JP2012216500A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2012216500A
JP2012216500A JP2012023146A JP2012023146A JP2012216500A JP 2012216500 A JP2012216500 A JP 2012216500A JP 2012023146 A JP2012023146 A JP 2012023146A JP 2012023146 A JP2012023146 A JP 2012023146A JP 2012216500 A JP2012216500 A JP 2012216500A
Authority
JP
Japan
Prior art keywords
positive electrode
volume
secondary battery
mixture layer
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012023146A
Other languages
Japanese (ja)
Inventor
Takao Inoue
尊夫 井上
Hiroyuki Nakano
広幸 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2012023146A priority Critical patent/JP2012216500A/en
Publication of JP2012216500A publication Critical patent/JP2012216500A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve output characteristics and cycle durability.SOLUTION: A lithium secondary battery 10 comprises a positive electrode sheet 13 in which a positive electrode mixture layer 12 containing a positive electrode active material is formed on a collector 11. The positive electrode mixture layer 12 contains the positive electrode active material containing a lithium-containing oxide, and a carbon material, has a density of 2.0 g/cmor higher, and satisfies that the pore size at which the cumulative volume accounts for 20% of the total pore volume is 0.3 μm or larger in the pore size distribution measured by mercury porosimetry. In addition, the positive electrode mixture layer 12 preferably satisfies that the volume of pores having a size of 0.5 to 10 μm accounts for 40% or more of the total pore volume and the mode pore size is in the range of 0.5 to 10 μm in the pore size distribution measured by mercury porosimetry.

Description

本発明は、リチウム二次電池に関する。   The present invention relates to a lithium secondary battery.

従来、リチウム二次電池としては、正極が、ニッケルを含有するリチウム複合金属酸化物及びフッ化ビニリデン系フッ素ゴムを含む正極層が集電体に担持された構造を有し、正極層は水銀圧入法による気孔率が20%〜50%で、且つ水銀圧入法による直径0.1μm〜3μmの気孔量が10mm3/g〜150mm3/gであるものが提案されている(例えば、特許文献1参照)。このリチウム二次電池は、正極を改良することによりエネルギー密度を高めると共に充放電サイクル特性を高めることができるとしている。 Conventionally, as a lithium secondary battery, a positive electrode has a structure in which a positive electrode layer containing a lithium composite metal oxide containing nickel and a vinylidene fluoride-based fluororubber is supported on a current collector, and the positive electrode layer is intruded with mercury. in porosity of law 20% to 50%, and those pores of diameter 0.1μm~3μm by mercury porosimetry is 10mm 3 / g~150mm 3 / g has been proposed (e.g., Patent Document 1 reference). This lithium secondary battery is said to improve the energy density and improve the charge / discharge cycle characteristics by improving the positive electrode.

特開平10−255763号公報Japanese Patent Laid-Open No. 10-255563

しかしながら、上述の特許文献1のリチウム二次電池では、気孔量が150mm3/g以上となるとサイクル特性が著しく低下することがあった。このため、出力特性およびサイクル耐久性を高める更なる改良が求められていた。 However, in the above-described lithium secondary battery of Patent Document 1, when the pore volume is 150 mm 3 / g or more, the cycle characteristics may be significantly deteriorated. For this reason, the further improvement which raises an output characteristic and cycling durability was calculated | required.

本発明は、このような課題に鑑みなされたものであり、出力特性およびサイクル耐久性をより高めることができるリチウム二次電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the lithium secondary battery which can improve an output characteristic and cycling durability more.

上述した目的を達成するために鋭意研究したところ、本発明者らは、密度が2.0g/cm3以上である正極合材層が、水銀圧入法で測定した細孔分布において全細孔容積に対する積算容積が20%となる細孔径が0.3μm以上であるものとすると、出力特性および高温でのサイクル耐久性を高めることができることを見いだし、本発明を完成するに至った。 As a result of diligent research to achieve the above-mentioned object, the present inventors have found that the positive electrode mixture layer having a density of 2.0 g / cm 3 or more has a total pore volume in the pore distribution measured by the mercury intrusion method. Assuming that the pore diameter with an integrated volume of 20% is 0.3 μm or more, it was found that the output characteristics and cycle durability at high temperatures can be improved, and the present invention has been completed.

即ち、本発明のリチウム二次電池は、
リチウム含有酸化物を含む正極活物質と炭素材料とを含有する正極合材層が正極集電体上に形成されており、密度が2.0g/cm3以上であり水銀圧入法で測定した細孔分布において全細孔容積に対する積算容積が20%となる細孔径が0.3μm以上である該正極合材層を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に介在し、リチウムイオンを伝導するイオン伝導媒体と、
を備えたものである。
That is, the lithium secondary battery of the present invention is
A positive electrode mixture layer containing a positive electrode active material containing a lithium-containing oxide and a carbon material is formed on the positive electrode current collector, and has a density of 2.0 g / cm 3 or more and is measured by a mercury intrusion method. A positive electrode having the positive electrode mixture layer having a pore diameter of 0.3 μm or more and an integrated volume with respect to the total pore volume of 20% in the pore distribution;
A negative electrode having a negative electrode active material;
An ion conductive medium interposed between the positive electrode and the negative electrode and conducting lithium ions;
It is equipped with.

本発明のリチウム二次電池は、出力特性およびサイクル耐久性をより高めることができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、正極においては導電材として用いているカーボンのストラクチャーが重要であり、このカーボンのストラクチャーに起因する細孔は0.3μm以上にあると考えられる。この細孔径以上での細孔容積が比較的多い20%となる電極、即ちこのカーボンストラクチャーが発達した電極においては、正極合材層の密度が2.0mg/cm3以上と比較的密度が高いものとすると、出力性能、特に差が出やすい−30℃などの低温での出力性能と、耐久性能、特に差が出やすい60℃などの高温でのサイクル耐久性に効果があるものと推察される。 The lithium secondary battery of the present invention can further improve output characteristics and cycle durability. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, in the positive electrode, the carbon structure used as the conductive material is important, and the pores resulting from this carbon structure are considered to be 0.3 μm or more. In an electrode having a relatively large pore volume of 20% or more over this pore diameter, that is, an electrode in which this carbon structure has been developed, the density of the positive electrode mixture layer is relatively high at 2.0 mg / cm 3 or more. Assuming that the output performance is particularly effective, the output performance is particularly effective at low temperatures such as -30 ° C, and the endurance performance, especially the cycle durability at high temperatures such as 60 ° C where differences are likely to occur. The

本発明のリチウム二次電池10の一例を示す模式図。The schematic diagram which shows an example of the lithium secondary battery 10 of this invention. 実験例1の水銀圧入法による細孔分布の測定結果。The measurement result of the pore distribution by the mercury intrusion method of Experimental Example 1. 実験例2の水銀圧入法による細孔分布の測定結果。The measurement result of the pore distribution by the mercury intrusion method of Experimental Example 2. 実験例11の水銀圧入法による細孔分布の測定結果。The measurement result of the pore distribution by the mercury intrusion method of Experimental Example 11. 実験例12の水銀圧入法による細孔分布の測定結果。The measurement result of the pore distribution by the mercury intrusion method of Experimental Example 12. 実験例13の水銀圧入法による細孔分布の測定結果。The measurement result of the pore distribution by the mercury intrusion method of Experimental Example 13.

本発明のリチウム二次電池は、リチウム含有酸化物を含む正極活物質と炭素材料とを含有する正極合材層が正極集電体上に形成された正極と、負極活物質を有する負極と、正極と負極との間に介在し、リチウムイオンを伝導するイオン伝導媒体と、を備えている。   The lithium secondary battery of the present invention includes a positive electrode in which a positive electrode mixture layer containing a positive electrode active material containing a lithium-containing oxide and a carbon material is formed on a positive electrode current collector, a negative electrode having a negative electrode active material, And an ion conducting medium that conducts lithium ions and is interposed between the positive electrode and the negative electrode.

本発明のリチウム二次電池の正極は、密度が2.0g/cm3以上である正極合材層が形成されている。正極合材層の密度が2.0g/cm3以上、より好ましくは、密度が2.1g/cm3以上では、比較的密度が高く、電池容量を高めることができる。なお、この正極合材層の密度は、2.4g/cm3以下であることが、イオン伝導媒体との接触性を考慮すると好ましい。 In the positive electrode of the lithium secondary battery of the present invention, a positive electrode mixture layer having a density of 2.0 g / cm 3 or more is formed. When the density of the positive electrode mixture layer is 2.0 g / cm 3 or more, more preferably, the density is 2.1 g / cm 3 or more, the density is relatively high and the battery capacity can be increased. The density of the positive electrode mixture layer is preferably 2.4 g / cm 3 or less in consideration of the contact property with the ion conductive medium.

本発明のリチウム二次電池の正極は、水銀圧入法で測定した細孔分布において全細孔容積に対する積算容積が20%となる細孔径が0.3μm以上である正極合材層を有する。全細孔容積に対する積算容積が20%となる細孔径が0.3μm以上では、例えば0℃以下などの低温、特に−30℃以下の低温での出力特性をより高めることができる。この正極合材層は、全細孔容積に対する積算容積が20%となる細孔径が0.50μm以上であることが好ましく、0.60μm以上であることがより好ましい。即ち、比較的大きな細孔径を有するものとすると、低温でのリチウムイオンの移動がしやすく好ましい。なお、水銀圧入法は、水銀の接触角が大きいことを利用した測定方法であり、水銀を細孔に押し込む力と細孔径内に働く水銀の表面張力との釣り合いで細孔径を求める測定原理である。このため、水銀圧入法では、細孔の入口の大きさを測定していることになり、電解液やリチウムイオンなどの移動のしやすさの指標とすることができるため、ガス吸着などによる細孔分布測定結果に比してより好ましい細孔の評価方法であるということができる。   The positive electrode of the lithium secondary battery of the present invention has a positive electrode mixture layer having a pore diameter of 0.3 μm or more with an integrated volume with respect to the total pore volume of 20% in a pore distribution measured by a mercury intrusion method. When the pore diameter at which the integrated volume with respect to the total pore volume is 20% is 0.3 μm or more, the output characteristics at a low temperature such as 0 ° C. or lower, particularly at a low temperature of −30 ° C. or lower can be further enhanced. The positive electrode mixture layer preferably has a pore diameter of 0.50 μm or more, more preferably 0.60 μm or more, with an integrated volume of 20% with respect to the total pore volume. That is, it is preferable to have a relatively large pore diameter because lithium ions easily move at a low temperature. The mercury intrusion method is a measurement method that utilizes the large contact angle of mercury, and is a measurement principle that determines the pore diameter by balancing the force that pushes mercury into the pores and the surface tension of mercury that works within the pore diameter. is there. For this reason, in the mercury intrusion method, the size of the entrance of the pore is measured and can be used as an index of the ease of movement of the electrolyte and lithium ions. It can be said that this is a more preferable evaluation method of pores compared to the pore distribution measurement result.

本発明のリチウム二次電池の正極は、水銀圧入法で測定した細孔分布において0.5μm以上10μm以下の細孔径の体積が全細孔容積に対して10%以上あるのが好ましく、30%以上がより好ましく、40%以上であることが更に好ましい。0.5μm以上10μm以下の細孔径の体積が全細孔容積に対して10%以上あると、例えば、40℃以上の高温、特に60℃以上の高温において、サイクル耐久性をより高めることができる。また、0.25μm以上10μm以下の範囲に最大頻度細孔径がある正極合材層を有することが好ましい。最大頻度細孔径は、0.50μm以上10μm以下にあることがより好ましく、0.55μm以上0.65μm以下にあることがより好ましい。特に、水銀圧入法で測定した細孔分布において0.5μm以上10μm以下の細孔径の体積が全細孔容積に対して40%以上であり、且つ0.5μm以上10μm以下の範囲に最大頻度細孔径があるものとすると、低温特性をより高めると共に、高温耐久性をより高めることができる。   The positive electrode of the lithium secondary battery of the present invention preferably has a volume of pore diameters of 0.5 μm or more and 10 μm or less in the pore distribution measured by the mercury intrusion method, of 10% or more with respect to the total pore volume, 30% The above is more preferable and 40% or more is still more preferable. When the volume of the pore diameter of 0.5 μm or more and 10 μm or less is 10% or more with respect to the total pore volume, for example, the cycle durability can be further improved at a high temperature of 40 ° C. or higher, particularly at a high temperature of 60 ° C. or higher. . Moreover, it is preferable to have a positive electrode mixture layer having a maximum frequency pore diameter in the range of 0.25 μm to 10 μm. The maximum frequency pore diameter is more preferably from 0.50 μm to 10 μm, and even more preferably from 0.55 μm to 0.65 μm. Particularly, in the pore distribution measured by mercury porosimetry, the volume of the pore diameter of 0.5 μm or more and 10 μm or less is 40% or more with respect to the total pore volume, and the maximum frequency in the range of 0.5 μm or more and 10 μm or less. If there is a hole diameter, the low temperature characteristics can be further improved and the high temperature durability can be further improved.

本発明のリチウム二次電池の正極は、正極合材層の水銀圧入法で測定した細孔容積が150mm3/g以下であるものとしても構わないが、150mm3/g以上であるものとしてもよい。細孔容積が150mm3/g以上であっても、上記細孔径分布の特徴を有していると低温での出力性能と共に、高温でのサイクル耐久性をより高めることができる。 The positive electrode of the lithium secondary battery of the present invention may have a pore volume measured by a mercury intrusion method of the positive electrode mixture layer of 150 mm 3 / g or less, or may be 150 mm 3 / g or more. Good. Even if the pore volume is 150 mm 3 / g or more, the above-mentioned pore diameter distribution characteristics can further improve the cycle durability at a high temperature as well as the output performance at a low temperature.

本発明のリチウム二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材層としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、リチウム含有酸化物が挙げられ、例えば、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、Li(1-x)MnO2(0<x<1など、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などが好ましい。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維などの炭素材料が好ましい。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。乾燥温度は、溶剤の種類に応じて適宜設定することができるが、例えば、50℃以上で行うことができ、100℃以上200℃以下の範囲が好ましく、150℃以上180℃以下の範囲がより好ましい。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。 The positive electrode of the lithium secondary battery of the present invention is obtained by mixing a positive electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like positive electrode mixture layer. And may be formed by compression to increase the electrode density as necessary. Examples of the positive electrode active material include lithium-containing oxides. For example, an oxide containing lithium and a transition metal element can be used. Specifically, Li (1-x) MnO 2 (0 <x <1, etc., the same shall apply hereinafter), lithium manganese composite oxides such as Li (1-x) Mn 2 O 4 , Li (1-x) CoO lithium cobalt composite oxides such as 2, Li (1-x) lithium nickel composite oxide such as NiO 2, a lithium vanadium composite oxide such as LiV 2 O 3, and transition metal oxides such as V 2 O 5 is preferably . The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black, carbon black, Carbon materials such as ketjen black, carbon whisker, needle coke, and carbon fiber are preferred. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. The drying temperature can be appropriately set according to the type of the solvent. For example, the drying temperature can be set at 50 ° C. or higher, preferably 100 ° C. or higher and 200 ° C. or lower, more preferably 150 ° C. or higher and 180 ° C. or lower. preferable. Current collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and aluminum, copper, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 to 500 μm.

本発明のリチウム二次電池の正極は、導電材と結着材とを混練した炭素材料含有ペーストを作製したのち、この炭素材料含有ペーストと正極活物質とを混練し、正極合材ペーストとを作製し、この正極合材ペーストを正極集電体に塗布して作製することが好ましい。炭素材料含有ペーストの混錬時間は、0分以上200分以下であることが好ましく、100分以上180分以下であることがより好ましい。このとき、正極合材ペーストの混錬時間は、100分以上300分以下であることが好ましく、120分以上240分以下であることがより好ましい。このように作製すると、正極合材層の細孔範囲をより好適なものとすることができる。   The positive electrode of the lithium secondary battery of the present invention is prepared by preparing a carbon material-containing paste in which a conductive material and a binder are kneaded, and then kneading the carbon material-containing paste and the positive electrode active material to obtain a positive electrode mixture paste. It is preferable to prepare and apply this positive electrode mixture paste to a positive electrode current collector. The kneading time of the carbon material-containing paste is preferably 0 minutes or more and 200 minutes or less, and more preferably 100 minutes or more and 180 minutes or less. At this time, the kneading time of the positive electrode mixture paste is preferably 100 minutes or more and 300 minutes or less, and more preferably 120 minutes or more and 240 minutes or less. If produced in this way, the pore range of the positive electrode mixture layer can be made more suitable.

本発明のリチウム二次電池の負極は、リチウム、リチウム合金、スズ化合物などの無機化合物を負極活物質としてもよい。また、本発明のリチウム二次電池の負極は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材層としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、リチウムイオンを吸蔵・放出可能な炭素質材料、導電性ポリマー、Tiを含む複合酸化物などが挙げられるが、このうち炭素質材料が安全性の面から見て好ましい。この炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり電解質塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時における不可逆容量を少なくできるため、好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。   The negative electrode of the lithium secondary battery of the present invention may use an inorganic compound such as lithium, a lithium alloy, or a tin compound as the negative electrode active material. Further, the negative electrode of the lithium secondary battery of the present invention is obtained by mixing a negative electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like negative electrode mixture layer. It may be applied to the surface of the substrate and dried, and may be compressed to increase the electrode density as necessary. Examples of the negative electrode active material include carbonaceous materials capable of inserting and extracting lithium ions, conductive polymers, and composite oxides containing Ti. Of these, carbonaceous materials are preferable from the viewpoint of safety. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite have an operating potential close to that of metallic lithium, can be charged and discharged at a high operating voltage, and suppresses self-discharge when a lithium salt is used as an electrolyte salt. In addition, it is preferable because the irreversible capacity during charging can be reduced. In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. The negative electrode current collector includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity and reduction resistance. For the purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. The shape of the current collector can be the same as that of the positive electrode.

本発明のリチウム二次電池のイオン伝導媒体としては、支持塩を含む非水系電解液やイオン性液体、非水系ゲル電解液などを用いることができる。非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。また、イオン性液体としては、特に限定されるものではないが、1−メチル−3−プロピルイミダゾリウムビス(トリフルオロスルホニル)イミドや1−エチル−3−ブチルイミダゾリウムテトラフルオロボレートなどを用いることができる。   As the ion conduction medium of the lithium secondary battery of the present invention, a non-aqueous electrolyte solution containing a supporting salt, an ionic liquid, a non-aqueous gel electrolyte solution, or the like can be used. Examples of the solvent for the nonaqueous electrolytic solution include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane, and diethoxyethane; nitriles such as acetonitrile and benzonitrile; Examples include furans such as lan, methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can. Further, the ionic liquid is not particularly limited, but 1-methyl-3-propylimidazolium bis (trifluorosulfonyl) imide, 1-ethyl-3-butylimidazolium tetrafluoroborate, or the like is used. Can do.

本発明のリチウム二次電池に含まれている支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この電解質塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。電解質塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。 The supporting salt contained in the lithium secondary battery of the present invention is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Examples include LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. This electrolyte salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. When the concentration of the electrolyte salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration is 5 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type and a halogen type, to this non-aqueous electrolyte.

本発明のリチウム二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウム二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin fine olefin resin such as polyethylene or polypropylene is used. A porous membrane is mentioned. These may be used alone or in combination.

本発明のリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、本発明のリチウム二次電池10の一例を示す模式図である。このリチウム二次電池10は、正極活物質を含む正極合材層12を集電体11に形成した正極シート13と、負極活物質を含む負極合材層17を集電体14の表面に形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18の間を満たす非水電解液20と、を備えたものである。このリチウム二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シートに接続された負極端子26とを配設して形成されている。この正極合材層12は、リチウム含有酸化物を含む正極活物質と炭素材料とを含有しており、密度が2.0g/cm3以上であり水銀圧入法で測定した細孔分布において全細孔容積に対する積算容積が20%となる細孔径が0.3μm以上である。また、正極合材層12は、水銀圧入法で測定した細孔分布において0.5μm以上10μm以下の細孔径の体積が全細孔容積に対して40%以上であり、且つ0.5μm以上10μm以下の範囲に最大頻度細孔径がある。 The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. FIG. 1 is a schematic diagram showing an example of a lithium secondary battery 10 of the present invention. In the lithium secondary battery 10, a positive electrode sheet 13 in which a positive electrode mixture layer 12 including a positive electrode active material is formed on a current collector 11 and a negative electrode mixture layer 17 including a negative electrode active material are formed on the surface of the current collector 14. The negative electrode sheet 18, the separator 19 provided between the positive electrode sheet 13 and the negative electrode sheet 18, and the nonaqueous electrolyte solution 20 that fills between the positive electrode sheet 13 and the negative electrode sheet 18 are provided. In this lithium secondary battery 10, the separator 19 is sandwiched between the positive electrode sheet 13 and the negative electrode sheet 18, and these are wound and inserted into the cylindrical case 22, and the positive electrode terminal 24 connected to the positive electrode sheet 13 and the negative electrode sheet are connected. A connected negative electrode terminal 26 is provided. This positive electrode mixture layer 12 contains a positive electrode active material containing a lithium-containing oxide and a carbon material, has a density of 2.0 g / cm 3 or more, and has a fine pore distribution measured by a mercury intrusion method. The pore diameter at which the integrated volume with respect to the pore volume is 20% is 0.3 μm or more. Further, the positive electrode mixture layer 12 has a pore size measured by mercury porosimetry of which pore volume of 0.5 μm or more and 10 μm or less is 40% or more of the total pore volume, and 0.5 μm or more and 10 μm. There is a maximum frequency pore size in the following range.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、本発明のリチウム二次電池を具体的に作製した例を実験例として説明する。   Below, the example which produced the lithium secondary battery of this invention concretely is demonstrated as an experiment example.

[実験例1]
導電材としてのカーボンブラック(東海カーボン(株)製TB5500)を4質量部と、結着材としてのポリフッ化ビニリデン(呉羽化学工業(株)製KFポリマ)を4質量部と、分散剤としてのN−メチル−2−ピロリドン(NMP)を適量添加して180分間混練し、カーボンブラック含有ペーストを作製した。次に、正極活物質としてのニッケル酸リチウム(LiNi0.8Co0.15Al0.052)を90質量部加え、60分間混練し、正極合材ペーストを作製した。この正極合材を厚さ20μmのアルミニウム箔集電体の両面に均一に塗布し、180℃で乾燥させた。その後、ロールプレスで高密度化しシート状の正極を作製した。この正極は、正極集電体と、その表面に形成された正極合材層とからなる。このようにして作製したシート状の正極を、幅54mm×長さ450mmのサイズに切り出し、実験例1の非水電解液リチウム二次電池用の正極とした。次に、人造黒鉛を負極活物質として、負極活物質を95質量部と、結着材としてのポリフッ化ビニリデンを5質量部とを混合し、分散剤としてのNMPを適量添加し、分散させてスラリー状の負極合材を作製した。次に、この負極合材を厚さ10μmの銅箔集電体の両面に均一に塗布し乾燥させた。その後、ロールプレスで高密度化し、シート状の負極を作製した。この負極は、負極集電体と、その表面に形成された負極合材層とからなる。このように作製したシート状の負極を、幅56mm×長さ500mmのサイズに切り出し、実験例1の非水電解液リチウム二次電池用の負極とした。電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した非水溶媒に1MのLiPF6を溶解した溶液(キシダ薬品製)を用いた。作製した正極シートと負極シートを25μm厚で58mm幅のポリエチレン製セパレータを介してロール状に捲回し、18650型円筒ケースに挿入した。このとき、電池ケースのキャップ側に配置した正極集電タブに正極集電リードを熔接により接続すると共に、電池ケースの底に配置した負極集電タブに負極集電リードを熔接により接続した。この電池ケースに電解液を注入した後、トップキャップをかしめて密閉して円筒型のリチウム二次電池を作製した。このようにして実験例1の電池を得た。なお、実験例1の正極合材の密度は、2.1mg/cm3であった。実験例1の合材比、カーボンブラック含有ペーストの混錬時間、正極合材混錬時間及び正極合材層の密度をまとめて表1に示す。なお、表1には、実験例2〜13の内容も記載した。
[Experimental Example 1]
4 parts by mass of carbon black (TB5500 manufactured by Tokai Carbon Co., Ltd.) as a conductive material, 4 parts by mass of polyvinylidene fluoride (KF polymer manufactured by Kureha Chemical Industry Co., Ltd.) as a binder, and as a dispersant An appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and kneaded for 180 minutes to prepare a carbon black-containing paste. Next, 90 parts by mass of lithium nickelate (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) as a positive electrode active material was added and kneaded for 60 minutes to prepare a positive electrode mixture paste. This positive electrode mixture was uniformly applied on both surfaces of an aluminum foil current collector having a thickness of 20 μm and dried at 180 ° C. Thereafter, the density was increased by a roll press to produce a sheet-like positive electrode. This positive electrode is composed of a positive electrode current collector and a positive electrode mixture layer formed on the surface thereof. The sheet-like positive electrode thus produced was cut into a size of width 54 mm × length 450 mm, and used as a positive electrode for the nonaqueous electrolyte lithium secondary battery of Experimental Example 1. Next, artificial graphite is used as the negative electrode active material, 95 parts by mass of the negative electrode active material and 5 parts by mass of polyvinylidene fluoride as the binder are mixed, and an appropriate amount of NMP as a dispersant is added and dispersed. A slurry-like negative electrode mixture was prepared. Next, this negative electrode mixture was uniformly applied to both sides of a 10 μm thick copper foil current collector and dried. Then, it densified with the roll press and produced the sheet-like negative electrode. This negative electrode consists of a negative electrode current collector and a negative electrode mixture layer formed on the surface thereof. The sheet-like negative electrode thus produced was cut into a size of width 56 mm × length 500 mm, and used as the negative electrode for the nonaqueous electrolyte lithium secondary battery of Experimental Example 1. As the electrolytic solution, a solution (manufactured by Kishida Pharmaceutical Co., Ltd.) in which 1M LiPF 6 was dissolved in a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 was used. The produced positive electrode sheet and negative electrode sheet were wound in a roll shape through a polyethylene separator having a thickness of 25 μm and a width of 58 mm, and inserted into a 18650 type cylindrical case. At this time, the positive electrode current collecting lead was connected by welding to the positive electrode current collecting tab arranged on the cap side of the battery case, and the negative electrode current collecting lead was connected by welding to the negative electrode current collecting tab arranged at the bottom of the battery case. After injecting the electrolyte into the battery case, the top cap was caulked and sealed to produce a cylindrical lithium secondary battery. In this way, the battery of Experimental Example 1 was obtained. The density of the positive electrode mixture of Experimental Example 1 was 2.1 mg / cm 3 . Table 1 summarizes the mixture ratio, the kneading time of the carbon black-containing paste, the positive electrode mixture kneading time, and the density of the positive electrode mixture layer in Experimental Example 1. In Table 1, the contents of Experimental Examples 2 to 13 are also described.

Figure 2012216500
Figure 2012216500

[実験例2,3]
正極の作製に際して、正極活物質、導電材及び結着材の配合比を質量比で90:6:4とした以外は、実験例1と同様の工程を経て得られた電池を実験例2とした。また、正極活物質、導電材及び結着材の配合比を質量比で90:8:4とし、密度を2.0mg/cm3とした以外は、実験例1と同様の工程を経て得られた電池を実験例3とした。
[Experimental Examples 2 and 3]
A battery obtained through the same steps as in Experimental Example 1 except that the mixing ratio of the positive electrode active material, the conductive material, and the binder was 90: 6: 4 by mass ratio in the production of the positive electrode was designated as Experimental Example 2. did. Moreover, it obtained through the process similar to Experimental example 1 except the compounding ratio of a positive electrode active material, a electrically conductive material, and a binder being 90: 8: 4 by mass ratio, and setting the density to 2.0 mg / cm < 3 >. This battery was designated as Experimental Example 3.

[実験例4〜6]
正極の作製に際して、カーボンブラック含有ペーストの混錬時間を0分間とした以外は実験例1と同様の工程を経て得られた電池を実験例4とした。また、正極活物質、導電材及び結着材の配合比を質量比で90:6:4とし、密度を2.0mg/cm3とした以外は、実験例4と同様の工程を経て得られた電池を実験例5とした。また、正極活物質、導電材及び結着材の配合比を質量比で90:8:4とした以外は、実験例4と同様の工程を経て得られた電池を実験例6とした。
[Experimental Examples 4 to 6]
A battery obtained through the same steps as in Experimental Example 1 except that the kneading time of the carbon black-containing paste was set to 0 minutes when producing the positive electrode was determined as Experimental Example 4. Moreover, it obtained through the process similar to Experimental example 4 except the compounding ratio of a positive electrode active material, a electrically conductive material, and a binder being 90: 6: 4 by mass ratio, and setting the density to 2.0 mg / cm < 3 >. This battery was designated as experimental example 5. In addition, a battery obtained through the same process as Experimental Example 4 was used as Experimental Example 6 except that the mixing ratio of the positive electrode active material, the conductive material, and the binder was 90: 8: 4 by mass ratio.

[実験例7〜10]
正極の作製に際して、正極活物質、導電材及び結着材の配合比を質量比で90:5:5とし、カーボンブラック含有ペーストの混錬時間を240分、正極合材の混錬時間を300分間とした以外は実験例1と同様の工程を経て得られた電池を実験例7とした。また、カーボンブラック含有ペーストの混錬時間を300分、正極合材の混錬時間を360分間とした以外は実験例7と同様の工程を経て得られた電池を実験例8とした。また、ロールプレス圧を変え、密度を1.9mg/cm3とした以外は実験例7と同様の工程を経て得られた電池を実験例9とした。また、ロールプレス圧を変え、密度を1.8mg/cm3とした以外は実験例8と同様の工程を経て得られた電池を実験例10とした。
[Experimental Examples 7 to 10]
In producing the positive electrode, the mixing ratio of the positive electrode active material, the conductive material and the binder was 90: 5: 5 by mass ratio, the kneading time of the carbon black-containing paste was 240 minutes, and the kneading time of the positive electrode mixture was 300. A battery obtained through the same steps as in Experimental Example 1 except for minutes was used as Experimental Example 7. In addition, a battery obtained through the same process as Experimental Example 7 except that the carbon black-containing paste kneading time was 300 minutes and the positive electrode composite kneading time was 360 minutes was designated as Experimental Example 8. Further, a battery obtained through the same process as Experimental Example 7 except that the roll press pressure was changed and the density was 1.9 mg / cm 3 was determined as Experimental Example 9. Further, a battery obtained through the same process as Experimental Example 8 except that the roll press pressure was changed and the density was 1.8 mg / cm 3 was determined as Experimental Example 10.

[実験例11〜13]
正極の作製に際して、正極の乾燥温度を50℃、100℃、150℃とした以外は実験例1と同様の工程を経て得られた電池をそれぞれ実験例11〜13とした。
[Experimental Examples 11 to 13]
Batteries obtained through the same steps as in Experimental Example 1 except that the drying temperature of the positive electrode was set to 50 ° C., 100 ° C., and 150 ° C. were used as Experimental Examples 11 to 13, respectively.

(正極合材の細孔径分布・細孔容積の測定)
正極合材の細孔径分布・細孔容積は、水銀圧入装置(シスメックス社製Poremaster)を用いて測定した。サンプルとしては、ロールプレスした電極を短冊状に分割したものを用いた。図2は、実験例1の水銀圧入法による細孔分布の測定結果であり、図3は、実験例2の水銀圧入法による細孔分布の測定結果である。また、図4は、実験例11の水銀圧入法による細孔分布の測定結果であり、図5は、実験例12の水銀圧入法による細孔分布の測定結果であり、図6は、実験例13の水銀圧入法による細孔分布の測定結果である。
(Measurement of pore size distribution and pore volume of positive electrode mixture)
The pore size distribution and pore volume of the positive electrode mixture were measured using a mercury intruder (Poremaster manufactured by Sysmex Corporation). As the sample, a roll-pressed electrode divided into strips was used. FIG. 2 is a measurement result of pore distribution by the mercury intrusion method of Experimental Example 1, and FIG. 3 is a measurement result of pore distribution by the mercury intrusion method of Experimental Example 2. 4 is a measurement result of pore distribution by the mercury intrusion method of Experimental Example 11, FIG. 5 is a measurement result of pore distribution by the mercury intrusion method of Experimental Example 12, and FIG. 6 is an experimental example. 13 is a measurement result of pore distribution by a mercury intrusion method.

(低温パワー試験)
得られた実験例1〜13の電池を用いて、低温パワー試験を行った。まず、電池を放電してSOC(State Of Charge)50%の状態に設定し、−30℃の環境下に保持した。続いて、0.5A、1A、2A、3A、5Aの電流を流して10秒後の電池電圧を測定し、パワーを求めた。
(Low temperature power test)
Using the obtained batteries of Experimental Examples 1 to 13, a low temperature power test was performed. First, the battery was discharged, set to a state of SOC (State Of Charge) 50%, and kept in an environment of −30 ° C. Subsequently, the current of 0.5A, 1A, 2A, 3A, and 5A was passed, the battery voltage after 10 seconds was measured, and the power was determined.

(充放電試験)
得られた実験例1〜13の電池を用いて、20℃での電池容量を測定した。各電池を20℃とし、まず、電流密度0.5mA/cm2の定電流で充電上限電圧4.1Vまで充電を行い、次いで電流密度0.2mA/cm2の定電流で放電下限電圧3.0Vまで放電を行う充放電を1サイクル行い、放電容量を求めた。
(Charge / discharge test)
Using the obtained batteries of Experimental Examples 1 to 13, the battery capacity at 20 ° C. was measured. Each battery is set to 20 ° C., and is charged to a charging upper limit voltage of 4.1 V at a constant current of a current density of 0.5 mA / cm 2 , and then a discharge lower limit voltage of 3 at a constant current of a current density of 0.2 mA / cm 2 . One cycle of charging / discharging to discharge to 0 V was performed to determine the discharge capacity.

(高温下での充放電サイクル試験(フル充放電))
得られた実験例1〜13の電池を用いて、60℃の温度条件下で充放電サイクル試験を行った。充放電サイクル試験は、電池容量の2時間率の電流値で充電上限電圧4.1Vまで充電を行い、次いで電池容量の2時間率の電流値で放電下限電圧3.0Vまで放電を行う充放電を1サイクルとし、このサイクルを合計500サイクル行うものとした。そして、サイクルごとに、放電容量を測定し、(500サイクル目の放電容量/1サイクル目の放電容量)×100という式を用いて、高温時容量維持率(高温特性)QH500(%)を計算した。
(Charge / discharge cycle test at high temperature (full charge / discharge))
Using the obtained batteries of Experimental Examples 1 to 13, a charge / discharge cycle test was performed under a temperature condition of 60 ° C. In the charge / discharge cycle test, charging is performed up to a charge upper limit voltage of 4.1 V at a current value of 2 hours rate of battery capacity, and then discharged to a discharge lower limit voltage of 3.0 V at a current value of battery capacity of 2 hours. 1 cycle, and a total of 500 cycles were performed. Then, the discharge capacity is measured for each cycle, and the capacity retention rate at high temperature (high temperature characteristics) Q H500 (%) is calculated using the formula (discharge capacity at 500th cycle / discharge capacity at the first cycle) × 100. Calculated.

(実験結果)
表2には、実験例1〜13の、正極シートの構成、密度(mg/cm3)、全細孔容積に対する積算容積20%での細孔径(μm)、0.5μm〜10μmの細孔径の細孔容積の占める体積割合(%)、細孔容積(cm3/g)、最大頻度細孔径(μm)、−30℃出力特性、高温特性を示した。表2に示すように、実験例1〜6では、実験例7〜10の電池と比べて、−30℃出力特性や高温特性に優れ、低温から高温にわたる広範な温度域にて、電池特性のバランスが優れていることが分かった。また、0.5μm〜10μmの細孔径の細孔容積の占める体積割合が40%以上であり、且つ0.5μm以上10μm以下の範囲に最大頻度細孔径がある実験例1,2では、特に、−30℃出力特性や高温特性に優れていることが明らかとなった。このように、正極合材層の密度が2.0mg/cm3以上と比較的密度が高く、0.1μm以上3μm以下の細孔径の範囲の細孔容積が90mm3/g〜200mm3/gであるものにおいて、全細孔容積に対する積算容積20%での細孔径が0.3μm以上とすると、−30℃出力特性や高温特性をより高めることができることが明らかとなった。また、乾燥温度は、150℃以上180℃以下の範囲が好ましいことがわかった。
(Experimental result)
Table 2 shows the composition of positive electrode sheets, density (mg / cm 3 ), pore diameter (μm) at an integrated volume of 20% with respect to the total pore volume, and pore diameters of 0.5 μm to 10 μm in Experimental Examples 1 to 13. The volume ratio (%) occupied by the pore volume, pore volume (cm 3 / g), maximum frequency pore diameter (μm), −30 ° C. output characteristics, and high temperature characteristics were exhibited. As shown in Table 2, in Experimental Examples 1 to 6, compared to the batteries of Experimental Examples 7 to 10, the output characteristics and the high temperature characteristics are excellent, and in a wide temperature range from a low temperature to a high temperature, It turns out that the balance is excellent. Further, in Experimental Examples 1 and 2, in which the volume ratio of the pore volume of the pore diameter of 0.5 μm to 10 μm is 40% or more and the maximum frequency pore diameter is in the range of 0.5 μm to 10 μm, It was revealed that the output characteristics and the high temperature characteristics were excellent at −30 ° C. Thus, the density of the positive electrode material layer is relatively dense and 2.0 mg / cm 3 or more, a pore volume in the range of the following pore size 3μm or 0.1μm is 90mm 3 / g~200mm 3 / g Thus, it has been clarified that when the pore diameter at an integrated volume of 20% with respect to the total pore volume is 0.3 μm or more, the output characteristics at -30 ° C. and the high temperature characteristics can be further improved. Moreover, it turned out that the drying temperature has the preferable range of 150 to 180 degreeC.

Figure 2012216500
Figure 2012216500

10 リチウム二次電池、11 集電体、12 正極合材層、13 正極シート、14 集電体、17 負極合材層、18 負極シート、19 セパレータ、20 非水電解液、22 円筒ケース、24 正極端子、26 負極端子。   DESCRIPTION OF SYMBOLS 10 Lithium secondary battery, 11 Current collector, 12 Positive electrode mixture layer, 13 Positive electrode sheet, 14 Current collector, 17 Negative electrode mixture layer, 18 Negative electrode sheet, 19 Separator, 20 Nonaqueous electrolyte, 22 Cylindrical case, 24 Positive terminal, 26 Negative terminal.

Claims (3)

リチウム含有酸化物を含む正極活物質と炭素材料とを含有する正極合材層が正極集電体上に形成されており、密度が2.0g/cm3以上であり水銀圧入法で測定した細孔分布において全細孔容積に対する積算容積が20%となる細孔径が0.3μm以上である該正極合材層を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に介在し、リチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウム二次電池。
A positive electrode mixture layer containing a positive electrode active material containing a lithium-containing oxide and a carbon material is formed on the positive electrode current collector, and has a density of 2.0 g / cm 3 or more and is measured by a mercury intrusion method. A positive electrode having the positive electrode mixture layer having a pore diameter of 0.3 μm or more and an integrated volume with respect to the total pore volume of 20% in the pore distribution;
A negative electrode having a negative electrode active material;
An ion conductive medium interposed between the positive electrode and the negative electrode and conducting lithium ions;
Rechargeable lithium battery.
前記正極は、水銀圧入法で測定した細孔分布において0.5μm以上10μm以下の細孔径の体積が全細孔容積に対して40%以上であり、且つ0.5μm以上10μm以下の範囲に最大頻度細孔径がある前記正極合材層を有する、請求項1に記載のリチウム二次電池。   The positive electrode has a pore diameter measured by a mercury intrusion method and a volume of a pore diameter of 0.5 μm or more and 10 μm or less is 40% or more with respect to the total pore volume, and is maximum in a range of 0.5 μm or more and 10 μm or less. The lithium secondary battery according to claim 1, comprising the positive electrode mixture layer having a frequency pore diameter. 前記正極は、前記炭素材料としてカーボンブラックを含有する、請求項1又は2に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the positive electrode contains carbon black as the carbon material.
JP2012023146A 2011-03-30 2012-02-06 Lithium secondary battery Pending JP2012216500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023146A JP2012216500A (en) 2011-03-30 2012-02-06 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011074624 2011-03-30
JP2011074624 2011-03-30
JP2012023146A JP2012216500A (en) 2011-03-30 2012-02-06 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2012216500A true JP2012216500A (en) 2012-11-08

Family

ID=47269082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023146A Pending JP2012216500A (en) 2011-03-30 2012-02-06 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2012216500A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209161A (en) * 2011-03-30 2012-10-25 Toyota Central R&D Labs Inc Lithium secondary battery
JP2014127284A (en) * 2012-12-25 2014-07-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery
CN109804494A (en) * 2016-10-20 2019-05-24 株式会社日立制作所 Lithium secondary battery
US11258065B2 (en) 2016-01-15 2022-02-22 Gs Yuasa International Ltd. Energy storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251684A (en) * 2004-03-08 2005-09-15 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2008108649A (en) * 2006-10-27 2008-05-08 Toyota Motor Corp Manufacturing method of vehicular lithium secondary cell cathode
JP2010015904A (en) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
WO2011089702A1 (en) * 2010-01-21 2011-07-28 トヨタ自動車株式会社 Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251684A (en) * 2004-03-08 2005-09-15 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2008108649A (en) * 2006-10-27 2008-05-08 Toyota Motor Corp Manufacturing method of vehicular lithium secondary cell cathode
JP2010015904A (en) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
WO2011089702A1 (en) * 2010-01-21 2011-07-28 トヨタ自動車株式会社 Lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209161A (en) * 2011-03-30 2012-10-25 Toyota Central R&D Labs Inc Lithium secondary battery
JP2014127284A (en) * 2012-12-25 2014-07-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery
US11258065B2 (en) 2016-01-15 2022-02-22 Gs Yuasa International Ltd. Energy storage device
CN109804494A (en) * 2016-10-20 2019-05-24 株式会社日立制作所 Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP2012209161A (en) Lithium secondary battery
JP5381199B2 (en) Lithium secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP6428243B2 (en) Non-aqueous lithium secondary battery and manufacturing method thereof
JP2017174648A (en) Power storage device
JP2017152259A (en) Lithium ion secondary battery and recovery method thereof
JP6205889B2 (en) Lithium secondary battery
JP2010009918A (en) Lithium-ion secondary battery
JP5929183B2 (en) Electrode, lithium secondary battery, and electrode manufacturing method
JP5749882B2 (en) Lithium secondary battery
JP5487598B2 (en) Lithium secondary battery and method of using the same
JP2012216500A (en) Lithium secondary battery
JP2016100278A (en) Electrode structure and lithium secondary battery
JP5271751B2 (en) Lithium ion secondary battery
CN107534186A (en) Lithium rechargeable battery
JP6658182B2 (en) Electrode structure and lithium secondary battery
JP2016009532A (en) Lithium ion battery
JP5286870B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery
JP2012226963A (en) Lithium secondary battery
JP2018097935A (en) Carbonaceous material, lithium secondary battery, and method of producing carbonaceous material
JP2018085213A (en) Lithium secondary battery
JP5504853B2 (en) How to use lithium secondary battery
JP2017134974A (en) Lithium secondary battery
JP6763810B2 (en) Lithium ion secondary battery
JP2016143577A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110