably, it is an alkyl group which has hydroxy groups, such as 2-hydroxyethyl group, 3-hydroxypropyl group, 2-hydroxypropyl group, and 2,3-dihydroxypropyl group.

本発明のチオフェン共重合体は、ランダム、ブロック、交互共重合体のいずれであっても良い。   The thiophene copolymer of the present invention may be a random, block, or alternating copolymer.

本発明のチオフェン共重合体は、重量平均分子量がポリスチレンスルホン酸換算で、通常1千〜100万の範囲であり、好ましくは、1千〜50万の範囲である。粘性や水溶性の観点からは、1千〜10万の範囲が好ましい。   The weight average molecular weight of the thiophene copolymer of the present invention is usually in the range of 1,000 to 1,000,000, preferably in the range of 1,000 to 500,000 in terms of polystyrene sulfonic acid. From the viewpoint of viscosity and water solubility, the range of 1,000 to 100,000 is preferable.

本発明のチオフェン共重合体において、プロピレンジオキシチオフェン環を有する構造単位(B)に対する、エチレンジオキシ環を有する構造単位(A)の比[構造単位(A)/構造単位(B)](モル比)は、少なくとも70/30であり、ポリマーの導電率の観点からは、80/20以上が好ましい。さらに好ましくは、90/10以上である。ここで、当該モル比は、ガスクロマトグラフィーによるピーク面積の比、又はNMRスペクトルのピーク面積の比として求められる。   In the thiophene copolymer of the present invention, the ratio of the structural unit (A) having an ethylenedioxy ring to the structural unit (B) having a propylenedioxythiophene ring [structural unit (A) / structural unit (B)] ( (Molar ratio) is at least 70/30, and is preferably 80/20 or more from the viewpoint of the conductivity of the polymer. More preferably, it is 90/10 or more. Here, the molar ratio is obtained as a ratio of peak areas by gas chromatography or a ratio of peak areas of NMR spectrum.

本発明のチオフェンモノマー組成物は、上記式(5)で表されるチオフェン化合物と上記式(6)で表されるチオフェン化合物とを含む。   The thiophene monomer composition of this invention contains the thiophene compound represented by the said Formula (5), and the thiophene compound represented by the said Formula (6).

上記式(5)で表されるチオフェンモノマーとしては、特に限定するものではないが、例えば、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−メチル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−エチル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−プロピル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−ブチル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−ペンチル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−ヘキシル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−イソプロピル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−イソブチル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−イソペンチル−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−フルオロ−1−プロパンスルホン酸ナトリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−メチル−1−プロパンスルホン酸カリウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−メチル−1−プロパンスルホン酸、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−メチル−1−プロパンスルホン酸アンモニウム、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−メチル−1−プロパンスルホン酸トリエチルアンモニウム等が挙げられる。   The thiophene monomer represented by the above formula (5) is not particularly limited. For example, 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl ) Sodium methoxy] -1-methyl-1-propanesulfonate, 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-ethyl-1 Sodium propanesulfonate, sodium 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-propyl-1-propanesulfonate, 3- [ (2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-butyl-1-propanesulfonate sodium, 3-[(2,3-dihydrothieno [3, 4-b [1,4] dioxin-2-yl) methoxy] -1-pentyl-1-propanesulfonate sodium, 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2- Yl) methoxy] -1-hexyl-1-propanesulfonate, 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-isopropyl- Sodium 1-propanesulfonate, 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-isobutyl-1-propanesulfonate sodium, 3- [(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-isopentyl-1-propanesulfonate sodium, 3-[(2,3-di Drothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-fluoro-1-propanesulfonate sodium, 3-[(2,3-dihydrothieno [3,4-b] [ 1,4] dioxin-2-yl) methoxy] -1-methyl-1-propanesulfonate potassium, 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl ) Methoxy] -1-methyl-1-propanesulfonic acid, 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-methyl-1- Examples include ammonium propanesulfonate, tri [ammonium 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-methyl-1-propanesulfonate, and the like. .

上記式(6)で表されるチオフェンモノマーとしては、特に限定するものではないが、例えば、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−メチル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−エチル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−プロピル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−ブチル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−ペンチル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−ヘキシル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−イソプロピル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−イソブチル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−イソペンチル−1−プロパンスルホン酸ナトリウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−メチル−1−プロパンスルホン酸、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−メチル−1−プロパンスルホン酸アンモニウム、3−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキセピン−3−イルオキシ)−1−メチル−1−プロパンスルホン酸トリエチルアンモニウム等が挙げられる。   The thiophene monomer represented by the above formula (6) is not particularly limited. For example, 3- (2,3-dihydrothieno [3,4-b] [1,4] dioxepin-3-yloxy) Sodium 1-methyl-1-propanesulfonate, sodium 3- (2,3-dihydrothieno [3,4-b] [1,4] dioxepin-3-yloxy) -1-ethyl-1-propanesulfonate, 3- (2,3-dihydrothieno [3,4-b] [1,4] dioxepin-3-yloxy) -1-propyl-1-propanesulfonate sodium, 3- (2,3-dihydrothieno [3,4] -B] [1,4] dioxepin-3-yloxy) -1-butyl-1-propanesulfonic acid sodium, 3- (2,3-dihydrothieno [3,4-b] [1,4] dioxi Pin-3-yloxy) -1-pentyl-1-propanesulfonic acid sodium, 3- (2,3-dihydrothieno [3,4-b] [1,4] dioxepin-3-yloxy) -1-hexyl-1 Sodium propanesulfonate, sodium 3- (2,3-dihydrothieno [3,4-b] [1,4] dioxepin-3-yloxy) -1-isopropyl-1-propanesulfonate, 3- (2,3 -Dihydrothieno [3,4-b] [1,4] dioxepin-3-yloxy) -1-isobutyl-1-propanesulfonate sodium, 3- (2,3-dihydrothieno [3,4-b] [1, 4] Sodium dioxepin-3-yloxy) -1-isopentyl-1-propanesulfonate, 3- (2,3-dihydrothieno [3,4-b] [1,4] di Xepin-3-yloxy) -1-methyl-1-propanesulfonic acid, 3- (2,3-dihydrothieno [3,4-b] [1,4] dioxepin-3-yloxy) -1-methyl-1- Examples include ammonium propanesulfonate, triethylammonium 3- (2,3-dihydrothieno [3,4-b] [1,4] dioxepin-3-yloxy) -1-methyl-1-propanesulfonate, and the like.

本発明のチオフェン共重合体の原料組成物としては、上記式(6)で表されるチオフェン化合物に対する、上記式(5)で表されるチオフェン化合物の比(モル比)が、ガスクロマトグラフィーによるピーク面積の割合として、少なくとも70/30であり、ポリマーの導電率の観点からは、80/20以上が好ましい。さらに好ましくは、90/10以上である。ここで、当該モル比は、ガスクロマトグラフィーによるピーク面積の比、又はNMRスペクトルのピーク面積の比として求められる。   As a raw material composition of the thiophene copolymer of the present invention, the ratio (molar ratio) of the thiophene compound represented by the above formula (5) to the thiophene compound represented by the above formula (6) is determined by gas chromatography. The ratio of the peak area is at least 70/30, and is preferably 80/20 or more from the viewpoint of the conductivity of the polymer. More preferably, it is 90/10 or more. Here, the molar ratio is obtained as a ratio of peak areas by gas chromatography or a ratio of peak areas of NMR spectrum.

なお、本発明のチオフェンモノマー組成物は下記のように合成できる。   The thiophene monomer composition of the present invention can be synthesized as follows.

例えば、米国特許第511327号明細書(特許文献4)に記載されるように、3,4−ジヒドロキシチオフェン−2,5−ジカルボン酸ジメチルエステルとエピハロヒドリンとを反応させることにより、中間体(7)と中間体(8)の約70/30の混合物として得られる。   For example, as described in US Pat. No. 5,11327 (Patent Document 4), the intermediate (7) is obtained by reacting 3,4-dihydroxythiophene-2,5-dicarboxylic acid dimethyl ester with epihalohydrin. And about 70/30 of the intermediate (8).

また、Electrochemical Communications, volume 2, pages72−76(2000)に記載されるように、エピハロヒドリンに変えて2,3−ジブロモ−1−プロパノールとのダブルウィリアムソン反応により合成することも可能である。引き続き、加水分解と脱炭酸反応を経て全3工程で(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メタノール(7)及び(3,4−ジヒドロチエノ[3,4−b][1,4]ジオキセピン)−3−オール(8)の混合物を合成できる。   Further, as described in Electrochemical Communications, volume 2, pages 72-76 (2000), it is also possible to synthesize by double Williamson reaction with 2,3-dibromo-1-propanol instead of epihalohydrin. Subsequently, (2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methanol (7) and (3,4-dihydrothieno [3] in all three steps via hydrolysis and decarboxylation. 3,4-b] [1,4] dioxepin) -3-ol (8) can be synthesized.

そして、例えば、Journal of Electroanalytical Chemistry,443,217−226(1998)を参考に、スルトン化合物(9)と反応させることで目的の組成物を合成することができる。   Then, for example, with reference to Journal of Electroanalytical Chemistry, 443, 217-226 (1998), the target composition can be synthesized by reacting with the sultone compound (9).

(第一工程)   (First step)

Figure 0006273917
Figure 0006273917

(第二工程)   (Second step)

Figure 0006273917
Figure 0006273917

(第三工程)   (Third process)

Figure 0006273917
Figure 0006273917

(第四工程)   (Fourth process)

Figure 0006273917
Figure 0006273917

なお、上記式(5)で表されるチオフェンモノマーと上記式(6)で表されるチオフェンモノマーの比は、下記式(7)で表される中間体化合物と下記式(8)で表される中間体化合物の混合比に依存する。本発明のチオフェンモノマー組成物の原料組成物としては、上記式(8)で表される中間体化合物に対する、上記式(7)で表される中間体化合物の比(モル比)が、少なくとも70/30であり、ポリマーの導電率の観点からは、80/20以上が好ましい。さらに好ましくは、90/10以上である。また、モル比の上限としては、できるだけ100/0に近ければ近い方が好ましく、カラムクロマトグラフィーで精製することで、99.75/0.25まで、さらには99.9/0.1まで、上記式(8)で表される中間体化合物を軽減してもよい。ここで、当該モル比は、ガスクロマトグラフィーによるピーク面積の比、又はNMRスペクトルのピーク面積の比として求められる。   The ratio of the thiophene monomer represented by the above formula (5) and the thiophene monomer represented by the above formula (6) is represented by the intermediate compound represented by the following formula (7) and the following formula (8). Depending on the mixing ratio of the intermediate compound. As a raw material composition of the thiophene monomer composition of the present invention, the ratio (molar ratio) of the intermediate compound represented by the above formula (7) to the intermediate compound represented by the above formula (8) is at least 70. From the viewpoint of the conductivity of the polymer, 80/20 or more is preferable. More preferably, it is 90/10 or more. Further, the upper limit of the molar ratio is preferably as close as possible to 100/0. By purifying by column chromatography, 99.75 / 0.25, further 99.9 / 0.1, The intermediate compound represented by the above formula (8) may be reduced. Here, the molar ratio is obtained as a ratio of peak areas by gas chromatography or a ratio of peak areas of NMR spectrum.

更に、必要に応じて、下記式(5)で表されるチオフェンモノマー及び下記式(6)で表されるチオフェンモノマーは、酸処理によりMが水素原子であるスルホン酸へと誘導することができる。更に、このスルホン酸をアミン処理することでアンモニウム塩を得ることができる。   Furthermore, if necessary, the thiophene monomer represented by the following formula (5) and the thiophene monomer represented by the following formula (6) can be derived into a sulfonic acid in which M is a hydrogen atom by acid treatment. . Furthermore, an ammonium salt can be obtained by amine treatment of this sulfonic acid.

本発明のチオフェン共重合体は、例えば、本発明のチオフェンモノマー組成物を、水又はアルコール溶媒中、酸化剤の存在下に重合させることにより製造することができる。   The thiophene copolymer of the present invention can be produced, for example, by polymerizing the thiophene monomer composition of the present invention in water or an alcohol solvent in the presence of an oxidizing agent.

本重合反応に用いる溶媒は、水又はアルコール溶媒である。水としては、特に限定するものではないが、例えば、純水が挙げられ、蒸留水、イオン交換水でもよい。アルコール溶媒としては、特に限定するものではないが、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール類が挙げられる。これらのアルコール溶媒は、単独でも使用しても、水と併用してもよい。これらの溶媒のうち、好ましくは水又はメタノールであり、より好ましくは水である。また、溶媒を脱気や窒素等の不活性ガスで置換していてもよい。   The solvent used in the polymerization reaction is water or an alcohol solvent. Although it does not specifically limit as water, For example, a pure water is mentioned, Distilled water and ion-exchange water may be sufficient. The alcohol solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, propanol, and butanol. These alcohol solvents may be used alone or in combination with water. Of these solvents, water or methanol is preferable, and water is more preferable. In addition, the solvent may be replaced with an inert gas such as degassed or nitrogen.

本重合反応に用いる溶媒の量は、本発明のチオフェンモノマー組成物が溶解する量であり、特に限定するものではないが、本発明のチオフェンモノマー組成物の仕込量に対して、0.1〜100重量倍の範囲が好ましく、1〜20重量倍の範囲がより好ましい。   The amount of the solvent used in the present polymerization reaction is an amount that dissolves the thiophene monomer composition of the present invention, and is not particularly limited, but is 0.1 to 0.1% relative to the charged amount of the thiophene monomer composition of the present invention. The range of 100 times by weight is preferable, and the range of 1 to 20 times by weight is more preferable.

本重合反応に用いる酸化剤は、酸化的脱水素化反応による酸化重合を進行させるものであり、特に限定するものではないが、例えば、過硫酸類、鉄塩(III)、過酸化水素、過マンガン酸塩、重クロム酸塩、硫酸セリウム(IV)、酸素等が挙げられる。これらを単独で又は二種以上を混合して使用しても良い。   The oxidizing agent used in the polymerization reaction is one that promotes oxidative polymerization by oxidative dehydrogenation reaction, and is not particularly limited. For example, persulfuric acid, iron salt (III), hydrogen peroxide, hydrogen peroxide, Manganates, dichromates, cerium (IV) sulfate, oxygen and the like can be mentioned. You may use these individually or in mixture of 2 or more types.

ここで、過硫酸類としては、具体的には、過硫酸、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等が例示される。   Specific examples of the persulfuric acid include persulfuric acid, ammonium persulfate, sodium persulfate, and potassium persulfate.

また、鉄塩(III)としては、具体的には、FeCl、Fe(SO、過塩素酸鉄、パラ−トルエンスルホン酸鉄(III)等が例示される。これらは無水物を使用しても、水和物を使用してもよい。 Specific examples of the iron salt (III) include FeCl 3 , Fe 2 (SO 4 ) 3 , iron perchlorate, iron (III) para-toluenesulfonate, and the like. These may use anhydrides or hydrates.

また、過マンガン酸塩としては、具体的には、過マンガン酸ナトリウム、過マンガン酸カリウム、過マンガン酸マグネシウム等が例示される。   Specific examples of permanganate include sodium permanganate, potassium permanganate, and magnesium permanganate.

また、重クロム酸塩としては、具体的には、重クロム酸アンモニウム、重クロム酸カリウム等が例示される。   Specific examples of the dichromate include ammonium dichromate and potassium dichromate.

これらの酸化剤のうち、FeCl、Fe(SO、又は過硫酸塩と鉄塩(III)との併用系が特に好ましい。 Among these oxidizing agents, FeCl 3 , Fe 2 (SO 4 ) 3 , or a combined system of persulfate and iron salt (III) is particularly preferable.

本重合反応に用いる酸化剤の量としては、特に限定するものではないが、上記式(5)及び上記式(6)で表されるチオフェンモノマーの混合物の仕込モル数に対して、0.05〜50倍モルである。より好ましくは、0.1〜10倍モルである。更に好ましくは、0.1〜5倍モルである。   The amount of the oxidizing agent used in the polymerization reaction is not particularly limited, but is 0.05 with respect to the charged mole number of the mixture of thiophene monomers represented by the above formula (5) and the above formula (6). ~ 50 times mole. More preferably, it is 0.1-10 times mole. More preferably, it is 0.1-5 times mole.

本重合反応に用いる酸化剤が、例えば、鉄塩(III)単独系の場合、原料として用いるチオフェンモノマーの仕込みモル数に対して、鉄塩(III)が等倍モル以上であり、且つ溶媒に対する鉄濃度が10重量%以上となるように用いて重合させることが好ましい。より良好な導電性を発現させるために必要なドーピングの観点からは、溶媒に対する鉄濃度が20重量%以上であることがさらに好ましい。なお、ここでいう「鉄濃度」とは、鉄塩/(鉄塩+水)×100(重量%)で表される値であり、鉄塩は無水物として計算する。   When the oxidizing agent used in the polymerization reaction is, for example, an iron salt (III) single system, the iron salt (III) is equal to or greater than the mole of the charged thiophene monomer used as a raw material, and is based on the solvent. The polymerization is preferably performed so that the iron concentration is 10% by weight or more. From the viewpoint of doping necessary for developing better conductivity, the iron concentration relative to the solvent is more preferably 20% by weight or more. The “iron concentration” here is a value represented by iron salt / (iron salt + water) × 100 (% by weight), and the iron salt is calculated as an anhydride.

また、本重合反応に用いる酸化剤が、例えば、過硫酸塩と鉄塩(III)との併用系である場合には、原料として用いられるチオフェンモノマーの仕込みのモル数に対して、過硫酸塩が0.5〜20倍モルの範囲であり、且つ鉄塩(III)が0.01〜10倍モルの範囲であることが好ましく、過硫酸塩が1.5〜10倍モルの範囲であり、且つ鉄塩(III)が0.05〜5倍モルの範囲であることがより好ましい。   Further, when the oxidizing agent used in the present polymerization reaction is, for example, a combined system of persulfate and iron salt (III), the persulfate with respect to the number of moles of charged thiophene monomer used as a raw material. Is in the range of 0.5 to 20 times mol, and the iron salt (III) is preferably in the range of 0.01 to 10 times mol, and the persulfate is in the range of 1.5 to 10 times mol. Further, the iron salt (III) is more preferably in the range of 0.05 to 5 times mol.

本重合反応において、圧力は常圧、減圧、加圧のいずれであってもよい。   In this polymerization reaction, the pressure may be normal pressure, reduced pressure, or increased pressure.

本重合反応の反応雰囲気は、大気中であっても、窒素やアルゴン等の不活性ガス中であってもよい。より好ましくは不活性ガス中である。   The reaction atmosphere of the polymerization reaction may be in the air or in an inert gas such as nitrogen or argon. More preferably, it is in an inert gas.

本重合反応の反応温度は、本発明のチオフェンモノマー組成物を酸化重合できる温度であり、特に限定するものではないが、例えば、−10℃〜150℃の範囲が好ましく、0℃〜100℃の範囲が更に好ましい。さらに好ましくは5℃〜50℃の範囲である。   The reaction temperature of the main polymerization reaction is a temperature at which the thiophene monomer composition of the present invention can be oxidatively polymerized, and is not particularly limited. For example, a range of −10 ° C. to 150 ° C. is preferable, and 0 ° C. to 100 ° C. A range is more preferred. More preferably, it is the range of 5 to 50 degreeC.

本重合反応の反応時間は、例えば、本発明のチオフェンモノマー組成物の酸化重合が十分進行する時間であり、特に限定するものではないが、0.5〜200時間の範囲が好ましく、0.5〜80時間の範囲が更に好ましい。   The reaction time of the main polymerization reaction is, for example, a time during which oxidative polymerization of the thiophene monomer composition of the present invention proceeds sufficiently, and is not particularly limited, but is preferably in the range of 0.5 to 200 hours, A range of ˜80 hours is more preferable.

本重合反応の反応方法は、特に限定するものではないが、例えば、本発明のチオフェンモノマー組成物を水溶液にして、これに酸化剤を一度に又はゆっくりと滴下してもよく、逆に酸化剤の固体又は水溶液に本発明のチオフェンモノマーの水溶液を一度に又はゆっくりと滴下してもよい。また、2種以上の酸化剤を用いる場合には、各酸化剤を順次添加してもよい。   The reaction method of the present polymerization reaction is not particularly limited. For example, the thiophene monomer composition of the present invention may be made into an aqueous solution, and an oxidizing agent may be dropped slowly or slowly at the same time. The aqueous solution of the thiophene monomer of the present invention may be dropped at once or slowly into the solid or aqueous solution. Moreover, when using 2 or more types of oxidizing agents, you may add each oxidizing agent sequentially.

本重合反応で得られた本発明のチオフェン共重合体の精製法としては、特に限定するものではないが、例えば、溶媒洗浄、再沈殿、遠心沈降、限外ろ過、透析、イオン交換樹脂処理等が挙げられる。それぞれ単独で行っても又は組み合わせても良い。   The purification method of the thiophene copolymer of the present invention obtained by the main polymerization reaction is not particularly limited. For example, solvent washing, reprecipitation, centrifugal sedimentation, ultrafiltration, dialysis, ion exchange resin treatment, etc. Is mentioned. Each may be performed alone or in combination.

本発明のチオフェン共重合体の典型的な単離精製方法は、例えば、以下のとおりである。   A typical isolation and purification method of the thiophene copolymer of the present invention is as follows, for example.

まず、重合反応後のポリマー水溶液をアセトン等の貧溶媒に添加し、ポリマーを沈殿させた後、減圧ろ過で得たポリマーを当該貧溶媒でろ液が無色透明になるまで洗浄する。有機溶媒を乾燥により留去した後、陽イオン交換樹脂で処理してH型ポリマーに変換する。処理方法としては、例えば、得られたNa塩型ポリマーの水溶液を陽イオン交換樹脂が充填されたカラムに通液させる方法や、陽イオン交換樹脂を水溶液に添加するボディーフィード法等が挙げられる。この場合、処理後にろ紙で陽イオン交換樹脂を除去することが好ましい。このようにして得られた水溶液を引き続き、限外ろ過で脱塩と未反応成分の除去を行うことで所望の導電性高分子水溶液を得ることができる。また、固体として得る場合には、引き続き水を濃縮留去し、アセトン等の貧溶媒に添加して沈殿させ、減圧ろ過して得た固体を当該貧溶媒でよく洗い、減圧乾燥してH型ポリマーの固体が得られる。   First, the polymer aqueous solution after the polymerization reaction is added to a poor solvent such as acetone to precipitate the polymer, and then the polymer obtained by filtration under reduced pressure is washed with the poor solvent until the filtrate becomes colorless and transparent. After the organic solvent is distilled off by drying, it is treated with a cation exchange resin and converted to an H-type polymer. Examples of the treatment method include a method in which an aqueous solution of the obtained Na salt type polymer is passed through a column filled with a cation exchange resin, a body feed method in which the cation exchange resin is added to the aqueous solution, and the like. In this case, it is preferable to remove the cation exchange resin with a filter paper after the treatment. The aqueous solution thus obtained is subsequently subjected to desalting and removal of unreacted components by ultrafiltration, whereby a desired aqueous conductive polymer solution can be obtained. Further, in the case of obtaining as a solid, the water is subsequently concentrated and distilled off, added to a poor solvent such as acetone and precipitated, and the solid obtained by filtration under reduced pressure is thoroughly washed with the poor solvent and dried under reduced pressure to form an H type. A polymer solid is obtained.

更に、各種アミンとの塩を形成させる場合には、例えば、H塩型ポリマーの水溶液に、各種アミンの原液若しくはその水溶液又はその他適当な溶媒で希釈したものを加えることで容易にアミン塩型ポリマーに変換することができる。例えば、アンモニア水で処理した場合には、反応液を粗濃縮し、その水溶液をアセトン等の貧溶媒に添加してポリマー沈殿させた後、減圧濾過により得た固体を当該貧溶媒で洗浄し、減圧乾燥することでアンモニウム塩型ポリマーが得られる。   Furthermore, when forming a salt with various amines, for example, an amine salt type polymer can be easily prepared by adding a stock solution of various amines or an aqueous solution thereof or a solution diluted with an appropriate solvent to an aqueous solution of an H salt type polymer. Can be converted to For example, when treated with aqueous ammonia, the reaction solution is roughly concentrated, the aqueous solution is added to a poor solvent such as acetone to cause polymer precipitation, and then the solid obtained by vacuum filtration is washed with the poor solvent, Ammonium salt type polymer is obtained by drying under reduced pressure.

重合後処理の各工程では必要に応じて、遠心沈降、ホモジナイズ処理を行ってもよい。   In each step of the post-polymerization treatment, centrifugal sedimentation and homogenization treatment may be performed as necessary.

水溶性導電性ポリマー水溶液の調製方法は、特に限定するものではないが、室温や加温下(100℃以下が好ましい)で水と混合溶解させることで達成される。その際、スターラーチップや攪拌羽根による一般的な混合溶解操作を用いることもできるし、その他の方法として、超音波照射、ホモジナイズ処理(例えば、メカニカルホモジナイザー、超音波ホモジナイザ−、高圧ホモジナイザー等の使用)を行ってもよい。ホモジナイズ処理する場合には、ポリマーの熱劣化を防ぐため、冷温しながら行うことが好ましい。   Although the preparation method of water-soluble conductive polymer aqueous solution is not specifically limited, It is achieved by mixing and dissolving with water at room temperature or under heating (preferably 100 ° C. or less). At that time, a general mixing and dissolving operation using a stirrer chip or a stirring blade can be used. As other methods, ultrasonic irradiation, homogenization treatment (for example, use of a mechanical homogenizer, an ultrasonic homogenizer, a high-pressure homogenizer, etc.) May be performed. In the case of homogenizing treatment, it is preferable to carry out the treatment while cooling in order to prevent thermal degradation of the polymer.

次に本発明のチオフェン共重合体の水溶液からなる水溶性導電性高分子水溶液について説明する。   Next, a water-soluble conductive polymer aqueous solution composed of an aqueous solution of the thiophene copolymer of the present invention will be described.

水溶性導電性ポリマー水溶液中の、本発明のチオフェン共重合体の濃度は、特に限定するものではないが、通常50重量%以下、好ましくは20重量%以下、粘性の観点からより好ましくは10重量%以下である。   The concentration of the thiophene copolymer of the present invention in the water-soluble conductive polymer aqueous solution is not particularly limited, but is usually 50% by weight or less, preferably 20% by weight or less, more preferably 10% from the viewpoint of viscosity. % Or less.

本発明のチオフェン共重合体を水溶液にすることで、水溶性導電性ポリマー水溶液として、各種用途への成型加工が容易となる。   By making the thiophene copolymer of the present invention into an aqueous solution, it becomes easy to mold into various applications as a water-soluble conductive polymer aqueous solution.

本発明のチオフェン共重合体を用いて導電性被膜を製造することができる。例えば、上記した水溶性導電性ポリマー水溶液を、基材に塗布・乾燥することで導電性被膜が簡単に得られる。基材としては、例えば、ガラス、プラスチック、ポリエステル、ポリアクリレート、ポリカーボネート、レジスト基板等が挙げられる。塗布方法としては、例えば、キャスティング法、ディッピング法、バーコード法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、インクジェット印刷法等が挙げられる。膜厚としては特に限定するものではないが、10−2〜10μmの範囲が好ましい。得られる塗膜の表面抵抗値としては特に限定するものではないが、1〜10Ω/□の範囲のものが好ましい。 A conductive film can be produced using the thiophene copolymer of the present invention. For example, a conductive film can be easily obtained by applying the above water-soluble conductive polymer aqueous solution to a substrate and drying. Examples of the substrate include glass, plastic, polyester, polyacrylate, polycarbonate, resist substrate, and the like. Examples of the coating method include a casting method, a dipping method, a barcode method, a roll coating method, a gravure coating method, a flexographic printing method, a spray coating method, and an inkjet printing method. It not particularly limited as film thickness, but preferably in the range of 10 -2 ~10 2 μm. Although it does not specifically limit as surface resistance value of the coating film obtained, The thing of the range of 1-10 < 9 > ohm / square is preferable.

なお、本発明において、各種用途への成型加工に十分な水溶性とは、室温又は加温下で調製した10重量%以下のポリマー水溶液において、粒度分布測定装置で測定した粒子径(D50)が20nm以下であり、且つ0.05μmのフィルターを通液する程度の水溶性をいう。   In the present invention, water solubility sufficient for molding for various uses means that the particle diameter (D50) measured with a particle size distribution analyzer is 10% by weight or less of a polymer aqueous solution prepared at room temperature or under heating. The water solubility is such that it is 20 nm or less and passes through a 0.05 μm filter.

また、本発明において、良好な導電性とは、フィルム状態での導電率(電気伝導度)が30S/cm以上の導電性をいう。   Moreover, in this invention, favorable electroconductivity means the electroconductivity whose electrical conductivity (electrical conductivity) in a film state is 30 S / cm or more.

以下に本発明のポリチオフェン及びチオフェンモノマーに関する実施例を示すが、本発明はこれら実施例に限定して解釈されるものではない。なお、本実施例で用いた分析機器及び測定方法を以下に列記する。   Examples of the polythiophene and thiophene monomer of the present invention are shown below, but the present invention is not construed as being limited to these examples. The analytical instruments and measurement methods used in this example are listed below.

[NMR測定]
装置:VARIAN製、Gemini−200。
[NMR measurement]
Apparatus: VARIAN, Gemini-200.

[UV−Vis−NIR分析]
装置:SHIMADZU製、UV−3100。
[UV-Vis-NIR analysis]
Apparatus: manufactured by SHIMADZU, UV-3100.

[GPC測定]
装置:東ソー社製,
カラム:α−6000+α−3000,
検出器:UV−8020。
[表面抵抗率測定]
装置:三菱化学社製、ロレスタGP MCP−T600。
[GPC measurement]
Equipment: manufactured by Tosoh Corporation
Column: α-6000 + α-3000,
Detector: UV-8020.
[Surface resistivity measurement]
Apparatus: Loresta GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.

[膜厚測定]
装置:BRUKER社製、DEKTAK XT。
[Film thickness measurement]
Apparatus: DEKTAK XT manufactured by BRUKER.

[粒子径測定]
装置:日機装社製、Microtrac Nanotrac UPA−UT151。
[Particle size measurement]
Apparatus: Nikkiso Co., Ltd. Microtrac Nanotrac UPA-UT151.

[粘度測定]
コンプリート型粘度計/BROOKFIELD VISCOMETER DV− 1 Prime。
[Viscosity measurement]
Complete viscometer / BROOKFIELD VISCOMETER DV-1 Prime.

合成例1 上記式(7)で表される化合物/上記式(8)で表される化合物=95/5の混合物の合成.
<第一工程:上記式(10)で表される化合物と上記式(11)で表される化合物との組成物の合成>
撹拌機、温度計、冷却管を備えた5リットルの三つ口フラスコに、窒素雰囲気下で、3,4−ジヒドロキシチオフェン−2,5−ジカルボン酸ジメチルエステル92.8g(399.6mmol)、2,3−ジブロモプロパノール200.9g(921.9mmol)、炭酸カリウム110.6g(800.1mmol)、及びジメチルスルホキシド909.3gを仕込み、80℃で24時間加熱撹拌を継続した。反応終了後、得られた反応液を濃縮し、ジクロロメタン−メタノール混液で希釈し、沈殿した塩をろ過後、再濃縮をしながらエタノール650.1gで溶媒置換を行って黒褐色のスラリー溶液877.4gを得た。このスラリー溶液をガスクロマトグラフィーで分析した結果、プロピレンジオキシ環を有するチオフェン化合物(11)に対する、エチレンジオキシ環を有するチオフェン化合物(10)の生成比(モル比)は、ガスクロマトグラフィーによるピーク面積の割合として、95/5であり、内部標準法による両者を合わせた定量収率は84.2%であった。
Synthesis Example 1 Synthesis of a mixture of the compound represented by the above formula (7) / the compound represented by the above formula (8) = 95/5.
<First Step: Synthesis of Composition of Compound Represented by Formula (10) and Compound Represented by Formula (11)>
Under a nitrogen atmosphere, 92.8 g (399.6 mmol) of 3,4-dihydroxythiophene-2,5-dicarboxylic acid dimethyl ester was added to a 5-liter three-necked flask equipped with a stirrer, a thermometer, and a condenser. , 3-dibromopropanol 200.9 g (921.9 mmol), potassium carbonate 110.6 g (800.1 mmol), and dimethyl sulfoxide 909.3 g were charged, and heating and stirring were continued at 80 ° C. for 24 hours. After completion of the reaction, the obtained reaction solution was concentrated, diluted with a dichloromethane-methanol mixture, the precipitated salt was filtered, and the solvent was replaced with 650.1 g of ethanol while re-concentrating to obtain 877.4 g of a black-brown slurry solution. Got. As a result of analyzing the slurry solution by gas chromatography, the production ratio (molar ratio) of the thiophene compound (10) having an ethylenedioxy ring to the thiophene compound (11) having a propylenedioxy ring is a peak by gas chromatography. The area ratio was 95/5, and the combined quantitative yield by the internal standard method was 84.2%.

<第二工程:上記式(12)で表される化合物と上記式(13)で表される化合物との組成物の合成>
撹拌機、温度計、冷却管を備えた2リットルの三つ口フラスコに、窒素雰囲気下で、上記第一工程で得られた:化合物(10)と化合物(11)との組成物45.7g(158.6mmol)を含むエタノールのスラリー液438.7gに、96%の水酸化ナトリウム58.4g(1.4mol)を水974.5gに溶かして加え、加熱して還流を2時間継続したところ、HPLC分析で化合物(10)と化合物(11)のピークが消失した。反応終了後、得られた反応液を濃縮し、水193.0gで希釈し、3℃まで冷却後、35%の塩酸321.2g(3.1mol)を加えて2時間撹拌し、淡褐色の沈殿を晶析させた。沈殿をろ過後、水洗、乾燥して35.1gの淡褐色固体として化合物(12)と化合物(13)との組成物を得た。両者を合わせた単離収率は80.2%(134.9mmol)であった。
<Second Step: Synthesis of Composition of Compound Represented by Formula (12) and Compound Represented by Formula (13)>
In a 2 liter three-necked flask equipped with a stirrer, a thermometer, and a condenser tube, obtained in the first step under a nitrogen atmosphere: 45.7 g of the composition of the compound (10) and the compound (11) When 58.4 g (1.4 mol) of 96% sodium hydroxide was dissolved in 974.5 g of water and added to 438.7 g of an ethanol slurry containing (158.6 mmol), the mixture was heated and refluxed for 2 hours. The peaks of compound (10) and compound (11) disappeared by HPLC analysis. After completion of the reaction, the obtained reaction solution was concentrated, diluted with 193.0 g of water, cooled to 3 ° C., 321.2 g (3.1 mol) of 35% hydrochloric acid was added, and the mixture was stirred for 2 hours. The precipitate crystallized out. The precipitate was filtered, washed with water and dried to obtain a composition of compound (12) and compound (13) as 35.1 g of a light brown solid. The combined isolation yield of both was 80.2% (134.9 mmol).

<第三工程:上記式(7)で表される化合物と上記式(8)で表される化合物との組成物の合成>
撹拌機、温度計、冷却管を備えた1リットルの三つ口フラスコに、窒素雰囲気下で、第二工程で得られた化合物(12)と化合物(13)との組成物34.0g(130.7mmol)とN,N−ジメチルホルムアミド663.8gの溶液に酸化銅(II)2.1g(26.2mmol)を加えて昇温し、加熱撹拌を16時間継続した。反応終了後、得られた反応液を濃縮し、酢酸エチル750mlで溶解後、ろ過した。得られたろ液は35%の塩酸4.1g(39.1mmol)と飽和食塩水20mlで洗浄後、更に、350mlと25mlの飽和食塩水で洗浄し、濃縮、シリカゲル原点処理後、再濃縮して、透明性の淡橙色の固体20.5gを得た。この淡橙色の固体をガスクロマトグラフィーで分析した結果、目的化合物である化合物(7)と化合物(8)のピークが各々確認できた。化合物(8)に対する、化合物(7)の生成比(モル比)は、ガスクロマトグラフィーによるピーク面積の割合として、95/5だった。定量の結果、両者を合わせた含有量は19.4g(112.5mmol、収率は86.1%)であった。以上の結果、第一工程からから第三工程までの総合収率は、58.1%であった。
<Third Step: Synthesis of Composition of Compound Represented by Formula (7) and Compound Represented by Formula (8)>
In a 1 liter three-necked flask equipped with a stirrer, a thermometer, and a condenser tube, 34.0 g (130) of the composition of the compound (12) and the compound (13) obtained in the second step under a nitrogen atmosphere. 0.7 mmol) and 66,8 g of N, N-dimethylformamide were added with 2.1 g (26.2 mmol) of copper (II) oxide, the temperature was raised, and heating and stirring were continued for 16 hours. After completion of the reaction, the obtained reaction solution was concentrated, dissolved in 750 ml of ethyl acetate, and then filtered. The obtained filtrate was washed with 4.1 g (39.1 mmol) of 35% hydrochloric acid and 20 ml of saturated brine, further washed with 350 ml and 25 ml of saturated brine, concentrated, treated with silica gel at the origin, and re-concentrated. 20.5 g of a transparent pale orange solid was obtained. As a result of analyzing the pale orange solid by gas chromatography, the peaks of the compound (7) and the compound (8) as the target compounds were confirmed. The production ratio (molar ratio) of compound (7) to compound (8) was 95/5 as the ratio of the peak area by gas chromatography. As a result of the quantification, the combined content was 19.4 g (112.5 mmol, yield 86.1%). As a result, the overall yield from the first step to the third step was 58.1%.

合成例2.
合成例1で得られた化合物(7)と化合物(8)の95/5組成物をカラムクロマトグラフィーによりトルエン/酢酸エチル(4/1)の溶離液で精製し、化合物(11)と化合物(12)の99.75/0.25混合物を得た。
Synthesis Example 2
A 95/5 composition of Compound (7) and Compound (8) obtained in Synthesis Example 1 was purified by column chromatography with an eluent of toluene / ethyl acetate (4/1), and Compound (11) and Compound ( 12) 99.75 / 0.25 mixture was obtained.

実施例1 チオフェンモノマー組成物の合成[下記式(14)で表される化合物/下記式(15)で表される化合物=95/5の組成物]
窒素雰囲気下、1Lセパラブルフラスコに60%水素化ナトリウム 5.71g(142.7mmol)、トルエン 425mlを仕込んだ後、上記合成例1で得た化合物(7)と化合物(8)との組成物20.0g(115.1mmol)をトルエン199gに溶解して添加した。その後、反応液を還流温度に昇温させ同温度で1時間攪拌した。その後、2,4−ブタンスルトン16.50g(115.1mmol)とトルエン109gからなる混合液を滴下し、同温度で2時間攪拌した。冷却後、得られた反応液にアセトン293mLを加え一晩撹拌した。引き続き、反応液をアセトン1.4Lに加えて冷却下に撹拌した。晶析してきた粉末を濾過及び真空乾燥させることで、目的の下記式(14)で表される化合物と下記式(15)で表される化合物との組成物であるチオフェンモノマー組成物(A)を19.5gの淡黄色粉末として得た(収率51%)。NMRから目的物であることを確認した。なお、NMR分析のプロトン比(δ6.5ppm/6.7ppm)から求めた、下記式(15)で表される化合物に対する、下記式(14)で表される化合物の比(モル比)は95/5だった。
Example 1 Synthesis of thiophene monomer composition [compound represented by the following formula (14) / compound represented by the following formula (15) = composition of 95/5]
In a nitrogen atmosphere, 60% sodium hydride (5.71 g, 142.7 mmol) and toluene (425 ml) were charged into a 1 L separable flask, and then the composition of compound (7) and compound (8) obtained in Synthesis Example 1 above. 20.0 g (115.1 mmol) was dissolved in 199 g of toluene and added. Thereafter, the reaction solution was heated to the reflux temperature and stirred at the same temperature for 1 hour. Thereafter, a mixed solution composed of 16.50 g (115.1 mmol) of 2,4-butane sultone and 109 g of toluene was dropped, and the mixture was stirred at the same temperature for 2 hours. After cooling, 293 mL of acetone was added to the resulting reaction solution and stirred overnight. Subsequently, the reaction solution was added to 1.4 L of acetone and stirred under cooling. By filtering and vacuum-drying the crystallized powder, the thiophene monomer composition (A) which is a composition of the target compound represented by the following formula (14) and the compound represented by the following formula (15) Was obtained as 19.5 g of a pale yellow powder (yield 51%). From NMR, it was confirmed to be the target product. The ratio (molar ratio) of the compound represented by the following formula (14) to the compound represented by the following formula (15), determined from the proton ratio (δ6.5 ppm / 6.7 ppm) of NMR analysis, was 95. / 5.

Figure 0006273917
Figure 0006273917

Figure 0006273917
Figure 0006273917


H−NMR(DO、3−(Trimethylsilyl)propionic− 2,2,3,3−d4 acid sodium salt) δ(ppm);6.73(s,下記式(14)のチオフェン環のプロトン,0.1H),6.52(s,下記式(13)のチオフェン環のプロトン,1.9H), 4.43−4.26(m,2H),4.15−4.05(m,1H),3.77−3.68(m,4H),3.05−2.97(m,1H),2.34−2.17(m,1H),1.79−1.64(m、1H),1.32(d,3H)。

1 H-NMR (D 2 O, 3- (Trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt) δ (ppm); 6.73 (s, proton of thiophene ring of the following formula (14) , 0.1H), 6.52 (s, proton of the thiophene ring of the following formula (13), 1.9H), 4.43-4.26 (m, 2H), 4.15-4.05 (m , 1H), 3.77-3.68 (m, 4H), 3.05-2.97 (m, 1H), 2.34-2.17 (m, 1H), 1.79-1.64. (M, 1H), 1.32 (d, 3H).

実施例2 実施例1で得られたチオフェンモノマー組成物(95/5)の共重合体水溶液の合成.
1Lセパラブルフラスコに、実施例1に準じて合成したチオフェンモノマー組成物 19.00g(57.5mmol)と水285gを加えた。溶解後、室温下、無水塩化鉄(III)5.60g(34.5mmol)を加えて20分攪拌した。その後、過硫酸ナトリウム27.39g(115.0mmol)と190gからなる混合溶液を反応液温度が30℃以下を保持しながら滴下した。室温で3時間攪拌したのち、反応液を1.6kgのアセトンに滴下させ黒色のNa型のポリマーを析出させた。ポリマーを濾過・真空乾燥することで、25.3gの粗ポリマーを得た。
Example 2 Synthesis of a copolymer aqueous solution of the thiophene monomer composition (95/5) obtained in Example 1.
To a 1 L separable flask, 19.00 g (57.5 mmol) of a thiophene monomer composition synthesized according to Example 1 and 285 g of water were added. After dissolution, 5.60 g (34.5 mmol) of anhydrous iron (III) chloride was added at room temperature and stirred for 20 minutes. Thereafter, a mixed solution consisting of 27.39 g (115.0 mmol) of sodium persulfate and 190 g was added dropwise while maintaining the reaction solution temperature at 30 ° C. or lower. After stirring at room temperature for 3 hours, the reaction solution was dropped into 1.6 kg of acetone to precipitate a black Na-type polymer. The polymer was filtered and vacuum dried to obtain 25.3 g of a crude polymer.

次に、この粗ポリマーに水を加え2重量%溶液に調製した水溶液1.3kgを、陽イオン交換樹脂[ランクセス社製、Lewatit MonoPlus S100(H型)]670mlを充填したカラムに通液(空間速度=0.8)することによりH型のポリマー水溶液を2.1kg得た。更に、本ポリマー水溶液をクロスフロー式限外ろ過(ろ過器=ビバフロー200,分画分子量=10,000、透過倍率=16)により精製することにより、エチレンジオキシ環を有する構造単位(A)とプロピレンジオキシ環を有する構造単位(B)とからなるチオフェン共重合体であって、構造単位(A)が下記式(16)で表される構造単位及び下記式(17)で表される構造単位からなる群より選ばれる少なくとも1種であり、かつ構造単位(B)が下記式(18)で表される構造単位及び下記式(19)で表される構造単位からなる群より選ばれる少なくとも一種であるチオフェン共重合体の濃群青色水溶液を1.4kg合成した。引き続き、本ポリマー水溶液を固形分2%に濃縮して693g得た(収率72%)。   Next, 1.3 kg of an aqueous solution prepared by adding water to this crude polymer to make a 2 wt% solution was passed through a column packed with 670 ml of a cation exchange resin [Lewatit MonoPlus S100 (H type), manufactured by LANXESS) (space). Speed = 0.8) to obtain 2.1 kg of an H-type polymer aqueous solution. Further, by purifying the polymer aqueous solution by cross-flow ultrafiltration (filter = Vivaflow 200, fractional molecular weight = 10,000, permeation rate = 16), the structural unit (A) having an ethylenedioxy ring and A thiophene copolymer comprising a structural unit (B) having a propylenedioxy ring, wherein the structural unit (A) is a structural unit represented by the following formula (16) and a structure represented by the following formula (17): And at least one selected from the group consisting of units, and the structural unit (B) is at least selected from the group consisting of a structural unit represented by the following formula (18) and a structural unit represented by the following formula (19): 1.4 kg of a dark blue aqueous solution of a kind of thiophene copolymer was synthesized. Subsequently, the aqueous polymer solution was concentrated to a solid content of 2% to obtain 693 g (yield 72%).

得られたポリマー水溶液を無アルカリガラス板(25mm角)にキャストして得た膜の表面抵抗、膜厚及び導電率は、夫々69Ω/□、3.0μm、48S/cmであった。この値は、PEDT−Sの導電率より2倍程度高かった。また、2.0重量%水溶液におけるポリマーの粒径(D50)は1.1nm、粘度は9.6mPa・s(20℃)であった。   The surface resistance, film thickness, and conductivity of a film obtained by casting the obtained aqueous polymer solution on an alkali-free glass plate (25 mm square) were 69Ω / □, 3.0 μm, and 48 S / cm, respectively. This value was about twice as high as the conductivity of PEDT-S. Further, the particle size (D50) of the polymer in a 2.0 wt% aqueous solution was 1.1 nm, and the viscosity was 9.6 mPa · s (20 ° C.).

Figure 0006273917
Figure 0006273917

実施例3 チオフェンモノマー組成物の合成[上記一般式(13)/上記一般式(14)=99.75/0.25の混合物]
合成例2に準じて得た化合物(7)と化合物(8)との99.75/0.25組成物を用いた以外は、実施例1に準拠して行い、目的の化合物(13)と化合物(14)との99.75/0.25組成物を得た。
Example 3 Synthesis of thiophene monomer composition [mixture of the above general formula (13) / the above general formula (14) = 99.75 / 0.25]
Except for using the 99.75 / 0.25 composition of Compound (7) and Compound (8) obtained according to Synthesis Example 2, the procedure was performed in accordance with Example 1, and the target compound (13) and A 99.75 / 0.25 composition with compound (14) was obtained.

実施例4 実施例3で得られたチオフェンモノマー組成物(99.75/0.25)の共重合体水溶液の合成.
実施例3で得られたチオフェンモノマーを使用した以外は、実施例2に準じて行った。得られたポリマー水溶液を無アルカリガラス板(25mm角)にキャストして得た膜の表面抵抗、膜厚及び導電率は、夫々68Ω/□、1.4μm、105S/cmであった。この値は、PEDT−Sの導電率より3倍程度高かった。また、2.0重量%水溶液におけるポリマーの粒径(D50)は1.1nm、粘度は15.4mPa・s(20℃)であった。
Example 4 Synthesis of an aqueous copolymer solution of the thiophene monomer composition (99.75 / 0.25) obtained in Example 3.
The same procedure as in Example 2 was performed except that the thiophene monomer obtained in Example 3 was used. The surface resistance, film thickness, and conductivity of the film obtained by casting the obtained aqueous polymer solution on an alkali-free glass plate (25 mm square) were 68Ω / □, 1.4 μm, and 105 S / cm, respectively. This value was about three times higher than the conductivity of PEDT-S. Further, the particle size (D50) of the polymer in the 2.0 wt% aqueous solution was 1.1 nm, and the viscosity was 15.4 mPa · s (20 ° C.).

比較例1 下記式(21)又は下記式(22)で表される構造を含む重合体の合成.
Chemisty Materials,21,1815−1821(2009)又は、Advanced Materials,23(38),4403−4408(2011)を参考に下記スキームに従い合成した。
Comparative Example 1 Synthesis of a polymer containing a structure represented by the following formula (21) or the following formula (22).
Chemistry Materials, 21, 1815-1821 (2009) or Advanced Materials, 23 (38), 4403-4408 (2011) were synthesized according to the following scheme.

Figure 0006273917
Figure 0006273917

(1A)化合物(20)の合成.
100mLナスフラスコに、上記式(8)で表される化合物がN.D(Not−detected)の化合物(7)1.83g、トルエン45mL、60%NaHを0.32g(13.2mmol)を仕込み、還流条件下で1時間反応させた。トルエン12mLに溶解した1,4−ブタンスルトン1.46g(10.7mmol)を還流下に滴下した。更に2時間熟成させた後、室温まで冷却し、アセトン200mLに添加して、ゼリー状固体を沈殿させた。ろ紙でろ過後、減圧乾燥して目的の化合物(20)を淡褐色固体として2.0g得た(収率56%)。
(1A) Synthesis of compound (20).
In a 100 mL eggplant flask, the compound represented by the above formula (8) is N.I. 1.83 g of D (Not-detected) compound (7), 45 mL of toluene, and 0.32 g (13.2 mmol) of 60% NaH were charged and reacted for 1 hour under reflux conditions. 1.46 g (10.7 mmol) of 1,4-butane sultone dissolved in 12 mL of toluene was added dropwise under reflux. After further aging for 2 hours, the mixture was cooled to room temperature and added to 200 mL of acetone to precipitate a jelly-like solid. After filtration through filter paper, drying under reduced pressure gave 2.0 g of the target compound (20) as a light brown solid (yield 56%).

(1B)上記式(21)又は上記式(22)で表される構造単位を含む重合体の合成。   (1B) Synthesis of a polymer containing the structural unit represented by the above formula (21) or the above formula (22).

50mLシュレンク管に、上記で得た化合物(20)を0.378g(1.15mmol)、水5.7mLを仕込んでモノマーの水溶液を得た。そこへFeCl 0.113g(0.70mmol)、過硫酸ナトリウム0.554g(2.33mmol)と水3.8mlからなる混合溶液を順次加えて室温下3時間攪拌した。 A 50 mL Schlenk tube was charged with 0.378 g (1.15 mmol) of the compound (20) obtained above and 5.7 mL of water to obtain an aqueous monomer solution. A mixed solution consisting of 0.113 g (0.70 mmol) of FeCl 3, 0.554 g (2.33 mmol) of sodium persulfate and 3.8 ml of water was sequentially added thereto and stirred at room temperature for 3 hours.

得られた重合液をアセトン76mlに注ぎポリマーを析出させた。得られたスラリーを遠心沈降(3000rpm)させ、0.74gの黒色固体を得た。引続き、黒色固体に水を加えて1%水溶液を調製後、陽イオン交換樹脂[ランクセス社製、Lewatit MonoPlus S100(H型)]8.0gを加えて3時間攪拌することでH型ポリマー溶液を得た。濾過によりイオン交換樹脂を除去し、得られた母液は更に透析処理(透析膜:スペクトラム ラボラトリーズ社製、Spectra/Por MWCO=3500)により無機塩を除去した。精製したH型ポリマーを含む水溶液を4.3gまで濃縮し、得られた残渣をアセトン80mlに注ぎポリマーを析出させた。得られたスラリーを遠心沈降(3000pm)させ、0.188gのH型ポリマーを得た(収率=49%)。   The obtained polymerization solution was poured into 76 ml of acetone to precipitate a polymer. The obtained slurry was subjected to centrifugal sedimentation (3000 rpm) to obtain 0.74 g of a black solid. Subsequently, after adding water to a black solid to prepare a 1% aqueous solution, 8.0 g of a cation exchange resin [Lewatit MonoPlus S100 (H type), manufactured by LANXESS) was added and stirred for 3 hours to prepare an H type polymer solution. Obtained. The ion exchange resin was removed by filtration, and the resulting mother liquor was further subjected to dialysis treatment (dialysis membrane: Spectrum Laboratories, Spectra / Por MWCO = 3500) to remove inorganic salts. The aqueous solution containing the purified H-type polymer was concentrated to 4.3 g, and the obtained residue was poured into 80 ml of acetone to precipitate a polymer. The obtained slurry was subjected to centrifugal sedimentation (3000 pm) to obtain 0.188 g of an H-type polymer (yield = 49%).

得られたポリマーの0.5重量%水溶液を調製し、無アルカリガラス板にキャストして得た膜の導電率は22S/cmだった。0.5重量%水溶液におけるポリマーの粒径(D50)は検出限界(0.8nm)以下だった。   The conductivity of a film obtained by preparing a 0.5 wt% aqueous solution of the obtained polymer and casting it on an alkali-free glass plate was 22 S / cm. The particle size (D50) of the polymer in the 0.5 wt% aqueous solution was below the detection limit (0.8 nm).

本発明のチオフェンモノマー組成物は、例えば、帯電防止材、固体電解コンデンサの固体電解質、太陽電池、有機EL、キャパシタ、化学センサ等の用途に用いられる導電性高分子ポリチオフェン類のモノマーとして利用できる。特に、本発明のチオフェンモノマー組成物は、水溶性の付与と分子内ドーパントとしての役割をもつスルホ基を有するため、得られるポリマーは水溶性の自己ドープ可能な導電性高分子となることが期待される。   The thiophene monomer composition of the present invention can be used, for example, as a monomer for conductive polymer polythiophenes used for applications such as antistatic materials, solid electrolytes of solid electrolytic capacitors, solar cells, organic EL, capacitors, chemical sensors and the like. In particular, since the thiophene monomer composition of the present invention has a sulfo group having water solubility and a role as an intramolecular dopant, the resulting polymer is expected to be a water-soluble self-doping conductive polymer. Is done.

また、本発明のチオフェン共重合体は、例えば、帯電防止剤、コンデンサの固体電解質、導電性塗料、エレクトロクロミック素子、透明電極、透明導電膜、化学センサ、アクチュエータ等への応用が可能である。特に、水溶性であることから、脂溶性レジストに与えるダメージが小さく、剥離洗浄も容易なため、電子線リソグラフィー時に、レジストの帯電を抑制するための帯電防止膜形成材料としての使用が期待される。また、水溶液とした場合にポリマー粒子径が非常に小さいことから、例えば、アルミ固体電解コンデンサの化成処理されたエッチドアルミ箔への浸透性が良いことが考えられ、それにより導電性ポリマーによる被覆面積が向上し、静電容量のアップと低ESR化等コンデンサの性能改善が期待される。   The thiophene copolymer of the present invention can be applied to, for example, antistatic agents, capacitor solid electrolytes, conductive paints, electrochromic elements, transparent electrodes, transparent conductive films, chemical sensors, and actuators. In particular, since it is water-soluble, damage to the fat-soluble resist is small, and peeling cleaning is easy. Therefore, it is expected to be used as an antistatic film forming material for suppressing resist charging during electron beam lithography. . In addition, since the polymer particle diameter is very small when an aqueous solution is used, for example, it is considered that the aluminum solid electrolytic capacitor has good permeability to the etched aluminum foil that has been subjected to chemical conversion treatment. The area is improved, and the performance of the capacitor is expected to be improved, such as increasing the capacitance and lowering the ESR.

Claims (10)

エチレンジオキシ環を有する構造単位(A)とプロピレンジオキシ環を有する構造単位(B)とからなるチオフェン共重合体であって、構造単位(A)が下記式(1)で表される構造単位及び下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種であること、並びに構造単位(B)が下記式(3)で表される構造単位及び下記式(4)で表される構造単位からなる群より選ばれる少なくとも一種であることを特徴とするチオフェン共重合体。
Figure 0006273917
Figure 0006273917
Figure 0006273917
Figure 0006273917
[上記式(1)〜(4)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。Mは水素原子、Li、Na及びKからなる群より選ばれるアルカリ金属、NH(R又はHNCを表す。Rは各々独立して水素原子、又は置換基を有していてもよい炭素数1〜6のアルキル基を表す。]
A thiophene copolymer comprising a structural unit (A) having an ethylenedioxy ring and a structural unit (B) having a propylenedioxy ring, wherein the structural unit (A) is represented by the following formula (1) The structural unit is at least one selected from the group consisting of a unit and a structural unit represented by the following formula (2), and the structural unit (B) is a structural unit represented by the following formula (3) and the following formula (4): A thiophene copolymer, which is at least one selected from the group consisting of structural units represented by:
Figure 0006273917
Figure 0006273917
Figure 0006273917
Figure 0006273917
[In said formula (1)-(4), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom. M represents a hydrogen atom, an alkali metal selected from the group consisting of Li, Na and K, NH (R 1 ) 3 or HNC 5 H 5 . Each R 1 independently represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms. ]
チオフェン共重合体の重量平均分子量が、ポリスチレンスルホン酸換算で1千〜100万の範囲であることを特徴とする請求項1に記載のチオフェン共重合体。 The thiophene copolymer according to claim 1, wherein the thiophene copolymer has a weight average molecular weight in the range of 1,000 to 1,000,000 in terms of polystyrene sulfonic acid. 下記式(5)で表されるチオフェン化合物と下記式(6)で表されるチオフェン化合物とを含むチオフェンモノマー組成物。
Figure 0006273917
Figure 0006273917
[上記式(5)、(6)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。Mは水素原子、Li、Na及びKからなる群より選ばれるアルカリ金属、NH(R又はHNCを表す。Rは各々独立して水素原子、又は置換基を有していてもよい炭素数1〜6のアルキル基を表す。]
A thiophene monomer composition comprising a thiophene compound represented by the following formula (5) and a thiophene compound represented by the following formula (6).
Figure 0006273917
Figure 0006273917
[In said formula (5), (6), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom. M represents a hydrogen atom, an alkali metal selected from the group consisting of Li, Na and K, NH (R 1 ) 3 or HNC 5 H 5 . Each R 1 independently represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms. ]
上記式(6)で表されるチオフェン化合物に対する、上記式(5)で表されるチオフェン化合物の比(モル比)が、少なくとも70/30であることを特徴とする請求項に記載のチオフェンモノマー組成物。 The thiophene according to claim 3 , wherein a ratio (molar ratio) of the thiophene compound represented by the formula (5) to the thiophene compound represented by the formula (6) is at least 70/30. Monomer composition. 請求項又は請求項に記載のチオフェンモノマー組成物を、水又はアルコール溶媒中、酸化剤の存在下に重合させることを特徴とする請求項1又は請求項に記載のチオフェン共重合体の製造法。 The thiophene copolymer composition according to claim 1 or 2 , wherein the thiophene monomer composition according to claim 3 or 4 is polymerized in water or an alcohol solvent in the presence of an oxidizing agent. Manufacturing method. 下記式(6)で表されるチオフェン化合物。
Figure 0006273917
[上記式(6)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。Mは水素原子、Li、Na及びKからなる群より選ばれるアルカリ金属、NH(R又はHNCを表す。Rは各々独立して水素原子、又は置換基を有していてもよい炭素数1〜6のアルキル基を表す。]
The thiophene compound represented by following formula (6).
Figure 0006273917
[In said formula (6), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom. M represents a hydrogen atom, an alkali metal selected from the group consisting of Li, Na and K, NH (R 1 ) 3 or HNC 5 H 5 . Each R 1 independently represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms. ]
下記式(7)で表される化合物及び下記式(8)で表される化合物と、下記式(9)で表される化合物とを、MH(Mは、Li、Na又はKを表す。)の存在下、反応させることを特徴とする、請求項において、Mが、Li、Na又はKを表すチオフェンモノマー組成物の製造方法。
Figure 0006273917
Figure 0006273917
Figure 0006273917
[上記式(9)中、Rは炭素数1〜6の鎖状、分岐状アルキル基、又はフッ素原子を表す。]
A compound represented by the following formula (7) and a compound represented by the following formula (8) and a compound represented by the following formula (9) are MH (M represents Li, Na or K). The method for producing a thiophene monomer composition according to claim 3, wherein M represents Li, Na, or K.
Figure 0006273917
Figure 0006273917
Figure 0006273917
[In said Formula (9), R represents a C1-C6 linear, branched alkyl group, or a fluorine atom. ]
上記式(8)で表される化合物に対する、上記式(7)で表される化合物の比(モル比)が、少なくとも70/30であることを特徴とする請求項に記載の製造方法。 The production method according to claim 7 , wherein a ratio (molar ratio) of the compound represented by the formula (7) to the compound represented by the formula (8) is at least 70/30. 請求項1又は請求項に記載のチオフェン共重合体の水溶液からなる水溶性導電性高分子水溶液。 A water-soluble conductive polymer aqueous solution comprising an aqueous solution of the thiophene copolymer according to claim 1 or 2 . 請求項に記載の水溶液を基材に塗布し乾燥することを特徴とする導電性被膜の製造方法。 A method for producing a conductive film, wherein the aqueous solution according to claim 9 is applied to a substrate and dried.
JP2014046205A 2014-03-10 2014-03-10 Thiophene copolymer and aqueous solution thereof, and thiophene monomer composition and production method thereof Active JP6273917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046205A JP6273917B2 (en) 2014-03-10 2014-03-10 Thiophene copolymer and aqueous solution thereof, and thiophene monomer composition and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046205A JP6273917B2 (en) 2014-03-10 2014-03-10 Thiophene copolymer and aqueous solution thereof, and thiophene monomer composition and production method thereof

Publications (2)

Publication Number Publication Date
JP2015168793A JP2015168793A (en) 2015-09-28
JP6273917B2 true JP6273917B2 (en) 2018-02-07

Family

ID=54201829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046205A Active JP6273917B2 (en) 2014-03-10 2014-03-10 Thiophene copolymer and aqueous solution thereof, and thiophene monomer composition and production method thereof

Country Status (1)

Country Link
JP (1) JP6273917B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037497A1 (en) * 2014-12-23 2016-06-29 Heraeus Deutschland GmbH & Co. KG Process for producing functionalized polythiophenes
JP2016188348A (en) * 2015-03-30 2016-11-04 東ソー株式会社 Thiophene polymer, composition thereof, and use therefor
US10186382B2 (en) 2016-01-18 2019-01-22 Avx Corporation Solid electrolytic capacitor with improved leakage current
JP6902876B2 (en) * 2017-01-31 2021-07-14 東ソー株式会社 Polythiophene and its compositions, and their uses
JP6977357B2 (en) * 2017-07-21 2021-12-08 東ソー株式会社 Thiophene sulfonate
CN108299463B (en) * 2018-01-31 2019-12-03 贝利化学(张家港)有限公司 A method of preparing two English -2- methanol of thieno [3,4-B] -1,4-
CN108329329B (en) * 2018-01-31 2020-09-01 贝利化学(张家港)有限公司 Method for synthesizing hydroxymethyl EDOT
CN117480196A (en) * 2021-06-08 2024-01-30 爱克发-格法特公司 Novel polythiophene/polyanion compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111327A (en) * 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
DE10237577A1 (en) * 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituted poly (alkylenedioxythiophenes) as solid electrolytes in electrolytic capacitors
WO2014007299A1 (en) * 2012-07-03 2014-01-09 東ソー株式会社 Polythiophenes, water-soluble conductive polymer using same, and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11756746B2 (en) 2018-08-10 2023-09-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11791106B2 (en) 2018-08-10 2023-10-17 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Also Published As

Publication number Publication date
JP2015168793A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP6273917B2 (en) Thiophene copolymer and aqueous solution thereof, and thiophene monomer composition and production method thereof
JP6131780B2 (en) Polythiophene and its aqueous solution, and its thiophene monomer
KR102122105B1 (en) Polythiophenes, water-soluble conductive polymer using same, and method for producing same
JP6427887B2 (en) Conductive polymer aqueous solution and conductive polymer film
JP6311355B2 (en) Conductive polymer aqueous solution and conductive polymer film
WO2014007299A1 (en) Polythiophenes, water-soluble conductive polymer using same, and method for producing same
JP6379523B2 (en) Conductive polymer aqueous solution and conductive polymer film
JP6485074B2 (en) Copolymer, production method thereof, conductive polymer aqueous solution, and use thereof
JP6024264B2 (en) Thiophene derivative, water-soluble conductive polymer and aqueous solution thereof, and production method thereof
JP6645138B2 (en) Conductive polymer aqueous solution, conductive polymer film, and coated article
KR101561595B1 (en) Method for the production of conductive polymers
JP6686500B2 (en) Conductive polymer aqueous solution and conductive polymer film
CN107406586B (en) Polymer, oxidized polymer, polymer composition, gel-like polymer composition, and use thereof
WO2016111277A1 (en) Heterocycle-containing compound, polymer using said compound, and use thereof
JP2018184586A (en) Conductive polymer aqueous solution
KR20090079820A (en) Soluble Conducting Polymers and Fabrication Methods of the Same
JP6040615B2 (en) Thiophene compound, water-soluble conductive polymer and aqueous solution thereof, and production method thereof
WO2007066353A2 (en) Novel polymers of 3,4-propylenedioxythiophene derivatives with pendant functional groups
JP2016188348A (en) Thiophene polymer, composition thereof, and use therefor
JP2017171759A (en) Method for producing self-doped polythiophene
JP6146096B2 (en) Thiophene compound, water-soluble conductive polymer and aqueous solution thereof, and production method thereof
JP6911467B2 (en) Optically active thiophene compounds, optically active polythiophenes, and methods for producing them
JP6724526B2 (en) Water-soluble conductive polymer, method for producing the same, aqueous solution of the conductive polymer, and use thereof
JP6753092B2 (en) Water-soluble conductive copolymer, its production method, and its aqueous solution
Quadretti et al. Effects of Water/Alcohol Soluble Cationic Polythiophenes as Cathode Interlayers for Eco‐Friendly Solar Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6273917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151