JP5860639B2 - Low resistance metal fixed resistor manufacturing method - Google Patents

Low resistance metal fixed resistor manufacturing method Download PDF

Info

Publication number
JP5860639B2
JP5860639B2 JP2011193000A JP2011193000A JP5860639B2 JP 5860639 B2 JP5860639 B2 JP 5860639B2 JP 2011193000 A JP2011193000 A JP 2011193000A JP 2011193000 A JP2011193000 A JP 2011193000A JP 5860639 B2 JP5860639 B2 JP 5860639B2
Authority
JP
Japan
Prior art keywords
thin plate
resistance
alloy
tool
body made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011193000A
Other languages
Japanese (ja)
Other versions
JP2013052425A (en
Inventor
光之 田中
光之 田中
修平 蛭田
修平 蛭田
智丈 平田
智丈 平田
田中 努
努 田中
大樹 森重
大樹 森重
仲村 圭史
圭史 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Technology Research Institute of Osaka Prefecture
TOKUSHU KINZOKU EXCEL CO Ltd
Original Assignee
Koa Corp
Technology Research Institute of Osaka Prefecture
TOKUSHU KINZOKU EXCEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp, Technology Research Institute of Osaka Prefecture, TOKUSHU KINZOKU EXCEL CO Ltd filed Critical Koa Corp
Priority to JP2011193000A priority Critical patent/JP5860639B2/en
Publication of JP2013052425A publication Critical patent/JP2013052425A/en
Application granted granted Critical
Publication of JP5860639B2 publication Critical patent/JP5860639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

本発明は抵抗合金よりなる抵抗素子部と導電率の高い金属導体よりなる接続端子部を結合してなる低抵抗金属固定抵抗器の、生産性及び接合品質が高く製造設備が安価な製造方法に関する。   The present invention relates to a low resistance metal fixed resistor formed by combining a resistance element portion made of a resistance alloy and a connection terminal portion made of a metal conductor having high conductivity, and a manufacturing method with high productivity and bonding quality and low manufacturing equipment. .

近年、地球環境に配慮した自動車として、ハイブリッドカー、電気自動車および燃料電池自動車が開発され実用化されている。
そのような自動車にあっては、従来に増して電装モジュールの重要性が高まっている。そこに用いられる電子受動部品の一つである低抵抗金属固定抵抗器は、回路を流れる電流を検出する機能を有する重要部品である。
In recent years, hybrid vehicles, electric vehicles, and fuel cell vehicles have been developed and put into practical use as vehicles that are environmentally friendly.
In such an automobile, the importance of the electrical module is increasing as compared with the prior art. A low-resistance metal fixed resistor, which is one of electronic passive components used there, is an important component having a function of detecting a current flowing through a circuit.

低抵抗金属固定抵抗器は低抵抗金属材料、例えばCu−Mn−Ni合金やNi−Cr合金板と電極材であるCu板との異種接合材料間の接合により製造される。   The low-resistance metal fixed resistor is manufactured by bonding between different resistance bonding materials of a low-resistance metal material such as a Cu-Mn-Ni alloy or Ni-Cr alloy plate and a Cu plate as an electrode material.

しかし、板材を個別に接合するリベット接合やスポット溶接は、生産性やコストから今後の電気自動車等に対応することは困難であり、接合の信頼性も高くない。
一方、このような電気抵抗体の量産製造法として、特許文献1に示すように、帯状の低抵抗金属材料と帯状の電極材とを連続的に溶接し、次に横方向に切断することが提案されている。溶接方法としては電子ビーム溶接、ローラシーム溶接をすることが提案されている。
However, rivet joining and spot welding for individually joining plate materials are difficult to meet future electric vehicles and the like due to productivity and cost, and the joining reliability is not high.
On the other hand, as a mass production method of such an electric resistor, as shown in Patent Document 1, a belt-like low-resistance metal material and a belt-like electrode material are continuously welded and then cut in the lateral direction. Proposed. As welding methods, electron beam welding and roller seam welding have been proposed.

電子ビーム溶接は高真空を要するため生産性が悪く設備が大きくなり、設備コストが大きい。さらに溶融プロセスであるため、材料の組み合わせによっては接合品質の信頼性が低いという問題がある。ローラシーム溶接は、電気効率が悪く、大きな電気設備が必要で機械が高価という問題がある。また、やはり溶接プロセスであるため、材料の組み合わせによっては接合品質の信頼性が低いという問題がある。   Electron beam welding requires high vacuum, resulting in poor productivity, large equipment, and high equipment costs. Furthermore, since it is a melting process, there is a problem that reliability of bonding quality is low depending on a combination of materials. Roller seam welding has the problem of poor electrical efficiency, large electrical equipment and expensive machinery. Moreover, since it is also a welding process, there exists a problem that the reliability of joining quality is low depending on the combination of materials.

他方、摩擦攪拌接合により異種金属板や型材を接合できることが知られている。摩擦攪拌接合は真空を要せず、設備も小型にできるというメリットがある。しかしCu−Mn−Ni合金板とCu板の摩擦攪拌接合や、Ni−Cr合金板とCu板の突き合わせ摩擦攪拌接合については知られていない。   On the other hand, it is known that dissimilar metal plates and mold materials can be joined by friction stir welding. Friction stir welding does not require a vacuum and has the advantage that the equipment can be made smaller. However, the friction stir welding of the Cu—Mn—Ni alloy plate and the Cu plate and the butt friction stir welding of the Ni—Cr alloy plate and the Cu plate are not known.

更に、異種金属板の突き合わせ摩擦攪拌接合において、高温変形抵抗の異なる材料を接合する際には、接合強度を高める目的で、高温変形抵抗が大きい材料をアドバンシングサイド(AS)に高温変形抵抗が小さい材料をリトリーティングサイド(RS)に配して突き合わせ線に沿って接合することが知られている(特許文献2)。   Further, in the butt friction stir welding of dissimilar metal plates, when joining materials having different high temperature deformation resistance, a material having a high temperature deformation resistance is applied to the advanced side (AS) with a high temperature deformation resistance for the purpose of increasing the bonding strength. It is known that a small material is disposed on the retreating side (RS) and joined along the butt line (Patent Document 2).

その他にも異種材料の摩擦攪拌接合においてアドバンシングサイド(AS)に、高融点材料を配する(特許文献3)、高軟化温度材料を配する(特許文献4)、硬質材料を配する(特許文献5)、高温変形抵抗大の材料を配する(特許文献6)ことが知られている。   In addition, in the friction stir welding of dissimilar materials, a high melting point material is arranged on the advanced side (AS) (Patent Document 3), a high softening temperature material is arranged (Patent Document 4), and a hard material is arranged (Patent) Document 5), it is known to arrange a material having a high temperature deformation resistance (Patent Document 6).

しかし、低抵抗金属材料であるCu−Mn−Ni合金板と導電率の高い金属導体Cu板との組み合わせを主とする摩擦攪拌接合においては、上記知見に基づき接合すると接合不良となって高品質な抵抗器を安定して製造することができない。   However, in friction stir welding mainly consisting of a combination of a Cu-Mn-Ni alloy plate, which is a low-resistance metal material, and a metal conductor Cu plate having a high electrical conductivity, bonding becomes poor when bonded based on the above knowledge. Cannot be manufactured stably.

このように、低抵抗金属固定抵抗器を製造するに際し、上記従来技術では、接合品質が安定せず、生産性や設備コストの面で課題があった。   Thus, when manufacturing a low resistance metal fixed resistor, in the said prior art, joining quality was not stabilized and there existed a subject in terms of productivity or equipment cost.

特開平6−224014号公報Japanese Patent Laid-Open No. 6-224014 特開2004−34140号公報JP 2004-34140 A 特開平11−58040号公報Japanese Patent Laid-Open No. 11-58040 特開2004−66331号公報JP 2004-66331 A 特開2004−255420号公報JP 2004-255420 A 特開2004−34140号公報JP 2004-34140 A

本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、今後需要が増大すると思われる車載用等の低抵抗金属固定抵抗器の、接合品質が安定しており、生産性にすぐれた、製造設備が高価でない製造方法を提供することである。   The present invention has been made in view of the above problems, and the purpose of the present invention is to produce a low-resistance metal fixed resistor such as a vehicle-mounted resistor that is expected to increase in demand in the future. It is an object of the present invention to provide a manufacturing method that is excellent in performance and inexpensive in manufacturing equipment.

請求項1に記載の発明は、抵抗合金よりなる抵抗素子部と導電率の高い金属導体よりなる接続端子部が結合されてなる低抵抗金属固定抵抗器の製造方法であって、導電性金属よりなる薄板状体の側面と抵抗合金よりなる薄板状体の側面とを突き合わせ、導電性金属よりなる薄板状体がAS(アドバンシング サイド)に配され、かつ接合工具であるツールの回転軸が導電性金属よりなる薄板状体上または突き合わせ線上にて、回転する摩擦攪拌接合工具のプローブを埋入して、前記回転プローブを前記突き合わせ部に平行に移動させることにより摩擦攪拌接合して、導電性金属よりなる薄板状体と、抵抗合金よりなる薄板状体薄板状体が接合された結合薄板状体を形成する工程と、前記結合薄板状体をその接合方向に対し直交方向に細断する工程とを含む低抵抗金属固定抵抗器の製造方法である。 The invention according to claim 1 is a method of manufacturing a low-resistance metal fixed resistor in which a resistance element portion made of a resistance alloy and a connection terminal portion made of a metal conductor having high conductivity are combined. The side surface of the thin plate-shaped body made of the resistance alloy and the side surface of the thin plate-shaped body made of the resistance alloy are abutted, the thin plate-shaped body made of the conductive metal is arranged on the AS (advance side), and the rotating shaft of the tool as the joining tool is electrically conductive Conductive friction stir welding is performed by embedding a probe of a rotating friction stir welding tool on a thin plate-like body made of a conductive metal or on a butt line , and moving the rotary probe parallel to the butt portion. A step of forming a thin plate-like body made of a metal and a thin plate-like body made of a resistance alloy and a thin plate-like body bonded to each other; and a process of slicing the combined thin plate-like body in a direction perpendicular to the joining direction. A method of manufacturing a low-resistance metal fixed resistor.

請求項2に記載の発明は、請求項記載の低抵抗金属固定抵抗器の製造方法であって、前記抵抗合金がMn(マンガン)10.0〜13.0%、Ni(ニッケル)1.0〜4.0%、残りがCu(銅)、及び不可避的不純物からなる合金であり、前記導電率の高い金属導体が純銅であることを特徴とする低抵抗金属固定抵抗器の製造方法である。 Invention of Claim 2 is a manufacturing method of the low resistance metal fixed resistor of Claim 1 , Comprising: The said resistance alloy is Mn (manganese) 10.0-13.0%, Ni (nickel) 1. A low resistance metal fixed resistor manufacturing method characterized in that 0 to 4.0%, the remainder is an alloy composed of Cu (copper) and inevitable impurities, and the metal conductor having high conductivity is pure copper. is there.

以下本発明を詳細に説明する。
低抵抗金属固定抵抗器とは前述のように電流を測定するために用いられる電気抵抗値が数十μΩから数mΩ程度の金属系の材料製の電気抵抗器をいう。
The present invention will be described in detail below.
The low resistance metal fixed resistor is an electric resistor made of a metal material having an electric resistance value of about several tens of μΩ to several mΩ used for measuring current as described above.

低抵抗金属固定抵抗器は電流値を測定するための、接続端子部と抵抗素子部にてなる。
構造は各種あるが、接続端子部/抵抗素子部/接続端子部が各々板状であり一平面状に接合されている物が製造が容易で好ましい。
The low-resistance metal fixed resistor includes a connection terminal portion and a resistance element portion for measuring a current value.
Although there are various structures, it is preferable that the connection terminal portion / resistive element portion / connection terminal portion are each plate-like and joined in a single plane because it is easy to manufacture.

抵抗素子部を形成する抵抗合金は適当な電気抵抗を有する合金であって、Cu−Mn系合金、Ni−Cu系合金、Ni−Cr系合金、Fe−Cr系合金、Mn−Cu−Ni系合金が例示される。   The resistance alloy forming the resistance element portion is an alloy having an appropriate electrical resistance, and is a Cu—Mn alloy, a Ni—Cu alloy, a Ni—Cr alloy, a Fe—Cr alloy, a Mn—Cu—Ni alloy. Alloys are exemplified.

Mn(マンガン)10.0〜13.0%、Ni(ニッケル)1.0〜4.0%、残りがCu(銅)、及び不可避的不純物からなる合金は電気抵抗値が長期にわたって安定で、その抵抗率の温度係数が極めて小さく、電気的接続が必要な箇所の間での熱伝導を最小限に抑え、歪み感度が低いため特に好ましい。特に銅86%、マンガン12%、ニッケル2%からなる合金はマンガニン(商標)と呼ばれるが、抵抗材料として好ましい。   An alloy consisting of Mn (manganese) 10.0 to 13.0%, Ni (nickel) 1.0 to 4.0%, the remainder being Cu (copper), and inevitable impurities is stable in electric resistance over a long period of time. This is particularly preferable because its temperature coefficient of resistivity is extremely small, heat conduction between locations where electrical connection is required is minimized, and strain sensitivity is low. In particular, an alloy composed of 86% copper, 12% manganese, and 2% nickel is called Manganin (trademark), but is preferable as a resistance material.

抵抗合金よりなる薄板状体は抵抗合金が薄板状に加工されたものであり、抵抗合金よりなる薄板状体は少なくとも互いに平行な表面と裏面を有していることが好ましい。又、接続端子部/抵抗素子部/接続端子部が各々板状であり一平面状に突き合わせにて接合されている抵抗器を製造するには、抵抗合金よりなる薄板状体の表面に垂直又は略垂直な平面状の側面を有していることが好ましい。更に、低抵抗金属固定抵抗器の電気抵抗は抵抗合金の長さに比例するため、抵抗合金よりなる薄板状体は表面に対し垂直又は略垂直な互いに平行で一定の距離を有する二側面を有していることが好ましい。したがって抵抗合金よりなる薄板状体は薄い直方体、又は、等幅の帯状体等が好ましい。寸法は限定されないが、例示すれば厚みが0.3mm〜数mm、幅は数mm〜10cm、長さは10cm〜数百mである。   The thin plate-like body made of the resistance alloy is obtained by processing the resistance alloy into a thin plate shape, and the thin plate-like body made of the resistance alloy preferably has at least a surface and a back surface parallel to each other. In order to manufacture a resistor in which each of the connecting terminal portion / resistive element portion / connecting terminal portion has a plate shape and is joined in a single plane, the surface is perpendicular to the surface of a thin plate made of a resistance alloy. It is preferable to have a substantially vertical flat side surface. Furthermore, since the electric resistance of the low-resistance metal fixed resistor is proportional to the length of the resistance alloy, the thin plate-like body made of the resistance alloy has two side surfaces perpendicular to or substantially perpendicular to the surface and having a certain distance from each other. It is preferable. Therefore, the thin plate-like body made of a resistance alloy is preferably a thin rectangular parallelepiped or a uniform strip. Although the dimensions are not limited, for example, the thickness is 0.3 mm to several mm, the width is several mm to 10 cm, and the length is 10 cm to several hundreds m.

接続端子部を形成する導電率の高い金属導体は、Cu、Al、Ag、Au等が例示されるが安定性、コスト等からCuが好ましい。導電性金属よりなる薄板状体は導電率の高い金属導体が薄板状に加工されたものであり、導電性金属よりなる薄板状体は上下の面が平行で間隔が小さくかつ、突き合わせにて接合されるので少なくとも表面に垂直又は略垂直な平面状の側面を有していることが好ましい。更に抵抗合金よりなる薄板状体は抵抗合金と接合後打ち抜くにせよ材料効率上、平行な2側面を有していることが好ましい。したがって導電性金属よりなる薄板状体は薄い直方体、等幅の帯状体等が好ましい。
寸法は限定されないが、例示すれば厚みが0.3mm〜数mm、幅は数mm〜10cm、長さは10cm〜数百mである。
Cu, Al, Ag, Au, and the like are exemplified as the metal conductor having high conductivity forming the connection terminal portion, but Cu is preferable from the viewpoint of stability and cost. A thin plate made of conductive metal is made by processing a metal conductor with high conductivity into a thin plate, and a thin plate made of conductive metal is parallel to the upper and lower surfaces and has a small interval, and is joined by butt contact. Therefore, it is preferable to have at least a planar side surface that is perpendicular or substantially perpendicular to the surface. Furthermore, it is preferable that the thin plate-like body made of a resistance alloy has two parallel side surfaces in terms of material efficiency, even if punched after joining with the resistance alloy. Therefore, the thin plate-like body made of a conductive metal is preferably a thin rectangular parallelepiped, a uniform-width strip or the like.
Although the dimensions are not limited, for example, the thickness is 0.3 mm to several mm, the width is several mm to 10 cm, and the length is 10 cm to several hundreds m.

薄板状の抵抗合金と薄板状の金属導体は通常は同じ厚さのものを組み合わせ接合されるが、厚みが異なっていてもよい。むしろ厚みの異なる抵抗合金よりなる薄板状体と金属導体の薄板状を組み合わせ、接合後抵抗合金上に摩擦撹拌接合時に形成される金属導体のオーバーレイ層を研削等により除去することも、抵抗器の電気抵抗値を一定に制御するのに有効な場合がある。この場合抵抗合金よりなる薄板状体と金属導体の薄板状との厚みは、数μmから数mm、好ましくは数十μmから数百μm異なることが好ましい。   The thin plate-like resistance alloy and the thin plate-like metal conductor are usually combined and joined with the same thickness, but the thickness may be different. Rather, it is possible to combine a thin plate made of resistance alloys with different thicknesses and a thin plate of a metal conductor, and remove the overlay layer of the metal conductor formed on the resistance alloy after joining by friction stir welding by grinding or the like. It may be effective for controlling the electric resistance value to be constant. In this case, it is preferable that the thickness of the thin plate-like body made of a resistance alloy and the thickness of the metal conductor is different from several μm to several mm, preferably several tens μm to several hundred μm.

摩擦攪拌接合に用いる摩擦攪拌接合工具(ツール)は、摩擦攪拌接合するための回転と押し当て力を付与するためのツール本体の先端に円柱状の回転子の端面、ショルダー面と称される、を有し、更にショルダー面に突設されたピン状プローブを有している。
本願発明において、ショルダー面は限定されない。ショルダー面外周は円形が好ましく用いられ、ショルダー面は平面、回転対称な曲面、又は渦巻き面等が好ましく用いられる。
A friction stir welding tool (tool) used for friction stir welding is referred to as an end face of a cylindrical rotor at the tip of a tool body for applying a rotation and pressing force for friction stir welding, a shoulder face, And a pin-like probe protruding from the shoulder surface.
In the present invention, the shoulder surface is not limited. The outer periphery of the shoulder surface is preferably circular, and the shoulder surface is preferably a flat surface, a rotationally symmetric curved surface, or a spiral surface.

摩擦撹拌接合により、抵抗合金よりなる薄板状体と導電性金属よりなる薄板状体の側面同士を接合するには、抵抗合金よりなる薄板状体と導電性金属よりなる薄板状体の側面同士を突き合わせ、突き合わせ部又はその近傍に薄板状体の表面から回転する上記摩擦攪拌接合工具のプローブを埋入して、ショルダー面下及びプローブが埋入された部分を可塑化させることにより行う。   To join the side surfaces of a thin plate body made of a resistance alloy and the thin plate body made of a conductive metal by friction stir welding, the side surfaces of the thin plate body made of a resistance alloy and the thin plate body made of a conductive metal are joined together. The probe of the friction stir welding tool rotating from the surface of the thin plate-like body is embedded in the butting portion or the butting portion or the vicinity thereof, and the portion below the shoulder surface and the probe is plasticized.

本願発明において、プローブの形状も限定されない。通常円柱状、円錐台状、半球状等が用いられるが、撹拌効率を上げるためねじ状、断面多角形状、切削刃をプローブの回転軸に対し垂直に突出形成させたもの等が用いられてもよい。   In the present invention, the shape of the probe is not limited. Usually cylindrical, frustoconical, hemispherical, etc. are used, but in order to increase the stirring efficiency, a screw, a polygonal cross section, or a cutting blade that protrudes perpendicularly to the probe rotation axis may be used. Good.

ツールの材質は限定されないが、高温での連続加工に耐え、接合対象となる抵抗合金や導電率の高い金属導体と化学的に親和し溶解や反応しにくい物が好ましく、例えばNi基合金等が好ましい。   The material of the tool is not limited, but is preferably a material that can withstand continuous processing at a high temperature and is chemically compatible with a resistance alloy to be bonded or a metal conductor with high conductivity and hardly dissolves or reacts. preferable.

摩擦撹拌装置は特に限定されないが、摩擦攪拌接合ツールを回転させる駆動機構、ツールを回転軸方向に移動させる駆動機構、ツールを埋入させるために回転軸方向に荷重を加える荷重機構を備えると共に、薄板状体をツール回転軸に対し、相対的に移動させる移動機構、及び両板状体を加工時に押さえつける係止機構を有しているものが好ましく、移動軸としては定盤軸(X)と横行軸(Y)と昇降軸(Z)の機械3軸からなるもの、又は、定盤軸(X)と横行軸(Y)と昇降軸(Z)と揺動軸(A)の機械4軸からなるもの、あるいは更に旋回軸(C)を合せた5軸制御のもの等が好ましく用いられる。ツールが埋入される薄板の裏側には荷重を支えるための裏当てがあてがわれて用いられる。   The friction stirrer is not particularly limited, and includes a drive mechanism that rotates the friction stir welding tool, a drive mechanism that moves the tool in the direction of the rotation axis, and a load mechanism that applies a load in the direction of the rotation axis to embed the tool, It is preferable to have a moving mechanism that moves the thin plate relative to the tool rotation axis, and a locking mechanism that presses both plate-like bodies during processing. The moving axis is the surface plate axis (X). A machine consisting of three machine axes, a transverse axis (Y) and a lifting / lowering axis (Z), or four machine axes consisting of a surface plate axis (X), a transverse axis (Y), a lifting / lowering axis (Z), and a swing axis (A). Or those having a 5-axis control combined with the swivel axis (C) are preferably used. The back side of the thin plate in which the tool is embedded is used with a backing for supporting the load.

一般に、プローブを埋入させるための摩擦攪拌接合工具(ツール)の回転軸の位置は突き合わせ面(加工時には表面に突合わせ線として表われる)部ではなく、いずれかの薄板状体に偏っていてもよい。この偏りをツールオフセットという。ツールオフセット量は突合せ面とツール回転軸との距離をいう。ツールオフセット量はプローブの半径以下であることが好ましい。   Generally, the position of the rotating shaft of the friction stir welding tool (tool) for embedding the probe is not a butting surface (which appears as a butting line on the surface during processing), and is biased to one of the thin plates. Also good. This bias is called tool offset. The tool offset amount is the distance between the butt surface and the tool rotation axis. The amount of tool offset is preferably less than the radius of the probe.

埋入したプローブを突合せ部に平行に移動させことにより、順次接合されていく。摩擦攪拌接合することにより機械的強度が安定した、電気的に信頼性があり、且つ安価な接合が可能となる。   The embedded probes are sequentially joined by moving them parallel to the butting portion. By friction stir welding, mechanical strength is stable, electrically reliable, and inexpensive joining becomes possible.

ところで一般に、図1に示すように摩擦撹拌接合では、プローブの回転方向と接合方向とが一致している側を「AS、前進側又はアドバンシングサイド( a d v a n c i n g s i d e )」と呼び、一方、このアドバンシングサイドとは反対の側を「RS、後退側又はリトリーティングサイド( r e tre a t i n g s i d e )」と呼ぶ。   In general, as shown in FIG. 1, in friction stir welding, the side where the rotation direction of the probe coincides with the joining direction is referred to as “AS, forward side or advanced side (adv a nc ing s i d e) ”, while the side opposite this advancing side is referred to as“ RS, retreat side or retreating side (re ret ti ng s i d e) ”.

抵抗合金よりなる薄板状体と導電性金属よりなる薄板状体の側面同士を接合するには、導電性金属よりなる薄板状体をアドバンシングサイド(AS)に配して突き合わせ摩擦攪拌接合することが好ましい。
特に前記抵抗合金がMn(マンガン)10.0〜13.0%、Ni(ニッケル)1.0〜4.0%、残りがCu(銅)、及び不可避的不純物からなる合金、例えばマンガニン(商標)すなわちCu86%、 Mn12%、Ni2%からなる合金であり、前記導電率の高い金属導体がCu(銅)である場合は銅の薄板状体をアドバンシングサイド(AS)に配して突き合わせ摩擦攪拌接合することが好ましい。
逆方向では接合品質が良好なものが得られない場合があるからである。この理由は、あきらかではないが熱伝導率が関与しているものと推測される。
In order to join the side surfaces of a thin plate-like body made of a resistance alloy and a thin plate-like body made of a conductive metal, the thin plate-like body made of a conductive metal is arranged on the advanced side (AS) and butt friction stir welding is performed. Is preferred.
In particular, the resistance alloy is Mn (manganese) 10.0 to 13.0%, Ni (nickel) 1.0 to 4.0%, the remainder is Cu (copper), and an inevitable impurity, such as Manganin (trademark) ) That is, it is an alloy composed of Cu 86%, Mn 12%, Ni 2%, and when the metal conductor with high conductivity is Cu (copper), a copper thin plate is arranged on the advanced side (AS) and butt friction Stir welding is preferred.
This is because, in the reverse direction, it may not be possible to obtain a material with good bonding quality. The reason for this is not clear, but it is presumed that thermal conductivity is involved.

又 この場合ツールの回転軸の中心は導電性金属よりなる薄板状体上又は突き合わせ面上であることが好ましい。ツールの回転軸の中心が抵抗合金よりなる薄板状体上にある場合は接合品質の良好なものが得られない場合があるからである。その理由として、ツール回転軸が抵抗合金側では、プローブの損耗が顕著であることが挙げられる。
あるいはツールと熱伝導率の低い抵抗合金との接触面積の増加による過度な接合温度の上昇が、接合品質に影響していることが推測される。
In this case, the center of the rotation axis of the tool is preferably on a thin plate-like body or a butting surface made of a conductive metal. This is because when the center of the rotation axis of the tool is on a thin plate-like body made of a resistance alloy, it may not be possible to obtain a product with good joining quality. The reason is that the wear of the probe is remarkable when the tool rotation axis is on the resistance alloy side.
Alternatively, it is presumed that an excessive increase in the bonding temperature due to an increase in the contact area between the tool and the resistance alloy having low thermal conductivity affects the bonding quality.

このようにして抵抗合金よりなる薄板状体と導電性金属よりなる薄板状体の側面同士が摩擦攪拌接合された結合薄板材料が製造される。   Thus, a combined thin plate material is manufactured in which the side surfaces of the thin plate member made of a resistance alloy and the thin plate member made of a conductive metal are friction stir welded.

抵抗合金よりなる薄板状体と導電性金属よりなる薄板状体が接合された結合薄板材料に対し、更に、抵抗合金よりなる薄板状体部分を挟むように導電性金属よりなる薄板状体の側面を抵抗合金よりなる薄板状体の未接合の側面に突合わせ、導電性金属よりなる薄板状体が摩擦攪拌接合される。   The side surface of the thin plate-like body made of the conductive metal so that the thin plate-like body portion made of the resistance alloy is further sandwiched between the thin plate-like body made of the resistance alloy and the thin plate-like body made of the conductive metal. Are joined to the unjoined side surface of the thin plate made of resistance alloy, and the thin plate made of conductive metal is friction stir welded.

尚、この状態で接合されたものを、その接合方向に対し直交方向に裁断、打ち抜き等することにより細断して、抵抗合金の他端に、抵抗合金を挟むように、導電性金属片を摩擦攪拌接合以外の手段で接合して抵抗器を製造してもよい。
しかし通常は2箇所目の接合も以下のように摩擦攪拌接合されるのが好ましい。
In addition, what was joined in this state is shredded by cutting, punching, or the like in a direction perpendicular to the joining direction, and a conductive metal piece is sandwiched between the resistance alloy at the other end of the resistance alloy. The resistor may be manufactured by bonding by means other than friction stir welding.
However, it is usually preferable that the second joint is also friction stir welded as follows.

抵抗合金よりなる薄板状体と導電性金属よりなる薄板状体が接合された結合薄板材料に対し、更に、抵抗合金よりなる薄板状体部分を挟むように導電性金属よりなる薄板状体の側面を抵抗合金よりなる薄板状体の未接合の側面に突合わせ、導電性金属よりなる薄板状体が摩擦攪拌接合する場合においても、抵抗合金よりなる薄板状体と導電性金属よりなる薄板状体の側面同士を接合するには、導電性金属よりなる方形薄板状体をアドバンシングサイド(AS)に配して突き合わせ摩擦攪拌接合することが好ましい。   The side surface of the thin plate-like body made of the conductive metal so that the thin plate-like body portion made of the resistance alloy is further sandwiched between the thin plate-like body made of the resistance alloy and the thin plate-like body made of the conductive metal. Even when the thin plate-like body made of a resistance alloy is abutted against the unjoined side surface of the thin-plate body made of a resistance alloy and the thin plate-like body made of a conductive metal is friction stir welded, the thin plate-like body made of a resistance alloy and the thin plate-like body made of a conductive metal In order to join the side surfaces, it is preferable to arrange a rectangular thin plate-like body made of a conductive metal on the advanced side (AS) and butt friction stir weld.

特に前記抵抗合金がMn(マンガン)10.0〜13.0%、Ni(ニッケル)1.0〜4.0%、残りがCu(銅)、及び不可避的不純物からなる合金、例えばマンガニン(商標)すなわちCu86%、 Mn12%、Ni2%からなる合金であり、前記導電率の高い金属導体が純銅、である場合は純銅の薄板状体をアドバンシングサイド(AS)に配して突き合わせ摩擦攪拌接合することが好ましい。
この場合においてもツールの回転軸の中心は導電性金属よりなる薄板状体上又は突き合わせ面上であることが好ましい。ツールの回転軸の中心が抵抗合金よりなる薄板状体上にある場合は接合品質の良好なものが得られない場合があるからである。
In particular, the resistance alloy is Mn (manganese) 10.0 to 13.0%, Ni (nickel) 1.0 to 4.0%, the remainder is Cu (copper), and an inevitable impurity, such as Manganin (trademark) ) That is, it is an alloy composed of 86% Cu, 12% Mn, and 2% Ni. When the metal conductor having high conductivity is pure copper, a pure copper thin plate is disposed on the advanced side (AS) and butt friction stir welding It is preferable to do.
Even in this case, it is preferable that the center of the rotation axis of the tool is on a thin plate-like body or a butting surface made of a conductive metal. This is because when the center of the rotation axis of the tool is on a thin plate-like body made of a resistance alloy, it may not be possible to obtain a product with good joining quality.

上述したことを用いて接続端子部/抵抗素子部/接続端子部が各々板状であり一平面状に突き合わせにて接合されている抵抗器を製造するには、抵抗合金よりなる抵抗素子部の両側に導電率の高い金属導体よりなる接続端子部を結合してなる低抵抗金属固定抵抗器を製造すればよく、一の導電性金属よりなる薄板状体の側面と抵抗合金よりなる互いに平行した辺を有する薄板状体の一平行側面とを突き合わせ、前記抵抗合金よりなる薄板状体の他の平行な一側面と他の導電性金属よりなる方形薄板状体の側面とを突き合わせ、各々の前記突き合わせ部にそれぞれ回転する摩擦攪拌接合工具のプローブを埋入して、前記回転プローブを前記突き合わせ部に平行に移動させることにより、摩擦攪拌接合して一の導電性金属よりなる薄板状体と、抵抗合金よりなる薄板状体、他の導電性金属よりなる薄板状体がこの順に側面同士結合された結合薄板状体を形成することができる。
その後、後述するが、前記結合薄板状体をその接合方向に対し直交方向に細断することにより、個々の低抵抗金属固定抵抗器を得ることができる。
In order to manufacture a resistor in which each of the connecting terminal portion / resistive element portion / connecting terminal portion has a plate shape and is joined in a single plane by using the above-described, What is necessary is just to manufacture the low resistance metal fixed resistor which joins the connection terminal part which consists of a metal conductor with high conductivity on both sides, and the side surface of the thin plate-like body made of one conductive metal and the parallel made of the resistance alloy And a parallel side surface of the thin plate-like body made of the resistance alloy, and a side surface of the rectangular thin plate-like body made of another conductive metal. A thin plate-like body made of one conductive metal by friction stir welding by embedding a probe of a friction stir welding tool that rotates in each butting portion and moving the rotating probe in parallel to the butting portion; Resistance Thin plate member made of alloy, a thin plate-like member made of other conductive metal can be formed side surfaces bound binding lamellar bodies in this order.
Thereafter, as will be described later, individual low-resistance metal fixed resistors can be obtained by chopping the combined thin plate members in a direction perpendicular to the joining direction.

上記接合をするに際しては、導電性金属よりなる薄板状体と、抵抗合金よりなる薄板状体と、導電性金属よりなる薄板状体との摩擦攪拌接合部分は抵抗合金よりなる方形薄板状体の両側面の2箇所あるが、接合を同時に行っても良いし、逐次行っても良い。   When the above-mentioned joining is performed, the friction stir welding portion of the thin plate-like body made of a conductive metal, the thin plate-like body made of a resistance alloy, and the thin plate-like body made of a conductive metal is made of a rectangular thin plate-like body made of a resistance alloy. Although there are two places on both side surfaces, bonding may be performed simultaneously or sequentially.

かくして導電性金属よりなる薄板状体と、抵抗合金よりなる薄板状体と、導電性金属よりなる薄板状体とがこの順に側面同士接合された結合薄板状体が製造される。   Thus, a combined thin plate-like body is manufactured in which a thin plate-like body made of a conductive metal, a thin plate-like body made of a resistance alloy, and a thin plate-like body made of a conductive metal are joined in this order.

前記結合薄板状体をその接合方向に対し直交方向に裁断、打ち抜き等することにより細断して、個々の抵抗器が得られる。裁断、打ち抜き等は金属板に対し通常用いる方法、例えば、プレス加工やワイヤ放電加工等が使用できる。   Individual resistors can be obtained by chopping the combined thin plate-like body by cutting, punching, or the like in a direction perpendicular to its joining direction. For cutting, punching, etc., a method usually used for a metal plate, for example, press working or wire electric discharge machining can be used.

請求項1に記載の発明によれば、摩擦攪拌接合することにより生産性にすぐれ、製造設備が高価にならない接続強度の安定した低抵抗金属固定抵抗器が安価に製造される。   According to the first aspect of the present invention, a low-resistance metal fixed resistor having a high connection strength and a stable connection strength that is excellent in productivity and does not become expensive due to friction stir welding is manufactured at low cost.

請求項2に記載の発明によれば、抵抗素子材料がMn(マンガン)10.0〜13.0%、Ni(ニッケル)1.0〜4.0%、残りがCu(銅)、及び不可避的不純物からなる合金であり、接続端子材料が純銅にてなるため、抵抗の温度係数が小さい品質が安定した低抵抗金属固定抵抗器が安価に製造される。 According to the invention of claim 2, the resistance element material is Mn (manganese) 10.0 to 13.0%, Ni (nickel) 1.0 to 4.0%, the remainder is Cu (copper), and unavoidable Since the connection terminal material is made of pure copper, a low-resistance metal fixed resistor having a low resistance temperature coefficient and stable quality can be manufactured at low cost.

摩擦攪拌接合におけるASとRSを示す模式的な説明図である。It is typical explanatory drawing which shows AS and RS in friction stir welding. 摩擦攪拌接合におけるツールオフセットを示す模式的な説明図である。It is typical explanatory drawing which shows the tool offset in friction stir welding. 実施例1の接続部の写真である。2 is a photograph of a connection part of Example 1. 実施例2の接続部の写真である。6 is a photograph of a connection part of Example 2. 実施例3の接続部の写真である。6 is a photograph of a connection part of Example 3. 実施例4の接続部の写真である。7 is a photograph of a connection part of Example 4. 実施例5の接続部の写真である。10 is a photograph of a connection part in Example 5. 実施例6の接続部の写真である。14 is a photograph of the connection part of Example 6. 実施例7の接続部の写真である。10 is a photograph of a connection part in Example 7. 簡易引張試験片を表す模式図である。It is a schematic diagram showing a simple tensile test piece. 比較例1の接続部の写真である。6 is a photograph of a connection part of Comparative Example 1. 比較例2の接続部の写真である。6 is a photograph of a connection part of Comparative Example 2. 比較例3の接続部の写真である。10 is a photograph of a connection part of Comparative Example 3. 比較例4の接続部の写真である。10 is a photograph of a connection part in Comparative Example 4. 引張試験のダンベル打抜試験片形状を表す図である。It is a figure showing the dumbbell punching test piece shape of a tension test. 実施例12の接続部の写真である。It is a photograph of the connection part of Example 12. 電気抵抗を測定する状態を表す写真である。It is a photograph showing the state which measures electrical resistance. 比較例5の電子ビームで接合した接続部の写真である。10 is a photograph of a connection part joined by an electron beam in Comparative Example 5.

以下、本発明の実施例を挙げて本発明を更に説明する。
1.摩擦攪拌接合条件の検討
純銅直方体形状薄板(板厚2mm、幅30mm、長さ200mm)とマンガニン直方体形状薄板(板厚2mm幅30mm、長さ200mm)を被接合体として板側面を突き合わせ接合した。
摩擦攪拌接合工具(ツール)はNi系合金製にてなり、ショルダー面は直径10mmの円板で、プローブはショルダー面の中心に突設され、径が3mm又は4mmで、高さ1.9mm又は0.9mmの円柱状の物を用いた。
上記ツールを、定盤軸(X)と横行軸(Y)と昇降軸(Z)と揺動軸(A)の機械4軸からなる摩擦攪拌接合装置に取り付けて接合した。
ツール前進角:2度
以上の条件にて
押しつけ荷重:500Kg重(4903.3N)〜700kg重(6864.7N)
ツール回転数:500〜2000rpm
ツール移動速度:100〜500mm/min
ツールオフセット量:0〜1.5mm
の範囲内で条件を組み合わせて適切範囲を求め、上記組み合わせの適切な範囲で接合した。
Hereinafter, the present invention will be further described with reference to examples of the present invention.
1. Examination of Friction Stir Welding Conditions Pure copper rectangular parallelepiped thin plates (plate thickness 2 mm, width 30 mm, length 200 mm) and manganin rectangular parallelepiped thin plates (plate thickness 2 mm width 30 mm, length 200 mm) were joined to each other by butt joining.
The friction stir welding tool (tool) is made of a Ni-based alloy, the shoulder surface is a disk having a diameter of 10 mm, the probe projects from the center of the shoulder surface, the diameter is 3 mm or 4 mm, and the height is 1.9 mm or A 0.9 mm cylindrical object was used.
The above tool was attached to and joined to a friction stir welding apparatus comprising four machine axes including a platen axis (X), a traversing axis (Y), a lifting axis (Z), and a swing axis (A).
Tool advance angle: Pressing load under conditions of 2 degrees or more: 500 kg weight (4903.3 N) to 700 kg weight (6864.7 N)
Tool rotation speed: 500-2000rpm
Tool moving speed: 100 to 500 mm / min
Tool offset: 0 to 1.5mm
The appropriate range was obtained by combining the conditions within the range, and joined within the appropriate range of the above combination.

プローブ径4mm
プローブ長1.9mm
1000rpm
200mm/min
押しつけ荷重:700kg(6864.7N)
純銅薄板をアドバンシングサイドに配置。
ツールオフセット量:0.0mm
結果を図3に示す。写真のように外観上接合は良好であった。
Probe diameter 4mm
Probe length 1.9mm
1000 rpm
200mm / min
Pressing load: 700kg (6864.7N)
Pure copper sheet is placed on the advancing side.
Tool offset: 0.0mm
The results are shown in FIG. As shown in the photograph, the bonding was good in appearance.

プローブ径4mm
プローブ長1.9mm
1000rpm
200mm/min
押しつけ荷重:700kg
純銅薄板をアドバンシングサイドに配置。
ツールオフセット量:純銅側に1.1mm
結果を図4に示す。写真のように外観上接合は良好であった。
Probe diameter 4mm
Probe length 1.9mm
1000 rpm
200mm / min
Pressing load: 700kg
Pure copper sheet is placed on the advancing side.
Tool offset: 1.1mm on the pure copper side
The results are shown in FIG. As shown in the photograph, the bonding was good in appearance.

プローブ径3mm
プローブ長さ1mm
1000rpm
100mm/min
押しつけ荷重:500kg(4903.3N)
純銅薄板をアドバンシングサイドに配置。
ツール回転軸は純銅薄板上に配置。
ツールオフセット量:純銅側に0.6mm
結果を図5に示す。写真のように外観上接合は良好であった。
Probe diameter 3mm
Probe length 1mm
1000 rpm
100mm / min
Pressing load: 500kg (4903.3N)
Pure copper sheet is placed on the advancing side.
The tool rotation axis is placed on a pure copper sheet.
Tool offset: 0.6mm on the pure copper side
The results are shown in FIG. As shown in the photograph, the bonding was good in appearance.

プローブ径3mm
プローブ長さ1.9mm
1000rpm
100mm/min
押しつけ荷重:500kg(4903.3N)
純銅薄板をアドバンシングサイドに配置。
ツール回転軸は純銅薄板上に配置。
ツールオフセット量:純銅側に0.6mm
結果を図6に示す。写真のように外観上接合は良好であった。
Probe diameter 3mm
Probe length 1.9mm
1000 rpm
100mm / min
Pressing load: 500kg (4903.3N)
Pure copper sheet is placed on the advancing side.
The tool rotation axis is placed on a pure copper sheet.
Tool offset: 0.6mm on the pure copper side
The results are shown in FIG. As shown in the photograph, the bonding was good in appearance.

プローブ径3mm
プローブ長さ1.9mm
1000rpm
100mm/min
押しつけ荷重:500kg(4903.3N)
純銅薄板をアドバンシングサイドに配置。
ツール回転軸は突き合わせ線上に配置。
ツールオフセット量:0
結果を図7に示す。写真のように外観上接合は良好であった。
Probe diameter 3mm
Probe length 1.9mm
1000 rpm
100mm / min
Pressing load: 500kg (4903.3N)
Pure copper sheet is placed on the advancing side.
The tool rotation axis is located on the butt line.
Tool offset: 0
The results are shown in FIG. As shown in the photograph, the bonding was good in appearance.

プローブ径3mm
プローブ長さ1.9mm
1500rpm
200mm/min
押しつけ荷重:500kg(4903.3N)
純銅薄板をアドバンシングサイドに配置。
ツール回転軸は純銅薄板上に配置。
ツールオフセット量:0.6mm
結果を図8に示す。写真のように外観上接合は良好であった。
Probe diameter 3mm
Probe length 1.9mm
1500rpm
200mm / min
Pressing load: 500kg (4903.3N)
Pure copper sheet is placed on the advancing side.
The tool rotation axis is placed on a pure copper sheet.
Tool offset: 0.6mm
The results are shown in FIG. As shown in the photograph, the bonding was good in appearance.

プローブ径3mm
プローブ長さ1.9mm
1500rpm
200mm/min
押しつけ荷重:500kg(4903.3N)
純銅薄板をアドバンシングサイドに配置。
ツール回転軸は突き合わせ線上に配置。
ツールオフセット量:0
結果を図9に示す。写真のように外観上接合は良好であった。
Probe diameter 3mm
Probe length 1.9mm
1500rpm
200mm / min
Pressing load: 500kg (4903.3N)
Pure copper sheet is placed on the advancing side.
The tool rotation axis is located on the butt line.
Tool offset: 0
The results are shown in FIG. As shown in the photograph, the bonding was good in appearance.

実施例4、5、6、7で得られた接合サンプルにつきワイヤ放電加工により図10の様に長さ方向の中央部に接合部を配置して幅27.6〜28.9mm、長さ77mmの長方形状に切断した。切断は容易であった。
この結果摩擦攪拌接合した抵抗合金よりなる薄板状体と導電性金属よりなる薄板状体が接合された結合薄板材料の直交方向の切断が容易であり、電極が抵抗の両端に接続された場合においても同様に直交方向に切断し抵抗器が得られることが裏付けられた。
切断片につき簡易引張試験を行った。結果を表1に示す。
The joint samples obtained in Examples 4, 5, 6, and 7 were arranged at the center in the length direction by wire electric discharge machining as shown in FIG. 10 to have a width of 27.6 to 28.9 mm and a length of 77 mm. Cut into a rectangular shape. Cutting was easy.
As a result, it is easy to cut in the orthogonal direction of the combined thin plate material in which the thin plate made of resistance alloy and the thin plate made of conductive metal joined by friction stir welding, and the electrodes are connected to both ends of the resistor. Similarly, it was confirmed that a resistor can be obtained by cutting in the orthogonal direction.
A simple tensile test was performed on the cut pieces. The results are shown in Table 1.

(比較例1) (Comparative Example 1)

実施例1において、アドバンシングサイドにマンガニン薄板を配置したことに変えたこと以外は実施例1と同様の条件で接合した。接合条件を表2に示す。
結果を図11に示す。接合部には乱れが認められた。
(比較例2)
In Example 1, it joined on the conditions similar to Example 1 except having changed into having arrange | positioned the manganin thin plate to the advanced side. Table 2 shows the joining conditions.
The results are shown in FIG. Disturbances were observed at the joint.
(Comparative Example 2)

実施例2において、アドバンシングサイドにマンガニン薄板を配置したことに変えたこと以外は実施例2と同様の条件で接合した。接合条件を表2に示す。
結果を図12に示す。接合部には乱れが認められた。
(比較例3)
In Example 2, the bonding was performed under the same conditions as in Example 2 except that the manganin thin plate was disposed on the advancing side. Table 2 shows the joining conditions.
The results are shown in FIG. Disturbances were observed at the joint.
(Comparative Example 3)

実施例3において、アドバンシングサイドにマンガニン薄板を配置したことに変えたこと以外は実施例3と同様の条件で接合した。接合条件を表2に示す。
結果を図13に示す。接合部には乱れが認められた。
(比較例4)
In Example 3, the joining was performed under the same conditions as in Example 3 except that a thin manganin plate was disposed on the advancing side. Table 2 shows the joining conditions.
The results are shown in FIG. Disturbances were observed at the joint.
(Comparative Example 4)

プローブ径3mm
プローブ長さ1.9mm
1500rpm
300mm/min
押しつけ荷重:500kg(4903.3N)
マンガニン薄板をアドバンシングサイドに配置。
ツールオフセット量:マンガニン側に0.3mm
接合条件を表2に示す。結果を図14の写真に示す。矢印箇所の接合時に異常音が発生した。接合後確認するとツールのプローブ部が折損していた。
Probe diameter 3mm
Probe length 1.9mm
1500rpm
300mm / min
Pressing load: 500kg (4903.3N)
Manganin sheet is placed on the advancing side.
Tool offset: 0.3 mm on the manganin side
Table 2 shows the joining conditions. The results are shown in the photograph in FIG. An abnormal noise occurred when joining the arrows. When checked after joining, the probe part of the tool was broken.

(実施例8〜11)
表2に示す条件で接合した。接合部外観は全て良好であった。結合薄板材料につき図15で示すダンベル状にワイヤ放電加工により切り抜き引張強度を測定した。結果を表2に示す。
(Examples 8 to 11)
Bonding was performed under the conditions shown in Table 2. The joint appearance was all good. The cut tensile strength was measured by wire electric discharge machining in the dumbbell shape shown in FIG. The results are shown in Table 2.

このように摩擦攪拌接合により強い安定した引張強度が得られており、とりわけ純銅等の電極材料をアドバンシングサイド(AS)に配し、ツールの回転軸を純銅等の電極材料側に配した摩擦攪拌接合により、高品質な接合が安定してできることが分かった。
(実施例12)
In this way, a strong and stable tensile strength is obtained by friction stir welding. In particular, friction is achieved by placing an electrode material such as pure copper on the advanced side (AS) and a rotation axis of the tool on the electrode material side such as pure copper. It was found that high-quality joining can be stably performed by stirring joining.
(Example 12)

純銅直方体形状薄板(板厚2mm、幅37mm板、長さ200mm)2枚とマンガニン直方体形状薄板(板厚2mm、幅10mm、長さ200mm)を被接合体として薄板側面同士を以下の条件にて突き合わせ接合した。
摩擦攪拌接合工具(ツール)はNi系合金製にてなる、ショルダー面は直径10mmの円板で、プローブはショルダー面の中心に突設された径が3mmで、高さ1.9mmの円柱状の物を用いた。
上記ツールを、定盤軸(X)と横行軸(Y)と昇降軸(Z)と揺動軸(A)の機械4軸からなる公知の摩擦攪拌接合装置に取り付けて接合使用した。
ツール前進角:2度
押しつけ荷重:500kg重(4903.3N)
ツール回転数:1400rpm
ツール移動速度:100mm/min
ツールの回転軸:純銅板上
ツールオフセット量:0.3mm
純銅薄板をアドバンシングサイドに配置。
ツール回転軸は純銅薄板上に配置。
Two pure copper rectangular parallelepiped thin plates (thickness 2 mm, width 37 mm, length 200 mm) and manganin rectangular parallelepiped thin plates (thickness 2 mm, width 10 mm, length 200 mm) were joined to the side surfaces of the thin plates under the following conditions. Butt joined.
The friction stir welding tool (tool) is made of a Ni-based alloy, the shoulder surface is a disk having a diameter of 10 mm, and the probe is a cylindrical shape having a diameter of 3 mm protruding from the center of the shoulder surface and a height of 1.9 mm. The thing of was used.
The above tool was attached to a known friction stir welding apparatus consisting of four machine axes including a platen axis (X), a transverse axis (Y), a lifting axis (Z), and a swing axis (A).
Tool advance angle: 2 degree pressing load: 500kg weight (4903.3N)
Tool rotation speed: 1400 rpm
Tool moving speed: 100 mm / min
Tool rotation axis: Tool offset on pure copper plate: 0.3 mm
Pure copper sheet is placed on the advancing side.
The tool rotation axis is placed on a pure copper sheet.

上記条件にて、純銅直方体形状薄板と、マンガニン直方体形状薄板とを突き合わせ摩擦攪拌接合した。次に更にマンガニン直方体形状薄板の他の側面に、他の純銅直方体形状薄板とを突き合わせて、上記条件で摩擦攪拌接合し、純銅板/マンガニン板/純銅板が接合された接合体を得た。図16に外観を示す。接合体の一部を図15に示すダンベル形状にワイヤ放電加工にて切り出し、引張試験を行った。最大引張応力は186MPa、継手効率は85%であった。   Under the above conditions, a pure copper cuboid-shaped thin plate and a manganin cuboid-shaped thin plate were butted against each other and subjected to friction stir welding. Next, another pure copper cuboid-shaped thin plate was abutted against the other side surface of the manganin cuboid-shaped thin plate, and friction stir welding was performed under the above conditions to obtain a joined body in which the pure copper plate / manganin plate / pure copper plate was joined. FIG. 16 shows the appearance. A part of the joined body was cut into a dumbbell shape shown in FIG. 15 by wire electric discharge machining, and a tensile test was performed. The maximum tensile stress was 186 MPa, and the joint efficiency was 85%.

上記接合体から同様に切り出した他のダンベル形状の試験片につき図17の様にして電気抵抗を測定した。電気抵抗は0.279mΩであった。抵抗温度係数は256ppm/Kであった。
(比較例5)
The electrical resistance was measured as shown in FIG. 17 for other dumbbell-shaped test pieces cut out in the same manner from the joined body. The electric resistance was 0.279 mΩ. The temperature coefficient of resistance was 256 ppm / K.
(Comparative Example 5)

純銅の直方体形状薄板(板厚2mm、幅30mm板、長さ200mm)2枚とマンガニンの直方体形状薄板(板厚2mm、幅10mm板、長さ200mm)を被接合体として、マンガニン薄板を両純銅薄板で挟み込み、薄板側面を突き合わせ真空下、電子ビームにて接合速度2m/minにて接合した。外観を図18に示す。上記接合体から実施例12と同様に切り出した他のダンベル形状の試験片につき同様に電気抵抗を測定した。電気抵抗は0.292mΩであった。抵抗温度係数は230ppm/Kであった。尚溶接部は溝状の凹みができていた。   Two sheets of pure copper cuboid (thickness 2 mm, width 30 mm, length 200 mm) and manganin rectangular parallelepiped (thickness 2 mm, width 10 mm, length 200 mm) are used as the objects to be joined. The thin plate was sandwiched, and the side surfaces of the thin plate were butted together and bonded with an electron beam at a bonding speed of 2 m / min under vacuum. The appearance is shown in FIG. The electrical resistance was measured in the same manner for other dumbbell-shaped test pieces cut out from the joined body in the same manner as in Example 12. The electric resistance was 0.292 mΩ. The temperature coefficient of resistance was 230 ppm / K. The welded portion was grooved.

このように、高価で大型の電子ビーム装置にて接合して得られた抵抗器に対し摩擦攪拌接合にて接合した実施例12により得られた抵抗器は電気抵抗、抵抗温度係数においても実質上遜色ないものが得られた。   Thus, the resistor obtained by Example 12 joined by friction stir welding with respect to the resistor obtained by joining with an expensive and large-sized electron beam apparatus has substantially the same electrical resistance and resistance temperature coefficient. An inferior one was obtained.

本願発明によれば、車載用等に今後一層需要の増大する低抵抗金属固定抵抗器を、品質良く安定して安価に製造することができる。   According to the present invention, it is possible to manufacture a low-resistance metal fixed resistor whose demand will increase further in the future for vehicles and the like with high quality and stability at low cost.

Claims (2)

抵抗合金よりなる抵抗素子部と導電率の高い金属導体よりなる接続端子部が結合されてなる低抵抗金属固定抵抗器の製造方法であって、導電性金属よりなる薄板状体の側面と抵抗合金よりなる薄板状体の側面とを突き合わせ、導電性金属よりなる薄板状体がAS(アドバンシング サイド)に配され、かつ接合工具であるツールの回転軸が導電性金属よりなる薄板状体上または突き合わせ線上にて、回転する摩擦攪拌接合工具のプローブを埋入して、前記回転プローブを前記突き合わせ部に平行に移動させることにより摩擦攪拌接合して、導電性金属よりなる薄板状体と、抵抗合金よりなる薄板状体薄板状体が接合された結合薄板状体を形成する工程と、前記結合薄板状体をその接合方向に対し直交方向に細断する工程とを含む低抵抗金属固定抵抗器の製造方法。 A method for manufacturing a low-resistance metal fixed resistor in which a resistance element portion made of a resistance alloy and a connection terminal portion made of a metal conductor having high conductivity are combined, and the side surface of the thin plate-like body made of a conductive metal and the resistance alloy A thin plate-like body made of a conductive metal is arranged on the AS (advancing side), and the rotation axis of a tool as a joining tool is on the thin plate-like body made of a conductive metal. A rotating friction stir welding tool probe is embedded on the butt line , and the rotary probe is moved in parallel to the butt portion to perform friction stir welding, and a thin plate-like body made of a conductive metal and resistance Low resistance metal fixing including a step of forming a bonded thin plate formed by joining a thin plate formed of an alloy and a step of cutting the bonded thin plate in a direction perpendicular to the bonding direction. Manufacturing method of resistors. 請求項記載の低抵抗金属固定抵抗器の製造方法であって、前記抵抗合金がMn(マンガン)10.0〜13.0%、Ni(ニッケル)1.0〜4.0%、残りがCu(銅)、及び不可避的不純物からなる合金であり、前記導電率の高い金属導体が純銅であることを特徴とする低抵抗金属固定抵抗器の製造方法。 It is a manufacturing method of the low resistance metal fixed resistor of Claim 1, Comprising: The said resistance alloy is Mn (manganese) 10.0-13.0%, Ni (nickel) 1.0-4.0%, and the remainder is A method of manufacturing a low-resistance metal fixed resistor, characterized in that it is an alloy composed of Cu (copper) and inevitable impurities, and the metal conductor having high conductivity is pure copper .
JP2011193000A 2011-09-05 2011-09-05 Low resistance metal fixed resistor manufacturing method Active JP5860639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193000A JP5860639B2 (en) 2011-09-05 2011-09-05 Low resistance metal fixed resistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193000A JP5860639B2 (en) 2011-09-05 2011-09-05 Low resistance metal fixed resistor manufacturing method

Publications (2)

Publication Number Publication Date
JP2013052425A JP2013052425A (en) 2013-03-21
JP5860639B2 true JP5860639B2 (en) 2016-02-16

Family

ID=48129889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193000A Active JP5860639B2 (en) 2011-09-05 2011-09-05 Low resistance metal fixed resistor manufacturing method

Country Status (1)

Country Link
JP (1) JP5860639B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000299B2 (en) * 2013-04-10 2016-09-28 株式会社フルヤ金属 Method for producing inner container for reaction vessel
JP6192040B2 (en) * 2013-08-08 2017-09-06 国立大学法人大阪大学 Fitting manufacturing method and composite material manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243349A1 (en) * 1992-12-21 1994-06-30 Heusler Isabellenhuette Manufacture of resistors from composite material
JP2004066331A (en) * 2002-08-09 2004-03-04 Hitachi Cable Ltd Friction agitation welding method of different kind of metal
JP2004314088A (en) * 2003-04-11 2004-11-11 Honda Motor Co Ltd Friction stir joining method
JP4409385B2 (en) * 2004-08-05 2010-02-03 コーア株式会社 Resistor and manufacturing method thereof
DE102007033182B4 (en) * 2007-07-13 2012-11-29 Auto-Kabel Management Gmbh Motor vehicle battery sensor element and method for producing a motor vehicle battery sensor element
JP5117248B2 (en) * 2008-03-31 2013-01-16 古河電気工業株式会社 Shunt resistor and terminal mounting method to shunt resistor
JP2010253534A (en) * 2009-04-28 2010-11-11 Osg Corp Member with built-in cooling path and method of manufacturing the same

Also Published As

Publication number Publication date
JP2013052425A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5655257B2 (en) Shunt resistor and manufacturing method thereof
WO2016204038A1 (en) Resistor and method for manufacturing same
JP6041374B2 (en) Spot welding method for steel plates with different thickness
US8523045B2 (en) Method of joining copper conductors
JP2011003694A (en) Shunt resistor, and method of manufacturing the same
WO2011075044A1 (en) Composite conductive component and method for making it
Kahl et al. Composite aluminum-copper sheet material by friction stir welding and cold rolling
US20190296316A1 (en) Battery tab having a localized welded joint and method of making the same
JP6606548B2 (en) COMPOSITE MATERIAL STRIP FOR PRODUCING ELECTRICAL COMPONENTS, MANUFACTURING METHOD, ELECTRIC COMPONENTS, AND BUSBAR DEVICE
TWI395233B (en) Resistive metal plate low resistance chip resistor and its manufacturing method
JP5860639B2 (en) Low resistance metal fixed resistor manufacturing method
JP4627400B2 (en) Aluminum / nickel clad and battery external terminals
JP6171645B2 (en) Thermoelectric conversion module
JP2012071333A (en) Spot welding method and spot welding apparatus
JPS63250082A (en) Manufacture of flexible connection terminal composed of laminated thin plate conductors
JP2708888B2 (en) Thin leaf spring material
JP4189005B2 (en) Chip resistor
JP7049811B2 (en) Shunt resistor
JP6294073B2 (en) Resistor manufacturing method
WO2021047307A1 (en) Spot welding method for multi-layer conductor of motor winding
KR101012530B1 (en) Aluminum/Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell
CN209716999U (en) A kind of battery connecting piece pressure welding fusion device and production equipment
JP5203906B2 (en) Bi-containing solder foil manufacturing method, Bi-containing solder foil, joined body, and power semiconductor module
KR101337294B1 (en) Thin plate laminate for resistance welding and method for manufacturing thereof
CN116191060B (en) Electric connection assembly

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5860639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250