JP2010253534A - Member with built-in cooling path and method of manufacturing the same - Google Patents

Member with built-in cooling path and method of manufacturing the same Download PDF

Info

Publication number
JP2010253534A
JP2010253534A JP2009109094A JP2009109094A JP2010253534A JP 2010253534 A JP2010253534 A JP 2010253534A JP 2009109094 A JP2009109094 A JP 2009109094A JP 2009109094 A JP2009109094 A JP 2009109094A JP 2010253534 A JP2010253534 A JP 2010253534A
Authority
JP
Japan
Prior art keywords
joined
materials
friction stir
joint
stir welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009109094A
Other languages
Japanese (ja)
Inventor
Yoichiro Shimoda
陽一朗 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2009109094A priority Critical patent/JP2010253534A/en
Publication of JP2010253534A publication Critical patent/JP2010253534A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member with a built-in cooling path which allows the number of the production man-hours to be reduced and allows flexibility of the design to be increased and to provide a method of manufacturing the same. <P>SOLUTION: In the member with the built-in cooling path, a flow passage (cooling path) is formed in the joined part 5 of two joining materials 2, 3 which are integrated into one body using a friction stir welding tool 1. As a result, the number of production man-hours for producing special rectangular pipes (raw material) having a thick pipe wall, which is a conventional method, is reduced, and the total sum of the number of production man-hours is reduced from starting the production of the raw material until obtaining the member with the built-in cooling path. Also, by forming the joined part 5 by moving the friction stir welding tool 1 in a curve, the flow passage (cooling path) can be formed in a curve, resulting in an increase in flexibility of the design. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、冷却路内蔵部材および冷却路内蔵部材の製造方法に関し、特に、生産工数を削減できると共に、設計の自由度を大きくできる冷却路内蔵部材および冷却路内蔵部材の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a cooling path built-in member and a method for manufacturing a cooling path built-in member, and more particularly to a cooling path built-in member and a manufacturing method for a cooling path built-in member that can reduce production man-hours and increase design flexibility. .

荷電粒子を加速して高エネルギー粒子ビームとする加速装置の加速性能を高めるためには、安定な加速電場を形成する必要がある。加速電場の安定化のためには、加速装置の加速管の温度を時間的に一定にし、且つ加速管全体の温度分布を均一にすると共に、熱負荷分布も均一にする必要がある。このため、加速管を構成する部品の一つである加速器電極板は、温度上昇を抑える目的で、各種の冷却手段が必要である。加速器電極板に限らず、半導体用ヒートシンクにおいても、同様の冷却手段が必要となる。これら以外にも、例えば、ジュール熱の発生により過熱される各種の機械部品や金型においても、各種の冷却手段が必要とされる。このような冷却手段の一つとして、板状の躯体に冷却路を内蔵させ、冷却路に冷媒を流通させることにより躯体を冷却するものがある。   In order to enhance the acceleration performance of an accelerator that accelerates charged particles into a high energy particle beam, it is necessary to form a stable acceleration electric field. In order to stabilize the accelerating electric field, it is necessary to keep the temperature of the accelerating tube of the accelerating device constant over time, to make the temperature distribution of the entire accelerating tube uniform, and to make the heat load distribution uniform. For this reason, the accelerator electrode plate, which is one of the components constituting the acceleration tube, requires various cooling means for the purpose of suppressing temperature rise. The same cooling means is required not only for the accelerator electrode plate but also for the semiconductor heat sink. In addition to these, for example, various kinds of cooling means are required also in various machine parts and dies that are overheated due to generation of Joule heat. As one of such cooling means, there is one in which a cooling path is built in a plate-shaped casing and the casing is cooled by circulating a refrigerant through the cooling path.

板状の躯体に冷却路を内蔵させた冷却路内蔵部材を製造する方法として、例えば、空間部を備えた矩形パイプと中実の矩形材とを、摩擦撹拌接合方法により一体に接合する技術が知られている。矩形パイプと中実の矩形材との接合線に沿って摩擦撹拌接合用工具を加圧しながら移動させると、摩擦撹拌接合用工具の周辺の軟化した矩形パイプの管壁及び矩形材が塑性流動し接合金属となって、矩形材と矩形パイプとが一体に接合される。この結果、予め矩形パイプに作られた空間部を、冷却路とすることができる(特許文献1)。   As a method of manufacturing a cooling path built-in member in which a cooling path is built in a plate-shaped housing, for example, there is a technique of integrally joining a rectangular pipe provided with a space portion and a solid rectangular material by a friction stir welding method. Are known. When the friction stir welding tool is moved along the joint line between the rectangular pipe and the solid rectangular material while being pressurized, the tube wall and the rectangular material of the softened rectangular pipe around the friction stir welding tool are plastically flowed. The rectangular metal and the rectangular pipe are integrally bonded as a bonding metal. As a result, it is possible to use the space portion formed in the rectangular pipe in advance as a cooling path (Patent Document 1).

特開2004−122221号公報JP 2004-122221 A

しかしながら、特許文献1に開示される技術では、矩形パイプの管壁の厚さが薄い場合、管壁が軟化して塑性流動すると、管壁が失われ、摩擦撹拌接合用工具の加圧力によって塑性流動した接合金属が矩形パイプの空間部に押し出されてしまう。こうなると、接合部を形成する接合金属の体積が減るため、接合部の表面が窪んでしまい、冷却路内蔵部材の表面を平滑にできない。矩形パイプの管壁を十分厚くすれば、管壁が失われることを防止できるが、管壁の厚い特殊な矩形パイプは製造が困難なため、製造に多くの工数を要する。このため、原材料となる矩形パイプの生産を開始してから、その矩形パイプを用いて冷却路内蔵部材の生産を終了するまでの生産工数の総和が長くなるという問題点があった。   However, in the technique disclosed in Patent Document 1, when the pipe wall of the rectangular pipe is thin, if the pipe wall softens and plastically flows, the pipe wall is lost, and the plastic wall is lost due to the pressure applied by the friction stir welding tool. The flowing joining metal is pushed out into the space of the rectangular pipe. If it becomes like this, since the volume of the joining metal which forms a junction part will decrease, the surface of a junction part will become depressed and the surface of a cooling path built-in member cannot be made smooth. If the pipe wall of the rectangular pipe is made sufficiently thick, the pipe wall can be prevented from being lost. However, since a special rectangular pipe having a thick pipe wall is difficult to manufacture, it requires a lot of man-hours to manufacture. For this reason, there has been a problem that the sum of the production man-hours from the start of production of a rectangular pipe as a raw material to the end of production of the cooling path built-in member using the rectangular pipe becomes long.

また、冷却路内蔵部材は、予め矩形パイプに作られた空間部が冷却路となるので、冷却路が矩形パイプと同じ直線的となり、冷却路を曲線的に設けることが難しく、設計の自由度が乏しいという問題点があった。   In addition, the cooling path built-in member has a space formed in the rectangular pipe in advance as the cooling path, so the cooling path is the same straight line as the rectangular pipe, and it is difficult to provide the cooling path in a curved line, and the degree of freedom in design There was a problem that there were few.

本発明は上述した問題点を解決するためになされたものであり、生産工数を削減できると共に、設計の自由度を大きくできる冷却路内蔵部材および冷却路内蔵部材の製造方法を提供することを目的としている。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a cooling path built-in member and a method for manufacturing a cooling path built-in member that can reduce the number of production steps and increase the degree of design freedom. It is said.

この目的を達成するために、請求項1記載の冷却路内蔵部材は、二つの被接合材と、それらの二つの被接合材を突き合わせた突合せ部または重ね合わせた重合部に押し込まれた摩擦撹拌接合用工具の回転時の摩擦熱により前記突合せ部または前記重合部が塑性変形され前記二つの被接合材が一体化された接合部と、その接合部の内部に前記突合せ部または前記重合部に沿って連続した内部空間として形成された流路と、その流路の一端側に開口し冷媒を流入させる冷媒流入口と、前記流路の他端側に開口し前記冷媒を流出させる冷媒流出口とを備えている。   In order to achieve this object, the cooling path built-in member according to claim 1 includes two members to be joined, and friction stir that is pushed into a butted portion or a superposed portion where the two members are joined. The abutting portion or the overlapping portion is plastically deformed by frictional heat at the time of rotation of the welding tool, and the two joining materials are integrated, and the abutting portion or the overlapping portion is inside the joining portion. A flow path formed as a continuous internal space, a refrigerant inlet that opens to one end of the flow path and allows a refrigerant to flow in, and a refrigerant outlet that opens to the other end of the flow path and flows the refrigerant out And.

請求項2記載の冷却路内蔵部材の製造方法は、冷媒が流通される流路が躯体に内蔵された冷却路内蔵部材の製造方法において、二つの被接合材を突き合わせた突合せ部または重ね合わせた重合部に回転させた摩擦撹拌接合用工具を押し込み、その摩擦撹拌接合用工具を前記突合せ部または前記重合部に沿って所定の回転数および移動速度で相対的に移動させて、前記被接合材間に接合部を形成する接合部形成工程と、その接合部形成工程により形成された前記接合部の長手方向に交差する断面に、前記被接合材または前記接合部の表面もしくは裏面に開口する欠陥、及び、前記被接合材または前記接合部で閉鎖された内部空間があるかを確認する確認工程と、その確認工程により前記欠陥および前記内部空間がないと判断される場合には前記回転数を低下または前記移動速度を増加させる条件変更工程と、前記確認工程により前記欠陥がなく前記内部空間があると判断される場合には、直前の前記接合部形成工程における回転数および移動速度のもとで、前記摩擦撹拌接合用工具を用いて二つの被接合材間に接合部を形成し、前記接合部に前記摩擦撹拌接合用工具の移動方向に沿って連続した内部空間としての流路を形成する流路形成工程とを備え、前記条件変更工程は、前記確認工程により前記欠陥がなく前記内部空間があると判断されるまで、前記接合部形成工程および前記確認工程と共に行われる。   The manufacturing method of the cooling path built-in member according to claim 2 is the manufacturing method of the cooling path built-in member in which the flow path through which the refrigerant is circulated is built in the housing. The friction stir welding tool is pushed into the overlapping portion, the friction stir welding tool is relatively moved along the butting portion or the overlapping portion at a predetermined rotational speed and moving speed, and the materials to be joined A defect that opens in the surface to be joined or the surface of the joint or the back surface in a cross section that intersects the longitudinal direction of the joint formed by the joint formation process and the joint formation process that forms the joint in between And a confirmation step for confirming whether or not there is an internal space closed by the material to be joined or the joint portion, and if it is determined that the defect and the internal space are absent by the confirmation step, When the condition changing step for reducing the number of rotations or increasing the moving speed and the confirmation step determines that there is no defect and the internal space, the rotation speed and moving speed in the immediately preceding joint forming step Therefore, a joint portion is formed between two workpieces using the friction stir welding tool, and a flow as an internal space continuous along the moving direction of the friction stir welding tool is formed in the joint portion. The condition changing step is performed together with the joining portion forming step and the confirmation step until it is determined by the confirmation step that there is no defect and the internal space is present.

請求項3記載の冷却路内蔵部材の製造方法は、冷媒が流通される流路が躯体に内蔵された冷却路内蔵部材の製造方法であり、二つの被接合材を突き合わせた突合せ部または重ね合わせた重合部に回転させた摩擦撹拌接合用工具を押し込む押込工程と、その押込工程により前記突合せ部または前記重合部に押し込まれた前記摩擦撹拌接合用工具を前記突合せ部または前記重合部に沿って所定の回転数および移動速度で相対的に移動させて、前記被接合材間に接合部を形成すると共に、前記接合部の内部に連続した内部空間としての流路を形成する流路形成工程とを備え、前記二つの被接合材は、少なくとも一方の被接合材の材質がアルミニウム若しくはアルミニウム合金または銅若しくは銅合金であり、前記流路形成工程における前記回転数は1000〜6000rpm、前記移動速度は800〜1500mm/分である。   The manufacturing method of the cooling path built-in member according to claim 3 is a manufacturing method of the cooling path built-in member in which the flow path through which the refrigerant is circulated is built in the housing, and a butted portion or a superposition where two joined materials are butted together A pressing step of pushing the rotated friction stir welding tool into the overlapping portion, and the friction stir welding tool pushed into the butting portion or the overlapping portion by the pressing step along the butting portion or the overlapping portion. A flow path forming step of forming a joint portion between the materials to be joined by relatively moving at a predetermined rotational speed and a moving speed, and forming a flow path as a continuous internal space inside the joint portion; And the two materials to be joined are made of aluminum, an aluminum alloy, copper or a copper alloy, or at least one of the materials to be joined. 000~6000Rpm, the moving speed is 800~1500Mm / min.

請求項1記載の冷却路内蔵部材によれば、摩擦撹拌接合用工具を用いて一体化された二つの被接合材の接合部に流路(冷却路)が形成されている。そのため、冷却路となる空間部が予め形成された矩形パイプ(原材料)は不要である。よって、管壁の厚い特殊な矩形パイプ(原材料)を生産する工数を削減でき、原材料の生産を開始してから冷却路内蔵部材が得られるまでの生産工数の総和を削減できるという効果がある。   According to the cooling path built-in member of the first aspect, the flow path (cooling path) is formed in the joint portion of the two materials to be joined that are integrated using the friction stir welding tool. Therefore, a rectangular pipe (raw material) in which a space portion serving as a cooling path is formed in advance is unnecessary. Therefore, it is possible to reduce the man-hours for producing a special rectangular pipe (raw material) having a thick pipe wall, and to reduce the total production man-hours from the start of production of raw materials until the cooling path built-in member is obtained.

また、冷却路内蔵部材は、流路(冷却路)が摩擦撹拌接合用工具を用いて二つの被接合材が一体化された接合部に形成されているので、摩擦撹拌接合用工具を曲線的に移動させて接合部を形成することで、流路(冷却路)を曲線的に設けることができる。このため、設計の自由度を大きくできるという効果がある。   In addition, since the cooling path built-in member is formed in the joint portion in which the two materials to be joined are integrated using the friction stir welding tool, the flow path (cooling path) is curved. The flow path (cooling path) can be provided in a curved line by forming the joint portion by moving the flow path. For this reason, there exists an effect that the freedom degree of design can be enlarged.

請求項2記載の冷却路内蔵部材の製造方法によれば、接合部形成工程で作られた接合部に欠陥または内部空間があるかを確認する確認工程と、その確認工程の結果に基づき回転数または移動速度を変更する条件変更工程とを備え、その条件変更工程は、確認工程により接合部に欠陥がなく内部空間があると判断されるまで接合部形成工程および確認工程と共に行われる。その結果、その被接合材や摩擦撹拌接合用工具に応じた接合条件を設定して、接合部に流路(冷却路)を形成できる。よって、生産工数を削減できると共に設計の自由度を大きくでき、さらに高い歩留で安定して冷却路内蔵部材を製造できるという効果がある。   According to the manufacturing method of the cooling path built-in member according to claim 2, the number of revolutions is determined based on a confirmation step for confirming whether or not there is a defect or an internal space in the joint portion formed in the joint portion formation step, and the result of the confirmation step. Or a condition changing step for changing the moving speed, and the condition changing step is performed together with the joint forming step and the confirmation step until it is determined by the confirmation step that the joint has no defect and there is an internal space. As a result, it is possible to set a joining condition according to the material to be joined and the friction stir welding tool, and to form a flow path (cooling path) at the joint. Therefore, it is possible to reduce the number of production steps and increase the degree of freedom of design, and it is possible to manufacture the cooling path built-in member stably at a higher yield.

請求項3記載の冷却路内蔵部材の製造方法によれば、二つの被接合材の突合せ部または重合部に沿って、摩擦撹拌接合用工具を所定の回転数及び移動速度で相対的に移動させる流路形成工程を備え、少なくとも一方の被接合材の材質がアルミニウム若しくはアルミニウム合金または銅若しくは銅合金であり、流路形成工程における回転数は1000〜6000rpm、移動速度は800〜1500mm/分であることにより、接合部に流路(冷却路)を高い歩留まりで安定して形成できる。よって、生産工数を削減できると共に設計の自由度を大きくでき、さらに熱伝導率が高く冷却性能に優れる冷却路内蔵部材を製造できるという効果がある。   According to the manufacturing method of the cooling path built-in member according to claim 3, the friction stir welding tool is relatively moved at a predetermined rotational speed and moving speed along the butted portion or the overlapping portion of the two materials to be joined. A flow path forming step is provided, and the material of at least one of the materials to be joined is aluminum, aluminum alloy, copper or copper alloy, the rotation speed in the flow path forming step is 1000 to 6000 rpm, and the moving speed is 800 to 1500 mm / min. As a result, a flow path (cooling path) can be stably formed at a high yield in the joint. Therefore, the production man-hours can be reduced, the degree of freedom in design can be increased, and a cooling path built-in member having high thermal conductivity and excellent cooling performance can be produced.

本発明の第1実施の形態における冷却路内蔵部材の製造方法を適用して接合される被接合材と摩擦撹拌接合用工具とを示した斜視図である。It is the perspective view which showed the to-be-joined material and the tool for friction stir welding joined by applying the manufacturing method of the cooling path built-in member in 1st Embodiment of this invention. (a)接合前における被接合材と摩擦撹拌接合用工具との断面図であり、(b)は接合部を形成中の被接合材と摩擦撹拌接合用工具との断面図であり、(c)は接合後における被接合材および接合部の断面図である。(A) It is sectional drawing of the to-be-joined material and the tool for friction stir welding before joining, (b) is sectional drawing of the to-be-joined material and the tool for friction stir welding in which the junction part is formed, (c) ) Is a cross-sectional view of a material to be joined and a joined portion after joining. 摩擦撹拌接合用工具の回転数および移動速度と内部空間の形成可能領域との関係を示した図である。It is the figure which showed the relationship between the rotation speed and moving speed of the tool for friction stir welding, and the area | region which can form internal space. 冷却路内蔵部材の平面図である。It is a top view of a cooling path built-in member. (a)本発明の第2実施の形態における冷却路内蔵部材の製造方法を適用した接合前における被接合材と摩擦撹拌接合用工具との断面図であり、(b)は接合部を形成中の被接合材と摩擦撹拌接合用工具との断面図であり、(c)は接合後における被接合材および接合部の断面図である。(A) It is sectional drawing of the to-be-joined material and the tool for friction stir welding before joining which applied the manufacturing method of the cooling path built-in member in 2nd Embodiment of this invention, (b) is forming the junction part. It is sectional drawing of a to-be-joined material and the tool for friction stir welding, (c) is sectional drawing of the to-be-joined material and joining part after joining.

以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1は本発明の第1実施の形態における冷却路内蔵部材の製造方法を示した斜視図である。図1に示すように、本発明の第1実施の形態における冷却路内蔵部材の製造方法は、二つの被接合材2,3を突き合わせて、被接合材2,3の突合せ部4の裏面に裏当て材10を当接させ、被接合材2,3の表面の突合せ部4に回転する摩擦撹拌接合用工具1を押し込み、次いで、摩擦撹拌接合用工具1を突合せ部4に沿って所定の回転数および移動速度で相対的に移動させ、接合部5を形成することで二つの被接合材2,3を一体化させながら、接合部5に連続した内部空間としての流路(冷却路)を形成する方法である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view showing a method of manufacturing a cooling path built-in member in the first embodiment of the present invention. As shown in FIG. 1, the manufacturing method of the cooling path built-in member in the first embodiment of the present invention abuts two materials to be joined 2 and 3 on the back surface of the abutting portion 4 of the materials 2 and 3 to be joined. The backing material 10 is brought into contact, and the rotating friction stir welding tool 1 is pushed into the butted portion 4 on the surface of the materials 2 and 3, and then the friction stir welding tool 1 is moved along the butted portion 4 to a predetermined amount. A flow path (cooling path) as an internal space continuous to the joint 5 while integrating the two materials to be joined 2 and 3 by moving them relatively at the rotational speed and the moving speed to form the joint 5. It is a method of forming.

ここで、図2を参照して、本発明の第1実施の形態における冷却路内蔵部材の製造方法の詳細について説明する。図2(a)は接合前における被接合材2,3と摩擦撹拌接合用工具1との断面図であり、図2(b)は接合部5を形成中の被接合材2,3と摩擦撹拌接合用工具1との断面図であり、図2(c)は接合後における被接合材2,3及び接合部5の断面図である。なお、図2では、被接合材2,3の突合せ部4の裏面に当接する裏当て材10の図示は省略している。   Here, with reference to FIG. 2, the detail of the manufacturing method of the cooling path built-in member in 1st Embodiment of this invention is demonstrated. 2A is a cross-sectional view of the workpieces 2 and 3 and the friction stir welding tool 1 before joining, and FIG. 2B is a diagram showing friction between the workpieces 2 and 3 forming the joint 5 and friction. It is sectional drawing with the tool 1 for stirring joining, FIG.2 (c) is sectional drawing of the to-be-joined materials 2 and 3 and the junction part 5 after joining. In addition, in FIG. 2, illustration of the backing material 10 contact | abutted to the back surface of the butt | matching part 4 of the to-be-joined materials 2 and 3 is abbreviate | omitted.

図2(a)に示すように、本発明の第1実施の形態における冷却路内蔵部材の製造方法では、まず、被接合材2,3の接合する面2a,3a同士を突き合わせて突合せ部4を形成し、接合する面2a,3a同士を密着させた状態で固定する。本実施の形態においては、被接合材2はアルミニウム合金製であり、被接合材3は一般構造鋼材製である。摩擦撹拌接合用工具1は円柱状であり、肩部1aから突設したピン1bを備え、肩部1a及びピン1bは工具鋼製や超硬合金製で一体に形成されている。   As shown in FIG. 2 (a), in the manufacturing method of the cooling path built-in member according to the first embodiment of the present invention, first, the surfaces 2a and 3a to be joined of the materials 2 and 3 to be joined are brought into contact with each other. And fixed in a state where the surfaces 2a and 3a to be joined are brought into close contact with each other. In the present embodiment, the material to be joined 2 is made of an aluminum alloy, and the material to be joined 3 is made of a general structural steel material. The friction stir welding tool 1 has a cylindrical shape and includes a pin 1b protruding from a shoulder 1a. The shoulder 1a and the pin 1b are integrally formed of tool steel or cemented carbide.

次に、摩擦撹拌接合用工具1を回転させながら、ピン1bを突合せ部4に所定の加圧力で押し付ける。これにより、摩擦撹拌接合用工具1のピン1bと被接合材2,3との間に摩擦熱が発生して、この摩擦熱で被接合材2,3が軟化する。さらに、摩擦撹拌接合用工具1は所定の加圧力で被接合材2,3に押し付けられているので、軟化した被接合材2,3中にピン1bが押し込まれていき、最終的には図2(b)に示すように、ピン1bが被接合材2,3に埋没した状態になる。ピン1b周辺の被接合材2,3は、被接合材2,3と肩部1a及びピン1bとの摩擦によって発生した摩擦熱で軟化し粘性が低下するので、摩擦撹拌接合用工具1の回転に引きずられるように撹拌されて塑性流動を起こし、塑性変形する。   Next, while rotating the friction stir welding tool 1, the pin 1 b is pressed against the butting portion 4 with a predetermined pressure. As a result, frictional heat is generated between the pin 1b of the friction stir welding tool 1 and the materials 2 and 3 to be joined, and the materials 2 and 3 are softened by this frictional heat. Further, since the friction stir welding tool 1 is pressed against the workpieces 2 and 3 with a predetermined pressure, the pin 1b is pushed into the softened workpieces 2 and 3, and finally the figure 1 As shown in 2 (b), the pin 1b is buried in the materials 2 and 3 to be joined. Since the materials 2 and 3 around the pin 1b are softened by the frictional heat generated by the friction between the materials 2 and 3 and the shoulder 1a and the pin 1b, the viscosity is lowered. It is stirred so as to be dragged to cause plastic flow and plastic deformation.

次いで、摩擦撹拌接合用工具1の回転と加圧とを維持しながら、突合せ部4に沿って所定の移動速度で相対的に移動させると、突合せ部4に沿って次々と塑性流動が起こり、これが接合金属となって突合せ部4に沿って接合部5が形成され、被接合材2,3が一体化される。   Next, while maintaining the rotation and pressurization of the friction stir welding tool 1, when relatively moving along the butting portion 4 at a predetermined moving speed, plastic flow occurs along the butting portion 4 one after another, This becomes a bonding metal, a bonding portion 5 is formed along the butt portion 4, and the materials 2 and 3 to be bonded are integrated.

なお、本実施の形態において、突合せ部4においてピン1bを押し付ける位置は、ピン1bの先端と被接合材2との当接面積が、ピン1bの先端と被接合材3との当接面積より広くなる位置である。被接合材3と比べて降伏応力の低い被接合材2とピン1bの先端との当接面積が、被接合材3とピン1bの先端との当接面積より広いため、塑性流動する金属量は、被接合材2が被接合材3に比べて多くなる。この結果、塑性流動した被接合材2が大きな圧縮力を受けて、ピン1bによって新しく露出した被接合材3の界面との間で接合される。   In the present embodiment, the position at which the pin 1b is pressed in the butting portion 4 is such that the contact area between the tip of the pin 1b and the material to be joined 2 is larger than the contact area between the tip of the pin 1b and the material to be joined 3. It is a position to become wide. Since the contact area between the material to be bonded 2 and the tip of the pin 1b, which has a lower yield stress than the material to be bonded 3, is larger than the contact area between the material to be bonded 3 and the tip of the pin 1b, the amount of metal flowing plastically , The material 2 to be bonded is larger than the material 3 to be bonded. As a result, the material 2 to be joined that has undergone plastic flow receives a large compressive force and is joined to the newly exposed interface of the material 3 to be joined by the pin 1b.

ここで、摩擦撹拌接合用工具1を移動させて被接合材2,3の間に接合部5を形成する場合の主な施工パラメータは、摩擦撹拌接合用工具1の前進角(摩擦撹拌接合用工具1の肩部1aと被接合材2,3の表面とのなす角)、回転数、加圧力および移動速度(接合速度)の4つである。このうち、前進角は数度以下に固定して設定され(本実施の形態においては0°)、加圧力は0.1〜1PMaの範囲で設定される(本実施の形態においては0.3MPa)。   Here, the main construction parameter when the friction stir welding tool 1 is moved to form the joint 5 between the workpieces 2 and 3 is the advance angle of the friction stir welding tool 1 (for friction stir welding). The angle between the shoulder 1a of the tool 1 and the surfaces of the materials 2 and 3 to be joined), the number of revolutions, the applied pressure, and the moving speed (joining speed). Among these, the advance angle is set to be fixed to a few degrees or less (0 ° in the present embodiment), and the applied pressure is set in the range of 0.1 to 1 PMa (0.3 MPa in the present embodiment). ).

本発明は、残る2つの施工パラメータである摩擦撹拌接合用工具1の回転数および移動速度(接合速度)を、後述する条件に設定することにより、図2(c)に示すように、接合金属が行き渡らない部分(内部空間6)を接合部5の内部に形成し、流路(冷却路)とするものである。   In the present invention, by setting the remaining two construction parameters, that is, the rotational speed and moving speed (joining speed) of the friction stir welding tool 1 to the conditions described later, as shown in FIG. A portion (internal space 6) where no swells is formed is formed inside the joint 5 to form a flow path (cooling path).

ここで、摩擦撹拌接合法は、被接合材2,3をその融点以下の低温で接合する方法であるため、融点を超える温度下で行う接合法(例えばアーク溶接)でみられる気泡や割れ等の接合欠陥は生じない。しかし、摩擦撹拌接合法は、被接合材2,3と摩擦撹拌接合用工具1との摩擦熱で被接合材2,3を軟化させ塑性流動させるので、過剰な摩擦熱が生じて塑性流動が過剰となった場合には、摩擦撹拌接合用工具1の加圧力で接合部5の外に排出される金属量が増加し、接合部5の接合金属の体積が不足する。このため、被接合材2,3の表面から厚さ方向にかけて、位置や形状が不規則な欠陥(被接合材2,3又は接合部5の表面に開口する欠陥)が生じ易くなる。一方、摩擦熱が不足した場合には、接合部5の温度が低くなるため、接合金属の粘性が増加し、接合金属が行き渡らない部分(断面視して被接合材2,3又は接合部5で閉鎖された内部空間6)が生じ易くなる。   Here, the friction stir welding method is a method of joining the materials 2 and 3 to be joined at a low temperature below the melting point, and therefore, bubbles, cracks, etc. found in a joining method (for example, arc welding) performed at a temperature exceeding the melting point. No joint defect occurs. However, in the friction stir welding method, since the materials 2 and 3 are softened and plastically flowed by frictional heat between the materials 2 and 3 and the friction stir welding tool 1, excessive frictional heat is generated and plastic flow is caused. When it becomes excess, the metal amount discharged | emitted out of the junction part 5 with the pressurization force of the tool 1 for friction stir welding increases, and the volume of the joining metal of the junction part 5 runs short. For this reason, defects with irregular positions and shapes (defects opening on the surfaces of the materials to be bonded 2 or 3 or the bonding portion 5) easily occur from the surface of the materials to be bonded 2 and 3 in the thickness direction. On the other hand, when the frictional heat is insufficient, the temperature of the joint portion 5 is lowered, so that the viscosity of the joining metal increases, and the portion where the joining metal does not spread (the material to be joined 2, 3 or the joining portion 5 in a cross-sectional view). The internal space 6) closed with is easily generated.

次いで、図3を参照して、摩擦撹拌接合用工具1の回転数および移動速度と内部空間6の形成可能領域との関係を説明し、併せて本発明の冷却路内蔵部材の製造方法について説明する。図3は摩擦撹拌接合用工具1の回転数および移動速度と内部空間6の形成可能領域との関係を示した図である。図3の横軸は摩擦撹拌接合用工具1の相対的な移動速度を示し、縦軸は摩擦撹拌接合用工具1の回転数を示している。なお、本実施の形態における以下の説明では、摩擦撹拌接合用工具1の回転数および移動速度以外の条件は固定されているものとする。   Next, with reference to FIG. 3, the relationship between the rotational speed and moving speed of the friction stir welding tool 1 and the area where the internal space 6 can be formed will be described, and the manufacturing method of the cooling path built-in member of the present invention will be described. To do. FIG. 3 is a diagram showing the relationship between the rotational speed and moving speed of the friction stir welding tool 1 and the region where the internal space 6 can be formed. The horizontal axis in FIG. 3 indicates the relative moving speed of the friction stir welding tool 1, and the vertical axis indicates the rotation speed of the friction stir welding tool 1. In the following description of the present embodiment, it is assumed that conditions other than the rotational speed and moving speed of the friction stir welding tool 1 are fixed.

図3において、P3,P4,P5,P8で囲まれた領域は、接合部5の長手方向に交差する断面の検査(顕微鏡や超音波等を用いた探傷検査)において、被接合材2,3又は接合部5の表面に開口する欠陥、及び、被接合材2,3又は接合部5で閉鎖された内部空間6が確認されない条件を示す領域である。P1,P3,P8,P5,P7,P10で囲まれた領域は、内部空間6を形成できる条件(内部空間の形成可能領域)である。また、内部空間6の形成可能領域のうち、P1,P2,P9,P6,P7,P10で囲まれた領域は、90%以上の歩留まりで連続した内部空間6を形成できる条件(内部空間6の形成推奨領域)であり、P2,P3,P8,P5,P6,P9で囲まれた領域は、50%以上の歩留まりで連続した内部空間6を形成できる条件である。これらの領域(条件)は、被接合材2,3の材質、厚さ及び摩擦撹拌接合用工具1のピン1bの外径等により変動する。   In FIG. 3, the region surrounded by P3, P4, P5, and P8 is a material to be joined 2 and 3 in the inspection of a cross section intersecting the longitudinal direction of the joint 5 (flaw detection using a microscope, ultrasonic waves, etc.). Or it is an area | region which shows the conditions which the defect opened to the surface of the junction part 5, and the internal space 6 closed by the to-be-joined materials 2 and 3 or the junction part 5 are not confirmed. An area surrounded by P1, P3, P8, P5, P7, and P10 is a condition (an area in which the internal space can be formed) that allows the internal space 6 to be formed. In addition, among the regions where the internal space 6 can be formed, the region surrounded by P1, P2, P9, P6, P7, and P10 is a condition that allows the continuous internal space 6 to be formed with a yield of 90% or more (the internal space 6 A region surrounded by P2, P3, P8, P5, P6, and P9 is a condition for forming a continuous internal space 6 with a yield of 50% or more. These regions (conditions) vary depending on the material and thickness of the materials 2 and 3 to be joined, the outer diameter of the pin 1b of the friction stir welding tool 1, and the like.

ここで、図3において、摩擦撹拌接合用工具1の移動速度がS1〜S4の場合に、摩擦撹拌接合用工具1の回転数が、P4とP7とを結ぶ線が示す回転数より高回転数になると、発生する摩擦熱が増加して接合部5の温度が高くなる。この結果、接合金属の粘性が低下し、摩擦撹拌接合用工具1の肩部1aの圧力で接合部5の外に排出される接合金属の量が増加する。このため、接合部5の接合金属の体積が不足し、被接合材2,3の表面に開口した、形状が不規則な欠陥が生じる。この欠陥は被接合材2,3の表面に開口しているため、冷媒を流通させた場合に冷媒が漏れてしまう。このため、冷却路を形成できない。   Here, in FIG. 3, when the moving speed of the friction stir welding tool 1 is S1 to S4, the rotation speed of the friction stir welding tool 1 is higher than the rotation speed indicated by the line connecting P4 and P7. As a result, the generated frictional heat increases and the temperature of the joint 5 increases. As a result, the viscosity of the joining metal decreases, and the amount of joining metal discharged out of the joining portion 5 by the pressure of the shoulder 1a of the friction stir welding tool 1 increases. For this reason, the volume of the joining metal of the joining part 5 is insufficient, and a defect having an irregular shape that is opened on the surfaces of the materials 2 and 3 to be joined occurs. Since this defect opens on the surfaces of the materials 2 and 3 to be joined, the refrigerant leaks when the refrigerant is circulated. For this reason, a cooling path cannot be formed.

また、摩擦撹拌接合用工具1の移動速度がS1〜S2の場合に、摩擦撹拌接合用工具1の回転数が、P3とP8とを結ぶ線が示す回転数より低回転数、かつ、P1とP10とを結ぶ線が示す回転数より高回転数になると、発生する摩擦熱が低下して接合部5の温度が低くなる。この結果、接合金属の粘性が増加し、接合金属が行き渡らない部分(内部空間6)を接合部5の内部(被接合材2,3の裏面近傍)に形成し、冷却路となる連続した内部空間6を形成できる。しかし、摩擦撹拌接合用工具1の回転数が、P1とP10とを結ぶ線が示す回転数より低回転数になると、発生する摩擦熱がさらに低下して接合部5の温度がさらに低くなる。この結果、接合金属の塑性流動が不十分となり、被接合材2,3の接合強度が低下するため好ましくない。   Further, when the moving speed of the friction stir welding tool 1 is S1 to S2, the rotation speed of the friction stir welding tool 1 is lower than the rotation speed indicated by the line connecting P3 and P8, and P1 When the rotational speed is higher than the rotational speed indicated by the line connecting P10, the generated frictional heat is reduced and the temperature of the joint 5 is lowered. As a result, the viscosity of the joining metal increases, and a portion (inner space 6) where the joining metal does not spread is formed inside the joining portion 5 (near the back surface of the materials 2 and 3 to be joined), and a continuous interior that becomes a cooling path. A space 6 can be formed. However, when the rotational speed of the friction stir welding tool 1 becomes lower than the rotational speed indicated by the line connecting P1 and P10, the generated frictional heat further decreases and the temperature of the joint 5 further decreases. As a result, the plastic flow of the joining metal becomes insufficient, and the joining strength of the materials 2 and 3 to be joined is lowered, which is not preferable.

一方、摩擦撹拌接合用工具1の回転数がP3,P4,P5,P8を結ぶ領域にあって、摩擦撹拌接合用工具1の移動速度が、P3とP4とを結ぶ線が示す移動速度(S1)より低速度になると、発生する摩擦熱が増加して接合部5の温度が高くなる。この結果、接合金属の粘性が低下し、摩擦撹拌接合用工具1の肩部1aの圧力で接合部5の外に排出される接合金属の量が増加する。このため、接合部5の接合金属の体積が不足し、被接合材2,3の表面に開口した、形状が不規則な欠陥が生じる。このため、冷却路となるような連続した内部空間6を形成できない。   On the other hand, the rotational speed of the friction stir welding tool 1 is in a region connecting P3, P4, P5 and P8, and the moving speed of the friction stir welding tool 1 is the moving speed indicated by the line connecting P3 and P4 (S1). ) When the speed is lower, the generated frictional heat increases and the temperature of the joint 5 increases. As a result, the viscosity of the joining metal decreases, and the amount of joining metal discharged out of the joining portion 5 by the pressure of the shoulder 1a of the friction stir welding tool 1 increases. For this reason, the volume of the joining metal of the joining part 5 is insufficient, and a defect having an irregular shape that is opened on the surfaces of the materials 2 and 3 to be joined occurs. For this reason, the continuous internal space 6 which becomes a cooling path cannot be formed.

また、摩擦撹拌接合用工具1の回転数がP3,P4,P5,P8を結ぶ領域にあって、摩擦撹拌接合用工具1の移動速度が、P5とP8とを結ぶ線が示す移動速度(S2)より高速度、かつ、P7とP10とを結ぶ線が示す移動速度(S4)より低速度になると、発生する摩擦熱が低下して接合部5の温度が低くなる。この結果、接合金属の粘性が増加し、接合金属が行き渡らない部分(内部空間6)を接合部5の内部(被接合材2,3の裏面近傍)に形成し、冷却路となる連続した内部空間6を形成できる。しかし、摩擦撹拌接合用工具1の移動速度が、P7とP10とを結ぶ線が示す移動速度(S4)より高速度になると、発生する摩擦熱がさらに低下して接合部5の温度がさらに低くなる。この結果、接合金属の塑性流動が不十分となり、被接合材2,3の接合強度が低下するため好ましくない。   The rotational speed of the friction stir welding tool 1 is in a region connecting P3, P4, P5, and P8, and the moving speed of the friction stir welding tool 1 is the moving speed indicated by the line connecting P5 and P8 (S2). ) When the speed is higher and the speed is lower than the moving speed (S4) indicated by the line connecting P7 and P10, the generated frictional heat is lowered and the temperature of the joint 5 is lowered. As a result, the viscosity of the joining metal increases, and a portion (inner space 6) where the joining metal does not spread is formed inside the joining portion 5 (near the back surface of the materials 2 and 3 to be joined), and a continuous interior that becomes a cooling path. A space 6 can be formed. However, when the moving speed of the friction stir welding tool 1 becomes higher than the moving speed (S4) indicated by the line connecting P7 and P10, the generated frictional heat further decreases, and the temperature of the joint 5 is further lowered. Become. As a result, the plastic flow of the joining metal becomes insufficient, and the joining strength of the materials 2 and 3 to be joined is lowered, which is not preferable.

また、実験の結果、内部空間6の形成可能領域の下限回転数(P1とP10とを結ぶ線が示す回転数)は、内部空間6の形成可能領域の上限回転数(P3とP8とを結ぶ線が示す回転数)に対して1/2であり、内部空間の形成推奨領域の上限回転数(P2とP9とを結ぶ線が示す回転数)は、内部空間6の形成可能領域の上限回転数(P3とP8とを結ぶ線が示す回転数)に対して2/3であることがわかった。   In addition, as a result of the experiment, the lower limit rotational speed (the rotational speed indicated by the line connecting P1 and P10) of the region where the internal space 6 can be formed is the upper rotational speed (P3 and P8) of the region where the internal space 6 can be formed. The rotation speed indicated by the line is 1/2, and the upper limit rotation speed (the rotation speed indicated by the line connecting P2 and P9) of the internal space formation recommended area is the upper limit rotation of the formable area of the internal space 6 It was found to be 2/3 with respect to the number (the number of rotations indicated by the line connecting P3 and P8).

同様に実験の結果、内部空間6の形成可能領域の上限移動速度(P7とP10とを結ぶ線が示す移動速度)は、内部空間6の形成可能領域の下限移動速度(P5とP8とを結ぶ線が示す移動速度)に対して2.5倍であり、内部空間6の形成推奨領域の下限移動速度(P6とP9とを結ぶ線が示す移動速度)は、内部空間6の形成可能領域の下限移動速度(P5とP8とを結ぶ線が示す移動速度)に対して1.5倍であることがわかった。   Similarly, as a result of the experiment, the upper limit moving speed (the moving speed indicated by the line connecting P7 and P10) of the area where the internal space 6 can be formed is the lower limit moving speed (P5 and P8) of the area where the internal space 6 can be formed. The lower limit moving speed (moving speed indicated by the line connecting P6 and P9) of the recommended formation area of the internal space 6 is 2.5 times the moving speed indicated by the line). It was found to be 1.5 times the lower limit moving speed (moving speed indicated by the line connecting P5 and P8).

図1に戻って、本発明の冷却路内蔵部材の製造方法について説明する。まず、接合部形成工程において、二つの被接合材2,3を突き合わせた突合せ部4に回転させた摩擦撹拌接合用工具1を押し込み、その摩擦撹拌接合用工具1を突合せ部4に沿って所定の回転数R1及び移動速度S1で相対的に移動させて、被接合材2,3間に接合部5を形成し被接合材2,3を一体化させる。   Returning to FIG. 1, the manufacturing method of the cooling path built-in member of this invention is demonstrated. First, in the joining portion forming step, the friction stir welding tool 1 that has been rotated is pushed into the butting portion 4 where the two materials 2 and 3 are butted together, and the friction stir welding tool 1 is predetermined along the butting portion 4. These are rotated relative to each other at the rotational speed R1 and the moving speed S1 to form the joint portion 5 between the materials 2 and 3 to be joined and to integrate the materials 2 and 3 to be joined.

次いで、図2(c)を参照して、確認工程において、顕微鏡や超音波等を用いた探傷検査により、接合部5の長手方向に交差する断面に、被接合材2,3または接合部5の表面に開口する欠陥、及び、被接合材2,3又は接合部5で閉鎖された内部空間6があるかを確認する。顕微鏡を用いる場合は、接合部5の長手方向に交差する断面の研磨面を観察するのが、精度が高いため好ましい。これにより、接合部形成工程における接合条件(回転数R1及び移動速度S1)が、図3に示すいずれの領域にあるかを確認する。   Next, referring to FIG. 2C, in the confirmation process, the material to be bonded 2, 3 or the bonded portion 5 is formed in a cross section that intersects the longitudinal direction of the bonded portion 5 by flaw detection using a microscope or ultrasonic waves. It is confirmed whether there is a defect opening on the surface and an internal space 6 closed by the material to be joined 2, 3 or the joint 5. In the case of using a microscope, it is preferable to observe a polished surface having a cross section that intersects the longitudinal direction of the joint portion 5 because of high accuracy. Thereby, it is confirmed in which region shown in FIG. 3 the joining conditions (the number of rotations R1 and the moving speed S1) in the joining portion forming step are present.

次に、条件変更工程では、確認工程により接合部5に欠陥および内部空間6がないと判断される場合には、図3を参照して、接合条件がP3,P4,P5,P8を結ぶ領域にあると判断されるため、回転数R1を低下または移動速度S1を増加させる。なお、欠陥及び内部空間6がないと判断される接合部5が形成される回転数および移動速度を(図3においてP3,P4,P5,P8を結ぶ領域における回転数および移動速度)、回転数R0及び移動速度S0とする。   Next, in the condition changing step, when it is determined in the confirmation step that there is no defect and no internal space 6 in the bonding portion 5, referring to FIG. 3, the bonding condition is a region connecting P3, P4, P5, and P8. Therefore, the rotational speed R1 is decreased or the moving speed S1 is increased. It should be noted that the rotational speed and moving speed at which the joint 5 determined to have no defects and the internal space 6 are formed (the rotational speed and moving speed in the region connecting P3, P4, P5, and P8 in FIG. 3), and the rotational speed. It is assumed that R0 and moving speed S0.

また、条件変更工程では、確認工程により欠陥があると判断される場合には、直前の接合部形成工程における回転数R1及び移動速度S1と、回転数R0及び移動速度S0とを比較する。回転数R1が回転数R0より高い場合は、回転数がP4とP7とを結ぶ線が示す上限回転数を超えていると判断されるため、回転数R1を低下させる。また、移動速度S1が移動速度S0より遅い場合は、移動速度がP1とP4とを結ぶ下限移動速度を下回っていると判断されるため、移動速度S1を増加させる。   Further, in the condition changing process, when it is determined that there is a defect in the confirmation process, the rotation speed R1 and the movement speed S1 in the immediately preceding joint formation process are compared with the rotation speed R0 and the movement speed S0. When the rotational speed R1 is higher than the rotational speed R0, it is determined that the rotational speed exceeds the upper limit rotational speed indicated by the line connecting P4 and P7, so the rotational speed R1 is decreased. When the moving speed S1 is slower than the moving speed S0, it is determined that the moving speed is lower than the lower limit moving speed connecting P1 and P4, so the moving speed S1 is increased.

また、条件変更工程では、回転数R1が回転数R0より低い場合、或いは、移動速度S1が移動速度S0より速い場合であって、確認工程により接合部5に欠陥があると判断される場合には、接合条件がP1とP10とを結ぶ線より下側の領域にある(回転数が遅い)か、P7とP10とを結ぶ線より右側の領域にある(移動速度が速い)と判断されるため、回転数R1を増加または移動速度S1を低下させる。なお、条件変更工程は、確認工程により接合部5に欠陥がなく内部空間6があると判断されるまで、接合部形成工程および確認工程と共に行われる。   Further, in the condition changing step, when the rotational speed R1 is lower than the rotational speed R0, or when the moving speed S1 is faster than the moving speed S0, and it is determined by the confirmation process that the joint 5 is defective. Is determined to be in the region below the line connecting P1 and P10 (the rotational speed is slow) or in the region right of the line connecting P7 and P10 (the moving speed is fast). Therefore, the rotational speed R1 is increased or the moving speed S1 is decreased. The condition changing process is performed together with the joint forming process and the confirmation process until it is determined by the confirmation process that there is no defect in the joint 5 and the internal space 6 exists.

次いで、確認工程により欠陥がなく内部空間6があると判断される場合には、流路形成工程において、直前の接合部形成工程における接合条件(回転数R1又は移動速度S1)のもとで、二つの被接合材2,3間に摩擦撹拌接合用工具1を用いて接合部5を形成し、接合部5に摩擦撹拌接合用工具1の移動方向に沿って連続した内部空間6を形成する。   Next, when it is determined by the confirmation process that there is no defect and the internal space 6 is present, in the flow path formation process, under the joining conditions (the rotational speed R1 or the moving speed S1) in the immediately preceding joined part formation process, A joint 5 is formed between the two workpieces 2 and 3 using the friction stir welding tool 1, and an internal space 6 is formed in the joint 5 along the moving direction of the friction stir welding tool 1. .

以上のように、条件変更工程は、確認工程により接合部5に欠陥がなく内部空間6があると判断されるまで、接合部形成工程および確認工程と共に行われるため、摩擦撹拌接合法によって接合できる被接合材2,3であれば、回転数R1または移動速度S1を変更しながら、その被接合材2,3や摩擦撹拌接合用工具1に応じた接合条件を特定できる。連続した内部空間6としての流路(冷却路)は、被接合材2,3の接合と共に形成されるため、冷却路内蔵部材の生産工数の総和を削減できる。   As described above, the condition changing process is performed together with the joint formation process and the confirmation process until it is determined by the confirmation process that there is no defect in the joint 5 and there is the internal space 6, and therefore can be joined by the friction stir welding method. If it is the materials 2 and 3 to be joined, joining conditions corresponding to the materials 2 and 3 and the friction stir welding tool 1 can be specified while changing the rotation speed R1 or the moving speed S1. Since the flow path (cooling path) as the continuous internal space 6 is formed together with the joining of the materials 2 and 3 to be joined, the total production man-hours of the cooling path built-in member can be reduced.

次いで、図4を参照して、本発明の製造方法で製造された冷却路内蔵部材11について説明する。図4は、冷却路内蔵部材11の平面図である。冷却路内蔵部材11は、上述のように、二つの被接合材11a,11aに回転させた摩擦撹拌接合用工具を押し込み、次いで移動させることにより接合部11bを形成し、接合部11bで被接合材11a,11aを一体化することにより製造されている。本実施の形態においては、冷却路内蔵部材11は加速器電極板である。被接合材11a,11aには、各々ビーム孔部12が穿設されており、接合部11bはビーム孔部12の間をぬうように、平面視において略S字状の曲線状に形成されている。接合部11bの内部には、連続した内部空間としての流路(冷却路)が形成されている。なお、冷却路内蔵部材11(加速器電極板)は、冷却路内蔵部材11に電位を付与することにより、ビーム孔部12を通過する荷電粒子を加速するものである。   Next, the cooling path built-in member 11 manufactured by the manufacturing method of the present invention will be described with reference to FIG. FIG. 4 is a plan view of the cooling path built-in member 11. As described above, the cooling path built-in member 11 pushes the rotated friction stir welding tool into the two workpieces 11a and 11a, and then moves the tool to form the joint 11b, which is joined by the joint 11b. It is manufactured by integrating the materials 11a and 11a. In the present embodiment, the cooling path built-in member 11 is an accelerator electrode plate. Each of the materials to be bonded 11a and 11a has a beam hole portion 12 formed therein, and the bonding portion 11b is formed in a substantially S-shaped curved shape in plan view so as to penetrate between the beam hole portions 12. Yes. A flow path (cooling path) as a continuous internal space is formed inside the joint portion 11b. The cooling path built-in member 11 (accelerator electrode plate) accelerates charged particles passing through the beam hole 12 by applying a potential to the cooling path built-in member 11.

また、冷却路内蔵部材11は、接合部11bの接合開始部に冷媒流入口11cが形成されている。冷媒流入口11cは、流路の一端側に開口している。冷媒流入口11cは、流路に冷媒を流入させる冷媒流入管(図示しない)が接続される。さらに、冷却路内蔵部材11は、接合部11bの接合終端部に冷媒流出口11dが形成されている。冷媒流出口11dは、流路の他端側に開口している。冷媒流出口11dは、冷媒流入口11cから流入された冷媒を、流路の外に流出させる冷媒流出管(図示しない)が接続される。冷媒流入口11c及び冷媒流出口11dは、接合部11bの表面から内部空間に向かって穿孔することにより形成されている。冷媒流入口11c及び冷媒流出口11dに、管継手(図示しない)を接続することも可能である。   Further, the cooling path built-in member 11 has a refrigerant inlet 11c formed at the joining start portion of the joining portion 11b. The refrigerant inlet 11c is open to one end side of the flow path. The refrigerant inlet 11c is connected to a refrigerant inflow pipe (not shown) through which the refrigerant flows into the flow path. Further, the cooling path built-in member 11 has a refrigerant outlet 11d formed at a joining end portion of the joining portion 11b. The refrigerant outlet 11d opens to the other end side of the flow path. The refrigerant outlet 11d is connected to a refrigerant outlet pipe (not shown) through which the refrigerant flowing in from the refrigerant inlet 11c flows out of the flow path. The refrigerant inlet 11c and the refrigerant outlet 11d are formed by drilling from the surface of the joint 11b toward the internal space. It is also possible to connect a pipe joint (not shown) to the refrigerant inlet 11c and the refrigerant outlet 11d.

このように、流路(冷却路)は、被接合材11a,11aの接合と共に形成されるため冷却路内蔵部材の生産工数の総和を削減できる。また、冷却路内蔵部材11は、流路(冷却路)が摩擦撹拌接合用工具を用いて二つの被接合材が一体化された接合部11bに形成されているので、摩擦撹拌接合用工具を曲線的に移動させて接合部11bを形成することで、流路(冷却路)を曲線的に設けることができる。よって、設計の自由度を大きくすることができる。このため、流路(冷却路)をビーム孔部12の間をぬうように形成することができ、冷却路内蔵部材11の冷却効率を高めることができる。   Thus, since the flow path (cooling path) is formed together with the joining of the materials to be joined 11a, 11a, the total number of production steps of the cooling path built-in member can be reduced. In addition, since the cooling path built-in member 11 has a flow path (cooling path) formed in a joint portion 11b in which two materials to be joined are integrated using a friction stir welding tool, the friction stir welding tool is used. The flow path (cooling path) can be provided in a curved line by moving in a curved line to form the joint 11b. Therefore, the degree of freedom in design can be increased. For this reason, the flow path (cooling path) can be formed so as to pass between the beam holes 12, and the cooling efficiency of the cooling path built-in member 11 can be increased.

次いで、図5を参照して、第2実施の形態について説明する。第1実施の形態では、摩擦撹拌接合用工具1のピン1bを突合せ部4に押し込み、摩擦撹拌接合用工具1を突合せ部4に沿って移動させる場合について説明したが、第2実施の形態では、摩擦撹拌接合用工具21のピン21bを重合部24に押し込み、摩擦撹拌接合用工具21を重合部24に沿って移動させる場合について説明する。   Next, a second embodiment will be described with reference to FIG. In the first embodiment, the case where the pin 1b of the friction stir welding tool 1 is pushed into the butting portion 4 and the friction stir welding tool 1 is moved along the butting portion 4 has been described, but in the second embodiment, The case where the pin 21b of the friction stir welding tool 21 is pushed into the overlapping portion 24 and the friction stir welding tool 21 is moved along the overlapping portion 24 will be described.

図5は本発明の第2実施の形態における冷却路内蔵部材の製造方法を適用して接合される被接合材22,23及び摩擦撹拌接合用工具21の断面図であり、図5(a)は接合前における被接合材22,23及び摩擦撹拌接合用工具21の断面図であり、図5(b)は接合部25の形成中における被接合材22,23及び摩擦撹拌接合用工具21の断面図であり、図5(c)は接合後における被接合材22,23及び接合部25の断面図である。なお、図5では、被接合材22,23の重合部24の裏面に当接する裏当て材の図示は省略している。   FIG. 5 is a cross-sectional view of the materials 22 and 23 to be joined and the friction stir welding tool 21 to be joined by applying the manufacturing method of the cooling path built-in member according to the second embodiment of the present invention, and FIG. FIG. 5 is a cross-sectional view of the materials 22 and 23 to be joined and the friction stir welding tool 21 before joining, and FIG. 5B shows the materials 22 and 23 to be joined and the friction stir welding tool 21 during the formation of the joining portion 25. FIG. 5C is a cross-sectional view of the materials 22 and 23 to be bonded and the bonding portion 25 after bonding. In addition, in FIG. 5, illustration of the backing material which contact | abuts to the back surface of the superposition | polymerization part 24 of the to-be-joined materials 22 and 23 is abbreviate | omitted.

図5(a)において、まず、被接合材22,23の接合する面同士を重ね合せて重合部24を形成し、被接合材22,23同士を密着させた状態で固定する。本実施の形態においては、被接合材22,23はいずれも銅合金である。摩擦撹拌接合用工具21は円柱形状であり、肩部21aから突設したピン21bを備え、肩部21a及びピン21bは工具鋼製や超硬合金製で一体に形成されている。   In FIG. 5A, first, the surfaces to be joined of the materials to be joined 22 and 23 are overlapped to form a superposed portion 24 and fixed in a state where the materials to be joined 22 and 23 are in close contact with each other. In the present embodiment, the materials 22 and 23 are both copper alloys. The friction stir welding tool 21 has a cylindrical shape and includes a pin 21b protruding from a shoulder 21a. The shoulder 21a and the pin 21b are integrally formed of tool steel or cemented carbide.

まず、摩擦撹拌接合用工具21を回転させながら、ピン21bを重合部24に所定の加圧力で押し付ける。これにより、摩擦撹拌接合用工具21のピン21bと被接合材22との間に摩擦熱が発生して、この摩擦熱で被接合材22が軟化する。さらに、摩擦撹拌接合用工具21は所定の加圧力で被接合材22に押し付けられているので、軟化した被接合材22中にピンが押し込まれていき、ピン21bが被接合材23に達すると、同様に被接合材23も軟化する。この結果、最終的には図5(b)に示すように、ピン21bが被接合材22,23に埋没した状態になる。埋没したピン21b周辺の被接合材22,23は、被接合材22,23と肩部21a及びピン21bとの摩擦によって発生した摩擦熱で軟化し粘性が低下するので、摩擦撹拌接合用工具21の回転に引きずられるように撹拌されて塑性流動を起こし、塑性変形する。   First, the pin 21b is pressed against the overlapping portion 24 with a predetermined pressure while rotating the friction stir welding tool 21. Thereby, frictional heat is generated between the pin 21b of the friction stir welding tool 21 and the material 22 to be joined, and the material 22 to be joined is softened by this frictional heat. Furthermore, since the friction stir welding tool 21 is pressed against the workpiece 22 with a predetermined pressure, the pin is pushed into the softened workpiece 22 and the pin 21 b reaches the workpiece 23. Similarly, the material 23 to be joined is also softened. As a result, as shown in FIG. 5B, the pin 21b is finally buried in the materials 22 and 23 to be joined. The materials 22 and 23 around the buried pin 21b are softened by frictional heat generated by the friction between the materials 22 and 23, the shoulder 21a and the pin 21b, and the viscosity is lowered. Therefore, the friction stir welding tool 21 is used. It is agitated so as to be dragged by the rotation of the resin to cause plastic flow and plastic deformation.

次いで、摩擦撹拌接合用工具21の回転と加圧を維持しながら、重合部24に沿って摩擦撹拌接合用工具21を所定の移動速度で相対的に移動させると、重合部24に沿って次々と塑性流動が起こり、これが接合金属となって重合部24に沿って接合部25が形成される。第2実施の形態においても、第1実施の形態で説明したように、接合部形成工程、第2検査工程、条件変更工程を経て、回転数R1及び移動速度S1を設定する。流路形成工程において、直前の接合部形成工程における接合条件(回転数R1及び移動速度S1)で接合を行うことにより、図5(c)に示すように、接合部25に連続した内部空間26として流路を形成することができる。   Next, when the friction stir welding tool 21 is relatively moved along the overlapping portion 24 while maintaining the rotation and pressurization of the friction stir welding tool 21, the friction stir welding tool 21 is successively moved along the overlapping portion 24. A plastic flow occurs, and this becomes a bonding metal to form a bonding portion 25 along the overlapping portion 24. Also in the second embodiment, as described in the first embodiment, the rotational speed R1 and the moving speed S1 are set through the joint forming process, the second inspection process, and the condition changing process. In the flow path forming step, by performing the bonding under the bonding conditions (the rotation speed R1 and the moving speed S1) in the immediately preceding bonding portion forming step, as shown in FIG. A flow path can be formed.

なお、内部空間26が接合部25と被接合材22,23との界面に形成されると、内部空間26が二つの被接合材22,23の界面と連通して、内部空間26に冷媒を流通させた場合に、接合部25と被接合材22,23との界面を冷媒が伝って漏れることがある。これを防ぐため、内部空間26は、重合部24の裏面近傍(被接合材23の厚さの範囲内)に形成することが好ましい。   When the internal space 26 is formed at the interface between the joint portion 25 and the materials 22 and 23 to be joined, the internal space 26 communicates with the interface between the two materials 22 and 23 and the refrigerant is supplied to the internal space 26. When it is circulated, the refrigerant may leak through the interface between the joint portion 25 and the materials 22 and 23 to be joined. In order to prevent this, the internal space 26 is preferably formed in the vicinity of the back surface of the overlapping portion 24 (within the thickness range of the material 23 to be bonded).

本発明では、条件変更工程を接合部形成工程および確認工程と共に行うから、内部空間26を重合部24の裏面近傍(被接合材23の厚さの範囲内)に安定して形成できる接合条件を設定できる。このため、冷媒を流通させた場合に、冷媒が接合部25と被接合材22,23との界面を伝って漏れることを防止できる。   In the present invention, since the condition changing step is performed together with the bonding portion forming step and the confirmation step, the bonding conditions that can stably form the internal space 26 in the vicinity of the back surface of the overlapping portion 24 (within the thickness range of the material 23 to be bonded). Can be set. For this reason, when the refrigerant is circulated, the refrigerant can be prevented from leaking along the interface between the joint portion 25 and the materials 22 and 23 to be joined.

以下に、実験例に基づいて本発明を具体的に説明するが、本発明は以下の実験例に基づいて限定されるものではない。なお、以下の実験例は、第1実施の形態における冷却路内蔵部材の製造方法を適用したものである(図1及び図2参照)。   Hereinafter, the present invention will be specifically described based on experimental examples, but the present invention is not limited based on the following experimental examples. The following experimental example applies the manufacturing method of the cooling path built-in member in the first embodiment (see FIGS. 1 and 2).

一方の被接合材2としては、アルミニウム合金を用い、他方の被接合材3としては、機械構造用炭素鋼鋼材を用いた。これらを、共に幅50mm×長さ300mm×厚さ6mmの寸法に切断し、被接合材とした。また、摩擦撹拌接合用工具1は、円筒状の肩部1a及びピン1bを超硬合金製で一体に形成したものを用いた。なお、摩擦撹拌接合用工具の肩部1aは直径30mmの円筒状であり、ピン1bは長さ5mm及び直径5mmの円筒状とした。   As one material 2 to be bonded, an aluminum alloy was used, and as the other material 3 to be bonded, a carbon steel material for mechanical structure was used. Both of these were cut into dimensions of width 50 mm × length 300 mm × thickness 6 mm to obtain materials to be joined. Moreover, the friction stir welding tool 1 used was one in which a cylindrical shoulder 1a and a pin 1b were integrally formed of cemented carbide. The shoulder 1a of the friction stir welding tool was cylindrical with a diameter of 30 mm, and the pin 1b was cylindrical with a length of 5 mm and a diameter of 5 mm.

二つの被接合材2,3を常温下で突き合わせ、摩擦撹拌接合用工具を4000rpmの回転数で回転させながら、被接合材2,3の一面側から、突合せ部4に0.3MPaの圧力で押し付けた。なお、摩擦撹拌接合用工具1は、ピン1bの外縁が突合せ部4から被接合材2(アルミニウム合金)側に0.05mm入り込んだ位置に押し付けた。   The two materials 2 and 3 are abutted at room temperature, and the friction stir welding tool is rotated at a rotational speed of 4000 rpm, and from one side of the materials 2 and 3 to the abutting portion 4 at a pressure of 0.3 MPa. Pressed. The friction stir welding tool 1 was pressed to a position where the outer edge of the pin 1b entered 0.05 mm from the butt portion 4 toward the material to be joined 2 (aluminum alloy).

次いで、摩擦撹拌接合用工具1のピン1bを押し込んだ後、摩擦撹拌接合用工具1を4000rpmの回転数で回転させながら、500mm/分の移動速度で、突合せ部4に沿って被接合材2,3の端から端まで平行に移動させて、被接合材2,3の端まで接合部5を形成して被接合材2,3を接合した。なお、摩擦撹拌接合用工具の前進角は0°とした(以上、接合部形成工程)。   Next, after the pin 1b of the friction stir welding tool 1 is pushed in, the workpiece 2 to be joined along the butt 4 at a moving speed of 500 mm / min while rotating the friction stir welding tool 1 at a rotational speed of 4000 rpm. , 3 are moved in parallel from end to end, and a joined portion 5 is formed to the ends of the materials 2 and 3 to be joined, thereby joining the materials 2 and 3 to be joined. Note that the advancing angle of the friction stir welding tool was set to 0 ° (the bonded portion forming step).

次に、被接合材2,3を接合部5の長手方向に直交する方向に複数個所で切断して、切断面の研磨面を顕微鏡で観察したところ、接合部5には内部空間6および欠陥は確認されなかった(以上、確認工程)。この結果から、回転数を4000rpmに固定し、移動速度S1を増加させて2000mm/分とすることにした(以上、条件変更工程)。   Next, the materials 2 and 3 to be joined were cut at a plurality of locations in a direction orthogonal to the longitudinal direction of the joined portion 5 and the polished surface of the cut surface was observed with a microscope. Was not confirmed (the confirmation process). From this result, the rotational speed was fixed at 4000 rpm, and the moving speed S1 was increased to 2000 mm / min (the condition changing step).

別の被接合材(材質は同じ)について、被接合材2,3の一面側に押し込んだ摩擦撹拌接合用工具1を、4000rpmの回転数で回転させながら、2000mm/分の移動速度S1で突合せ部4に沿って被接合材2,3の端から端まで平行に移動させて、被接合材2,3を接合した。なお、ここに記載した以外の条件は、直前の接合部形成工程における条件と同様とした(以上、接合部形成工程)。   For another material to be joined (the same material), the friction stir welding tool 1 pushed into one side of the materials to be joined 2 and 3 is butted at a moving speed S1 of 2000 mm / min while rotating at 4000 rpm. The workpieces 2 and 3 were joined together by moving in parallel along the part 4 from end to end of the workpieces 2 and 3. The conditions other than those described here were the same as the conditions in the immediately preceding junction formation step (the junction formation step).

次いで、被接合材2,3を接合部5に直交する方向に複数個所で切断して、切断面の研磨面を顕微鏡で観察したところ、接合部5の鋼材3側に被接合材2,3の一面側に開口した切り込み状の欠陥が確認された(以上、確認工程)。この結果、移動速度が速いと判断されるため、移動速度S1を2000mm/分から900mm/分に低下させることとした(以上、条件変更工程)。   Next, the materials 2 and 3 to be joined were cut at a plurality of locations in a direction orthogonal to the joint 5 and the polished surface of the cut surface was observed with a microscope. A notch-like defect opened on one surface side was confirmed (the confirmation step). As a result, since the moving speed is determined to be fast, the moving speed S1 is reduced from 2000 mm / min to 900 mm / min (the condition changing step).

別の被接合材(材質は同じ)について、被接合材2,3の一面側に押し込んだ摩擦撹拌接合用工具1を、4000rpmの回転数で回転させながら、900mm/分の移動速度で突合せ部4に沿って被接合材2,3の端から端まで平行に移動させて、被接合材2,3を接合した。なお、ここに記載した以外の条件は、直前の接合部形成工程における条件と同様とした(以上、接合部形成工程)。   For another material to be joined (the same material), the friction stir welding tool 1 pushed into one side of the materials to be joined 2 and 3 is rotated at a rotational speed of 4000 rpm, and the butt portion is moved at a moving speed of 900 mm / min. The workpieces 2 and 3 were moved in parallel along the line 4 from end to end of the workpieces 2 and 3 and joined. The conditions other than those described here were the same as the conditions in the immediately preceding junction formation step (the junction formation step).

次いで、被接合材2,3を接合部5に直交する方向に複数個所で切断して、切断面の研磨面を顕微鏡で観察したところ、接合部5の長手方向に連続して被接合材2,3の反対面近傍の鋼材3側に内部空間6が形成されているのが確認された。欠陥は確認されなかった(以上、確認工程)。   Subsequently, the materials 2 and 3 were cut at a plurality of locations in a direction orthogonal to the bonding portion 5 and the polished surface of the cut surface was observed with a microscope. , 3, it was confirmed that an internal space 6 was formed on the steel material 3 side in the vicinity of the opposite surface. Defects were not confirmed (the confirmation process).

別の被接合材(材質は同じ)について、被接合材2,3の一面側に押し込んだ摩擦撹拌接合用工具1を、直前の接合部形成工程における接合条件である4000rpmの回転数で回転させながら、900mm/分の移動速度で突合せ部4に沿って被接合材2,3の端から端まで平行に移動させて、被接合材2,3を接合した。これにより、接合部5に、摩擦撹拌接合用工具1の移動方向に沿って流路(冷却路)を形成した。なお、ここに記載した以外の条件は、直前の接合部形成工程における条件と同様とした(以上、流路形成工程)。   For another material to be joined (the same material), the friction stir welding tool 1 pushed into one side of the materials to be joined 2 and 3 is rotated at a rotational speed of 4000 rpm, which is the joining condition in the immediately preceding joining portion forming step. However, the workpieces 2 and 3 were joined by moving in parallel along the abutting portion 4 from end to end of the workpieces 2 and 3 at a moving speed of 900 mm / min. Thereby, a flow path (cooling path) was formed in the joint portion 5 along the moving direction of the friction stir welding tool 1. The conditions other than those described here were the same as the conditions in the immediately preceding junction forming process (the flow path forming process).

以上の実施例から、条件変更工程は、確認工程により接合部5に欠陥がなく内部空間6があると判断されるまで、接合部形成工程および確認工程と共に行われるため、摩擦撹拌接合法によって接合できる被接合材2,3であれば、移動速度S1を変更しながら、その被接合材2,3や摩擦撹拌接合用工具1に応じた接合条件を特定できる。よって、流路形成工程において、高い歩留で安定して冷却路内蔵部材を製造できる。   From the above examples, the condition changing process is performed together with the joint forming process and the confirmation process until it is determined by the confirmation process that there is no defect in the joint 5 and there is the internal space 6. If the materials 2 and 3 can be joined, the joining conditions according to the materials 2 and 3 and the friction stir welding tool 1 can be specified while changing the moving speed S1. Therefore, in the flow path forming step, the cooling path built-in member can be manufactured stably with a high yield.

また、この内部空間6は、摩擦撹拌接合用工具1を押し込んだ被接合材2,3の反対面近傍に、接合部5や被接合材2,3に囲まれて形成されているので、流通させた冷媒が漏れることなく、冷却路として使用できることが確認された。なお、摩擦撹拌接合用工具1の回転数を4000rpm、移動速度を800mm/分とした場合も、内部空間6(流路)を形成できることを確認した。   Further, the internal space 6 is formed in the vicinity of the opposite surface of the materials to be joined 2 and 3 into which the friction stir welding tool 1 is pushed, surrounded by the joint 5 and the materials 2 and 3 to be joined. It was confirmed that the used refrigerant could be used as a cooling path without leaking. It was confirmed that the internal space 6 (flow path) could be formed even when the rotational speed of the friction stir welding tool 1 was 4000 rpm and the moving speed was 800 mm / min.

本実施例では、回転数を固定して移動速度S1を変更する場合について説明したが、移動速度を固定して回転数R1を変更することも可能である。確認工程により接合部5に欠陥がなく内部空間6があると判断されるまで条件変更工程において回転数を変更し、この条件変更工程を、接合部形成工程および確認工程と共に行うことにより、流路が形成できることも確認した。摩擦撹拌接合用工具1の移動速度を1000mm/分に固定して実験を行ったところ、回転数が1000〜6000rpmの場合に、内部空間6(流路)を接合部5に形成できることを確認した。なお、回転数が1000rpmより小さくなるか6000rpmより大きくなると、接合部5に欠陥が形成され易くなる傾向となることも確認した。また、同様に、回転数及び移動速度の両方を変更しても、流路が形成できることを確認した。また、被接合材22,23を重ね合せた重合部24に、回転させた摩擦撹拌接合用工具21を押し込み移動させることにより、連続した内部空間25としての流路を形成できることも確認した。   In the present embodiment, the case where the movement speed S1 is changed while the rotation speed is fixed has been described, but it is also possible to change the rotation speed R1 while fixing the movement speed. By changing the number of revolutions in the condition changing process until it is determined by the checking process that the joint 5 is free of defects and the internal space 6 is present, and this condition changing process is performed together with the bonding part forming process and the checking process. It was also confirmed that can be formed. When the experiment was conducted with the moving speed of the friction stir welding tool 1 fixed at 1000 mm / min, it was confirmed that the internal space 6 (flow path) can be formed in the joint 5 when the rotational speed is 1000 to 6000 rpm. . In addition, when the rotation speed became smaller than 1000 rpm or became larger than 6000 rpm, it also confirmed that it became the tendency for a defect to be easily formed in the junction part 5. FIG. Similarly, it was confirmed that the flow path could be formed even when both the rotational speed and the moving speed were changed. It was also confirmed that a flow path as a continuous internal space 25 can be formed by pushing and moving the rotated friction stir welding tool 21 into the overlapping portion 24 where the materials 22 and 23 are overlapped.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値や材質は一例であり、他の数値や材質を採用することは当然可能である。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the numerical values and materials mentioned in the above embodiment are examples, and other numerical values and materials can naturally be adopted.

上記第1実施の形態では、被接合材2としてアルミニウム合金を、被接合材3として一般構造鋼材を用いる場合について説明したが、必ずしも異種材を接合する場合に限られるものではなく、上記第2実施の形態で説明したように、同種の材料を接合することが可能である。   In the first embodiment, the case where an aluminum alloy is used as the material to be bonded 2 and a general structural steel material is used as the material to be bonded 3 has been described. However, the present invention is not necessarily limited to the case where different materials are bonded. As described in the embodiment, the same kind of materials can be bonded.

上記第1実施の形態では、被接合材2としてアルミニウム合金を、被接合材3として一般構造鋼材を用いる場合について説明した。また、上記第2実施の形態では、被接合材22,23として銅合金を用いる場合について説明した。しかし、必ずしもこれらに限られるものではなく、他の材質を採用することが可能である。   In the first embodiment, the case where an aluminum alloy is used as the material to be bonded 2 and a general structural steel material is used as the material to be bonded 3 has been described. In the second embodiment, the case where a copper alloy is used as the materials to be joined 22 and 23 has been described. However, it is not necessarily limited to these, and other materials can be adopted.

他の材質としては、例えば、アルミニウム、マグネシウム合金、チタンとその合金、銅、軟鋼、亜鉛、鉛などの降伏応力が低い金属を用いることができる。また、金属に限られるものではなく、合成樹脂を用いることもできる。これらの場合も、連続した内部空間としての流路を形成できる。   As another material, for example, a metal having a low yield stress such as aluminum, magnesium alloy, titanium and its alloy, copper, mild steel, zinc, or lead can be used. Moreover, it is not restricted to a metal, A synthetic resin can also be used. Also in these cases, a flow path as a continuous internal space can be formed.

また、接合部形成工程および流路形成工程において、被接合材2,3(又は22,23)を融点以下の温度で予熱しておくことも可能である。被接合材2,3(又は22,23)を予熱することにより被接合材2,3(又は22,23)の降伏応力を低下させ、少ない摩擦熱で被接合材2,3(又は22,23)を塑性変形させることができる。この結果、予熱を行わない場合の条件と比較して、より低い回転数、又は、より高速度の移動速度で、接合部5(又は25)に内部空間6(又は26)を形成することができる。   Moreover, it is also possible to pre-heat the to-be-joined materials 2 and 3 (or 22, 23) at the temperature below melting | fusing point in a junction part formation process and a flow path formation process. By preheating the materials 2 and 3 (or 22 and 23), the yield stress of the materials 2 and 3 (or 22 and 23) is reduced, and the materials 2 and 3 (or 22, 23) can be plastically deformed. As a result, the internal space 6 (or 26) can be formed in the joint portion 5 (or 25) at a lower rotational speed or a higher moving speed than in the case where preheating is not performed. it can.

上記実施の形態では、冷却路内蔵部材11がビーム孔部12を有する加速器電極板である場合について説明した。また、接合部11bが平面視において略S字状である場合について説明した。しかし、必ずしもこれに限られるものではなく、用途に応じて、半導体用ヒートシンクやその他の機械部品或いは金型とすることが可能である。また、接合部の平面視における形状も略S字状に限らず、要求に応じて適宜変えることが可能である。   In the above embodiment, the case where the cooling path built-in member 11 is an accelerator electrode plate having the beam hole portion 12 has been described. Moreover, the case where the junction part 11b was substantially S-shaped in planar view was demonstrated. However, the present invention is not necessarily limited to this, and a semiconductor heat sink, other mechanical parts, or a mold can be used depending on the application. Moreover, the shape of the joint portion in plan view is not limited to a substantially S shape, and can be changed as appropriate according to demand.

上記実施の形態では、冷却路内蔵部材11の冷媒流入口11c及び冷媒流出口11dは、接合部11bの表面から穿孔することにより形成された場合について説明した。しかし、必ずしもこれに限れられるものではなく、接合部11bの裏面から穿孔したり、被接合材11aや接合部11bの端面から穿孔したりすることも可能である。また、穿孔する代わりに、切削や切断することにより流路を開口させて、冷媒流入口11c及び冷媒流出口11dを形成することも可能である。   In the said embodiment, the case where the refrigerant | coolant inflow port 11c and the refrigerant | coolant outflow port 11d of the cooling path built-in member 11 were formed by drilling from the surface of the junction part 11b was demonstrated. However, the present invention is not necessarily limited to this, and it is possible to punch from the back surface of the joint portion 11b or from the end surface of the material to be joined 11a or the joint portion 11b. Further, instead of drilling, it is possible to open the flow path by cutting or cutting to form the refrigerant inlet 11c and the refrigerant outlet 11d.

11 冷却路内蔵部材
1,21 摩擦撹拌接合用工具
2,3,11a,22,23 被接合材
4 突合せ部
24 重合部
5,11b,25 接合部
6,26 内部空間(流路)
11c 冷媒流入口
11d 冷媒流出口
DESCRIPTION OF SYMBOLS 11 Cooling path built-in member 1,21 Friction stir welding tool 2,3,11a, 22,23 Joined material 4 Butting part 24 Superposition part 5,11b, 25 Joining part 6,26 Internal space (flow path)
11c Refrigerant inlet 11d Refrigerant outlet

Claims (3)

二つの被接合材と、
それらの二つの被接合材を突き合わせた突合せ部または重ね合わせた重合部に押し込まれた摩擦撹拌接合用工具の回転時の摩擦熱により前記突合せ部または前記重合部が塑性変形され前記二つの被接合材が一体化された接合部と、
その接合部の内部に前記突合せ部または前記重合部に沿って連続した内部空間として形成された流路と、
その流路の一端側に開口し冷媒を流入させる冷媒流入口と、
前記流路の他端側に開口し前記冷媒を流出させる冷媒流出口とを備えていることを特徴とする冷却路内蔵部材。
Two materials to be joined,
The abutting portion or the overlapping portion is plastically deformed by frictional heat during rotation of the friction stir welding tool pushed into the abutting portion where the two materials to be bonded are abutted or the overlapped overlapping portion. Joints with integrated materials,
A flow path formed as an internal space continuous along the butted portion or the overlapping portion inside the joint portion, and
A refrigerant inlet that opens to one end of the flow path and into which the refrigerant flows;
A cooling path built-in member, comprising: a refrigerant outlet that opens to the other end side of the flow path and allows the refrigerant to flow out.
冷媒が流通される流路が躯体に内蔵された冷却路内蔵部材の製造方法において、
二つの被接合材を突き合わせた突合せ部または重ね合わせた重合部に回転させた摩擦撹拌接合用工具を押し込み、その摩擦撹拌接合用工具を前記突合せ部または前記重合部に沿って所定の回転数および移動速度で相対的に移動させて、前記被接合材間に接合部を形成する接合部形成工程と、
その接合部形成工程により形成された前記接合部の長手方向に交差する断面に、前記被接合材または前記接合部の表面に開口する欠陥、及び、前記被接合材または前記接合部で閉鎖された内部空間があるかを確認する確認工程と、
その確認工程により前記欠陥および前記内部空間がないと判断される場合には前記回転数を低下または前記移動速度を増加させる条件変更工程と、
前記確認工程により前記欠陥がなく前記内部空間があると判断される場合には、直前の前記接合部形成工程における回転数および移動速度のもとで、前記摩擦撹拌接合用工具を用いて二つの被接合材間に接合部を形成し、前記接合部に前記摩擦撹拌接合用工具の移動方向に沿って連続した内部空間としての流路を形成する流路形成工程とを備え、
前記条件変更工程は、前記確認工程により前記欠陥がなく前記内部空間があると判断されるまで、前記接合部形成工程および前記確認工程と共に行われることを特徴とする冷却路内蔵部材の製造方法。
In the manufacturing method of the cooling path built-in member in which the flow path through which the refrigerant flows is built in the housing,
A friction stir welding tool that has been rotated is pushed into a butted portion or a superposed overlapped portion where two materials to be joined are abutted, and the friction stir welding tool is pushed along the butted portion or the overlapped portion with a predetermined rotational speed and A joint forming step of relatively moving at a moving speed to form a joint between the materials to be joined,
In the cross section that intersects the longitudinal direction of the joint formed by the joint formation step, the material to be joined or a defect that opens on the surface of the joint, and the material to be joined or the joint are closed. A confirmation process to confirm whether there is an internal space;
If it is determined by the confirmation step that the defect and the internal space are not present, a condition changing step for decreasing the rotational speed or increasing the moving speed;
When it is determined by the checking step that the defect is not present and the internal space is present, the friction stir welding tool is used to determine whether the internal space is present and the number of rotations and the moving speed in the immediately preceding bonding portion forming step. Forming a joint portion between the materials to be joined, and forming a flow passage as a continuous internal space along the moving direction of the friction stir welding tool in the joint portion;
The method for producing a cooling path built-in member, wherein the condition changing step is performed together with the joint forming step and the confirmation step until it is determined by the confirmation step that there is no defect and the internal space is present.
冷媒が流通される流路が躯体に内蔵された冷却路内蔵部材の製造方法において、
二つの被接合材を突き合わせた突合せ部または重ね合わせた重合部に回転させた摩擦撹拌接合用工具を押し込む押込工程と、
その押込工程により前記突合せ部または前記重合部に押し込まれた前記摩擦撹拌接合用工具を前記突合せ部または前記重合部に沿って所定の回転数および移動速度で相対的に移動させて、前記被接合材間に接合部を形成すると共に、前記接合部の内部に連続した内部空間としての流路を形成する流路形成工程とを備え、
前記二つの被接合材は、少なくとも一方の被接合材の材質がアルミニウム若しくはアルミニウム合金または銅若しくは銅合金であり、
前記流路形成工程における前記回転数は1000〜6000rpm、前記移動速度は800〜1500mm/分であることを特徴とする冷却路内蔵部材の製造方法。
In the manufacturing method of the cooling path built-in member in which the flow path through which the refrigerant flows is built in the housing,
A pressing step of pushing the rotated friction stir welding tool into the butted portion or the overlapped overlapped portion of the two materials to be joined;
The friction stir welding tool pushed into the abutting portion or the overlapping portion by the pushing step is relatively moved along the abutting portion or the overlapping portion at a predetermined rotational speed and moving speed, and the welded portions are joined. Forming a joint between the materials, and forming a flow path as a continuous internal space inside the joint, and a flow path forming step,
In the two materials to be bonded, the material of at least one material to be bonded is aluminum or an aluminum alloy, or copper or a copper alloy,
The method for manufacturing a cooling path built-in member, wherein the number of rotations in the flow path forming step is 1000 to 6000 rpm, and the moving speed is 800 to 1500 mm / min.
JP2009109094A 2009-04-28 2009-04-28 Member with built-in cooling path and method of manufacturing the same Pending JP2010253534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109094A JP2010253534A (en) 2009-04-28 2009-04-28 Member with built-in cooling path and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109094A JP2010253534A (en) 2009-04-28 2009-04-28 Member with built-in cooling path and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010253534A true JP2010253534A (en) 2010-11-11

Family

ID=43315073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109094A Pending JP2010253534A (en) 2009-04-28 2009-04-28 Member with built-in cooling path and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010253534A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008307A1 (en) * 2010-07-12 2012-01-19 日本軽金属株式会社 Rotating tool for forming voids and void-formation method
JP2012236205A (en) * 2011-05-11 2012-12-06 Shinshu Univ Method for repairing mold
JP2013052425A (en) * 2011-09-05 2013-03-21 Tokushu Kinzoku Excel Co Ltd Method for production of low-resistance metal-fixed resistor
WO2013150801A1 (en) * 2012-04-06 2013-10-10 Jfeスチール株式会社 Method for friction-stir welding of steel sheet
DE102013110034A1 (en) * 2013-09-12 2015-03-12 Universität Stuttgart Method for butt welding as well as component and friction stir welding tool
CN112719567A (en) * 2021-02-02 2021-04-30 哈工万联智能装备(苏州)有限公司 Forming method of friction stir tunnel with copper-aluminum dissimilar material cooling plate and cooling plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147961A (en) * 1997-08-04 1999-02-23 Showa Alum Corp Manufacture of plate type heat pipe
JP2000202646A (en) * 1999-01-12 2000-07-25 Nippon Light Metal Co Ltd Device and method for friction-stirring-welding
JP2004195549A (en) * 2002-11-08 2004-07-15 Kawasaki Heavy Ind Ltd Friction stir welding equipment
JP2005230880A (en) * 2004-02-20 2005-09-02 Kawasaki Heavy Ind Ltd Friction stir welding method and friction stir welding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147961A (en) * 1997-08-04 1999-02-23 Showa Alum Corp Manufacture of plate type heat pipe
JP2000202646A (en) * 1999-01-12 2000-07-25 Nippon Light Metal Co Ltd Device and method for friction-stirring-welding
JP2004195549A (en) * 2002-11-08 2004-07-15 Kawasaki Heavy Ind Ltd Friction stir welding equipment
JP2005230880A (en) * 2004-02-20 2005-09-02 Kawasaki Heavy Ind Ltd Friction stir welding method and friction stir welding device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008307A1 (en) * 2010-07-12 2012-01-19 日本軽金属株式会社 Rotating tool for forming voids and void-formation method
JP2012236205A (en) * 2011-05-11 2012-12-06 Shinshu Univ Method for repairing mold
JP2013052425A (en) * 2011-09-05 2013-03-21 Tokushu Kinzoku Excel Co Ltd Method for production of low-resistance metal-fixed resistor
WO2013150801A1 (en) * 2012-04-06 2013-10-10 Jfeスチール株式会社 Method for friction-stir welding of steel sheet
JP5522316B2 (en) * 2012-04-06 2014-06-18 Jfeスチール株式会社 Friction stir welding method for steel sheet
DE102013110034A1 (en) * 2013-09-12 2015-03-12 Universität Stuttgart Method for butt welding as well as component and friction stir welding tool
US9849541B2 (en) 2013-09-12 2017-12-26 Universitaet Stuttgart Butt welding method and friction stir welding tool
DE102013110034B4 (en) 2013-09-12 2022-10-06 Universität Stuttgart Butt welding process
CN112719567A (en) * 2021-02-02 2021-04-30 哈工万联智能装备(苏州)有限公司 Forming method of friction stir tunnel with copper-aluminum dissimilar material cooling plate and cooling plate

Similar Documents

Publication Publication Date Title
EP3260230B1 (en) Joining method and method for manufacturing composite rolled material
JP6372515B2 (en) Liquid cooling jacket manufacturing method and liquid cooling jacket
TWI579083B (en) Friction stir joining method
JP2010253534A (en) Member with built-in cooling path and method of manufacturing the same
US8393522B2 (en) Joining method and joining tool
KR20170091187A (en) Method for producing heat exchanger plate and method for friction stir welding
JP2017070994A (en) Tool for friction stir welding and friction stir welding method
JP2005324251A (en) Friction stir welding method, friction stir welding method for tubular member, and method for manufacturing hollow body
JP2010201484A (en) Friction stir welding method
JP2012086267A (en) Rotary joint tool for friction stir welding and method for friction stir welding using the same
JP2006239734A (en) Weld joint and method for forming the same
US7766214B2 (en) Friction stir welding method
JP2004009113A (en) Joint structure of main body and lid
WO2017013978A1 (en) Joining method and method for manufacturing heat sink
CN111745289B (en) Friction stir welding method for small-diameter flange parts
US8770464B2 (en) Method for producing overlapping weld joints and overlapping weld joint
JP5490076B2 (en) Friction stir welding method, friction stir weld, and friction stir welding tool
CN108472762B (en) Joining method, method for manufacturing hollow container, and method for manufacturing liquid-cooled jacket
JP2007301573A (en) Friction stirring and joining method and friction stirred and joined structure
JP6458539B2 (en) Method for producing a laminated structure of three or more layers using a friction stir welding tool and a laminated structure produced by the method
JP5574947B2 (en) Hollow structure forming method and hollow structure
CN108472763B (en) Method for manufacturing heat transfer plate
JP2012148297A (en) Friction stir joining method
JP2007319877A (en) Method for joining end face of laminated metal plates, and end face joining device using the method
KR20130068260A (en) A method for welding a motor case by friction stir welding, and a motor case manufactured by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130604

Free format text: JAPANESE INTERMEDIATE CODE: A02