JP5929183B2 - Electrode, lithium secondary battery, and electrode manufacturing method - Google Patents

Electrode, lithium secondary battery, and electrode manufacturing method Download PDF

Info

Publication number
JP5929183B2
JP5929183B2 JP2011288170A JP2011288170A JP5929183B2 JP 5929183 B2 JP5929183 B2 JP 5929183B2 JP 2011288170 A JP2011288170 A JP 2011288170A JP 2011288170 A JP2011288170 A JP 2011288170A JP 5929183 B2 JP5929183 B2 JP 5929183B2
Authority
JP
Japan
Prior art keywords
active material
surface area
specific surface
layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011288170A
Other languages
Japanese (ja)
Other versions
JP2013137928A (en
Inventor
奥田 匠昭
匠昭 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2011288170A priority Critical patent/JP5929183B2/en
Publication of JP2013137928A publication Critical patent/JP2013137928A/en
Application granted granted Critical
Publication of JP5929183B2 publication Critical patent/JP5929183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電極、リチウム二次電池及び電極の製造方法に関する。   The present invention relates to an electrode, a lithium secondary battery, and a method for manufacturing the electrode.

従来、電極としては、電極活物質と、導電材料とバインダーと添加物とを備えたものが提案されている(例えば、特許文献1参照)。この電極では、作製時の圧縮圧延条件、スラリー中の固体物質の含分、スラリー中の組成、合材層形成後の乾燥温度などの制御により、層の裏面(集電体側)から層の外面に向かう方向で、多孔率を減じることにより、容量密度及び電気化学的利用率をより高めることができるとしている。   Conventionally, an electrode including an electrode active material, a conductive material, a binder, and an additive has been proposed (see, for example, Patent Document 1). In this electrode, the outer surface of the layer is controlled from the back surface of the layer (current collector side) by controlling the compression rolling conditions at the time of production, the content of the solid substance in the slurry, the composition in the slurry, the drying temperature after forming the composite layer, etc. It is said that the capacity density and the electrochemical utilization rate can be further increased by reducing the porosity in the direction toward the surface.

特表2008−508672号公報JP 2008-508672 A

しかしながら、上述の特許文献1の電極では、活物質を含む合材層の多孔率を制御して、電池性能を高めるものであるが、まだ十分でなく、例えば、放電容量の向上や、充放電サイクルでの容量維持率など、より充放電特性を高めることが求められていた。   However, in the electrode of Patent Document 1 described above, the porosity of the composite layer containing the active material is controlled to improve the battery performance. However, it is not sufficient yet, for example, the improvement of the discharge capacity or the charge / discharge It has been demanded to further improve the charge / discharge characteristics such as the capacity retention rate in the cycle.

本発明は、このような課題に鑑みなされたものであり、充放電特性をより高めることができる電極、リチウム二次電池及び電極の製造方法を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the manufacturing method of the electrode which can improve charge / discharge characteristic more, a lithium secondary battery, and an electrode.

上述した目的を達成するために鋭意研究したところ、本発明者らは、合材層に含まれる活物質の比表面積を集電体側と表層側とで制御すると、充放電特性をより高めることができることを見いだし、本発明を完成するに至った。   As a result of earnest research to achieve the above-described object, the present inventors can improve the charge / discharge characteristics by controlling the specific surface area of the active material contained in the composite layer on the current collector side and the surface layer side. The inventors have found what can be done and have completed the present invention.

即ち、本発明は、電池に用いられる電極であって、集電体と、表層側に比して前記集電体側では活物質の比表面積が大きい傾向に該活物質を含んで前記集電体上に形成された合材層と、を備えた電極である。   That is, the present invention is an electrode for use in a battery, and includes the current collector and the current collector that includes the active material in a tendency that the specific surface area of the active material is larger on the current collector side than on the surface layer side. And an electrode mixture layer formed thereon.

本発明のリチウム二次電池は、正極及び負極のうち1以上である上述に記載の電極と、前記電極と接しリチウムイオンを伝導するイオン伝導媒体と、を備えたものである。   A lithium secondary battery of the present invention includes one or more of the positive electrode and the negative electrode described above, and an ion conductive medium that is in contact with the electrode and conducts lithium ions.

本発明の電極の製造方法は、電池に用いられる電極の製造方法であって、表層側に比して集電体側では活物質の比表面積が大きい傾向に該集電体上に活物質を形成する合材層形成工程、を含むものである。   The method for producing an electrode of the present invention is a method for producing an electrode used in a battery, and the active material is formed on the current collector so that the specific surface area of the active material is larger on the current collector side than on the surface layer side. Including a composite material layer forming step.

本発明の電極、リチウム二次電池及び電極の製造方法は、充放電特性をより高めることができる。このような効果が得られる理由は、以下のように推測される。例えば、反応しにくい電極の深部(集電体側)での反応比表面積を増加させることにより、集電体側の膜厚の深い部位に配置された活物質まで充放電に寄与するため、例えば、放電容量の向上や充放電サイクル後の放電容量維持率の向上など、充放電特性をより高めることができるものと推察される。   The electrode, lithium secondary battery, and electrode manufacturing method of the present invention can further improve charge / discharge characteristics. The reason why such an effect is obtained is presumed as follows. For example, by increasing the reaction specific surface area in the deep part (current collector side) of the electrode that is difficult to react, it contributes to charge / discharge up to the active material arranged in the thick part on the current collector side. It is presumed that the charge / discharge characteristics can be further improved, such as improvement of capacity and improvement of discharge capacity maintenance ratio after charge / discharge cycle.

リチウム二次電池10の構成の概略を表す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a lithium secondary battery 10.

本発明の電極は、電池に用いられる電極であって、集電体と、表層側に比して集電体側では活物質の比表面積が大きい傾向にこの活物質を含んで集電体上に形成された合材層と、を備えている。なお、「比表面積が大きい傾向に」とは、合材層の表層面から、合材層が集電体に形成された集電体側の面へ至るまでに、比表面積が大きくなることを意味し、合材層の表層面から集電体側の面へ至るまでに、比表面積が変わらない領域や、比表面積が小さくなる領域が部分的に存在することを許容する趣旨である。本発明の電極は、蓄電デバイスの電極とすれば特に限定されないが、アルカリ二次電池の電極とすることが好ましい。このアルカリとしては、例えば、リチウム,ナトリウム,カリウムとしてもよく、このうちリチウムがより好ましい。以下では、主としてリチウム二次電池に用いられる電極及び製造方法について説明する。   The electrode of the present invention is an electrode used in a battery, and the active material is included on the current collector in a tendency that the specific surface area of the active material is larger on the current collector and the current collector side than on the surface layer side. And a formed composite material layer. “The specific surface area tends to increase” means that the specific surface area increases from the surface of the composite layer to the current collector-side surface formed on the current collector. In addition, it is intended to allow a region where the specific surface area does not change or a region where the specific surface area is small to partially exist from the surface layer surface of the composite material layer to the surface on the current collector side. The electrode of the present invention is not particularly limited as long as it is an electrode of an electricity storage device, but is preferably an electrode of an alkaline secondary battery. The alkali may be, for example, lithium, sodium, or potassium, and lithium is more preferable. Below, the electrode and manufacturing method which are mainly used for a lithium secondary battery are demonstrated.

本発明の電極に用いられる集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。これらは、正極用の集電体として用いることができる。また、負極用の集電体としては、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。   Current collectors used in the electrodes of the present invention include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, etc., as well as improved adhesion, conductivity and oxidation resistance. For the purpose, an aluminum or copper surface treated with carbon, nickel, titanium or silver can be used. For these, the surface can be oxidized. These can be used as a current collector for a positive electrode. The current collector for the negative electrode includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as adhesion, conductivity, and reduction resistance. For the purpose of improving the properties, for example, a surface of copper or the like treated with carbon, nickel, titanium, silver or the like can be used. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 to 500 μm.

本発明の電極の合材層は、活物質及び結着材を含むものとしてもよい。あるいは、本発明の電極の合材層は、活物質及び結着材を含み、更に導電材などを含むものとしてもよい。この合材層は、表層側の活物質の比表面積Aに対する集電体側の活物質の比表面積Bの比である比表面積比B/Aが1.25以上で形成されているものとしてもよい。即ち、表層側に比して集電体側では活物質の比表面積が1.25倍以上であることが好ましい。こうすれば、例えば、放電容量や充放電サイクルでの容量維持率など、充放電特性をより向上することができる。この比表面積比B/Aは、1.50以上がより好ましく、2.00以上が更に好ましく、合材層の形成強度などを考慮すると、6.00以下であることが好ましく、4.00以下であることがより好ましい。また、本発明の電極の合材層は、表層側の活物質の比表面積Aに対する集電体側の活物質の比表面積Bの比から値1を減じた比表面積比増加率(B/A−1)が0.25以上で形成されていることが好ましい。こうすれば、例えば、放電容量や充放電サイクルでの容量維持率など、充放電特性をより向上することができる。この比表面積比増加率(B/A−1)は、0.50以上であることがより好ましく、1.00以上であることが更に好ましい。また、この比表面積比増加率(B/A−1)は、合材層の形成強度などを考慮すると、5.00以下であることが好ましく、3.00以下であることがより好ましい。また、活物質の比表面積は、例えば、活物質の粉体が球であると仮定し、その平均粒径から算出してもよい。このとき、活物質の平均粒径は、原料粉体では、表層側の原料粉体と、集電体側の原料粉体とを電子顕微鏡(SEM)観察し、この観察画像に含まれる活物質粒子を300個選択し、その直径を測定して平均した値を各活物質の平均粒径とする。また、電極の合材層においては、集電体と合材層とを引き剥がした面を電子顕微鏡(SEM)観察し、この観察画像に含まれる活物質粒子を300個選択し、その直径を測定して平均した値を集電体側の活物質の平均粒径とする。また、表層面をSEM観察し、この観察画像に含まれる活物質粒子を300個選択し、その直径を測定して平均した値を表層側の活物質の平均粒径とする。このとき、観察した粒子形状、例えば表面の凹凸を考慮して比表面積を求めるものとしてもよい。あるいは、活物質の比表面積は、ガス吸着によるBET比表面積測定により、例えば窒素ガスを用いて活物質を測定した値としてもよい。この表層側の活物質の比表面積は、例えば、10m2/g以上2500m2/g以下の範囲であることが好ましい。 The composite layer of the electrode of the present invention may include an active material and a binder. Alternatively, the composite layer of the electrode of the present invention may include an active material and a binder, and may further include a conductive material. The composite layer may be formed such that the specific surface area ratio B / A, which is the ratio of the specific surface area B of the active material on the current collector side to the specific surface area A of the active material on the surface layer side, is 1.25 or more. . That is, the specific surface area of the active material is preferably 1.25 times or more on the current collector side as compared with the surface layer side. In this way, for example, the charge / discharge characteristics such as the discharge capacity and the capacity retention rate in the charge / discharge cycle can be further improved. This specific surface area ratio B / A is more preferably 1.50 or more, further preferably 2.00 or more, and is preferably 6.00 or less, taking into consideration the formation strength of the composite material layer, and the like, and 4.00 or less. It is more preferable that Also, the composite layer of the electrode of the present invention has a specific surface area ratio increase rate (B / A−) obtained by subtracting 1 from the ratio of the specific surface area B of the active material on the current collector side to the specific surface area A of the active material on the surface layer side. It is preferable that 1) is formed with 0.25 or more. In this way, for example, the charge / discharge characteristics such as the discharge capacity and the capacity retention rate in the charge / discharge cycle can be further improved. The specific surface area ratio increase rate (B / A-1) is more preferably 0.50 or more, and further preferably 1.00 or more. Further, the specific surface area ratio increase rate (B / A-1) is preferably 5.00 or less, and more preferably 3.00 or less in consideration of the formation strength of the composite material layer. The specific surface area of the active material may be calculated from the average particle diameter, assuming that the powder of the active material is a sphere, for example. At this time, the average particle diameter of the active material is determined by observing the raw material powder on the surface layer side and the raw material powder on the current collector side with an electron microscope (SEM). 300 are selected, and the diameter is measured and averaged to obtain the average particle diameter of each active material. Further, in the electrode mixture layer, the surface from which the current collector and the mixture layer were peeled off was observed with an electron microscope (SEM), 300 active material particles included in this observation image were selected, and the diameter was selected. The value measured and averaged is taken as the average particle diameter of the active material on the current collector side. Further, the surface of the surface layer is observed with an SEM, 300 active material particles included in the observed image are selected, and the diameter is measured and averaged to obtain the average particle size of the active material on the surface layer side. At this time, the specific surface area may be obtained in consideration of the observed particle shape, for example, surface irregularities. Or the specific surface area of an active material is good also as the value which measured the active material, for example using nitrogen gas by the BET specific surface area measurement by gas adsorption. The specific surface area of the active material on the surface layer side is preferably in the range of, for example, 10 m 2 / g or more and 2500 m 2 / g or less.

本発明の電極の合材層は、膜厚(合材層の厚さ)が20μm以上で形成されていることが好ましい。膜厚が20μm以上であれば、電池容量をより高めることができる。また、膜厚が20μm以上では、集電体側の活物質までイオンが到達しにくくなり、充放電反応が均一になりにくく、本発明を適用する意義が高い。即ち、充放電特性をより向上する効果がより顕著なものとなる。この膜厚は、厚い方がより好ましく、例えば、25μm以上であることが好ましく、50μm以上であることがより好ましい。また、合材層の膜厚は、集電体との結着性などを考慮すると、1000μm以下であることが好ましい。   The composite layer of the electrode of the present invention is preferably formed with a film thickness (thickness of the composite layer) of 20 μm or more. If the film thickness is 20 μm or more, the battery capacity can be further increased. In addition, when the film thickness is 20 μm or more, ions hardly reach the active material on the current collector side, and the charge / discharge reaction is difficult to be uniform, and the significance of applying the present invention is high. That is, the effect of further improving the charge / discharge characteristics becomes more remarkable. The film thickness is preferably thicker, for example, preferably 25 μm or more, and more preferably 50 μm or more. The film thickness of the composite material layer is preferably 1000 μm or less in consideration of the binding property with the current collector and the like.

本発明の電極の合材層は、表層側の活物質の比表面積Aに対する集電体側の活物質の比表面積Bの比から値1を減じた比表面積比増加率(B/A−1)をこの合材層の厚さT(μm)で除算した単位厚さあたりの比表面積比増加率{(B/A−1)/T}が0.010(μm-1)以上であることが好ましい。こうすれば、例えば、放電容量や充放電サイクルでの容量維持率など、充放電特性をより向上することができる。この単位厚さあたりの比表面積比増加率は、0.020(μm-1)以上であることがより好ましく、0.030(μm-1)以上であることが更に好ましい。また、この単位厚さあたりの比表面積比増加率は、合材層の形成強度などを考慮すると、0.100以下であることが好ましい。 The composite layer of the electrode of the present invention has a specific surface area ratio increase rate (B / A-1) obtained by subtracting 1 from the ratio of the specific surface area B of the active material on the current collector side to the specific surface area A of the active material on the surface layer side. The specific surface area ratio increase rate {(B / A-1) / T} per unit thickness divided by the thickness T (μm) of the composite material layer is 0.010 (μm −1 ) or more. preferable. In this way, for example, the charge / discharge characteristics such as the discharge capacity and the capacity retention rate in the charge / discharge cycle can be further improved. The specific surface area ratio increase rate per unit thickness is more preferably 0.020 (μm −1 ) or more, and further preferably 0.030 (μm −1 ) or more. The specific surface area ratio increase rate per unit thickness is preferably 0.100 or less in consideration of the formation strength of the composite layer.

本発明の電極の合材層は、少なくとも結着材と活物質とを含む原料(合材原料ともいう)を用いて静電塗装により集電体に形成されていることが好ましい。静電塗装とは、合材原料を静電気力によって集電体に付着させたのち、加熱により結着材を溶融して合材を集電体に固定する手法をいう。この静電塗装では、活物質の比表面積や結着材や導電材の添加量などを変化させ、第1層目、第2層目と、特性を変化させた合材粉体を逐次塗装することが可能であり、活物質の比表面積を傾斜化した電極の製造工程を簡素化することができる。また、例えば湿式で行う場合に必要な乾燥工程などを省略可能であり、電極の製造工程をより簡素化することができる。また、充放電特性をより高めることができる。   The composite layer of the electrode of the present invention is preferably formed on the current collector by electrostatic coating using a raw material (also referred to as a composite material) containing at least a binder and an active material. Electrostatic coating refers to a technique in which a material mixture is attached to a current collector by electrostatic force, and then the binder is melted by heating to fix the material to the current collector. In this electrostatic coating, the specific surface area of the active material, the added amount of the binder and the conductive material, etc. are changed, and the first layer, the second layer, and the mixed material powder whose characteristics are changed are sequentially applied. It is possible, and the manufacturing process of the electrode in which the specific surface area of the active material is inclined can be simplified. Further, for example, a drying process required when performing wet processing can be omitted, and the electrode manufacturing process can be further simplified. Moreover, charge / discharge characteristics can be further improved.

合材層に含まれる活物質は、例えば、リチウム二次電池に用いられる正極活物質や負極活物質などとしてもよい。例えば、活物質は、正極活物質としての、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-x)MnO2(0≦x≦1、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。また、活物質粒子は、負極活物質としての、リチウムイオンを吸蔵・放出可能な炭素質材料、Li4Ti512などのチタン複合酸化物、導電性ポリマーなどを用いることができる。このうち炭素質材料が安全性の面から見て好ましい。この炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり、支持塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時おける不可逆容量を少なくできるため、好ましい。この活物質粒子は、平均粒径が0.5μm以上20μm以下であることが、集電体上に形成する処理が行いやすいため好ましく、1μm以上10μm以下であることがより好ましい。なお、原料粉体の平均粒径は、原料粉体をSEM観察し、この観察画像に含まれる活物質粒子を300個選択し、その直径を測定して平均した値とする。 The active material contained in the composite layer may be, for example, a positive electrode active material or a negative electrode active material used for a lithium secondary battery. For example, as the active material, a sulfide containing a transition metal element or an oxide containing lithium and a transition metal element can be used as the positive electrode active material. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 (0 ≦ x ≦ 1, the same shall apply hereinafter), Li (1-x) Mn 2 Lithium manganese composite oxide such as O 4 , Lithium cobalt composite oxide such as Li (1-x) CoO 2 , Lithium nickel composite oxide such as Li (1-x) NiO 2 , Lithium vanadium such as LiV 2 O 3 A composite oxide, a transition metal oxide such as V 2 O 5, or the like can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. As the active material particles, a carbonaceous material capable of inserting and extracting lithium ions, a titanium composite oxide such as Li 4 Ti 5 O 12 , a conductive polymer, and the like can be used as the negative electrode active material. Of these, carbonaceous materials are preferable from the viewpoint of safety. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite have an operating potential close to that of metallic lithium, and can be charged and discharged at a high operating voltage. When lithium salt is used as the supporting salt, self-discharge is suppressed. In addition, it is preferable because the irreversible capacity during charging can be reduced. The active material particles preferably have an average particle size of 0.5 μm or more and 20 μm or less because the treatment can be easily performed on the current collector, and more preferably 1 μm or more and 10 μm or less. The average particle diameter of the raw material powder is an average value obtained by observing the raw material powder by SEM, selecting 300 active material particles included in the observed image, and measuring the diameter.

合材層に含まれる結着材は、活物質や導電材を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。合材層に含まれる導電材としては、電極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性の観点より、カーボンブラック及びアセチレンブラックが好ましい。   The binder contained in the composite material layer plays a role of securing the active material and the conductive material. For example, a fluorine-containing resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride, and fluorine rubber, or polypropylene. , Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. The conductive material included in the composite layer is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite , Acetylene black, carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) or a mixture of two or more can be used. . Of these, carbon black and acetylene black are preferable as the conductive material from the viewpoint of electron conductivity.

本発明の電極は、例えば、リチウム二次電池に用いることができる。本発明のリチウム二次電池は、集電体と、表層側に比して前記集電体側では活物質の比表面積が大きい傾向に該活物質を含んで前記集電体上に形成された合材層と、を備えた電極と、電極と接しリチウムイオンを伝導するイオン伝導媒体と、を備えているものとしてもよい。本発明のリチウム二次電池は、正極及び負極の少なくとも一方が、上述した本発明の電極であるものとしてもよく、正極及び負極の両方が本発明の電極であるものとしてもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物を用いるものとしてもよい。   The electrode of the present invention can be used for, for example, a lithium secondary battery. The lithium secondary battery of the present invention includes a current collector and a composite formed on the current collector so as to have a larger specific surface area of the active material on the current collector side than on the surface side. It is good also as what is provided with the electrode provided with the material layer, and the ion conduction medium which contact | connects an electrode and conducts lithium ion. In the lithium secondary battery of the present invention, at least one of the positive electrode and the negative electrode may be the electrode of the present invention described above, and both the positive electrode and the negative electrode may be the electrode of the present invention. As the negative electrode active material, an inorganic compound such as lithium, a lithium alloy, or a tin compound may be used.

本発明のリチウム二次電池のイオン伝導媒体としては、支持塩を含む非水系電解液や非水系ゲル電解液などを用いることができる。非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。なお、環状カーボネート類は、比誘電率が比較的高く、電解液の誘電率を高めていると考えられ、鎖状カーボネート類は、電解液の粘度を抑えていると考えられる。   As the ion conduction medium of the lithium secondary battery of the present invention, a non-aqueous electrolyte solution containing a supporting salt, a non-aqueous gel electrolyte solution, or the like can be used. Examples of the solvent for the nonaqueous electrolytic solution include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane, and diethoxyethane; nitriles such as acetonitrile and benzonitrile; Examples include furans such as lan, methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can. The cyclic carbonates are considered to have a relatively high relative dielectric constant and increase the dielectric constant of the electrolytic solution, and the chain carbonates are considered to suppress the viscosity of the electrolytic solution.

本発明のリチウム二次電池に含まれている支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。 The supporting salt contained in the lithium secondary battery of the present invention is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Examples include LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. The supporting salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. If the concentration of the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and if it is 5 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type and a halogen type, to this non-aqueous electrolyte.

また、液状のイオン伝導媒体の代わりに、固体のイオン伝導性ポリマーをイオン伝導媒体として用いることもできる。イオン伝導性ポリマーとしては、例えば、アクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデンなどのポリマーと支持塩とで構成されるポリマーゲルを用いることができる。更に、イオン伝導性ポリマーと非水系電解液とを組み合わせて用いることもできる。また、イオン伝導媒体としては、イオン伝導性ポリマーのほか、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質の混合材料、若しくは有機バインダーによって結着された無機固体粉末などを利用することができる。   Further, instead of the liquid ion conducting medium, a solid ion conducting polymer may be used as the ion conducting medium. As the ion conductive polymer, for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and polyvinylidene fluoride and a supporting salt can be used. Further, an ion conductive polymer and a non-aqueous electrolyte can be used in combination. In addition to the ion conductive polymer, an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, an inorganic solid powder bound by an organic binder, or the like can be used as the ion conductive medium.

本発明のリチウム二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウム二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin fine olefin resin such as polyethylene or polypropylene is used. A porous membrane is mentioned. These may be used alone or in combination.

本発明のリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、本発明のリチウム二次電池10の一例を示す模式図である。このリチウム二次電池10は、集電体11に正極合材層12を形成した正極シート13と、集電体14の表面に負極合材層17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18との間を満たすイオン伝導媒体20(非水電解液)と、を備えたものである。このリチウム二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シート18に接続された負極端子26とを配設して形成されている。また、このリチウム二次電池10の正極合材層12は、セパレータ19側の表層側合材層12aと、集電体11に接触する集電体側合材層12bとを含み、表層側合材層12aに比して集電体側合材層12bでは正極活物質の比表面積が大きくなるよう形成されている。また、このリチウム二次電池10の負極合材層17は、セパレータ19側の表層側合材層17aと、集電体11に接触する集電体側合材層17bとを含み、表層側合材層17aに比して集電体側合材層17bでは負極活物質の比表面積が大きくなるよう形成されている。   The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing used for an electric vehicle etc. FIG. 1 is a schematic diagram showing an example of a lithium secondary battery 10 of the present invention. The lithium secondary battery 10 includes a positive electrode sheet 13 in which a positive electrode mixture layer 12 is formed on a current collector 11, a negative electrode sheet 18 in which a negative electrode mixture layer 17 is formed on the surface of the current collector 14, a positive electrode sheet 13, A separator 19 provided between the negative electrode sheet 18 and an ion conductive medium 20 (nonaqueous electrolyte solution) that fills between the positive electrode sheet 13 and the negative electrode sheet 18 are provided. In this lithium secondary battery 10, the separator 19 is sandwiched between the positive electrode sheet 13 and the negative electrode sheet 18, and these are wound and inserted into the cylindrical case 22, and the positive electrode terminal 24 and the negative electrode sheet 18 connected to the positive electrode sheet 13. And a negative electrode terminal 26 connected to each other. The positive electrode mixture layer 12 of the lithium secondary battery 10 includes a surface layer-side mixture layer 12 a on the separator 19 side and a current collector-side mixture layer 12 b that contacts the current collector 11. The collector-side composite material layer 12b is formed so that the specific surface area of the positive electrode active material is larger than that of the layer 12a. The negative electrode mixture layer 17 of the lithium secondary battery 10 includes a surface layer-side mixture layer 17 a on the separator 19 side and a current collector-side mixture layer 17 b that contacts the current collector 11. The current collector side composite material layer 17b is formed so that the specific surface area of the negative electrode active material is larger than that of the layer 17a.

次に、本発明の電極の製造方法について説明する。本発明の電極の製造方法は、少なくとも結着材と活物質とを混合して粉末状の合材粉体を作製する合材作製工程と、表層側に比して集電体側では活物質の比表面積が大きい傾向に集電体上に活物質を形成する合材層形成工程と、を含むものとしてもよい。本発明の電極の製造方法は、活物質として正極活物質を用い、正極を製造する方法としてもよいし、活物質粒子として負極活物質を用い、負極を製造する方法としてもよい。この製造方法において、電極は、アルカリ二次電池の電極とすることが好ましい。アルカリ二次電池のアルカリとしては、例えば、リチウム,ナトリウム,カリウムとしてもよく、このうちリチウムがより好ましい。以下では、主としてリチウム二次電池の製造方法について説明する。   Next, the manufacturing method of the electrode of this invention is demonstrated. The method for producing an electrode of the present invention includes a composite material production step of producing a powdery composite powder by mixing at least a binder and an active material, and an active material on the current collector side as compared with the surface layer side. And a mixture layer forming step of forming an active material on the current collector so as to have a large specific surface area. The method for producing an electrode of the present invention may be a method for producing a positive electrode using a positive electrode active material as an active material, or a method for producing a negative electrode using a negative electrode active material as active material particles. In this manufacturing method, the electrode is preferably an electrode of an alkaline secondary battery. The alkali of the alkaline secondary battery may be, for example, lithium, sodium, or potassium, and among these, lithium is more preferable. Below, the manufacturing method of a lithium secondary battery is mainly demonstrated.

[合材作製工程]
この工程では、少なくとも結着材と活物質粒子とを混合して粉末状の合材粉体を作製する処理を行う。また、合材粉体は、更に導電材を含むものとしてもよい。例えば、活物質が導電性を有する場合には、合材粉体は結着材のみからなるものとし、活物質の導電性が低いか導電性がない場合には、合材粉体は結着材と導電材とを含むものとしてもよい。合材粉体のうち、活物質は、全体の30体積%以上90体積%以下としてもよい。また、合材粉体のうち、結着材は、全体の1体積%以上20体積%以下としてもよい。また、合材粉体のうち、導電材は、全体の5体積%以上60体積%以下としてもよい。
[Composite production process]
In this step, at least a binder and active material particles are mixed to produce a powdery composite powder. The composite powder may further contain a conductive material. For example, when the active material has conductivity, the composite powder is composed only of the binder, and when the active material has low conductivity or no conductivity, the composite powder is bound. A material and a conductive material may be included. In the composite powder, the active material may be 30% by volume or more and 90% by volume or less of the whole. In the composite powder, the binder may be 1% by volume or more and 20% by volume or less of the whole. In the composite powder, the conductive material may be 5% by volume or more and 60% by volume or less of the whole.

合材作製工程において、活物質、結着材及び導電材としては、本発明の電極で説明したリチウム二次電池に用いられる正極活物質や負極活物質、結着材及び導電材などを用いることができる。合材作製工程では、活物質粒子、結着材、更には導電材を溶剤に分散させ、混合したのち、乾燥、解砕し、合材粉体を作製するものとしてもよい。こうすれば、活物質粒子と副次材とをより均一に混合することができる。溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質粒子をスラリー化して混合してもよい。   In the composite material production process, as the active material, the binder, and the conductive material, the positive electrode active material, the negative electrode active material, the binder, and the conductive material used in the lithium secondary battery described in the electrode of the present invention are used. Can do. In the composite material production step, the active material particles, the binder, and further the conductive material may be dispersed and mixed in a solvent, and then dried and crushed to produce a composite powder. In this way, the active material particles and the secondary material can be mixed more uniformly. Examples of the solvent include organic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, and tetrahydrofuran. it can. Further, a dispersant, a thickener, or the like may be added to water, and the active material particles may be slurried and mixed with a latex such as SBR.

[合材層形成工程]
この工程では、表層側に比して集電体側では活物質の比表面積が大きい傾向に集電体上に活物質を形成する処理を行う。表層側に比して集電体側では活物質の比表面積を大きくする方法としては、例えば、複数の比表面積を有する活物質を用意し、集電体上に大きな比表面積を有する活物質を第1層として形成し、次に第1層上にこれより小さい比表面積を有する活物質を第2層として形成する処理を2層以上行うものとすればよい。活物質の比表面積の調整は、例えば、活物質の粒径によって行うものとしてもよいし、活物質粒子の表面特性の変化、例えば、粒子表面をディンプル状にしたり、粒子表面にクラックを設けたりするものとしてもよい。この合材層形成工程は、電着塗装など合材粉体に溶媒を加えた湿式処理で行ってもよいし、静電塗装など合材粉体をそのまま用いる乾式処理で行ってもよい。このうち、乾式処理が、乾燥工程などを簡略化することができ、且つ製造エネルギーの観点からも好ましい。例えば、合材層形成工程では、合材原料を用いて静電塗装により集電体上に活物質を形成するものとしてもよい。この静電塗装では、集電体側の合材層の比表面積を大きくし、より表面側の合材層の比表面積をより大きくするなど、合材層の制御が容易であり、より好ましい。また、静電塗装では、乾燥工程の省略や、原料成分の偏析などを抑制することができる。この合材層の比表面積制御は、例えば、活物質粒子の比表面積や粒径、結着材や導電材の添加量などを変化させ、第1層目、第2層目と、特性を変化させた合材粉体を塗装することにより実現することができる。静電塗装を行う場合、合材粉体を霧状にするための方式には、帯電した合材粉体自身の反発を利用し合材粉体を霧状に噴霧する方式や、噴霧した合材粉体に外部電極からコロナ放電で電荷を付与する方式などが挙げられる。なお、電着塗装とは、電解液の中に集電体を浸漬しこれを陰極又は陽極とし、直流電気を通じて合材粉体を集電体上に電着、形成させる方法をいう。
[Composite layer forming step]
In this step, the active material is formed on the current collector so that the specific surface area of the active material is larger on the current collector side than on the surface layer side. As a method for increasing the specific surface area of the active material on the current collector side as compared with the surface layer side, for example, an active material having a plurality of specific surface areas is prepared, and an active material having a large specific surface area is arranged on the current collector. Two or more layers may be formed by forming a single layer and then forming an active material having a smaller specific surface area as a second layer on the first layer. The adjustment of the specific surface area of the active material may be performed by, for example, the particle size of the active material, or the surface characteristics of the active material particles may be changed, for example, the particle surface may be dimpled or cracks may be formed on the particle surface. It is good also as what to do. This composite material layer forming step may be performed by wet processing in which a solvent is added to the composite powder such as electrodeposition coating, or may be performed by dry processing using the composite powder as it is, such as electrostatic coating. Among these, the dry process can simplify the drying process and is preferable from the viewpoint of manufacturing energy. For example, in the composite material layer forming step, the active material may be formed on the current collector by electrostatic coating using the composite material. This electrostatic coating is more preferable because the control of the composite layer is easy, such as increasing the specific surface area of the composite layer on the current collector side and increasing the specific surface area of the composite layer on the surface side. Moreover, in electrostatic coating, omission of a drying process, segregation of a raw material component, etc. can be suppressed. The control of the specific surface area of the composite material layer changes, for example, the specific surface area and particle size of the active material particles, the added amount of the binder and the conductive material, and the characteristics of the first layer and the second layer are changed. This can be realized by coating the mixed powder. When electrostatic coating is performed, the mixture powder is atomized by using the repulsion of the charged mixture powder itself to spray the mixture powder in the form of a mist. For example, a method of applying an electric charge to the material powder from an external electrode by corona discharge may be used. Electrodeposition coating refers to a method in which a current collector is immersed in an electrolytic solution to be used as a cathode or an anode, and a composite powder is electrodeposited and formed on the current collector through direct current electricity.

合材層形成工程では、合材粉体を集電体上に形成したのち、必要に応じて電極密度を高めるべくプレスなどにより圧縮する圧縮処理や、合材粉体を固着させるべく加熱処理を行ってもよい。例えば、加熱したロールプレスで圧縮処理及び加熱処理を同時に行うものとしてもよい。圧縮処理や加熱処理では、結着材に内部応力(歪)が残存しないように行うことが好ましい。また、適度な空隙が存在するように圧縮処理を行うことが好ましい。合材粉体を固着する際の加熱処理は、例えば、結着材のガラス転移点Tg以上の温度で行うことが好ましく、結着材の軟化点以上の温度で行うことがより好ましい。ガラス転移点Tg以上の温度で加熱処理を行うと、結着材に内部応力(歪)が残存しにくく、活物質粒子をより強固に集電体上に固着することができ、好ましい。   In the composite material layer forming step, after forming the composite material powder on the current collector, if necessary, a compression process for compressing with a press or the like to increase the electrode density, or a heat treatment to fix the composite material powder. You may go. For example, it is good also as what performs a compression process and a heat processing simultaneously with the heated roll press. The compression treatment or heat treatment is preferably performed so that no internal stress (strain) remains in the binder. Moreover, it is preferable to perform a compression process so that a moderate space | gap may exist. The heat treatment for fixing the composite powder is preferably performed at a temperature equal to or higher than the glass transition point Tg of the binder, and more preferably performed at a temperature equal to or higher than the softening point of the binder. It is preferable to perform the heat treatment at a temperature equal to or higher than the glass transition point Tg because internal stress (strain) hardly remains in the binder, and the active material particles can be more firmly fixed on the current collector.

合材層形成工程では、表層側の活物質の比表面積Aに対する集電体側の活物質の比表面積Bの比から値1を減じた比表面積比増加率(B/A−1)が0.25以上となるように合材層を形成することが好ましい。この比表面積比増加率は、上述したように、0.50以上とすることが好ましく、1.00以上とすることがより好ましい。また、この比表面積比増加率(B/A−1)は、5.00以下とすることが好ましく、3.00以下とすることがより好ましい。また、合材層形成工程では、表層側の活物質の比表面積Aに対する集電体側の活物質の比表面積Bの比から値1を減じた比表面積比増加率(B/A−1)をこの合材層の厚さT(μm)で除算した単位厚さあたりの比表面積比増加率{(B/A−1)/T}が0.010以上となるように合材層を形成することが好ましい。この単位厚さあたりの比表面積比増加率は、上述したように、0.020(μm-1)以上であることがより好ましく、0.030(μm-1)以上であることが更に好ましい。また、この単位厚さあたりの比表面積比増加率は、0.100以下であることが好ましい。また、合材層形成工程では、膜厚(合材層の厚さ)が20μm以上となるように合材層を形成することが好ましい。この膜厚は、厚い方がより好ましく、例えば、25μm以上とすることが好ましく、50μm以上とすることがより好ましい。また、合材層の膜厚は、1000μm以下とすることが好ましい。 In the composite layer forming step, the specific surface area ratio increase rate (B / A-1) obtained by subtracting the value 1 from the ratio of the specific surface area B of the active material on the current collector side to the specific surface area A of the active material on the surface layer side is 0. It is preferable to form the composite material layer so as to be 25 or more. As described above, the specific surface area ratio increase rate is preferably 0.50 or more, and more preferably 1.00 or more. The specific surface area ratio increase rate (B / A-1) is preferably 5.00 or less, and more preferably 3.00 or less. In the composite layer forming step, the specific surface area ratio increase rate (B / A-1) obtained by subtracting the value 1 from the ratio of the specific surface area B of the active material on the current collector side to the specific surface area A of the active material on the surface side. The composite layer is formed so that the specific surface area ratio increase rate {(B / A-1) / T} per unit thickness divided by the thickness T (μm) of the composite layer is 0.010 or more. It is preferable. As described above, the specific surface area ratio increase rate per unit thickness is more preferably 0.020 (μm −1 ) or more, and further preferably 0.030 (μm −1 ) or more. The specific surface area ratio increase rate per unit thickness is preferably 0.100 or less. In the composite material layer forming step, the composite material layer is preferably formed so that the film thickness (the thickness of the composite material layer) is 20 μm or more. The film thickness is preferably thicker, for example, preferably 25 μm or more, and more preferably 50 μm or more. Moreover, it is preferable that the film thickness of a composite material layer shall be 1000 micrometers or less.

以上詳述した、本発明の電極、リチウム二次電池及び電極の製造方法では、反応しにくい電極の深部(集電体側)での反応比表面積を増加させることにより、集電体側の膜厚の深い部位に配置された活物質まで充放電に寄与するため、例えば、放電容量の向上や充放電サイクル後の放電容量維持率の向上など、充放電特性をより高めることができる。また、静電塗装により合材層を集電体上に形成するため、例えばペーストを用いて集電体に塗布して電極を作製する場合に比して、溶媒を多量に必要とせず、溶媒の乾燥工程や、ペーストの性状維持に関する処理などを省略することができ、より簡素的な工程で電極の製造を行うことができる。また、電極合材の組成ムラを抑制して充放電特性をより高めることができる。   In the electrode, lithium secondary battery, and electrode manufacturing method of the present invention described in detail above, by increasing the reaction specific surface area in the deep part (current collector side) of the electrode that is difficult to react, the film thickness on the current collector side can be increased. Since it contributes to charging / discharging up to the active material arranged in a deep part, for example, the charging / discharging characteristics such as improvement of the discharge capacity and improvement of the discharge capacity maintenance rate after the charge / discharge cycle can be further enhanced. In addition, since the composite material layer is formed on the current collector by electrostatic coating, a large amount of solvent is not required as compared with the case where an electrode is manufactured by applying the paste to the current collector, for example. Thus, the drying process and the process for maintaining the properties of the paste can be omitted, and the electrode can be manufactured by a simpler process. Moreover, the compositional unevenness of the electrode mixture can be suppressed to further improve the charge / discharge characteristics.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、本発明のリチウム二次電池を具体的に作製した例を実験例として説明する。なお、実験例1、2、4、6が実施例に相当し、実験例7,8が比較例に相当し、実験例3、5、9〜11が参考例に相当する。
Below, the example which produced the lithium secondary battery of this invention concretely is demonstrated as an experiment example. Experimental examples 1 , 2, 4, and 6 correspond to examples, experimental examples 7 and 8 correspond to comparative examples, and experimental examples 3, 5, and 9 to 11 correspond to reference examples .

[粉体状の正極合材の作製]
結着材のポリフッ化ビニリデンに対して、導電材のカーボンブラックを体積比で5%で混合した。この混合物を、平均粒子径が2〜10μmのLiNi0.8Co0.15Al0.052の層状構造リチウムニッケル複合酸化物に対して、体積比で35%混合したものを、N−メチル−2−ピロリドンで分散させた。これを減圧乾燥して解砕し、正極活物質であるリチウムニッケル複合酸化物粒子の表面にカーボンブラックとポリフッ化ビニリデンの混合物である導電性結着材が薄膜状あるいは島状に密着した粉体塗布用正極活物質(正極合材)を得た。なお、平均粒径は、原料粒子を電子顕微鏡(SEM)観察し、この観察画像に含まれる活物質粒子を300個選択し、その直径を測定して平均した値とした。
[Preparation of powdered positive electrode mixture]
Carbon black as a conductive material was mixed at 5% by volume with respect to polyvinylidene fluoride as a binder. This mixture was mixed with a layered structure lithium nickel composite oxide of LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle diameter of 2 to 10 μm at a volume ratio of 35% with N-methyl-2-pyrrolidone. Dispersed. The powder is dried under reduced pressure and crushed, and a conductive binder, which is a mixture of carbon black and polyvinylidene fluoride, is adhered to the surface of lithium nickel composite oxide particles, which are positive electrode active materials, in a thin film or island shape. A positive electrode active material (positive electrode mixture) for coating was obtained. The average particle size was obtained by observing the raw material particles with an electron microscope (SEM), selecting 300 active material particles included in the observed image, measuring the diameter, and averaging.

[粉体状の負極合材の作製]
結着材のポリフッ化ビニリデンを、平均粒子径が2〜10μmの天然黒鉛に対して、体積比で35%で混合したものを、N−メチル−2−ピロリドンで分散させた。これを減圧乾燥させて解砕し、負極活物質である天然黒鉛粒子の表面にポリフッ化ビニリデンが薄膜状あるいは島状に密着した粉体塗布用負極活物質(負極合材)を得た。
[Preparation of powdered negative electrode mixture]
A binder obtained by mixing polyvinylidene fluoride as a binder with natural graphite having an average particle diameter of 2 to 10 μm at a volume ratio of 35% was dispersed with N-methyl-2-pyrrolidone. This was dried under reduced pressure and pulverized to obtain a negative electrode active material for coating powder (negative electrode mixture) in which polyvinylidene fluoride was adhered in the form of a thin film or an island on the surface of natural graphite particles as the negative electrode active material.

[電極作製]
粉体塗布用正極活物質(正極合材)、粉体塗布用負極活物質(負極合材)はそれぞれ、粉体塗布用の静電塗布装置を用いて、集電体の表面に静電塗装した。正極合材は、静電塗布装置を用いて集電体としての厚さ20μmのAl箔の両面に塗布された。負極合材は、静電塗布装置を用いて集電体としての厚さ10μmのCu箔の両面に塗布された。合材の塗布は、片面当り2〜3回に分けて行い、塗布ごとの活物質粒子径を変化させることで、集電体側と表層側の活物質の比表面積を制御した。また、塗布量も適宜変化させてプレス後の電極膜厚を変化させた。静電塗布装置には、−60kVを印加して活物質に帯電させ、Al、Cuの集電箔は接地させることによりこれらの間に電位差を発生させ、いわゆる粉体静電塗布を行った。静電塗布後の正極電極及び負極電極は、それぞれロールプレスで高密度化した。この際にロールプレスの温度を120℃に制御して、活物質表面の結着材同士が内部歪のない状態で密着させて、いずれも活物質密度2.0g/cm3の正極電極および活物質密度1.2g/cm3の負極電極を得た。
[Electrode production]
The positive electrode active material for powder coating (positive electrode mixture) and the negative electrode active material for powder coating (negative electrode mixture) are each electrostatically coated on the surface of the current collector using an electrostatic coating apparatus for powder coating. did. The positive electrode mixture was applied to both surfaces of an Al foil having a thickness of 20 μm as a current collector using an electrostatic coating apparatus. The negative electrode mixture was applied to both surfaces of a 10 μm thick Cu foil as a current collector using an electrostatic coating apparatus. The application of the composite material was performed two to three times per side, and the specific surface area of the active material on the current collector side and the surface layer side was controlled by changing the active material particle diameter for each application. Moreover, the coating amount was also changed as appropriate to change the electrode film thickness after pressing. In the electrostatic coating apparatus, -60 kV was applied to charge the active material, and the Al and Cu current collector foils were grounded to generate a potential difference therebetween, so-called powder electrostatic coating was performed. The positive electrode and the negative electrode after electrostatic coating were each densified with a roll press. At this time, the temperature of the roll press is controlled to 120 ° C. so that the binders on the surface of the active material are brought into close contact with each other without any internal strain, and both the positive electrode having an active material density of 2.0 g / cm 3 A negative electrode having a material density of 1.2 g / cm 3 was obtained.

[電池作製]
上記の正極電極と負極電極を適宜組合わせて、厚さ25μmの多孔質ポリエチレン製セパレータを挟んで捲回しロール状電極体を作製した。このロール状電極体を18650型円筒ケースに挿入し、非水電解液を含侵させた後に密閉して円筒型リチウムイオン二次電池を作製した。非水電解液には、エチレンカーボネートとジエチルカーボネートを30:70体積%で混合した混合溶媒に、LiPF6を1Mの濃度で溶解したものを用いた。
[Battery fabrication]
The above positive electrode and negative electrode were appropriately combined, and rolled with a 25 μm-thick porous polyethylene separator interposed therebetween to produce a roll electrode body. This roll-shaped electrode body was inserted into a 18650 type cylindrical case, impregnated with a non-aqueous electrolyte, and then sealed to produce a cylindrical lithium ion secondary battery. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1M in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at 30: 70% by volume was used.

(高電流密度充放電サイクル試験)
充放電サイクル試験は、20℃の温度条件下で、電流密度10mA/cm2の定電流で充電上限電圧4.1Vまで充電を行い、次いで電流密度10mA/cm2の定電流で放電下限電圧3.0Vまで放電を行う充放電を1サイクルとし、このサイクルを合計100サイクル行うものとした。そして、充放電サイクル試験前の放電容量を初期放電容量として、{100サイクル後の放電容量/初期放電容量×100%}という式を用いて、100サイクル後の容量維持率(%)を計算した。初期の放電容量が高いほど高出力で、100サイクル後の容量維持率が高いほど均一反応性が高いと判断した。
(High current density charge / discharge cycle test)
In the charge / discharge cycle test, charging was performed at a constant current with a current density of 10 mA / cm 2 up to a charge upper limit voltage of 4.1 V under a temperature condition of 20 ° C., and then the discharge lower limit voltage was 3 with a constant current of a current density of 10 mA / cm 2. Charging / discharging for discharging to 0.0 V is defined as one cycle, and this cycle is performed for a total of 100 cycles. Then, using the equation {discharge capacity after 100 cycles / initial discharge capacity × 100%} as the initial discharge capacity as the discharge capacity before the charge / discharge cycle test, the capacity retention rate (%) after 100 cycles was calculated. . The higher the initial discharge capacity, the higher the output, and the higher the capacity retention rate after 100 cycles, the higher the uniform reactivity.

[実験例1]
電極の合材層全体の膜厚を20μmとし、片面塗布回数を2回、集電体側の活物質の平均粒径を4μm、表層側の活物質の平均粒径を5μmとして上記説明した方法により正極電極及び負極電極を同じ条件で作製し、作製した正極電極及び負極電極を組合わせて捲回し、得られた電池を実験例1とした。静電粉体塗装では、集電体上への1回目の合材層の形成に平均粒径4μmの活物質を用い、2回目の合材層の形成に平均粒径5μmの活物質を用いた。実験例1及び後述する実験例2〜11の作製条件及び評価結果を表1に示す。
[Experiment 1]
According to the method described above, the film thickness of the electrode mixture layer as a whole is 20 μm, the number of times of single-sided application is 2, the average particle size of the active material on the current collector side is 4 μm, and the average particle size of the active material on the surface layer side is 5 μm. A positive electrode and a negative electrode were produced under the same conditions, and the produced positive electrode and negative electrode were combined and wound. In electrostatic powder coating, an active material having an average particle size of 4 μm is used for the first formation of the mixture layer on the current collector, and an active material having an average particle size of 5 μm is used for the formation of the second mixture layer. It was. Table 1 shows the production conditions and evaluation results of Experimental Example 1 and Experimental Examples 2 to 11 described later.

Figure 0005929183
Figure 0005929183

[実験例2〜5]
電極の合材層全体の膜厚を40μm、集電体側の活物質の平均粒径を2.5μmとした以外は実験例1と同様の工程を行い得られた電池を実験例2とした。また、電極の合材層全体の膜厚を40μm、集電体側の活物質の平均粒径を2μmとした以外は実験例1と同様の工程を行い得られた電池を実験例3とした。また、電極の合材層全体の膜厚を100μm、集電体側の活物質の平均粒径を5μm、表層側の活物質の平均粒径を10μmとした以外は実験例1と同様の工程を行い得られた電池を実験例4とした。また、電極の合材層全体の膜厚を100μm、片面塗布回数を3回、集電体側の活物質の平均粒径を3μm、中層の活物質の平均粒径を5.5μm、表層側の活物質の平均粒径を10μmとした以外は実験例1と同様の工程を行い得られた電池を実験例5とした。
[Experimental Examples 2 to 5]
A battery obtained by performing the same process as in Experimental Example 1 except that the film thickness of the entire electrode mixture layer was 40 μm and the average particle size of the active material on the current collector side was 2.5 μm was used as Experimental Example 2. A battery obtained by performing the same process as in Experimental Example 1 except that the total thickness of the electrode mixture layer was 40 μm and the average particle diameter of the active material on the current collector side was 2 μm was defined as Experimental Example 3. Further, the same steps as in Experimental Example 1 were performed except that the total thickness of the electrode mixture layer was 100 μm, the average particle size of the active material on the current collector side was 5 μm, and the average particle size of the active material on the surface layer side was 10 μm. The battery thus obtained was named experimental example 4. The total thickness of the electrode mixture layer is 100 μm, the number of times of single-sided coating is 3 times, the average particle size of the active material on the current collector side is 3 μm, the average particle size of the active material on the middle layer is 5.5 μm, A battery obtained by performing the same process as in Experimental Example 1 except that the average particle size of the active material was 10 μm was set as Experimental Example 5.

[実験例6,7]
電極の合材層全体の膜厚を15μm、集電体側の活物質の平均粒径を2μm、表層側の活物質の平均粒径を3μmとした以外は実験例1と同様の工程を行い得られた電池を実験例6とした。また、電極の合材層全体の膜厚を15μm、集電体側及び表層側の活物質の平均粒径を3μmとした以外は実験例1と同様の工程を行い得られた電池を実験例7とした。
[Experimental Examples 6 and 7]
The same steps as in Experimental Example 1 can be performed except that the total thickness of the electrode mixture layer is 15 μm, the average particle size of the active material on the current collector side is 2 μm, and the average particle size of the active material on the surface layer side is 3 μm. The obtained battery was designated as experimental example 6. Further, a battery obtained by performing the same process as in Experimental Example 1 except that the film thickness of the entire composite material layer of the electrode was 15 μm, and the average particle diameter of the active material on the current collector side and the surface layer side was 3 μm was obtained. It was.

[実験例8〜11]
集電体側及び表層側の活物質の平均粒径を5μmとした以外は実験例1と同様の工程を行い得られた電池を実験例8とした。また、集電体側の活物質の平均粒径を4.5μmとした以外は実験例1と同様の工程を行い得られた電池を実験例9とした。また、電極の合材層全体の膜厚を40μm、集電体側の活物質の平均粒径を8μm、表層側の活物質の平均粒径を10μmとした以外は実験例1と同様の工程を行い得られた電池を実験例10とした。また、電極の合材層全体の膜厚を100μm、集電体側の活物質の平均粒径を8μm、表層側の活物質の平均粒径を10μmとした以外は実験例1と同様の工程を行い得られた電池を実験例11とした。
[Experimental Examples 8 to 11]
A battery obtained by performing the same process as in Experimental Example 1 except that the average particle diameter of the active material on the current collector side and the surface layer side was set to 5 μm was set as Experimental Example 8. A battery obtained by performing the same process as in Experimental Example 1 except that the average particle size of the active material on the current collector side was 4.5 μm was set as Experimental Example 9. Further, the same steps as those in Experimental Example 1 were performed except that the total thickness of the electrode mixture layer was 40 μm, the average particle size of the active material on the current collector side was 8 μm, and the average particle size of the active material on the surface layer side was 10 μm. The battery thus obtained was named experimental example 10. Further, the same steps as those in Experimental Example 1 were performed except that the total thickness of the electrode mixture layer was 100 μm, the average particle size of the active material on the current collector side was 8 μm, and the average particle size of the active material on the surface layer side was 10 μm. The battery thus obtained was named experimental example 11.

なお、実験例1〜4,6〜11では、集電体側の合材層及び表層の合材層の各層の厚さは、電極膜厚全体のおおよそ1/2ずつであった。また、実験例5では、集電体側の合材層、中層の合材層及び表層の合材層の各層の厚さは、電極膜厚全体のおおよそ1/3ずつであった。   In Experimental Examples 1 to 4 and 6 to 11, the thickness of each layer of the current collector layer and the surface material layer was approximately ½ of the entire electrode film thickness. In Experimental Example 5, the thickness of each of the current mixture layer, the middle composite layer, and the surface composite layer was about 1/3 of the entire electrode film thickness.

(結果と考察)
表1には、測定結果として、片面の電極膜厚(μm)、片面あたりの塗布回数、集電体側、中層及び表層側の活物質の平均粒径(μm)、活物質の比表面積比増加率、比表面積比増加率を電極膜厚で除算した値、正極活物質の単位重量あたりの放電容量(mAh/g)、100サイクルでの容量維持率(%)をまとめて示した。比表面積比増加率は、活物質を球と仮定して平均粒径から表層側及び集電体側の活物質の比表面積を算出し、表層側の活物質の比表面積に対する集電体側の活物質の比表面積の比から1を減じて求めた値である。なお、比表面積S(m2/g)は、活物質の平均粒径D(m)と密度ρ(g/m3)とを用い、S=6/(D×ρ)の式から算出することができる。
(Results and discussion)
Table 1 shows the measurement results of the electrode film thickness (μm) on one side, the number of coatings per side, the average particle size (μm) of the active material on the current collector side, the middle layer and the surface layer, and the increase in the specific surface area ratio of the active material. The values obtained by dividing the rate, the specific surface area ratio increase rate by the electrode film thickness, the discharge capacity per unit weight of the positive electrode active material (mAh / g), and the capacity retention rate (%) at 100 cycles are shown together. The specific surface area increase rate is calculated by calculating the specific surface area of the active material on the surface layer side and the current collector side from the average particle diameter assuming that the active material is a sphere, and the active material on the current collector side with respect to the specific surface area of the active material on the surface layer side This is a value obtained by subtracting 1 from the ratio of the specific surface area. The specific surface area S (m 2 / g) is calculated from the equation S = 6 / (D × ρ) using the average particle diameter D (m) and the density ρ (g / m 3 ) of the active material. be able to.

表1に示すように、同じ膜厚で比較したとき、表層側に比して集電体側の活物質の比表面積が大きいと初期放電容量及び容量維持率が向上した。また、合材層の膜厚が20μm以上の場合や、比表面積比増加率が、0.25以上、比表面積比増加率/膜厚の値が0.010以上になると、初期放電容量が顕著に大きくなるとともに、容量維持率が極めて大きく向上した。特に、膜厚が20μm以上100μm以下の範囲や、比表面積比増加率が0.25以上3.0以下の範囲、比表面積比増加率/膜厚が0.010以上0.040以下の範囲が好ましかった。膜厚がより厚い方が、単位体積あたりの電池出力が大きくなることから、膜厚は、20μm以上、あるいは50μm以上の範囲がより好ましいと考えられる。この充放電特性の向上は、集電体側の膜厚の深い部位に配置された活物質まで充放電に大きく寄与するためであると推察された。これは反応しにくい電極の深部での反応比表面積を増加させたことが主因であるといえる。本実施例では、活物質の平均粒径を変化させることにより、表層及び集電体側の比表面積を変化させるものとしたが、活物質の表面形状を例えばディンプル状にしたり、活物質表面にクラックを形成するなどして、平均粒径が同じでも比表面積を異なるものとすれば、同じ効果を得ることが出来るものと推察された。   As shown in Table 1, when compared with the same film thickness, when the specific surface area of the active material on the current collector side was larger than that on the surface layer side, the initial discharge capacity and capacity retention ratio were improved. In addition, when the thickness of the composite layer is 20 μm or more, the specific surface area ratio increase rate is 0.25 or more, and the specific surface area ratio increase rate / thickness value is 0.010 or more, the initial discharge capacity is remarkable. As a result, the capacity retention rate was greatly improved. In particular, the film thickness ranges from 20 μm to 100 μm, the specific surface area ratio increase rate ranges from 0.25 to 3.0, and the specific surface area ratio increase rate / film thickness ranges from 0.010 to 0.040. I liked it. The thicker the film thickness, the larger the battery output per unit volume. Therefore, it is considered that the film thickness is preferably 20 μm or more, or 50 μm or more. It was inferred that the improvement of the charge / discharge characteristics was due to the significant contribution to charge / discharge up to the active material disposed in the thick part of the current collector side. It can be said that this is mainly because the reaction specific surface area in the deep part of the electrode which is difficult to react is increased. In this example, the specific surface area on the surface layer and the current collector side is changed by changing the average particle size of the active material. However, the surface shape of the active material is changed to, for example, dimples, or the active material surface is cracked. It was speculated that the same effect can be obtained if the specific surface area is different even if the average particle size is the same.

また、電極の作製方法としては、粉体静電塗装法ではなく、ペーストを複数回塗り重ねる方法も考えられるが、乾燥工程が必要であるなど、電極の作製コストが大きくなり、現実的ではない。更に、乾燥した合材層に次の層のペーストを塗布すると、活物質の流動のみでなく、結着材、導電材も流動偏析することにより、上記ほどの効果は得られないことを確認した。本実施例から考察すると、イオン伝導媒体の流動しにくい、より集電体側の合材層(活物質)では、比表面積を向上させて反応性をより高めることによって、更に高出力・長寿命の電極が作製できることがわかった。また、静電粉体塗装法による電極作製がより好適であることがわかった。   In addition, as a method for producing an electrode, a method in which a paste is applied a plurality of times is conceivable instead of a powder electrostatic coating method. However, a drying process is required and the production cost of the electrode increases, which is not practical. . Furthermore, it was confirmed that when the paste of the next layer was applied to the dried composite material layer, not only the flow of the active material but also the binding material and the conductive material were subjected to flow segregation, so that the above effect could not be obtained. . Considering from this example, in the composite layer (active material) on the current collector side where the ion conduction medium is difficult to flow, the specific surface area is increased to increase the reactivity, thereby further increasing the output and the long life. It turned out that an electrode can be produced. Moreover, it turned out that electrode preparation by the electrostatic powder coating method is more suitable.

10 リチウム二次電池、11,14 集電体、12 正極合材層、12a 表層側合材層、12b 集電体側合材層、13 正極シート、17 負極合材層、17a 表層側合材層、17b 集電体側合材層、18 負極シート、19 セパレータ、20 イオン伝導媒体、22 円筒ケース、24 正極端子、26 負極端子。   DESCRIPTION OF SYMBOLS 10 Lithium secondary battery, 11, 14 Current collector, 12 Positive electrode mixture layer, 12a Surface layer side mixture layer, 12b Current collector side mixture layer, 13 Positive electrode sheet, 17 Negative electrode mixture layer, 17a Surface layer side mixture layer , 17b Current collector side composite material layer, 18 negative electrode sheet, 19 separator, 20 ion conductive medium, 22 cylindrical case, 24 positive electrode terminal, 26 negative electrode terminal.

Claims (6)

電池に用いられる電極であって、
集電体と、
表層側に比して前記集電体側では活物質の比表面積が大きい傾向に該活物質を含んで前記集電体上に形成された合材層と、を備え、
前記合材層は、前記表層側の活物質の比表面積Aに対する前記集電体側の活物質の比表面積Bの比から値1を減じた比表面積比増加率(B/A−1)が0.25以上1.0以下の範囲で形成され、前記表層側の活物質の比表面積Aに対する前記集電体側の活物質の比表面積Bの比から値1を減じた比表面積比増加率(B/A−1)を該合材層の厚さT(μm)で除算した単位厚さあたりの比表面積比増加率{(B/A−1)/T}が0.010以上0.040以下の範囲であり、
前記活物質は、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物及びリチウムニッケル複合酸化物のうちいずれか1以上である、
電極。
An electrode used in a battery,
A current collector,
A mixture layer formed on the current collector including the active material in a tendency that the specific surface area of the active material is larger on the current collector side than on the surface layer side,
The mixture layer, the collector specific surface area ratio subtracting the value 1 from the specific surface area ratio increases of B in the active material of the body side with respect to the specific surface area A of the active material of the surface layer side (B / A-1) is 0 .25 is formed in to 1.0 range, the surface layer the collector specific surface area ratio subtracting the value 1 from the specific surface area ratio increases of B in the active material of the body side with respect to the specific surface area a of the active material (B / A-1) divided by the thickness T (μm) of the composite layer, the specific surface area ratio increase rate per unit thickness {(B / A-1) / T} is 0.010 or more and 0.040 or less. Range of
The active material is any one or more of a lithium manganese composite oxide, a lithium cobalt composite oxide, and a lithium nickel composite oxide.
electrode.
前記合材層は、膜厚が20μm以上で形成されている、請求項1に記載の電極。 The electrode according to claim 1, wherein the composite material layer is formed with a film thickness of 20 μm or more. 前記合材層は、前記単位厚さあたりの比表面積比増加率{(B/A−1)/T}が0.020以上である、請求項1又は2に記載の電極。 The electrode according to claim 1 or 2 , wherein the composite layer has a specific surface area ratio increase rate {(B / A-1) / T} per unit thickness of 0.020 or more. 正極である請求項1〜のいずれか1項に記載の電極と、
前記電極と接しリチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウム二次電池。
The electrode according to any one of claims 1 to 3 , which is a positive electrode;
An ion conducting medium in contact with the electrode and conducting lithium ions;
Rechargeable lithium battery.
電池に用いられる電極の製造方法であって、
表層側に比して集電体側では活物質の比表面積が大きい傾向に該集電体上に活物質を形成する合材層形成工程、を含み、
前記活物質を含む合材層は、前記表層側の活物質の比表面積Aに対する前記集電体側の活物質の比表面積Bの比から値1を減じた比表面積比増加率(B/A−1)が0.25以上1.0以下の範囲で形成され、前記表層側の活物質の比表面積Aに対する前記集電体側の活物質の比表面積Bの比から値1を減じた比表面積比増加率(B/A−1)を該合材層の厚さT(μm)で除算した単位厚さあたりの比表面積比増加率{(B/A−1)/T}が0.010以上0.040以下の範囲で形成され、
前記活物質は、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物及びリチウムニッケル複合酸化物のうちいずれか1以上を用いる、
電極の製造方法。
A method for producing an electrode used in a battery,
A mixture layer forming step of forming an active material on the current collector in a tendency that the specific surface area of the active material is larger on the current collector side than on the surface layer side,
The composite layer containing the active material has a specific surface area ratio increase rate (B / A−) obtained by subtracting the value 1 from the ratio of the specific surface area B of the active material on the current collector side to the specific surface area A of the active material on the surface layer side. 1) is formed in a range of 0.25 to 1.0, the current collector specific surface area the specific surface area ratio obtained by subtracting the value 1 from the ratio of B of the active material body side with respect to the specific surface area a of the active material of the surface layer side Specific surface area ratio increase rate {(B / A-1) / T} per unit thickness obtained by dividing the increase rate (B / A-1) by the thickness T (μm) of the composite material layer is 0.010 or more Formed in a range of 0.040 or less,
The active material uses any one or more of lithium manganese composite oxide, lithium cobalt composite oxide and lithium nickel composite oxide,
Electrode manufacturing method.
前記合材層形成工程では、少なくとも結着材と前記活物質とを含む原料を用いて静電塗装により前記集電体上に活物質を形成する、請求項に記載の電極の製造方法。
The method for producing an electrode according to claim 5 , wherein in the composite material layer forming step, an active material is formed on the current collector by electrostatic coating using a raw material including at least a binder and the active material.
JP2011288170A 2011-12-28 2011-12-28 Electrode, lithium secondary battery, and electrode manufacturing method Active JP5929183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011288170A JP5929183B2 (en) 2011-12-28 2011-12-28 Electrode, lithium secondary battery, and electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288170A JP5929183B2 (en) 2011-12-28 2011-12-28 Electrode, lithium secondary battery, and electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2013137928A JP2013137928A (en) 2013-07-11
JP5929183B2 true JP5929183B2 (en) 2016-06-01

Family

ID=48913477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288170A Active JP5929183B2 (en) 2011-12-28 2011-12-28 Electrode, lithium secondary battery, and electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP5929183B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026823B2 (en) * 2012-08-30 2016-11-16 トヨタ自動車株式会社 Method for manufacturing electrode for secondary battery
JP7082938B2 (en) * 2018-12-12 2022-06-09 三洋電機株式会社 Secondary battery
JP7099378B2 (en) * 2019-03-13 2022-07-12 トヨタ自動車株式会社 Electrode sheet manufacturing method
JP2021072269A (en) * 2019-11-01 2021-05-06 株式会社Gsユアサ Method for manufacturing electrode, electrode, and power storage element
CN113675370B (en) * 2021-09-01 2024-01-05 珠海冠宇电池股份有限公司 Positive plate and lithium ion battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719312B2 (en) * 1997-07-07 2005-11-24 宇部興産株式会社 Positive electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2001351616A (en) * 2000-06-05 2001-12-21 Toyota Motor Corp Manufacturing method of electrode
JP2006210003A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP4752574B2 (en) * 2006-03-30 2011-08-17 ソニー株式会社 Negative electrode and secondary battery
JP2008277231A (en) * 2007-04-06 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP5150966B2 (en) * 2007-05-28 2013-02-27 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP5232631B2 (en) * 2008-12-25 2013-07-10 株式会社東芝 Non-aqueous electrolyte battery
JP2011077014A (en) * 2009-09-04 2011-04-14 Asahi Sunac Corp Method of manufacturing electrode for battery
PL2500965T3 (en) * 2010-09-30 2020-05-18 Lg Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP2013137928A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
KR102100879B1 (en) Positive electrode for secondary battery, preparation method thereof, and lithium secondary battery comprising the same
JP2012209161A (en) Lithium secondary battery
JP5381199B2 (en) Lithium secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
JP2017152259A (en) Lithium ion secondary battery and recovery method thereof
JP5929183B2 (en) Electrode, lithium secondary battery, and electrode manufacturing method
JP5223494B2 (en) Lithium ion secondary battery
JP2019175657A (en) Lithium ion secondary battery
JPWO2018016528A1 (en) Lithium-ion battery electrode and lithium-ion battery
JP5487598B2 (en) Lithium secondary battery and method of using the same
JP6219303B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2016100278A (en) Electrode structure and lithium secondary battery
JP2012216500A (en) Lithium secondary battery
KR20130107927A (en) Composite cathode active material, electrode for lithium secondary battery comprising the same and lithium secondary battery
JP6844236B2 (en) Manufacturing method of carbonaceous material
JP6658182B2 (en) Electrode structure and lithium secondary battery
JP5272810B2 (en) Capacitors
JP2019075278A (en) Laminated structure, lithium secondary battery and method of manufacturing laminated structure
JP2012226963A (en) Lithium secondary battery
JP2013084442A (en) Mixture powder, method of manufacturing electrode, electrode, and lithium secondary battery
JP5504853B2 (en) How to use lithium secondary battery
JP2017134974A (en) Lithium secondary battery
JP2016143577A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150