JP5905827B2 - Charging device and charged body manufacturing method - Google Patents

Charging device and charged body manufacturing method Download PDF

Info

Publication number
JP5905827B2
JP5905827B2 JP2012539769A JP2012539769A JP5905827B2 JP 5905827 B2 JP5905827 B2 JP 5905827B2 JP 2012539769 A JP2012539769 A JP 2012539769A JP 2012539769 A JP2012539769 A JP 2012539769A JP 5905827 B2 JP5905827 B2 JP 5905827B2
Authority
JP
Japan
Prior art keywords
dielectric material
gas
charging device
reaction chamber
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012539769A
Other languages
Japanese (ja)
Other versions
JPWO2012053617A1 (en
Inventor
鈴木 雄二
雄二 鈴木
真人 本泉
真人 本泉
萩原 啓
啓 萩原
後藤 正英
正英 後藤
井口 義則
義則 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Japan Broadcasting Corp
Original Assignee
University of Tokyo NUC
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Japan Broadcasting Corp filed Critical University of Tokyo NUC
Publication of JPWO2012053617A1 publication Critical patent/JPWO2012053617A1/en
Application granted granted Critical
Publication of JP5905827B2 publication Critical patent/JP5905827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32321Discharge generated by other radiation
    • H01J37/32339Discharge generated by other radiation using electromagnetic radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、誘電体材料の帯電装置及び帯電体製造方法に関する。   The present invention relates to a charging device for a dielectric material and a method for manufacturing a charged body.

エレクトレットを使用した装置は、電気エネルギと運動エネルギとの変換効率が高いことが知られており、発電装置、マイクロフォン等に応用されている。   A device using an electret is known to have high conversion efficiency between electric energy and kinetic energy, and is applied to a power generation device, a microphone, and the like.

このようなエレクトレットは、高分子材料等の誘電体材料を帯電させて形成する。例えば、下記特許文献1には、コロナ放電により高分子材料を帯電させてエレクトレットを製造する方法の例が開示されている。また、下記非特許文献1には、コロナ放電により帯電した電荷による表面電位の経時変化の観測結果が開示されている。この観測結果によれば、コロナ放電により2分以上帯電処理を行わないと、表面電位が短時間で低下することがわかる。   Such electrets are formed by charging a dielectric material such as a polymer material. For example, Patent Document 1 below discloses an example of a method for producing an electret by charging a polymer material by corona discharge. Non-Patent Document 1 below discloses the observation result of the change in surface potential with time due to the charge charged by corona discharge. According to this observation result, it can be seen that the surface potential decreases in a short time unless the charging process is performed for 2 minutes or more by corona discharge.

一方、下記特許文献2は、紫外線を使用した帯電物体の中和装置に関する発明であり、紫外線を窒素に照射させて発生させた電荷により、ウエハに帯電した電荷を中和する技術が開示されている。   On the other hand, Patent Document 2 below is an invention relating to a neutralizing device for charged objects using ultraviolet rays, and discloses a technique for neutralizing charges charged on a wafer with charges generated by irradiating ultraviolet rays to nitrogen. Yes.

特開2009−246327号公報JP 2009-246327 A 特開平7−14761号公報Japanese Patent Laid-Open No. 7-14761

ドイツ フライブルグ大学博士論文 2010.7月74頁 ウルリッヒ バーシュ著(Electret-Based Resonant Micro EnergyHarvesting in Two Dimensions Dissertation zur Erlangung des Doktorgrades derTechnischen Fakultat der Albert-Ludwigs-Universitat Freiburg im Breisgau 2010.7pp.74 Ulrich Bartsch)Ph.D. Dissertation, University of Freiburg, Germany, 2010, July 74, 74 by Ulrich Barshsch

しかし、上記特許文献1に記載されているように、コロナ放電を使用して誘電体材料を帯電させる場合には、非特許文献1に記載されているように、帯電時間に2分以上を要し、短時間(1分以内)での帯電処理が困難であるという問題があった。   However, as described in Patent Document 1, when charging a dielectric material using corona discharge, as described in Non-Patent Document 1, it takes 2 minutes or more for the charging time. However, there is a problem that the charging process in a short time (within 1 minute) is difficult.

また、特許文献2に記載されているように、紫外線により発生した電荷を誘電体材料の帯電に使用することも考えられるが、特許文献2には具体的な構成の開示がない。   Further, as described in Patent Document 2, it is conceivable to use charges generated by ultraviolet rays for charging the dielectric material. However, Patent Document 2 does not disclose a specific configuration.

本発明の目的は、短時間の帯電処理で、誘電体材料を高く、経時的に安定した表面電位に帯電できる帯電装置及び帯電体製造方法を提供することにある。   An object of the present invention is to provide a charging device and a method of manufacturing a charged body that can charge a dielectric material to a high and stable surface potential over time by a short-time charging treatment.

上記目的を達成するために、請求項1に記載の帯電装置の発明は、所定のガスが収容され、圧力0.1〜200Paに調製された反応室と、前記反応室内に収容されたガスに対して、波長が300nm以下の紫外線を照射し、負電荷を発生させる紫外線照射手段と、反応室内に配置された、長方形形状の板またはフィルムである誘電体材料の方向に前記負電荷を引きつける電界を発生し、前記負電荷の少なくとも一部を前記誘電体材料の内部に注入して蓄積し、前記誘電体材料の表面電位を低下させる電界発生手段と、を備えることを特徴とする。
In order to achieve the above object, the invention of the charging device according to claim 1 includes a reaction chamber in which a predetermined gas is accommodated and adjusted to a pressure of 0.1 to 200 Pa, and a gas accommodated in the reaction chamber. On the other hand , an ultraviolet irradiation means for irradiating ultraviolet rays having a wavelength of 300 nm or less to generate a negative charge, and an electric field that attracts the negative charges toward the dielectric material that is a rectangular plate or film disposed in the reaction chamber. was generated, the at least a portion of the negative charges accumulated in injected into the dielectric material, characterized in that it comprises a field generating means Ru lowers the surface potential of the dielectric material.

また、請求項2の発明は、請求項1に記載の帯電装置において、前記電界発生手段は、前記誘電体材料の近傍または接した位置に配置され、正電圧が印加された電極を含むことを特徴とする。   According to a second aspect of the present invention, in the charging device according to the first aspect, the electric field generating means includes an electrode disposed near or in contact with the dielectric material and applied with a positive voltage. Features.

また、請求項3の発明は、請求項1または請求項2に記載の帯電装置において、前記電界発生手段が、網状の電極であることを特徴とする。   According to a third aspect of the present invention, in the charging device according to the first or second aspect, the electric field generating means is a mesh electrode.

また、請求項4の発明は、請求項1から請求項3のいずれか一項に記載の帯電装置において、前記誘電体材料が移動しつつ連続的に帯電されることを特徴とする。   According to a fourth aspect of the present invention, in the charging device according to any one of the first to third aspects, the dielectric material is continuously charged while moving.

また、請求項5の発明は、請求項1から請求項4のいずれか一項に記載の帯電装置において、前記所定のガスは窒素ガス、希ガスまたはこれらの混合ガスであり、酸素含有量が0.01mol%以下であることを特徴とする。   Further, the invention of claim 5 is the charging device according to any one of claims 1 to 4, wherein the predetermined gas is nitrogen gas, rare gas or a mixed gas thereof, and has an oxygen content. It is characterized by being 0.01 mol% or less.

また、請求項6に記載の帯電体製造方法の発明は、圧力0.1〜200Paの下、所定のガスを収容した雰囲気下に誘電体材料を配置し、該ガスに波長が300nm以下の紫外線を照射して負電荷を発生させ、該負電荷を、長方形形状の板またはフィルムである該誘電体材料に注入して帯電させ、前記誘電体材料の表面電位を低下させる、ことを特徴とする。 Further, in the invention of the charged body manufacturing method according to claim 6, a dielectric material is disposed in an atmosphere containing a predetermined gas under a pressure of 0.1 to 200 Pa , and the wavelength of the ultraviolet light is 300 nm or less. to generate a negative charge by irradiation with, and wherein the negative charge is injected into the dielectric material is a plate or film of a rectangular shape is charged, Ru lowers the surface potential of the dielectric material, To do.

本発明によれば、短時間の帯電処理で、誘電体材料を高く、経時的に安定した表面電位に帯電できる帯電装置を提供できる。   According to the present invention, it is possible to provide a charging device capable of charging a dielectric material to a high and stable surface potential over time by a short-time charging process.

本実施形態にかかる帯電装置の構成例を示す図である。It is a figure which shows the structural example of the charging device concerning this embodiment. 本実施形態にかかる帯電装置の他の構成例を示す図である。It is a figure which shows the other structural example of the charging device concerning this embodiment. 本実施形態にかかる帯電装置のさらに他の構成例を示す図である。It is a figure which shows the further another structural example of the charging device concerning this embodiment. 表面電位の測定結果を示す図である。It is a figure which shows the measurement result of surface potential. 表面電位の測定結果を示す図である。It is a figure which shows the measurement result of surface potential. 表面電位の測定結果を示す図である。It is a figure which shows the measurement result of surface potential. 表面電位の測定結果を示す図である。It is a figure which shows the measurement result of surface potential. 本実施形態にかかる帯電装置の動作例の説明図である。It is explanatory drawing of the operation example of the charging device concerning this embodiment.

以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1には、本実施形態にかかる帯電装置の構成例が示される。図1において、帯電装置10は、反応室12、紫外線照射手段14、電極16及び減圧ポンプ18を含んで構成されている。   FIG. 1 shows a configuration example of a charging device according to this embodiment. In FIG. 1, the charging device 10 includes a reaction chamber 12, ultraviolet irradiation means 14, an electrode 16, and a vacuum pump 18.

反応室12は、所定のガスが収容された密封容器であり、ガス供給管22から当該ガスが供給されるとともに、減圧ポンプ18により減圧されて大気圧以下の圧力に調整されている。ガス供給管22からは、流量制御装置30を介して、一定流量のガスを供給できるように構成されている。また、反応室12の内部圧力は、圧力計32により測定できる。さらに、反応室12と減圧ポンプ18との間には、圧力調整弁34が設けられ、反応室12の内部圧力を調整できる構成となっている。反応室12は、アース端子24により接地されている。上記所定のガスとしては、例えばイナートガス、希ガス等が挙げられる。イナートガスとしては、例えば窒素が使用でき、希ガスとしては、例えばヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンが使用できるが、紫外線により励起して電子を放出し、かつ帯電させる対象である誘電体材料20と反応性のないガスであれば、何れも使用することができる。また、上記ガスは単独で使用してもよいし、混合して(混合ガスとして)使用してもよい。なお、上記所定のガスの酸素含有量は、0.01mol%以下であることが好ましい。酸素がこの割合以上含まれると、後述する紫外線照射手段14から照射される紫外線によって励起されたガスから発生する電荷量が大きく減衰するからである。   The reaction chamber 12 is a sealed container containing a predetermined gas. The gas is supplied from a gas supply pipe 22 and is decompressed by a decompression pump 18 to be adjusted to a pressure equal to or lower than atmospheric pressure. The gas supply pipe 22 is configured to supply a gas having a constant flow rate via the flow rate control device 30. Further, the internal pressure of the reaction chamber 12 can be measured by a pressure gauge 32. Further, a pressure adjusting valve 34 is provided between the reaction chamber 12 and the decompression pump 18 so that the internal pressure of the reaction chamber 12 can be adjusted. The reaction chamber 12 is grounded by a ground terminal 24. Examples of the predetermined gas include an inert gas and a rare gas. As the inert gas, for example, nitrogen can be used, and as the rare gas, for example, helium, neon, argon, krypton, xenon, and radon can be used. Any gas that is not reactive with the material 20 can be used. Moreover, the said gas may be used independently and may be mixed and used (as mixed gas). The oxygen content of the predetermined gas is preferably 0.01 mol% or less. This is because, when oxygen is contained in an amount higher than this ratio, the amount of charge generated from the gas excited by the ultraviolet rays irradiated from the ultraviolet irradiation means 14 described later is greatly attenuated.

紫外線照射手段14は、波長300nm以下のいわゆる深紫外線あるいは真空紫外線とよばれる紫外線を発生し、反応室12内に収容されたガスに照射する装置である。ガスに紫外線を照射することにより、ガスが励起され、電荷(正負の電荷)が発生する。紫外線照射手段14の方式は、波長300nm以下の深紫外線あるいは真空紫外線を発生できれば限定されないが、例えば紫外線LEDや重水素ランプ等を利用することができる。   The ultraviolet irradiation means 14 is an apparatus that generates ultraviolet rays called so-called deep ultraviolet rays or vacuum ultraviolet rays having a wavelength of 300 nm or less and irradiates the gas accommodated in the reaction chamber 12. By irradiating the gas with ultraviolet rays, the gas is excited and charges (positive and negative charges) are generated. The method of the ultraviolet irradiation means 14 is not limited as long as it can generate deep ultraviolet rays or vacuum ultraviolet rays having a wavelength of 300 nm or less. For example, an ultraviolet LED or a deuterium lamp can be used.

電極16は、紫外線照射手段14からの紫外線照射により上記ガスから発生した負電荷(電子)を反応室12内に配置された誘電体材料20の方向に移動させる電界を発生する。上述したように、反応室12は接地されている。従って、上記電界を発生するために、電極16には、反応室12と電気的に絶縁された状態で電源26から正電圧が印加されている。電圧値は、誘電体材料20の目標帯電電圧値に応じて決定するが、例えば1kV程度の電圧とする。なお、図1に示された例では、電極16の上に誘電体材料20が載せられて(接して)いるが、これには限定されず、誘電体材料20の近傍に電極16を配置すればよい。ここで、近傍とは、負電荷が電極16により引きつけられて誘電体材料20の方向に移動する経路上の位置に誘電体材料20が配置されている、電極16と誘電体材料20との配置関係をいう。また、電極16と誘電体材料20は、電極16から誘電体材料20を見たときに、誘電体材料20の帯電させたい表面が不可視の側となるような位置関係に配置してもよい。   The electrode 16 generates an electric field that moves negative charges (electrons) generated from the gas by the ultraviolet irradiation from the ultraviolet irradiation means 14 in the direction of the dielectric material 20 disposed in the reaction chamber 12. As described above, the reaction chamber 12 is grounded. Therefore, in order to generate the electric field, a positive voltage is applied to the electrode 16 from the power source 26 while being electrically insulated from the reaction chamber 12. The voltage value is determined according to the target charging voltage value of the dielectric material 20, and is set to a voltage of about 1 kV, for example. In the example shown in FIG. 1, the dielectric material 20 is placed on (in contact with) the electrode 16. However, the present invention is not limited to this, and the electrode 16 is disposed in the vicinity of the dielectric material 20. That's fine. Here, the vicinity refers to the arrangement of the electrode 16 and the dielectric material 20 where the dielectric material 20 is arranged at a position on the path where the negative charge is attracted by the electrode 16 and moves in the direction of the dielectric material 20. Say relationship. Further, the electrode 16 and the dielectric material 20 may be arranged in a positional relationship such that when the dielectric material 20 is viewed from the electrode 16, the surface of the dielectric material 20 to be charged is an invisible side.

減圧ポンプ18は、上述したように、反応室12の内部圧力を、大気圧以下の圧力に調整する。形式は特に限定されないが、反応室12の内部圧力を1×10−4Pa程度まで減圧できればよい。As described above, the decompression pump 18 adjusts the internal pressure of the reaction chamber 12 to a pressure equal to or lower than atmospheric pressure. Although the format is not particularly limited, it is sufficient that the internal pressure of the reaction chamber 12 can be reduced to about 1 × 10 −4 Pa.

次に、以上に述べた帯電装置の動作例を図8に基づいて説明する。電極16の近傍、例えば電極16の上に誘電体材料20を配置した後(S1)、減圧ポンプ18により反応室12内を1×10−4Paまで減圧し、残留気体を除去する。次に、ガス供給管22から流量制御装置30を介して一定流量のガスを導入しつつ、反応室12と減圧ポンプ18との間に設置した圧力調整弁34の開度を調整して、反応室12の内部圧力を所定の圧力に調整する(S2)。この圧力は、ガスの種類、紫外線照射手段14から照射される紫外線の波長等により適宜決定するが、例えば0.1〜200Paの範囲とすることができる。なお、ガス供給管22から常にガスを供給しなくとも、反応室12内を排気したのちに圧力調整弁34を完全に閉め、ある一定の圧力までガスを供給して減圧状態にしておくことでも、反応室12の内部圧力を所定の圧力に調整することができる。Next, an operation example of the charging device described above will be described with reference to FIG. After the dielectric material 20 is disposed in the vicinity of the electrode 16, for example, on the electrode 16 (S 1), the pressure in the reaction chamber 12 is reduced to 1 × 10 −4 Pa by the vacuum pump 18 to remove the residual gas. Next, a constant flow rate of gas is introduced from the gas supply pipe 22 via the flow rate control device 30, and the opening of the pressure adjustment valve 34 installed between the reaction chamber 12 and the pressure reducing pump 18 is adjusted to react. The internal pressure of the chamber 12 is adjusted to a predetermined pressure (S2). This pressure is appropriately determined depending on the type of gas, the wavelength of the ultraviolet rays irradiated from the ultraviolet irradiation means 14, etc., and can be, for example, in the range of 0.1 to 200 Pa. Even if the gas is not always supplied from the gas supply pipe 22, the pressure adjusting valve 34 may be completely closed after the reaction chamber 12 is exhausted, and the gas may be supplied to a certain pressure and kept in a reduced pressure state. The internal pressure of the reaction chamber 12 can be adjusted to a predetermined pressure.

上記状態(所定の圧力の下、所定のガスを反応室12に収容した雰囲気下)で、紫外線照射手段14から紫外線を照射してガスを励起し、正電荷(例えば窒素イオン)と負電荷(電子)を発生させる(S3)。また、電極16に電圧を印加し、発生した電子を電極16により発生した電界により電極16の方向に移動させ、当該方向にある誘電体材料20の表面に到達させて誘電体材料20を帯電させ、その表面電位を低下(電位の絶対値は上昇)させる(S4)。このときに到達できる誘電体材料20の表面電位は、電極16に印加した電圧により決まる。なお、誘電体材料20の表面に到達した電子は、少なくともその一部が誘電体材料20の内部に注入されて蓄積され、誘電体材料20をエレクトレットとして機能させる。本実施形態の帯電方法により誘電体材料20に電子を蓄積させ、帯電させるのに要する時間は、2秒以下であり、短時間でエレクトレットを製造することができる。なお、電極16に負電圧を印加することにより、正に帯電したエレクトレットを作製することも可能である。   In the above state (under an atmosphere in which a predetermined gas is contained in the reaction chamber 12 under a predetermined pressure), the gas is excited by irradiating ultraviolet rays from the ultraviolet irradiation means 14, and positive charges (for example, nitrogen ions) and negative charges ( Electron) is generated (S3). In addition, a voltage is applied to the electrode 16, and the generated electrons are moved in the direction of the electrode 16 by the electric field generated by the electrode 16 to reach the surface of the dielectric material 20 in the direction to charge the dielectric material 20. The surface potential is decreased (the absolute value of the potential is increased) (S4). The surface potential of the dielectric material 20 that can be reached at this time is determined by the voltage applied to the electrode 16. It should be noted that at least a part of the electrons that have reached the surface of the dielectric material 20 are injected and accumulated in the dielectric material 20 to cause the dielectric material 20 to function as an electret. The time required to accumulate and charge electrons in the dielectric material 20 by the charging method of this embodiment is 2 seconds or less, and the electret can be manufactured in a short time. It is also possible to produce a positively electret electret by applying a negative voltage to the electrode 16.

図2には、本実施形態にかかる帯電装置の他の構成例が示され、図1と同一要素には同一符号を付している。図2の例では、反応室12を接地する代わりに、負電極28を設け、この負電極28を接地している。また、誘電体材料20は、電極16と負電極28との間に配置されている。   FIG. 2 shows another configuration example of the charging device according to the present embodiment, and the same elements as those in FIG. In the example of FIG. 2, instead of grounding the reaction chamber 12, a negative electrode 28 is provided, and the negative electrode 28 is grounded. The dielectric material 20 is disposed between the electrode 16 and the negative electrode 28.

紫外線照射手段14から紫外線を照射してガスを励起し、正電荷(例えば窒素イオン)と負電荷(電子)を発生させると、電子が電極16に引かれて誘電体材料20の方向に移動する。これにより、誘電体材料20が帯電してエレクトレットとなる。なお、本実施形態では、誘電体材料20を、例えば長方形形状(細片状)の板またはフィルムとし、その長手方向に電極16と負電極28との間を移動させて、連続的に帯電するように構成してもよい。   When the gas is excited by irradiating ultraviolet rays from the ultraviolet irradiation means 14 to generate positive charges (for example, nitrogen ions) and negative charges (electrons), the electrons are attracted to the electrode 16 and move toward the dielectric material 20. . Thereby, the dielectric material 20 is charged and becomes an electret. In this embodiment, the dielectric material 20 is, for example, a rectangular (strip-shaped) plate or film, and is continuously charged by moving between the electrode 16 and the negative electrode 28 in the longitudinal direction. You may comprise as follows.

図3には、本実施形態にかかる帯電装置のさらに他の構成例が示され、図1と同一要素には同一符号を付している。図3において、電極16は網状に形成されており、誘電体材料20の前に配置されている。この電極16には、図1の場合と同様に、電源26から正電圧が印加される。紫外線照射手段14から紫外線を照射してガスを励起し、正電荷(例えば窒素イオン)と負電荷(電子)を発生させると、電子が電極16に引かれて(加速されて)誘電体材料20の方向に移動する。上述したように、電極16は網状に形成されているので、電極16に到達した電子の多くは網目を通過し、誘電体材料20の表面に到達する。これにより、誘電体材料20が帯電してエレクトレットとなる。電極16と誘電体材料20は、電極16から誘電体材料20を見たときに、誘電体材料20の帯電させたい表面が可視の側となるような位置関係に配置する。   FIG. 3 shows still another configuration example of the charging device according to the present embodiment, and the same elements as those in FIG. 1 are denoted by the same reference numerals. In FIG. 3, the electrode 16 is formed in a net shape and is disposed in front of the dielectric material 20. A positive voltage is applied to the electrode 16 from the power source 26 as in the case of FIG. When the gas is excited by irradiating ultraviolet rays from the ultraviolet irradiation means 14 to generate positive charges (for example, nitrogen ions) and negative charges (electrons), the electrons are attracted (accelerated) to the electrode 16 and the dielectric material 20. Move in the direction of. As described above, since the electrode 16 is formed in a mesh shape, most of the electrons that have reached the electrode 16 pass through the mesh and reach the surface of the dielectric material 20. Thereby, the dielectric material 20 is charged and becomes an electret. The electrode 16 and the dielectric material 20 are arranged in a positional relationship such that when the dielectric material 20 is viewed from the electrode 16, the surface of the dielectric material 20 to be charged is on the visible side.

以上に述べた誘電体材料20としては、用途に応じて適宜選択できるが、例えばフッ素樹脂、二酸化ケイ素、窒化膜を形成した二酸化ケイ素等を使用することができる。   The dielectric material 20 described above can be appropriately selected depending on the application, and for example, fluororesin, silicon dioxide, silicon dioxide having a nitride film formed, or the like can be used.

以下、本発明の具体例を実施例として説明する。ただし、本発明は、以下に述べる実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described as examples. However, the present invention is not limited to the examples described below.

図1に示された帯電装置を使用し、電極16上に15μmの厚さのCYTOP(登録商標 旭硝子株式会社製)フィルムを配置し、反応室12の内部圧力を減圧ポンプ18にて5×10−3Paまで減圧した。上記CYTOPフィルムは、低抵抗Si基板上にスピンコートし、185℃で1.5時間熱処理することにより形成した。A CYTOP (registered trademark, manufactured by Asahi Glass Co., Ltd.) film having a thickness of 15 μm is disposed on the electrode 16 using the charging device shown in FIG. 1, and the internal pressure of the reaction chamber 12 is reduced to 5 × 10 The pressure was reduced to -3 Pa. The CYTOP film was formed by spin coating on a low resistance Si substrate and heat-treating at 185 ° C. for 1.5 hours.

次に、ガス供給管22から流量制御装置30を介して純度99.9995%の窒素ガスを反応室12に一定流速で供給し、減圧ポンプ18で排気しつつ圧力調整弁34により反応室12の内部圧力を制御した。なお、反応室12の内部圧力は、圧力計32により測定した。本実施例では、反応室12の内部圧力を変更しながら後述する真空紫外線の照射を行い、CYTOPフィルムの表面電位を測定した。   Next, nitrogen gas having a purity of 99.9995% is supplied from the gas supply pipe 22 to the reaction chamber 12 through the flow rate control device 30 at a constant flow rate, and exhausted by the decompression pump 18, and the pressure adjusting valve 34 is used to The internal pressure was controlled. The internal pressure of the reaction chamber 12 was measured with a pressure gauge 32. In this example, the surface potential of the CYTOP film was measured by irradiating with vacuum ultraviolet rays described later while changing the internal pressure of the reaction chamber 12.

紫外線照射手段14として、浜松ホトニクス株式会社製重水素ランプL1835を使用して、120〜160nmの真空紫外線を反応室12内の窒素ガスに照射した。また、電極16には、電源26から1kVまたは600Vの電圧を印加した。紫外線照射手段14による真空紫外線の照射時間が、CYTOPフィルムの帯電処理時間であり、本実施例では、この照射時間を変更しながらCYTOPフィルムの表面電位を測定した。   As the ultraviolet irradiation means 14, a deuterium lamp L1835 manufactured by Hamamatsu Photonics Co., Ltd. was used to irradiate nitrogen gas in the reaction chamber 12 with vacuum ultraviolet rays of 120 to 160 nm. Further, a voltage of 1 kV or 600 V was applied to the electrode 16 from the power source 26. The irradiation time of vacuum ultraviolet rays by the ultraviolet irradiation means 14 is the charging time of the CYTOP film. In this example, the surface potential of the CYTOP film was measured while changing the irradiation time.

上記方法により帯電させたCYTOPフィルムの表面電位は、表面電位計(model279;モンローエレクトロニクス製)にて測定した。   The surface potential of the CYTOP film charged by the above method was measured with a surface potential meter (model 279; manufactured by Monroe Electronics).

図4,図5,図6,図7には、表面電位の測定結果が示される。図4は、電極16の印加電圧を1kV、真空紫外線の照射時間を3秒とした場合の、反応室12の内部圧力と表面電位との関係である。また、図5は、電極16の印加電圧を1kV、反応室12の内部圧力を1.0Paとした場合の、真空紫外線の照射時間と表面電位との関係である。また、図6は、反応室12の内部圧力を1.0Pa、電極16の印加電圧を1kV、真空紫外線の照射時間を3秒とした場合、及び反応室12の内部圧力を1.0Pa、電極16の印加電圧を600V、真空紫外線の照射時間を20秒とした場合の表面電位の経時変化である。また、図7は、反応室12の内部圧力を1.0Pa、電極16の印加電圧を600V、真空紫外線の照射時間を20秒とした場合の、窒素ガスの不純物濃度と表面電位の関係である。   4, 5, 6, and 7 show the measurement results of the surface potential. FIG. 4 shows the relationship between the internal pressure of the reaction chamber 12 and the surface potential when the applied voltage of the electrode 16 is 1 kV and the irradiation time of vacuum ultraviolet rays is 3 seconds. FIG. 5 shows the relationship between the vacuum ultraviolet irradiation time and the surface potential when the applied voltage of the electrode 16 is 1 kV and the internal pressure of the reaction chamber 12 is 1.0 Pa. FIG. 6 shows that the internal pressure of the reaction chamber 12 is 1.0 Pa, the applied voltage of the electrode 16 is 1 kV, the irradiation time of vacuum ultraviolet rays is 3 seconds, and the internal pressure of the reaction chamber 12 is 1.0 Pa. This is a change with time in the surface potential when the applied voltage of 16 is 600 V and the irradiation time of vacuum ultraviolet rays is 20 seconds. FIG. 7 shows the relationship between the nitrogen gas impurity concentration and the surface potential when the internal pressure of the reaction chamber 12 is 1.0 Pa, the applied voltage of the electrode 16 is 600 V, and the irradiation time of vacuum ultraviolet rays is 20 seconds. .

図4において、真空紫外線の照射時間を3秒とすると、反応室12の内部圧力が0.1Paで表面電位が飽和することがわかる。従って、反応室12の内部圧力は、0.1Pa以上に維持すればよい。   In FIG. 4, when the irradiation time of vacuum ultraviolet rays is 3 seconds, it can be seen that the surface potential is saturated when the internal pressure of the reaction chamber 12 is 0.1 Pa. Therefore, the internal pressure of the reaction chamber 12 may be maintained at 0.1 Pa or higher.

また、図5において、電極16の印加電圧を1kV、反応室12の内部圧力を1.0Paとすると、真空紫外線の照射時間が0.3秒で−700Vの表面電位に到達することがわかる。従って、本実施例では、コロナ放電等による帯電方法と較べて、短時間の帯電処理時間で高い表面電位を得ることができる。   In FIG. 5, when the applied voltage of the electrode 16 is 1 kV and the internal pressure of the reaction chamber 12 is 1.0 Pa, it can be seen that the surface potential of −700 V is reached in 0.3 seconds in the irradiation time of vacuum ultraviolet rays. Therefore, in this embodiment, a higher surface potential can be obtained in a shorter charging process time as compared with a charging method using corona discharge or the like.

また、図6において、CYTOPフィルムの表面電位の経時変化は、帯電処理後のCYTOPフィルムを20℃、相対湿度60%の状態で保持して測定した。図6に示されるように、電極16の印加電圧を1kV、真空紫外線の照射時間を3秒とした場合には初期の表面電位が−780V程度、反応室12の内部圧力を1.0Pa、電極16の印加電圧を600V、真空紫外線の照射時間を20秒とした場合には初期の表面電位が−500V程度になっているが、いずれの場合も、それらの値が2000時間後まで維持されている。従って、コロナ放電等による帯電方法と較べて、短時間の帯電処理時間で、表面電位を長時間、安定して維持できる帯電処理を実現できる。   In FIG. 6, the time-dependent change in the surface potential of the CYTOP film was measured by holding the CYTOP film after the charging treatment at 20 ° C. and a relative humidity of 60%. As shown in FIG. 6, when the applied voltage of the electrode 16 is 1 kV and the irradiation time of vacuum ultraviolet rays is 3 seconds, the initial surface potential is about -780 V, the internal pressure of the reaction chamber 12 is 1.0 Pa, the electrode When the applied voltage of 16 is 600 V and the irradiation time of vacuum ultraviolet rays is 20 seconds, the initial surface potential is about −500 V. In either case, these values are maintained until 2000 hours later. Yes. Therefore, as compared with a charging method using corona discharge or the like, it is possible to realize a charging process that can stably maintain the surface potential for a long time with a short charging process time.

また、図7において、窒素ガスの不純物濃度が小さくなるにつれて、表面電位の増加量が大きいことがわかる。特に不純物濃度が0.01mol%以下の場合、大きな増加量が得られるため、短時間の帯電処理時間で高い表面電位を得ることができる。なお、ここで窒素ガスの不純物濃度とは、(100%−ガスの純度)である。不純物は通常酸素あるいは酸素原子を含むガス(一酸化炭素、二酸化炭素、亜酸化窒素、二硫化酸素、水)がほとんどを占める。   In FIG. 7, it can be seen that the amount of increase in surface potential increases as the impurity concentration of nitrogen gas decreases. In particular, when the impurity concentration is 0.01 mol% or less, a large amount of increase can be obtained, so that a high surface potential can be obtained in a short charging time. Here, the impurity concentration of nitrogen gas is (100% -purity of gas). Impurities are usually mostly oxygen or gas containing oxygen atoms (carbon monoxide, carbon dioxide, nitrous oxide, oxygen disulfide, water).

10 帯電装置、12 反応室、14 紫外線照射手段、16 電極、18 減圧ポンプ、20 誘電体材料、22 ガス供給管、24 アース端子、26 電源、28 負電極、30 流量制御装置、32 圧力計、34 圧力調整弁。   DESCRIPTION OF SYMBOLS 10 Charging device, 12 Reaction chamber, 14 Ultraviolet irradiation means, 16 Electrode, 18 Vacuum pump, 20 Dielectric material, 22 Gas supply pipe, 24 Ground terminal, 26 Power supply, 28 Negative electrode, 30 Flow control device, 32 Pressure gauge, 34 Pressure regulating valve.

Claims (6)

所定のガスが収容され、圧力0.1〜200Paに調製された反応室と、
前記反応室内に収容されたガスに対して、波長が300nm以下の紫外線を照射し、負電荷を発生させる紫外線照射手段と、
反応室内に配置された、長方形形状の板またはフィルムである誘電体材料の方向に前記負電荷を引きつける電界を発生し、前記負電荷の少なくとも一部を前記誘電体材料の内部に注入して蓄積し、前記誘電体材料の表面電位を低下させる電界発生手段と、
を備えることを特徴とする帯電装置。
A reaction chamber containing a predetermined gas and adjusted to a pressure of 0.1 to 200 Pa ;
Ultraviolet irradiation means for generating negative charges by irradiating the gas contained in the reaction chamber with ultraviolet rays having a wavelength of 300 nm or less ;
An electric field that attracts the negative charge is generated in the direction of the dielectric material that is a rectangular plate or film disposed in the reaction chamber, and at least a part of the negative charge is injected and accumulated in the dielectric material. and, an electric field generating means Ru lowers the surface potential of the dielectric material,
A charging device comprising:
請求項1に記載の帯電装置において、前記電界発生手段は、前記誘電体材料の近傍または接した位置に配置され、正電圧が印加された電極を含むことを特徴とする帯電装置。   2. The charging device according to claim 1, wherein the electric field generating unit includes an electrode which is disposed in the vicinity of or in contact with the dielectric material and to which a positive voltage is applied. 3. 請求項1または請求項2に記載の帯電装置において、前記電界発生手段は、網状の電極であることを特徴とする帯電装置。   3. The charging device according to claim 1, wherein the electric field generating means is a mesh electrode. 請求項1から請求項3のいずれか一項に記載の帯電装置において、前記誘電体材料が移動しつつ連続的に帯電されることを特徴とする帯電装置。   The charging device according to any one of claims 1 to 3, wherein the dielectric material is continuously charged while moving. 請求項1から請求項4のいずれか一項に記載の帯電装置において、前記所定のガスは窒素ガス、希ガスまたはこれらの混合ガスであり、酸素含有量が0.01mol%以下であることを特徴とする帯電装置。   5. The charging device according to claim 1, wherein the predetermined gas is nitrogen gas, a rare gas, or a mixed gas thereof, and an oxygen content is 0.01 mol% or less. Characteristic charging device. 圧力0.1〜200Paの下、所定のガスを収容した雰囲気下に誘電体材料を配置し、
該ガスに波長が300nm以下の紫外線を照射して負電荷を発生させ、
該負電荷を、長方形形状の板またはフィルムである該誘電体材料に注入して帯電させ、前記誘電体材料の表面電位を低下させる、
ことを特徴とする帯電体製造方法。
Disposing a dielectric material in an atmosphere containing a predetermined gas under a pressure of 0.1 to 200 Pa ,
The gas is irradiated with ultraviolet light having a wavelength of 300 nm or less to generate a negative charge,
The negative charge is injected into the dielectric material is a plate or film of a rectangular shape is charged, Ru lowers the surface potential of the dielectric material,
A charged body manufacturing method characterized by the above.
JP2012539769A 2010-10-21 2011-10-20 Charging device and charged body manufacturing method Expired - Fee Related JP5905827B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010236132 2010-10-21
JP2010236132 2010-10-21
PCT/JP2011/074214 WO2012053617A1 (en) 2010-10-21 2011-10-20 Charging device and method of manufacturing charging device

Publications (2)

Publication Number Publication Date
JPWO2012053617A1 JPWO2012053617A1 (en) 2014-02-24
JP5905827B2 true JP5905827B2 (en) 2016-04-20

Family

ID=45975327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012539769A Expired - Fee Related JP5905827B2 (en) 2010-10-21 2011-10-20 Charging device and charged body manufacturing method

Country Status (2)

Country Link
JP (1) JP5905827B2 (en)
WO (1) WO2012053617A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3141861A1 (en) * 2022-11-14 2024-05-17 Crepim Photolytic degradation process for brominated flame retardants contained in a plastic material – Associated installation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714761A (en) * 1991-07-25 1995-01-17 Tadahiro Omi Neutralizing apparatus for charged article
JP2002248335A (en) * 2000-12-07 2002-09-03 Japan Vilene Co Ltd Method and device for making electret, and method for making electret body
JP2003045334A (en) * 2001-07-30 2003-02-14 Canon Inc Manufacturing method of vacuum container and image forming device
JP2006267082A (en) * 2005-02-24 2006-10-05 Rigaku Corp Charge-regulating apparatus and method, and thermally stimulated current-measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714761A (en) * 1991-07-25 1995-01-17 Tadahiro Omi Neutralizing apparatus for charged article
JP2002248335A (en) * 2000-12-07 2002-09-03 Japan Vilene Co Ltd Method and device for making electret, and method for making electret body
JP2003045334A (en) * 2001-07-30 2003-02-14 Canon Inc Manufacturing method of vacuum container and image forming device
JP2006267082A (en) * 2005-02-24 2006-10-05 Rigaku Corp Charge-regulating apparatus and method, and thermally stimulated current-measuring method

Also Published As

Publication number Publication date
WO2012053617A1 (en) 2012-04-26
JPWO2012053617A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
Kogelschatz Ultraviolet excimer radiation from nonequilibrium gas discharges and its application in photophysics, photochemistry and photobiology
US8992880B2 (en) Method of manufacturing onion-like carbon
US20110139748A1 (en) Atomic layer etching with pulsed plasmas
TWI579900B (en) Method and apparatus for plasma annealing
TW541572B (en) Method of processing a surface of a workpiece with use of positive and negative ions generated in plasma or neutral particles generated by the positive and negative ions
JP5905827B2 (en) Charging device and charged body manufacturing method
Aktas et al. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system
JP2009290025A (en) Neutral particle irradiation type cvd apparatus
SG174008A1 (en) Plasma cvd apparatus and manufacturing method of magnetic recording media
JP3337473B2 (en) Method and apparatus for generating negatively charged oxygen atoms
WO2022233343A1 (en) Method and device for manufacturing hydrophilic substrate
TWI570799B (en) A hydrogenation treatment method and a hydrogenation treatment apparatus
JP2006253190A (en) Neutral particle beam processing apparatus and method of neutralizing charge
KR101877646B1 (en) Apparatus for etching thickness of black phosphorous
US20110097516A1 (en) Plasma processing apparatus and plasma processing method
CN104395496A (en) Deposition device and deposition method
JP2007254762A (en) Method for producing nanoparticle
Yousif et al. An Investigation Into Electron Temperature, Number Density, and Optical Emission Spectroscopy of the DC Hollow-Cathode Plasma Discharge in $\hbox {N} _ {2}\hbox {O} $
US20150179451A1 (en) Method for processing graphene, method for producing graphene nanoribbons, and graphene nanoribbons
JP2008044828A (en) Carbon nanotube forming device and carbon nanotube forming method
Veeraiah et al. Characterization of plasma based on the electrode size of atmospheric pressure plasma jet (APPJ)
CN104144553A (en) Photoionization plasma generator
JP4253813B2 (en) Negative ion beam generating apparatus using solid ion conductor, negative ion beam implanting apparatus using solid ion conductor, and space movement propulsion apparatus using solid ion conductor
WO2006049871A1 (en) Apparatus for non-contact testing of microcircuits
JP3892428B2 (en) Two-stage ozone generation method and generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160317

R150 Certificate of patent or registration of utility model

Ref document number: 5905827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees