JP5859864B2 - Non-contact power transmission system - Google Patents

Non-contact power transmission system Download PDF

Info

Publication number
JP5859864B2
JP5859864B2 JP2012021977A JP2012021977A JP5859864B2 JP 5859864 B2 JP5859864 B2 JP 5859864B2 JP 2012021977 A JP2012021977 A JP 2012021977A JP 2012021977 A JP2012021977 A JP 2012021977A JP 5859864 B2 JP5859864 B2 JP 5859864B2
Authority
JP
Japan
Prior art keywords
power
distance
side coil
coil
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012021977A
Other languages
Japanese (ja)
Other versions
JP2013162609A (en
Inventor
田中 信吾
信吾 田中
雄太 中川
雄太 中川
土屋 和春
和春 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2012021977A priority Critical patent/JP5859864B2/en
Publication of JP2013162609A publication Critical patent/JP2013162609A/en
Application granted granted Critical
Publication of JP5859864B2 publication Critical patent/JP5859864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、非接触電力伝送システムに関するものである。   The present invention relates to a contactless power transmission system.

図8は、従来の非接触電力伝送システムの概略構成を示す構成図である。非接触電力伝送システム1は、駐車場の地面等の固定体2上などに設けられた給電手段としての給電部3と、自動車4の腹部分などに設けられた受電手段としての受電部5と、給電部3の給電側バラクタ8(後述する)の両端に電圧を印加する可変電圧源12と、可変電圧源12の電圧を調整制御する制御部14と、受電部5の受電側バラクタ11(後述する)の両端に電圧を印加する可変電圧源15と、可変電圧源15の電圧を調整制御する制御部16とを備えている。   FIG. 8 is a configuration diagram showing a schematic configuration of a conventional non-contact power transmission system. The non-contact power transmission system 1 includes a power feeding unit 3 as a power feeding unit provided on a fixed body 2 such as a ground of a parking lot, and a power receiving unit 5 as a power receiving unit provided in an abdomen of an automobile 4. , A variable voltage source 12 that applies a voltage to both ends of a power supply side varactor 8 (described later) of the power supply unit 3, a control unit 14 that adjusts and controls the voltage of the variable voltage source 12, and a power reception side varactor 11 ( A variable voltage source 15 that applies a voltage to both ends of the variable voltage source 15, and a control unit 16 that adjusts and controls the voltage of the variable voltage source 15.

給電部3は、図8及び図9に示すように、電力が供給される給電側コイル7と、給電側コイル7に並列接続されたキャパシタとしての給電側バラクタ8と、が設けられている。給電側バラクタ8は、両端に印加される電圧に応じて静電容量値が変化するダイオードである。   As shown in FIGS. 8 and 9, the power supply unit 3 is provided with a power supply side coil 7 to which power is supplied and a power supply side varactor 8 as a capacitor connected in parallel to the power supply side coil 7. The power supply side varactor 8 is a diode whose capacitance value changes according to the voltage applied to both ends.

受電部5は、受電側コイル9と、受電側コイル9に並列接続された受電側バラクタ11と、が設けられている。受電側バラクタ11は、両端に印加される電圧に応じて静電容量値が変化するダイオードである。   The power receiving unit 5 includes a power receiving side coil 9 and a power receiving side varactor 11 connected in parallel to the power receiving side coil 9. The power receiving varactor 11 is a diode whose capacitance value changes according to the voltage applied to both ends.

上述した非接触電力伝送システム1によれば、自動車4が給電部3に近づいて給電側コイル7と受電側コイル9とが軸方向に間隔を空けて対向したときに、給電側コイル7と受電側コイル9とが電磁誘導結合して給電部3から受電部5に非接触で電力を供給できる。   According to the non-contact power transmission system 1 described above, when the automobile 4 approaches the power feeding unit 3 and the power feeding side coil 7 and the power receiving side coil 9 face each other with an interval in the axial direction, the power feeding side coil 7 and the power receiving side are received. The side coil 9 can be electromagnetically coupled to supply power from the power feeding unit 3 to the power receiving unit 5 in a contactless manner.

すなわち、給電側コイル7には、直流電源(不図示)からの直流電力を高周波(周波数f(Hz))電力に変換した電力が供給される。これは、直流電力は空間を伝播できないためである。高周波電力は、送電側コイル7から受電側コイル9へ自由空間伝播により伝送される。受電側コイル9に伝送された高周波電力は、整流器等(不図示)により直流電力に変換される。このようにして、送電側から受電側に直流電力を非接触で伝送することが可能となる。   That is, power obtained by converting DC power from a DC power supply (not shown) into high frequency (frequency f (Hz)) power is supplied to the power supply side coil 7. This is because DC power cannot propagate through space. The high frequency power is transmitted from the power transmission side coil 7 to the power reception side coil 9 by free space propagation. The high frequency power transmitted to the power receiving side coil 9 is converted into DC power by a rectifier or the like (not shown). In this way, it is possible to transmit DC power from the power transmission side to the power reception side in a contactless manner.

給電側コイル7と受電側コイル9は、ともに同一の構成を有している。コイルの両端をポートとし、給電側コイル7の両端を給電ポート、受電側コイル9の両端を受電ポートとする。コイルと並列に接続された給電側バラクタ8及び受電側バラクタ11は、コイルとキャパシタで構成される共振回路の共振周波数調整と、ポートにおけるインピーダンス整合と、を行うために使用される。また、低周波数における効率改善のためにフェライトが併用されることがあるが、図8ではフェライトなしの構成としている。ここでは、コイルの直径が60mm、コイルを構成する銅線の直径が1.2mm、コイル巻き数が5回巻き、ポートのインピーダンスが50Ωを例にシミュレーション(モーメント法)結果で説明するが、その他の値でも有効である。   Both the power feeding side coil 7 and the power receiving side coil 9 have the same configuration. Both ends of the coil are ports, both ends of the power supply side coil 7 are power supply ports, and both ends of the power reception side coil 9 are power reception ports. The power feeding side varactor 8 and the power receiving side varactor 11 connected in parallel with the coil are used for adjusting the resonance frequency of the resonance circuit composed of the coil and the capacitor and impedance matching at the port. In addition, in order to improve efficiency at low frequencies, ferrite may be used in combination, but FIG. 8 shows a configuration without ferrite. Here, simulation (moment method) will be described with an example in which the diameter of the coil is 60 mm, the diameter of the copper wire constituting the coil is 1.2 mm, the number of coil turns is 5, and the impedance of the port is 50Ω. The value of is also valid.

図10は、給電側バラクタ8及び受電側バラクタ11の容量値Cpを固定した場合における、給電側コイル7と受電側コイル9間の距離dを変化させた場合の、(A)周波数対伝送効率特性と、(B)周波数対反射特性とを示す。(A)の周波数対伝送効率特性において、特性曲線A〜Fは、それぞれ、距離d=2mm、4mm、6mm、8mm、12mm及び16mmの場合の伝送効率d2_(S21)2 、d4_(S21)2 、d6_(S21)2 、d8_(S21)2 、d12_(S21)2 及びd16_(S21)2 の特性を示す。また、(B)の周波数対反射特性において、特性曲線A〜Fは、それぞれ、距離d=2mm、4mm、6mm、8mm、12mm及び16mmの場合の反射d2_(S111)2 、d4_(S11)2 、d6_(S11)2 、d8_(S11)2 、d12_(S11)2 及びd16_(S11)2 の特性を示す。 FIG. 10 shows (A) frequency versus transmission efficiency when the distance d between the power supply side coil 7 and the power reception side coil 9 is changed when the capacitance values Cp of the power supply side varactor 8 and the power reception side varactor 11 are fixed. The characteristics and (B) frequency vs. reflection characteristics are shown. In the frequency vs. transmission efficiency characteristics of (A), the characteristic curves A to F are the transmission efficiencies d2_ (S21) 2 and d4_ (S21) 2 when the distances d = 2 mm, 4 mm, 6 mm, 8 mm, 12 mm and 16 mm, respectively. , D6_ (S21) 2 , d8_ (S21) 2 , d12_ (S21) 2, and d16_ (S21) 2 . In the frequency vs. reflection characteristics of (B), the characteristic curves A to F are reflections d2_ (S111) 2 and d4_ (S11) 2 when the distances d = 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 16 mm, respectively. , D6_ (S11) 2 , d8_ (S11) 2 , d12_ (S11) 2, and d16_ (S11) 2 .

図10において、給電側コイル7と受電側コイル9のコイル間距離dが、給電側コイル7と受電側コイル9との臨界結合を与える所定値になると、インピーダンス整合が最適化されて伝送効率が最大かつ反射損が最小になる(特性曲線B参照)。コイル間距離dが上記所定値より増えて疎結合になると、インピーダンス整合が取れず、反射損が増大してしまう(特性曲線C〜F参照)。また、コイル間距離dが狭すぎて過結合になった場合、共振周波数は二つに割れて帯域が狭くなるものの、二つの共振周波数においては、伝送効率及び反射損は臨界結合時とほぼ同程度になる(特性曲線A参照)。   In FIG. 10, when the inter-coil distance d between the power feeding side coil 7 and the power receiving side coil 9 reaches a predetermined value that gives a critical coupling between the power feeding side coil 7 and the power receiving side coil 9, the impedance matching is optimized and the transmission efficiency is improved. Maximum and minimum reflection loss (see characteristic curve B). When the inter-coil distance d increases from the predetermined value and becomes loosely coupled, impedance matching cannot be achieved and reflection loss increases (see characteristic curves C to F). In addition, when the inter-coil distance d is too narrow and overcoupling occurs, the resonance frequency is broken into two and the band is narrowed. However, at the two resonance frequencies, the transmission efficiency and the reflection loss are almost the same as those at the critical coupling. (See characteristic curve A).

この例では、Cp=1500pFで固定(共振周波数=2.8MHz)しているが、この値は、d=4mm(所定値)においては、最適なインピーダンス整合が得られて(反射損がない)おり、d=4mmにて最大伝送効率が得られている(臨界結合)。しかしながら、d>4mmではインピーダンス整合が得られず、反射損が増大しており、これが伝送効率の低下を引き起こしている。逆に、d<4mm、例えばd=2mm、の場合には過結合となり、共振周波数が2つに分離して帯域が狭くなる。このように、Cp固定では、距離が変化した場合に伝送効率が低下することが、従来技術の問題であった。   In this example, Cp = 1500 pF is fixed (resonance frequency = 2.8 MHz), but this value provides optimum impedance matching (no reflection loss) at d = 4 mm (predetermined value). The maximum transmission efficiency is obtained at d = 4 mm (critical coupling). However, when d> 4 mm, impedance matching cannot be obtained and reflection loss increases, which causes a reduction in transmission efficiency. On the other hand, when d <4 mm, for example, d = 2 mm, overcoupling occurs, and the resonance frequency is separated into two to narrow the band. Thus, with Cp fixation, it has been a problem of the prior art that transmission efficiency decreases when the distance changes.

特開2010−259204号公報JP 2010-259204 A

そこで、本発明は、インピーダンス整合を最適化し、伝送効率の低下を軽減することができる非接触電力伝送システムを提供することを課題とする。   Then, this invention makes it a subject to provide the non-contact electric power transmission system which can optimize impedance matching and can reduce the fall of transmission efficiency.

上述した課題を解決するための請求項1記載の発明は、電力が供給される給電側コイル7が設けられた給電手段3と、前記給電側コイル7と電磁誘導結合する受電側コイル9が設けられた受電手段5と、を備えた非接触電力伝送システムにおいて、前記給電側コイル7及び前記受電側コイル9の少なくとも一方に並列に接続されて共振回路を構成するとともに容量値が可変に設けられたキャパシタ8(11)と、前記給電側コイル7及び前記受電側コイル9のコイル間距離dを測定する距離測定手段13(17)と、前記距離測定手段13(17)により測定したコイル間距離dに応じて前記キャパシタ8(11)の容量値を調整する調整手段14(16)と、を備え、前記調整手段14(16)は、前記キャパシタ8(11)の容量値を、前記コイル間距離dの変動に関わらず、前記給電側コイル7及び前記受電側コイル9が常に臨界結合となるように調整し、前記距離測定手段は、前記コイル間距離を機械的に測定する手段であり、前記給電手段は移動体の固定部に配置され、前記受電手段は移動体の可動部に配置されており、前記給電手段は自動車の車体側に設けられ、前記受電手段は自動車のドア側に設けられ、前記距離測定手段は、自動車側に設けられ、前記ドアのドア開閉角度を測定し、前記ドア開閉角度に基づいて前記コイル間距離を求めることを特徴とする。 The invention according to claim 1 for solving the above-described problem is provided with a power feeding means 3 provided with a power feeding side coil 7 to which power is supplied, and a power receiving side coil 9 electromagnetically coupled to the power feeding side coil 7. In the non-contact power transmission system provided with the power receiving means 5, the resonance circuit is configured in parallel with at least one of the power feeding side coil 7 and the power receiving side coil 9, and the capacitance value is variably provided. The capacitor 8 (11), the distance measuring means 13 (17) for measuring the inter-coil distance d of the power feeding side coil 7 and the power receiving side coil 9, and the inter-coil distance measured by the distance measuring means 13 (17) adjusting means 14 (16) for adjusting the capacitance value of the capacitor 8 (11) according to d, and the adjusting means 14 (16) sets the capacitance value of the capacitor 8 (11) as follows: Serial regardless of variations in the distance between the coils d, the adjusted such feeder coil 7 and the power receiving coil 9 becomes always critical coupling, the distance measuring means, means for mechanically measure the distance between the coil The power supply means is disposed in a fixed part of the moving body, the power receiving means is disposed in a movable part of the mobile body, the power supply means is provided on the vehicle body side of the automobile, and the power receiving means is a door of the automobile. The distance measuring means is provided on the side of the automobile, measures the door opening / closing angle of the door, and determines the distance between the coils based on the door opening / closing angle .

上述した課題を解決するための請求項2記載の発明は、電力が供給される給電側コイルが設けられた給電手段と、前記給電側コイルと電磁誘導結合する受電側コイルが設けられた受電手段と、を備えた非接触電力伝送システムにおいて、前記給電側コイル及び前記受電側コイルの少なくとも一方に並列に接続されて共振回路を構成するとともに容量値が可変に設けられたキャパシタと、前記給電側コイル及び前記受電側コイルのコイル間距離を測定する距離測定手段と、前記距離測定手段により測定したコイル間距離に応じて前記キャパシタの容量値を調整する調整手段と、を備え、前記調整手段は、前記キャパシタの容量値を、前記コイル間距離の変動に関わらず、前記給電側コイル及び前記受電側コイルが常に臨界結合となるように調整し、前記距離測定手段は、前記コイル間距離を機械的に測定する手段であり、前記給電手段は移動体の固定部に配置され、前記受電手段は移動体の可動部に配置されており、前記給電手段は自動車のスライドシート用レールに設けられ、前記受電手段は前記スライドシートに設けられ、前記距離測定手段は、前記スライドシートの変位量を測定し、前記変位量に基づいて前記コイル間距離を求めることを特徴とする非接触電力伝送システムである。 The invention according to claim 2 for solving the above-described problem is a power receiving means provided with a power feeding side coil to which power is supplied, and a power receiving means provided with a power receiving side coil electromagnetically coupled to the power feeding side coil. A non-contact power transmission system comprising: a capacitor that is connected in parallel to at least one of the power feeding side coil and the power receiving side coil to form a resonance circuit and that has a variable capacitance value; and the power feeding side A distance measuring unit that measures a distance between the coil and the coil on the power receiving side, and an adjusting unit that adjusts the capacitance value of the capacitor according to the distance between the coils measured by the distance measuring unit. The capacitance value of the capacitor is adjusted so that the power supply side coil and the power reception side coil are always critically coupled regardless of variations in the distance between the coils. The distance measuring means is a means for mechanically measuring the distance between the coils, the power feeding means is disposed in a fixed portion of the moving body, and the power receiving means is disposed in a movable portion of the moving body, The power feeding means is provided on a slide seat rail of an automobile, the power receiving means is provided on the slide seat, and the distance measuring means measures a displacement amount of the slide sheet, and the distance between the coils based on the displacement amount. It is the non-contact electric power transmission system characterized by calculating | requiring.

なお、上述の課題を解決するための手段の説明における参照符号は、以下の、発明を実施するための形態の説明における構成要素の参照符号に対応しているが、これらは、特許請求の範囲の解釈を限定するものではない。   The reference numerals in the description of the means for solving the above-described problems correspond to the reference numerals of the constituent elements in the following description of the embodiments for carrying out the invention. The interpretation of is not limited.

請求項1記載の発明によれば、給電側コイル及び受電側コイルの少なくとも一方に並列に接続されて共振回路を構成するとともに容量値が可変に設けられたキャパシタと、給電側コイル及び受電側コイルのコイル間距離dを測定する距離測定手段と、距離測定手段により測定したコイル間距離dに応じてキャパシタの容量値を調整する調整手段と、を備え、調整手段は、キャパシタの容量値を、コイル間距離dの変動に関わらず、給電側コイル及び受電側コイルが常に臨界結合となるように調整するので、給電側コイル及び受電側コイルのコイル間距離が変動しても、インピーダンス整合を最適化し、伝送効率の低下を軽減することができる。   According to the first aspect of the present invention, a capacitor which is connected in parallel to at least one of the power feeding side coil and the power receiving side coil to form a resonance circuit and whose capacitance value is variably provided, and the power feeding side coil and the power receiving side coil Distance measuring means for measuring the inter-coil distance d, and adjusting means for adjusting the capacitance value of the capacitor in accordance with the inter-coil distance d measured by the distance measuring means. Regardless of fluctuations in the inter-coil distance d, adjustment is made so that the power supply side coil and the power reception side coil are always critically coupled, so that impedance matching is optimal even if the distance between the coil of the power supply side coil and the power reception side coil changes. And reduction in transmission efficiency can be reduced.

また、距離測定手段は、コイル間距離を機械的に測定する手段であるので、測定を簡易かつ精確に行うことができる。 Moreover , since the distance measuring means is a means for measuring the distance between the coils mechanically, the measurement can be performed easily and accurately.

また、給電手段は移動体の固定部に配置され、受電手段は移動体の可動部に配置されているので、自動車のような移動体内における可動部へ非接触電力伝送が行うことができ、ワイヤハーネスの配索をなくすことができる。 In addition , since the power feeding means is arranged in the fixed part of the moving body and the power receiving means is arranged in the moving part of the moving body, non-contact power transmission can be performed to the moving part in the moving body such as an automobile. The wiring of the harness can be eliminated.

また、給電手段は自動車の車体側に設けられ、受電手段は自動車のドア側に設けられ、距離測定手段は、自動車側に設けられ、ドアのドア開閉角度θを測定し、ドア開閉角度θに基づいてコイル間距離dを求めるので、自動車のドアに配置されたパワーウインドウ駆動装置等へ非接触電力伝送が行うことができ、ワイヤハーネスの配索をなくすことができる。また、コイル間距離の測定を簡易かつ精確に行うことができる。 The power feeding means is provided on the vehicle body side, the power receiving means is provided on the vehicle door side, and the distance measuring means is provided on the vehicle side. The door opening / closing angle θ is measured, and the door opening / closing angle θ is set. Since the inter-coil distance d is obtained based on this, non-contact power transmission can be performed to a power window driving device or the like disposed on the door of the automobile, and the wiring harness can be eliminated. Further, the distance between the coils can be measured easily and accurately.

請求項記載の発明によれば、給電手段は自動車のスライドシート用レールに設けられ、受電手段はスライドシートに設けられ、距離測定手段は、スライドシートの変位量d2を測定し、変位量d2に基づいてコイル間距離dを求めるので、自動車のスライドシートに配置されたパワーシート駆動装置等へ非接触電力伝送が行うことができ、ワイヤハーネスの配索をなくすことができる。また、コイル間距離の測定を簡易かつ精確に行うことができる。 According to the second aspect of the present invention, the power feeding means is provided on the slide seat rail of the automobile, the power receiving means is provided on the slide seat, and the distance measuring means measures the displacement d2 of the slide sheet, and the displacement d2 Since the inter-coil distance d is obtained based on the above, non-contact power transmission can be performed to a power seat driving device or the like disposed on the slide seat of the automobile, and the wiring harness can be eliminated. Further, the distance between the coils can be measured easily and accurately.

本発明に係る非接触電力伝送システムの第1の実施形態の概略構成を示す構成図である。(第1の実施形態)It is a block diagram which shows schematic structure of 1st Embodiment of the non-contact electric power transmission system which concerns on this invention. (First embodiment) 図1の非接触電力伝送システムにおける給電側コイル及び受電側コイルのコイル間距離dを変化させた場合の伝送特性を示し、(A)は周波数対伝送効率特性図、(B)は周波数対反射特性図である。(第1の実施形態)1 shows transmission characteristics when the distance d between the coils of the power feeding side coil and the power receiving side coil in the non-contact power transmission system of FIG. 1 is changed, (A) is a frequency vs. transmission efficiency characteristic diagram, and (B) is frequency vs. reflection. FIG. (First embodiment) 従来技術及び本発明における伝送距離(コイル間距離)d対伝送効率特性図である。(従来技術及び第1の実施形態)It is a transmission distance (distance between coils) d vs. transmission efficiency characteristic diagram in the prior art and the present invention. (Prior art and first embodiment) 本発明に係る非接触電力伝送システムの第2の実施形態の概略構成を示す構成図である。(第2の実施形態)It is a block diagram which shows schematic structure of 2nd Embodiment of the non-contact electric power transmission system which concerns on this invention. (Second Embodiment) 図4の非接触電力伝送システムの距離測定部におけるコイル間距離の機械的測定の一例を示す模式図である。(第2の実施形態)It is a schematic diagram which shows an example of the mechanical measurement of the distance between coils in the distance measurement part of the non-contact electric power transmission system of FIG. (Second Embodiment) 図4の非接触電力伝送システムの距離測定部におけるコイル間距離の機械的測定の他の例を示す模式図である。(第2の実施形態)It is a schematic diagram which shows the other example of the mechanical measurement of the distance between coils in the distance measurement part of the non-contact electric power transmission system of FIG. (Second Embodiment) 図4の非接触電力伝送システムの距離測定部におけるコイル間距離の機械的測定のさらに他の例を示す模式図である。(第2の実施形態)It is a schematic diagram which shows the further another example of the mechanical measurement of the distance between coils in the distance measurement part of the non-contact electric power transmission system of FIG. (Second Embodiment) 従来の非接触電力伝送システムの一実施形態の概略構成を示す構成図である。(従来技術)It is a block diagram which shows schematic structure of one Embodiment of the conventional non-contact electric power transmission system. (Conventional technology) 図8の非接触電力伝送システムにおける給電部及び受電部の構成を示す構成図である。(従来技術)It is a block diagram which shows the structure of the electric power feeding part and power receiving part in the non-contact electric power transmission system of FIG. (Conventional technology) 図8の非接触電力伝送システムにおける給電側コイル及び受電側コイル間の距離dを変化させた場合の伝送特性を示し、(A)は周波数対伝送効率特性図、(B)は周波数対反射特性図である。(従来技術)8 shows transmission characteristics when the distance d between the power supply side coil and the power receiving side coil in the non-contact power transmission system of FIG. 8 is changed, (A) is a frequency vs. transmission efficiency characteristic diagram, and (B) is a frequency vs. reflection characteristic. FIG. (Conventional technology)

以下、本発明の非接触電力伝送システムを図面を参照しながら説明する。   Hereinafter, a non-contact power transmission system of the present invention will be described with reference to the drawings.

(第1の実施形態)図1は、本発明に係る非接触電力伝送システムの第1の実施形態の概略構成を示す構成図である。なお、図8に示す従来例と同一の構成要素は、同一符号を付して説明する。   (First Embodiment) FIG. 1 is a block diagram showing a schematic configuration of a first embodiment of a non-contact power transmission system according to the present invention. The same components as those in the conventional example shown in FIG.

非接触電力伝送システム1は、固定体2上などに設けられた給電手段としての給電部3と、移動体である自動車4の腹(車体底部)部分などに設けられた受電手段としての受電部5と、可変電圧源12と、距離測定部13と、制御部14と、可変電圧源15と、制御部16と、を備えて構成される。   The non-contact power transmission system 1 includes a power supply unit 3 as a power supply unit provided on a fixed body 2 and the like, and a power reception unit as a power reception unit provided at a belly (vehicle body bottom) portion of an automobile 4 as a moving body. 5, a variable voltage source 12, a distance measuring unit 13, a control unit 14, a variable voltage source 15, and a control unit 16.

給電部3は、図5及び図6に示すように、電力が供給される給電側コイル7と、給電側コイル7に並列接続されたキャパシタとしての給電側バラクタ8と、が設けられている。給電側バラクタ8は、両端に印加される可変電圧源12からの電圧に応じて静電容量値が変化するダイオードである。   As shown in FIGS. 5 and 6, the power supply unit 3 is provided with a power supply side coil 7 to which power is supplied and a power supply side varactor 8 as a capacitor connected in parallel to the power supply side coil 7. The power supply side varactor 8 is a diode whose capacitance value changes according to the voltage from the variable voltage source 12 applied to both ends.

受電部5は、受電側コイル9と、受電側コイル9に並列接続された受電側バラクタ11と、が設けられている。受電側バラクタ11は、両端に印加される可変電圧源15からの電圧に応じて静電容量値が変化するダイオードである。   The power receiving unit 5 includes a power receiving side coil 9 and a power receiving side varactor 11 connected in parallel to the power receiving side coil 9. The power receiving side varactor 11 is a diode whose capacitance value changes according to the voltage from the variable voltage source 15 applied to both ends.

距離測定部13は、例えば、赤外線距離センサやUWB(Ultra Wide Band)測位センサ無線などの赤外線信号や無線信号による電気的測定手段が用いられ、固定体2から自動車4の腹部分までの距離を測定して、測定した距離から間接的に給電側コイル7及び受電側コイル9間のコイル間距離dを求める。コイル間距離dは、乗員や荷物のない状態の自動車4における距離(請求項における「所定のコイル間距離」に相当)から、乗員数や搭載荷物量に応じて距離が短くなるように変動し得る。   The distance measuring unit 13 uses, for example, an infrared signal such as an infrared distance sensor or a UWB (Ultra Wide Band) positioning sensor, or an electrical measurement means using a wireless signal, and measures the distance from the fixed body 2 to the abdomen of the automobile 4. Measurement is performed, and the inter-coil distance d between the power feeding side coil 7 and the power receiving side coil 9 is obtained indirectly from the measured distance. The distance d between the coils fluctuates from the distance in the automobile 4 with no occupants or luggage (corresponding to the “predetermined distance between coils” in the claims) so that the distance becomes shorter according to the number of occupants and the amount of loaded luggage. obtain.

制御部14は、例えばCPUから構成され、距離測定部13により測定されたコイル間距離dに応じた電圧が給電側バラクタ8に印加されるように可変電圧源12を制御する調整手段として働く。   The control unit 14 is composed of, for example, a CPU, and functions as an adjustment unit that controls the variable voltage source 12 so that a voltage corresponding to the inter-coil distance d measured by the distance measurement unit 13 is applied to the power supply varactor 8.

次に、上述の非接触電力伝送システム1の動作について説明する前に、本発明の基本原理について説明する。   Next, the basic principle of the present invention will be described before the operation of the above-described contactless power transmission system 1 is described.

上述の従来技術における図10から分かるように、給電側コイル7及び受電側コイル9間のコイル間距離dを変化させた場合、コイル間距離dが増えて疎結合になると、インピーダンス整合が取れず、反射損が増大してしまう。しかしながら、コイル間距離dが狭すぎて過結合になった場合、共振周波数は二つに割れて帯域が狭くなるものの、二つの共振周波数においては反射損は極めて低い。そこで、Cpを調整する際に、コイル間距離dが変動しても、給電側コイルと受電側コイルの結合が常に臨界結合状態になるように調整するというのが本発明の考え方である。   As can be seen from FIG. 10 in the prior art described above, when the inter-coil distance d between the power supply side coil 7 and the power reception side coil 9 is changed, impedance matching cannot be achieved if the inter-coil distance d increases and becomes loosely coupled. The reflection loss increases. However, when the inter-coil distance d is too narrow and over-coupled, the resonance frequency is broken into two and the band is narrowed, but the reflection loss is very low at the two resonance frequencies. Therefore, when adjusting Cp, the idea of the present invention is to adjust so that the coupling between the power supply side coil and the power reception side coil is always in the critical coupling state even if the inter-coil distance d varies.

上述の考え方に基づいて、伝送される高周波電力の周波数(=給電部3及び受電部5の共振周波数)5MHz時の給電側コイル7及び受電側コイル9間のコイル間距離dを変化させた場合の伝送特性を図2に示す。図2において、(A)は周波数対伝送効率特性、(B)は周波数対反射特性である。(A)の周波数対伝送効率特性において、特性曲線A〜Fは、それぞれ、コイル間距離d=2mm、4mm、6mm、8mm、12mm及び16mmの場合の伝送効率d2_(S21)2 、d4_(S21)2 、d6_(S21)2 、d8_(S21)2 、d12_(S21)2 及びd16_(S21)2 の特性を示す。また、(B)の周波数対反射特性において、特性曲線A〜Fは、それぞれ、コイル間距離d=2mm、4mm、6mm、8mm、12mm及び16mmの場合の反射d2_(S111)2 、d4_(S11)2 、d6_(S11)2 、d8_(S11)2 、d12_(S11)2 及びd16_(S11)2 の特性を示す。 When the inter-coil distance d between the power supply side coil 7 and the power reception side coil 9 at the time of the frequency of the transmitted high frequency power (= resonance frequency of the power supply unit 3 and the power reception unit 5) 5 MHz is changed based on the above-described concept. The transmission characteristics are shown in FIG. In FIG. 2, (A) shows frequency vs. transmission efficiency characteristics, and (B) shows frequency vs. reflection characteristics. In the frequency vs. transmission efficiency characteristics of (A), the characteristic curves A to F show the transmission efficiencies d2_ (S21) 2 and d4_ (S21) when the inter-coil distances d = 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 16 mm, respectively. ) 2 , d6_ (S21) 2 , d8_ (S21) 2 , d12_ (S21) 2 and d16_ (S21) 2 . In the frequency vs. reflection characteristics of (B), the characteristic curves A to F are reflections d2_ (S111) 2 and d4_ (S11) when the inter-coil distances d = 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 16 mm, respectively. ) 2 , d6_ (S11) 2 , d8_ (S11) 2 , d12_ (S11) 2 and d16_ (S11) 2 .

図2から分かるように、d=16mmの場合は、共振周波数fo=5MHzで給電側コイル7及び受電側コイルが臨界結合している。これに対して、距離dが16mmより小さい(2mm、4mm、6mm、8mm、12mm)場合も、給電側コイル7及び受電側コイル9がCpの調整により臨界結合しているが、それぞれの共振周波数は異なる値になっている。結果として、d=2mm〜16mmの広い範囲において、伝送効率95%以上が得られている。ただし、コイル間距離dが長くなるほど、伝送効率が若干低下していく。   As can be seen from FIG. 2, when d = 16 mm, the power supply side coil 7 and the power reception side coil are critically coupled at the resonance frequency fo = 5 MHz. On the other hand, when the distance d is smaller than 16 mm (2 mm, 4 mm, 6 mm, 8 mm, 12 mm), the feeding side coil 7 and the receiving side coil 9 are critically coupled by adjusting Cp. Have different values. As a result, a transmission efficiency of 95% or more is obtained in a wide range of d = 2 mm to 16 mm. However, the transmission efficiency slightly decreases as the inter-coil distance d increases.

本発明の具体的な設計手順としては、まず、給電側コイル7及び受電側コイル9間の最大距離d_maxを設定する(図2の場合はd_max=16mm)。このd_maxにおける臨界結合の場合の共振周波数foを求める(図2の場合は、fo=5MHz)。d<d_max(過結合)においては、給電側バラクタ8及び受電側バラクタ11の容量値Cpの調整により、給電側コイル7及び受電側コイル9が常に臨界結合となるように、すなわち伝送効率が最大値になるように調整する。コイル間距離dの変化に応じて変化する臨界結合時の共振周波数を得るために用いた給電側バラクタ8及び受電側バラクタ11の容量値Cpは、表1の通りである。   As a specific design procedure of the present invention, first, the maximum distance d_max between the power feeding side coil 7 and the power receiving side coil 9 is set (d_max = 16 mm in the case of FIG. 2). The resonance frequency fo in the case of critical coupling at d_max is obtained (in the case of FIG. 2, fo = 5 MHz). In d <d_max (overcoupling), adjustment of the capacitance value Cp of the power supply side varactor 8 and the power reception side varactor 11 ensures that the power supply side coil 7 and the power reception side coil 9 are always critically coupled, that is, the transmission efficiency is maximized. Adjust to a value. Table 1 shows the capacitance values Cp of the power supply side varactor 8 and the power reception side varactor 11 used to obtain the resonance frequency at the critical coupling that changes in accordance with the change in the inter-coil distance d.

Figure 0005859864
Figure 0005859864

次に、上述した給電システム1の動作について説明する。まず、制御部14は、距離測定部13により求められたコイル間距離dを取り込む。例えば、制御部14には、図示しないメモリ内に表1に示すようなコイル間距離dと給電側バラクタ8の容量値Cpとの関係を示すテーブルが予め記憶されている。制御部14は、そのテーブルから取り込んだコイル間距離dに対応する給電側バラクタ8の容量値Cpを読み込んで、給電側バラクタ8の容量値Cpがその読み込んだ値になるように可変電圧源12を制御する。   Next, the operation of the above-described power feeding system 1 will be described. First, the control unit 14 takes in the inter-coil distance d obtained by the distance measurement unit 13. For example, the control unit 14 stores in advance a table indicating the relationship between the inter-coil distance d and the capacitance value Cp of the power supply varactor 8 as shown in Table 1 in a memory (not shown). The control unit 14 reads the capacitance value Cp of the power supply varactor 8 corresponding to the inter-coil distance d fetched from the table, and the variable voltage source 12 so that the capacitance value Cp of the power supply varactor 8 becomes the read value. To control.

さらに、制御部14は、高周波電力伝送時に高周波に、距離測定部13によって求められたコイル間距離dの情報により変調されたAM、FM、PMあるいはASK、FSK、PSK等の変調信号を多重し、多重化信号として高周波電力信号を給電部3から受電部5へ送信する。制御部16は、受電部5で受電した多重化高周波電力信号から変調信号を復調してコイル間距離dの情報を取り込む。制御部16には、図示しないメモリ内に表1に示すようなコイル間距離dと受電側バラクタ11の容量値Cpとの関係を示すテーブルが記載されている。制御部16は、そのテーブルから取り込んだコイル間距離dに対応する受電側バラクタ11の容量値Cpを読み込んで、受電側バラクタ11の容量値Cpがその読み込んだ値となるように可変電圧源15を制御する。   Further, the control unit 14 multiplexes a modulation signal such as AM, FM, PM or ASK, FSK, PSK, etc., modulated by the information of the inter-coil distance d obtained by the distance measurement unit 13 at high frequency during high frequency power transmission. Then, a high frequency power signal is transmitted from the power feeding unit 3 to the power receiving unit 5 as a multiplexed signal. The control unit 16 demodulates the modulation signal from the multiplexed high-frequency power signal received by the power receiving unit 5 and captures information on the inter-coil distance d. The control unit 16 includes a table indicating the relationship between the inter-coil distance d and the capacitance value Cp of the power receiving varactor 11 as shown in Table 1 in a memory (not shown). The control unit 16 reads the capacitance value Cp of the power receiving varactor 11 corresponding to the inter-coil distance d fetched from the table, and the variable voltage source 15 so that the capacitance value Cp of the power receiving varactor 11 becomes the read value. To control.

以上のような制御により、給電側コイル7及び受電側コイル9のコイル間距離が所定の値から変動しても、給電側コイル7及び給電側バラクタ8で構成される共振回路と受電側コイル9及び受電側バラクタ11で構成される共振回路の共振周波数は、常に臨界結合時の共振周波数になるので、インピーダンス整合が最適化され、伝送効率がほぼ95%以上の高効率に維持される。   By the control as described above, even if the inter-coil distance between the power supply side coil 7 and the power reception side coil 9 fluctuates from a predetermined value, the resonance circuit constituted by the power supply side coil 7 and the power supply side varactor 8 and the power reception side coil 9. Since the resonance frequency of the resonance circuit constituted by the power receiving side varactor 11 is always the resonance frequency at the critical coupling, the impedance matching is optimized and the transmission efficiency is maintained at a high efficiency of approximately 95% or more.

上述の非接触電力伝送システム1によれば、給電側コイル7及び受電側コイル9に、容量値Cpが可変の給電側バラクタ8及び受電側バラクタ11をそれぞれ並列に接続した。給電側バラクタ8及び受電側バラクタ11の容量値Cpを変えると伝送効率が変動するため、給電側コイル7及び受電側コイル9のコイル間距離dの変動に応じて給電側バラクタ8及び受電側バラクタ11の容量値Cpを変えることにより、給電側コイル7及び受電側コイル9のコイル間距離dが変動しても常に臨界結合となるように制御することで、高い伝送効率で電力を非接触で供給することができる。   According to the non-contact power transmission system 1 described above, the power feeding side varactor 8 and the power receiving side varactor 11 having a variable capacitance value Cp are connected in parallel to the power feeding side coil 7 and the power receiving side coil 9, respectively. When the capacitance value Cp of the power supply side varactor 8 and the power reception side varactor 11 is changed, the transmission efficiency varies. Therefore, the power supply side varactor 8 and the power reception side varactor are changed according to the change in the inter-coil distance d between the power supply side coil 7 and the power reception side coil 9. 11 by changing the capacitance value Cp of 11 so that the critical coupling is always maintained even if the inter-coil distance d of the power supply side coil 7 and the power reception side coil 9 is changed, so that power can be contacted with high transmission efficiency without contact. Can be supplied.

図3は、上述の本発明と従来技術とを、横軸を伝送距離(コイル間距離)d、縦軸を伝送効率とするグラフで比較した特性図である。従来技術(共振周波数=2.8MHZ)では、d=4mmで最大の伝送効率が得られるが、その他の距離では伝送効率が低下する。本発明では、伝送距離(コイル間距離)dの変動に対して、給電側コイル7及び受電側コイル9の結合を常に臨界結合になるように制御することにより、伝送効率はほとんど変動せずに高効率を保っている。   FIG. 3 is a characteristic diagram comparing the above-described present invention and the prior art with a graph in which the horizontal axis represents the transmission distance (distance between coils) d and the vertical axis represents the transmission efficiency. In the conventional technique (resonance frequency = 2.8 MHz), the maximum transmission efficiency can be obtained at d = 4 mm, but the transmission efficiency decreases at other distances. In the present invention, the transmission efficiency is hardly changed by controlling the coupling of the power supply side coil 7 and the power reception side coil 9 to be always the critical coupling with respect to the fluctuation of the transmission distance (distance between coils) d. High efficiency is maintained.

キャパシタの容量値Cpの変化は、バラクタを用いれば電気的に実現可能であるため、有効な制御系と組み合わせれば、本発明によりコイル間距離の変動に対してリアルタイムに追従することも可能である。また、本発明の範囲は、キャパシタの容量値の可変による距離ずれ対策であり、バラクタだけでなく、バリコン等の機械的な可変キャパシタや、並列接続した複数のキャパシタの中から選択的にスイッチで選ぶことなどによっても実現可能である。   The change of the capacitance value Cp of the capacitor can be electrically realized by using a varactor. Therefore, when combined with an effective control system, the present invention can also follow the fluctuation of the distance between coils in real time. is there. In addition, the scope of the present invention is a measure against distance deviation by changing the capacitance value of the capacitor, and not only a varactor but also a mechanical variable capacitor such as a variable capacitor or a plurality of capacitors connected in parallel can be selectively switched. It can also be realized by making choices.

本発明においては、フィードバック制御等を用いることで、細かいコイル間距離変動(例えば、ドアの開閉、自動車のサスペンションの上下による距離変動、乗員・荷物の多寡による距離変動など)へのきめ細かい対応が可能となる。   In the present invention, by using feedback control and the like, it is possible to cope with fine fluctuations in the distance between coils (for example, opening and closing of doors, distance fluctuation due to up and down of automobile suspension, distance fluctuation due to large number of passengers and luggage, etc.) It becomes.

(第2の実施形態)図4は、本発明に係る非接触電力伝送システムの第2の実施形態の概略構成を示す構成図である。なお、図8に示す従来例及び図1に示す第1の実施形態と同一の構成要素は、同一符号を付して説明する。   (Second Embodiment) FIG. 4 is a block diagram showing a schematic configuration of a second embodiment of the non-contact power transmission system according to the present invention. The same components as those of the conventional example shown in FIG. 8 and the first embodiment shown in FIG.

図4に示す非接触電力伝送システム1は、給電部3、受電部5、可変電圧源12、制御部14、可変電圧源15及び制御部16を備えている点は図1の構成と同じであるが、図1において固定体2側に設けられていた距離測定部13に代える距離測定部17が自動車4側に設けられていることと、固定体2側及び自動車4側に、それぞれ、通信部18及び通信部19が追加されていることが異なっている。   The non-contact power transmission system 1 shown in FIG. 4 is the same as the configuration of FIG. 1 in that it includes a power feeding unit 3, a power receiving unit 5, a variable voltage source 12, a control unit 14, a variable voltage source 15 and a control unit 16. However, in FIG. 1, a distance measuring unit 17 that replaces the distance measuring unit 13 provided on the fixed body 2 side is provided on the automobile 4 side, and communication is performed on the fixed body 2 side and the automobile 4 side, respectively. The difference is that a unit 18 and a communication unit 19 are added.

距離測定部17は、コイル間距離が変動する給電側コイル7と受電側コイル9の間に、何らかの可動部がある場合に有効な機械的測定法によるコイル間距離の測定を行う。   The distance measuring unit 17 measures the inter-coil distance by a mechanical measurement method that is effective when there is some movable part between the power feeding side coil 7 and the power receiving side coil 9 where the inter-coil distance varies.

図5は、コイル間距離の機械的測定法の一例を示す模式図である。図5では、自動車4における乗員数・搭載荷物量の多寡によるサスペンション43の上下動によるサスペンションの両端部の距離d1の変動を距離測定部17で機械的に測定し、測定結果を電気信号に変換し、この電気信号からコイル間距離dを求める。機械的測定のための測定装置は、例えば、レーザーを用いたものやラック&ピニオン歯車で回転数をカウントするもの等の機械的な位置センサを用いることができる。制御部16には、図示しないメモリ内に、乗員・荷物なしの場合の固定体2上の給電部3と自動車4内の給電部5におけるコイル間距離dが、上記距離d1の変動により変化した場合の、表1に示すような、コイル間距離dとそれに対応する受電側バラクタ11の容量値Cpとの関係を示すテーブルが予め記憶されている。   FIG. 5 is a schematic diagram illustrating an example of a mechanical measurement method for the distance between the coils. In FIG. 5, the distance measurement unit 17 mechanically measures the fluctuation of the distance d1 at both ends of the suspension due to the vertical movement of the suspension 43 due to the number of passengers and the amount of loaded luggage in the automobile 4, and converts the measurement result into an electrical signal. Then, the inter-coil distance d is obtained from this electrical signal. As a measuring device for mechanical measurement, for example, a mechanical position sensor such as a device using a laser or a device that counts the number of rotations with a rack and pinion gear can be used. In the control unit 16, the distance d between the coils in the power feeding unit 3 on the stationary body 2 and the power feeding unit 5 in the automobile 4 in the memory (not shown) is changed due to the fluctuation of the distance d <b> 1. In this case, a table indicating the relationship between the inter-coil distance d and the corresponding capacitance value Cp of the power receiving varactor 11 is stored in advance as shown in Table 1.

制御部16は、上記テーブルから取り込んだコイル間距離dに対応する受電側バラクタ11の容量値Cpを読み込んで、受電側バラクタ11の容量値Cpがその読み込んだ値になるように可変電圧源15を制御すると共に、通信部19を介して、固定体2側の通信部18へ距離d1の情報を通信する。   The control unit 16 reads the capacitance value Cp of the power receiving varactor 11 corresponding to the inter-coil distance d fetched from the table, and the variable voltage source 15 so that the capacitance value Cp of the power receiving varactor 11 becomes the read value. And information on the distance d1 is communicated to the communication unit 18 on the fixed body 2 side via the communication unit 19.

固定体2側の制御部14は、通信部18を介して距離d1の情報を受信する。制御部14には、図示しないメモリ内に、乗員・荷物なしの場合の固定体2上の給電部3と自動車4内の給電部3におけるコイル間距離dが、上記距離d1の変動により変化した場合の、表1に示すような、コイル間距離dとそれに対応する給電側バラクタ9の容量値Cpとの関係を示すテーブルが予め記憶されている。制御部16は、上記テーブルから取り込んだコイル間距離dに対応する給電側バラクタ9の容量値Cpを読み込んで、給電側バラクタ9の容量値Cpがその読み込んだ値になるように可変電圧源12を制御する。   The control unit 14 on the fixed body 2 side receives information on the distance d1 via the communication unit 18. In the control unit 14, the distance d between the coils in the power feeding unit 3 on the stationary body 2 and the power feeding unit 3 in the automobile 4 in the memory (not shown) is changed due to the fluctuation of the distance d <b> 1. In this case, a table indicating the relationship between the inter-coil distance d and the corresponding capacitance value Cp of the power supply side varactor 9 as shown in Table 1 is stored in advance. The control unit 16 reads the capacitance value Cp of the power supply varactor 9 corresponding to the inter-coil distance d taken from the table, and the variable voltage source 12 so that the capacitance value Cp of the power supply varactor 9 becomes the read value. To control.

以上のような制御により、給電側コイル7及び受電側コイル9のコイル間距離が変動しても、給電側コイル7及び給電側バラクタ8で構成される共振回路と受電側コイル9及び受電側バラクタ11で構成される共振回路の共振周波数は、常に臨界結合時の共振周波数になるので、インピーダンス整合が最適化され、伝送効率が高効率に維持される。また、サスペンションの変動を機械的に測定することにより、コイル間距離dの変動を検出できるため、コイル間距離(伝送距離)の測定が簡易かつ精確にできる。   By the control as described above, even if the inter-coil distance between the power feeding side coil 7 and the power receiving side coil 9 varies, the resonance circuit constituted by the power feeding side coil 7 and the power feeding side varactor 8, the power receiving side coil 9 and the power receiving side varactor. Since the resonance frequency of the resonance circuit constituted by 11 is always the resonance frequency at the critical coupling, the impedance matching is optimized and the transmission efficiency is maintained at a high efficiency. Further, since the fluctuation of the inter-coil distance d can be detected by measuring the suspension fluctuation mechanically, the inter-coil distance (transmission distance) can be measured easily and accurately.

図6は、コイル間距離の機械的測定法の他の例を示す模式図である。図6では、非接触電力伝送システム全体が移動体としての自動車4に設置された例を示し、給電部3を含む給電系(可変電圧源12、制御部14、通信部18等)が自動車4の固定部である車体41(例えば、ピラー部)に配置され、受電部5を含む受電系(可変電圧源15、制御部16、通信部19等)が自動車4の可動部であるドア42に配置されている。ドア42には、図示しないパワーウインドウ駆動装置が組み込まれており、このパワーウインドウ駆動装置へ非接触電力伝送が行われる。この例では、自動車のドア42の開閉によるドア開閉角度θの変動を機械的に測定し、測定結果を電気信号に変換し、この電気信号からコイル間距離dを求める。機械的測定のための測定装置は、例えば、レーザーを用いたもの等の機械的な角度センサを用いることができる。制御部16には、図示しないメモリ内に、ドア閉時の給電部3と受電部5におけるコイル間距離dが、上記ドア開閉角度θの変動により変化した場合の、表1に示すような、コイル間距離dとそれに対応する受電側バラクタ11の容量値Cpとの関係を示すテーブルが予め記憶されている。   FIG. 6 is a schematic diagram illustrating another example of a mechanical measurement method for the distance between coils. FIG. 6 shows an example in which the entire non-contact power transmission system is installed in a vehicle 4 as a moving body, and the power supply system (the variable voltage source 12, the control unit 14, the communication unit 18 and the like) including the power supply unit 3 is the vehicle 4. The power receiving system (the variable voltage source 15, the control unit 16, the communication unit 19, etc.) including the power receiving unit 5 is disposed on the door 42 that is the movable unit of the automobile 4. Has been placed. The door 42 incorporates a power window driving device (not shown), and non-contact power transmission is performed to the power window driving device. In this example, the fluctuation of the door opening / closing angle θ due to the opening / closing of the door 42 of the automobile is mechanically measured, the measurement result is converted into an electric signal, and the inter-coil distance d is obtained from this electric signal. As a measuring device for mechanical measurement, for example, a mechanical angle sensor such as one using a laser can be used. In the control unit 16, in a memory (not shown), the distance d between the coils in the power feeding unit 3 and the power receiving unit 5 when the door is closed changes as shown in Table 1 when the door opening / closing angle θ changes. A table indicating the relationship between the inter-coil distance d and the corresponding capacitance value Cp of the power receiving varactor 11 is stored in advance.

制御部16は、上記テーブルから取り込んだコイル間距離dに対応する受電側バラクタ11の容量値Cpを読み込んで、受電側バラクタ11の容量値Cpがその読み込んだ値になるように可変電圧源15を制御すると共に、通信部19を介して、固定体2側の通信部18へドア開閉角度θの情報を通信する。   The control unit 16 reads the capacitance value Cp of the power receiving varactor 11 corresponding to the inter-coil distance d fetched from the table, and the variable voltage source 15 so that the capacitance value Cp of the power receiving varactor 11 becomes the read value. And information on the door opening / closing angle θ is communicated to the communication unit 18 on the fixed body 2 side via the communication unit 19.

固定体2側の制御部14は、通信部18を介してドア開閉角度θの情報を受信する。制御部14には、図示しないメモリ内に、給電部3と受電部5におけるコイル間距離dが、上記ドア開閉角度θの変動により変化した場合の、表1に示すような、コイル間距離dとそれに対応する給電側バラクタ9の容量値Cpとの関係を示すテーブルが予め記憶されている。制御部16は、上記テーブルから取り込んだコイル間距離dに対応する給電側バラクタ9の容量値Cpを読み込んで、給電側バラクタ9の容量値Cpがその読み込んだ値になるように可変電圧源12を制御する。   The control unit 14 on the fixed body 2 side receives information on the door opening / closing angle θ via the communication unit 18. In the control unit 14, the inter-coil distance d as shown in Table 1 when the inter-coil distance d in the power feeding unit 3 and the power receiving unit 5 is changed by the change in the door opening / closing angle θ in a memory (not shown). And a table indicating the relationship between the power supply side varactor 9 and the capacitance value Cp corresponding thereto. The control unit 16 reads the capacitance value Cp of the power supply varactor 9 corresponding to the inter-coil distance d taken from the table, and the variable voltage source 12 so that the capacitance value Cp of the power supply varactor 9 becomes the read value. To control.

以上のような制御により、給電側コイル7及び受電側コイル9のコイル間距離が変動しても、給電側コイル7及び給電側バラクタ8で構成される共振回路と受電側コイル9及び受電側バラクタ11で構成される共振回路の共振周波数は、常に臨界結合時の共振周波数になるので、インピーダンス整合が最適化され、伝送効率が高効率に維持される。また、ドア開閉角度の変動を機械的に測定することにより、コイル間距離dの変動を検出できるため、コイル間距離(伝送距離)の測定が簡易かつ精確にできる。特に、ドア開閉角度が小さい場合には、ドア開閉角度θ[rad.]からコイル間距離dへの変換は容易であり、図中に示すd=rθ(rはドア開閉の半径)で近似できる。ドア開閉角度θが大きくなると、横ずれ・角度ずれも含めた補正が必要となるが、計算そのものは幾何学的に可能である。   By the control as described above, even if the inter-coil distance between the power feeding side coil 7 and the power receiving side coil 9 varies, the resonance circuit constituted by the power feeding side coil 7 and the power feeding side varactor 8, the power receiving side coil 9 and the power receiving side varactor. Since the resonance frequency of the resonance circuit constituted by 11 is always the resonance frequency at the critical coupling, the impedance matching is optimized and the transmission efficiency is maintained at a high efficiency. Further, since the fluctuation of the inter-coil distance d can be detected by mechanically measuring the fluctuation of the door opening / closing angle, the inter-coil distance (transmission distance) can be easily and accurately measured. In particular, when the door opening / closing angle is small, the door opening / closing angle θ [rad. ] To the inter-coil distance d is easy and can be approximated by d = rθ (r is the radius of door opening and closing) shown in the figure. When the door opening / closing angle θ increases, correction including lateral deviation and angular deviation is required, but the calculation itself is geometrically possible.

図7は、コイル間距離の機械的測定法のさらに他の例を示す模式図である。図7では、図6と同様に、非接触電力伝送システム全体が移動体としての自動車4に設置されており、給電部3を含む給電系(可変電圧源12、制御部14、通信部18等)が、自動車4の車体44上の固定されたスライドシート用レール45上に立設された固定部45bに配置され、受電部5を含む受電系(可変電圧源15、制御部16、通信部19等)が、スライドシート用レール45上をスライドするスライドシート46の脚部46bに配置されている。スライドシート46には、図示しないパワーシート駆動装置が組み込まれており、このパワーシート駆動装置へ非接触電力伝送が行われる。この例では、スライドシート46のスライドによる、レール先端部45aとスライドシート46の前端部46a間の距離である変位量d2の変動を機械的に測定し、測定結果を電気信号に変換し、この電気信号からコイル間距離dを求める。機械的測定のための測定器具は、例えば、レーザーを用いたものやラック&ピニオン歯車で回転数をカウントするもの等の機械的な位置センサを用いることができる。制御部16には、図示しないメモリ内に、スライドシート基準位置における給電部3と受電部5におけるコイル間距離dが、上記変位量d2の変動により変化した場合の、表1に示すような、コイル間距離dとそれに対応する受電側バラクタ11の容量値Cpとの関係を示すテーブルが予め記憶されている。   FIG. 7 is a schematic diagram showing still another example of the mechanical measurement method of the inter-coil distance. In FIG. 7, as in FIG. 6, the entire non-contact power transmission system is installed in the automobile 4 as a moving body, and a power feeding system including the power feeding unit 3 (variable voltage source 12, control unit 14, communication unit 18, etc. ) Is disposed in a fixed portion 45b erected on a fixed slide seat rail 45 on the vehicle body 44 of the automobile 4, and includes a power receiving unit 5 (a variable voltage source 15, a control unit 16, a communication unit). 19 etc.) is arranged on the leg part 46b of the slide seat 46 that slides on the slide seat rail 45. A power sheet driving device (not shown) is incorporated in the slide sheet 46, and non-contact power transmission is performed to the power sheet driving device. In this example, the variation of the displacement amount d2 which is the distance between the rail front end portion 45a and the front end portion 46a of the slide seat 46 due to the slide of the slide seat 46 is mechanically measured, and the measurement result is converted into an electrical signal. The inter-coil distance d is obtained from the electrical signal. As a measuring instrument for mechanical measurement, for example, a mechanical position sensor such as one using a laser or one that counts the number of rotations with a rack and pinion gear can be used. In the control unit 16, in a memory (not shown), as shown in Table 1, when the inter-coil distance d in the power feeding unit 3 and the power receiving unit 5 at the slide sheet reference position is changed due to the variation of the displacement d2. A table indicating the relationship between the inter-coil distance d and the corresponding capacitance value Cp of the power receiving varactor 11 is stored in advance.

制御部16は、上記テーブルから取り込んだコイル間距離dに対応する受電側バラクタ11の容量値Cpを読み込んで、受電側バラクタ11の容量値Cpがその読み込んだ値になるように可変電圧源15を制御すると共に、通信部19を介して、固定体2側の通信部18へ変位量d2の情報を通信する。   The control unit 16 reads the capacitance value Cp of the power receiving varactor 11 corresponding to the inter-coil distance d fetched from the table, and the variable voltage source 15 so that the capacitance value Cp of the power receiving varactor 11 becomes the read value. And information on the displacement d2 is communicated to the communication unit 18 on the fixed body 2 side via the communication unit 19.

固定体2側の制御部14は、通信部18を介して変位量d2の情報を受信する。制御部14には、図示しないメモリ内に、固定体2上の給電部3と自動車4内の給電部3におけるコイル間距離dが、レール先端部45aとスライドシート46の前端部46a間の距離である変位量d2により変化した場合の、表1に示すような、コイル間距離dとそれに対応する給電側バラクタ9の容量値Cpとの関係を示すテーブルが予め記憶されている。制御部16は、上記テーブルから取り込んだコイル間距離dに対応する給電側バラクタ9の容量値Cpを読み込んで、給電側バラクタ9の容量値Cpがその読み込んだ値になるように可変電圧源12を制御する。   The control unit 14 on the fixed body 2 side receives information on the displacement amount d2 via the communication unit 18. In the control unit 14, a distance d between the coils in the power feeding unit 3 on the fixed body 2 and the power feeding unit 3 in the automobile 4 is stored in a memory (not shown), and the distance between the rail front end 45 a and the front end 46 a of the slide seat 46. A table indicating the relationship between the inter-coil distance d and the corresponding capacitance value Cp of the power feeding side varactor 9 as shown in Table 1 when it is changed by the displacement amount d2 is stored in advance. The control unit 16 reads the capacitance value Cp of the power supply varactor 9 corresponding to the inter-coil distance d taken from the table, and the variable voltage source 12 so that the capacitance value Cp of the power supply varactor 9 becomes the read value. To control.

以上のような制御により、給電側コイル7及び受電側コイル9のコイル間距離が変動しても、給電側コイル7及び給電側バラクタ8で構成される共振回路と受電側コイル9及び受電側バラクタ11で構成される共振回路の共振周波数は、常に臨界結合時の共振周波数になるので、インピーダンス整合が最適化され、伝送効率が高効率に維持される。また、スライドシートの位置変化を機械的に測定することにより、コイル間距離dの変動を検出できるため、コイル間距離(伝送距離)の測定が簡易かつ精確にできる。   By the control as described above, even if the inter-coil distance between the power feeding side coil 7 and the power receiving side coil 9 varies, the resonance circuit constituted by the power feeding side coil 7 and the power feeding side varactor 8, the power receiving side coil 9 and the power receiving side varactor. Since the resonance frequency of the resonance circuit constituted by 11 is always the resonance frequency at the critical coupling, the impedance matching is optimized and the transmission efficiency is maintained at a high efficiency. Further, since the change in the inter-coil distance d can be detected by mechanically measuring the change in the position of the slide sheet, the inter-coil distance (transmission distance) can be measured easily and accurately.

以上の通り、本発明の実施形態について説明したが、本発明はこれに限らず、種々の変形、応用が可能である。かかる変形、応用によってもなお本考案の構成を具備する限り、勿論、本考案の範疇に含まれるものである。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation and application are possible. Of course, such modifications and applications are included in the scope of the present invention as long as the configuration of the present invention is provided.

例えば、上述の第1の実施形態では、距離測定部13が測定したコイル間距離dの情報を自動車4側へ送信していたが、本発明はこれに限ったものではない。例えば、上記コイル間距離dに応じた給電側バラクタ8の容量Cの情報を送信するようにしてもよい。   For example, in the first embodiment described above, the information on the inter-coil distance d measured by the distance measuring unit 13 is transmitted to the automobile 4 side, but the present invention is not limited to this. For example, you may make it transmit the information of the capacity | capacitance C of the electric power feeding side varactor 8 according to the said distance d between coils.

また、上述した第1の実施形態では、電力伝送時に距離情報を高周波電力信号に多重して受電部に送信しているが、これに代えて、電力伝送の高周波とは別の周波数で通信して、距離情報をやりとりすることもできる。   In the first embodiment described above, the distance information is multiplexed with the high frequency power signal and transmitted to the power receiving unit during power transmission. Instead, communication is performed at a frequency different from the high frequency of power transmission. It is also possible to exchange distance information.

また、上述した実施形態では、給電側コイル7及び受電側コイル9のコイル間距離が変動しても、給電側コイル7及び給電側バラクタ8で構成される共振回路と受電側コイル9及び受電側バラクタ11で構成される共振回路の共振周波数が常に臨界結合時の共振周波数になるように制御しているが、コイル間距離に応じて臨界結合時の共振周波数が変わるため、それに追従して、給電する高周波電力の周波数も、コイル間距離に応じた臨界結合時の共振周波数と一致させるように制御してもよい。   In the above-described embodiment, even if the inter-coil distance between the power feeding side coil 7 and the power receiving side coil 9 fluctuates, the resonance circuit including the power feeding side coil 7 and the power feeding side varactor 8, the power receiving side coil 9 and the power receiving side. Although the resonance frequency of the resonance circuit composed of the varactor 11 is controlled so as to always be the resonance frequency at the critical coupling, the resonance frequency at the critical coupling changes according to the distance between the coils. The frequency of the high-frequency power to be fed may be controlled so as to coincide with the resonance frequency at the critical coupling according to the distance between the coils.

また、上述した実施形態では、給電側コイル7及び受電側コイル9に、それぞれ並列に給電側バラクタ8、受電側バラクタ11を接続していたが、本発明はこれに限ったものではない。例えば、受電側バラクタ11を無くして、給電側コイル7のみに並列に給電側バラクタ8を設けて、この給電側バラクタ8の容量を調整するようにしてもよい。また、給電側バラクタ8を無くして、受電側コイル9のみに並列に受電側バラクタ11を設けて、この受電側バラクタ11の容量を調整するようにしてもよい。   In the above-described embodiment, the power feeding side varactor 8 and the power receiving side varactor 11 are connected in parallel to the power feeding side coil 7 and the power receiving side coil 9, respectively, but the present invention is not limited to this. For example, the power receiving side varactor 11 may be eliminated, the power feeding side varactor 8 may be provided in parallel only to the power feeding side coil 7, and the capacity of the power feeding side varactor 8 may be adjusted. Alternatively, the power receiving side varactor 8 may be eliminated, and the power receiving side varactor 11 may be provided in parallel only to the power receiving side coil 9 to adjust the capacity of the power receiving side varactor 11.

また、上述した第2の実施形態における図6及び図7の機械的測定法は、第1の実施形態でも実施可能である。この場合は、給電部3を含む給電系(可変電圧源12、距離測定部13、制御部14等)が、自動車4の固定部に配置され、受電部5を含む受電系(可変電圧源15、制御部16等)が自動車4の可動部に配置される。   Moreover, the mechanical measurement method of FIG.6 and FIG.7 in 2nd Embodiment mentioned above can be implemented also in 1st Embodiment. In this case, a power feeding system including the power feeding unit 3 (variable voltage source 12, distance measuring unit 13, control unit 14 and the like) is disposed in a fixed part of the automobile 4, and a power receiving system including the power receiving unit 5 (variable voltage source 15). , The control unit 16 and the like) are arranged on the movable part of the automobile 4.

また、他の実施形態として、各々のポートにおいてターゲット周波数の反射損をモニタして、反射損を最小にするような制御も可能である。   As another embodiment, it is possible to control the reflection loss at the target frequency at each port to minimize the reflection loss.

3 給電部(給電手段)
5 受電部(受電手段)
7 給電側コイル
8 給電側バラクタ(キャパシタ)
9 受電側コイル
11 受電側バラクタ(キャパシタ)
12 可変電圧源(調整手段の一部)
13 距離測定部(距離測定手段)
14 制御部(調整手段の一部)
15 可変電圧源(調整手段の一部)
16 制御部(調整手段の一部)
17 距離測定部(距離測定手段)
41 車体
42 ドア
43 サスペンション
45 スライドシート用レール
46 スライドシート
3 Power supply unit (power supply means)
5 Power receiving unit (power receiving means)
7 Feeding side coil 8 Feeding side varactor (capacitor)
9 Receiving side coil 11 Receiving side varactor (capacitor)
12 Variable voltage source (part of adjustment means)
13 Distance measuring unit (distance measuring means)
14 Control unit (part of adjusting means)
15 Variable voltage source (part of adjustment means)
16 Control part (part of adjustment means)
17 Distance measuring unit (distance measuring means)
41 Car body 42 Door 43 Suspension 45 Slide seat rail 46 Slide seat

Claims (2)

電力が供給される給電側コイルが設けられた給電手段と、前記給電側コイルと電磁誘導結合する受電側コイルが設けられた受電手段と、を備えた非接触電力伝送システムにおいて、
前記給電側コイル及び前記受電側コイルの少なくとも一方に並列に接続されて共振回路を構成するとともに容量値が可変に設けられたキャパシタと、
前記給電側コイル及び前記受電側コイルのコイル間距離を測定する距離測定手段と、
前記距離測定手段により測定したコイル間距離に応じて前記キャパシタの容量値を調整する調整手段と、を備え、
前記調整手段は、前記キャパシタの容量値を、前記コイル間距離の変動に関わらず、前記給電側コイル及び前記受電側コイルが常に臨界結合となるように調整し、
前記距離測定手段は、前記コイル間距離を機械的に測定する手段であり、
前記給電手段は移動体の固定部に配置され、
前記受電手段は移動体の可動部に配置されており、
前記給電手段は自動車の車体側に設けられ、
前記受電手段は自動車のドア側に設けられ、
前記距離測定手段は、自動車側に設けられ、前記ドアのドア開閉角度を測定し、前記ドア開閉角度に基づいて前記コイル間距離を求める
ことを特徴とする非接触電力伝送システム。
In a non-contact power transmission system comprising: a power supply unit provided with a power supply side coil to which power is supplied; and a power reception unit provided with a power reception side coil electromagnetically coupled to the power supply side coil.
A capacitor which is connected in parallel to at least one of the power supply side coil and the power reception side coil to form a resonance circuit and whose capacitance value is variably provided;
Distance measuring means for measuring a distance between the coils of the power feeding side coil and the power receiving side coil;
Adjusting means for adjusting the capacitance value of the capacitor according to the distance between the coils measured by the distance measuring means,
The adjustment means adjusts the capacitance value of the capacitor so that the power supply side coil and the power reception side coil are always in a critical coupling regardless of the fluctuation of the distance between the coils ,
The distance measuring means is a means for mechanically measuring the distance between the coils,
The power supply means is disposed in a fixed part of the moving body,
The power receiving means is disposed on a movable part of a moving body,
The power feeding means is provided on the vehicle body side of the automobile,
The power receiving means is provided on the door side of the automobile,
The distance measuring means is provided on the automobile side, measures the door opening / closing angle of the door, and obtains the distance between the coils based on the door opening / closing angle.
A non-contact power transmission system characterized by that.
電力が供給される給電側コイルが設けられた給電手段と、前記給電側コイルと電磁誘導結合する受電側コイルが設けられた受電手段と、を備えた非接触電力伝送システムにおいて、
前記給電側コイル及び前記受電側コイルの少なくとも一方に並列に接続されて共振回路を構成するとともに容量値が可変に設けられたキャパシタと、
前記給電側コイル及び前記受電側コイルのコイル間距離を測定する距離測定手段と、
前記距離測定手段により測定したコイル間距離に応じて前記キャパシタの容量値を調整する調整手段と、を備え、
前記調整手段は、前記キャパシタの容量値を、前記コイル間距離の変動に関わらず、前記給電側コイル及び前記受電側コイルが常に臨界結合となるように調整し、
前記距離測定手段は、前記コイル間距離を機械的に測定する手段であり、
前記給電手段は移動体の固定部に配置され、
前記受電手段は移動体の可動部に配置されており、
前記給電手段は自動車のスライドシート用レールに設けられ、
前記受電手段は前記スライドシートに設けられ、
前記距離測定手段は、前記スライドシートの変位量を測定し、前記変位量に基づいて前記コイル間距離を求める
ことを特徴とする非接触電力伝送システム。
In a non-contact power transmission system comprising: a power supply unit provided with a power supply side coil to which power is supplied; and a power reception unit provided with a power reception side coil electromagnetically coupled to the power supply side coil.
A capacitor which is connected in parallel to at least one of the power supply side coil and the power reception side coil to form a resonance circuit and whose capacitance value is variably provided;
Distance measuring means for measuring a distance between the coils of the power feeding side coil and the power receiving side coil;
Adjusting means for adjusting the capacitance value of the capacitor according to the distance between the coils measured by the distance measuring means,
The adjustment means adjusts the capacitance value of the capacitor so that the power supply side coil and the power reception side coil are always in a critical coupling regardless of the fluctuation of the distance between the coils,
The distance measuring means is a means for mechanically measuring the distance between the coils,
The power supply means is disposed in a fixed part of the moving body,
The power receiving means is disposed on a movable part of a moving body,
The power supply means is provided on a rail for an automobile slide seat,
The power receiving means is provided on the slide sheet,
The distance measuring means measures a displacement amount of the slide sheet, and obtains a distance between the coils based on the displacement amount.
JP2012021977A 2012-02-03 2012-02-03 Non-contact power transmission system Active JP5859864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021977A JP5859864B2 (en) 2012-02-03 2012-02-03 Non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021977A JP5859864B2 (en) 2012-02-03 2012-02-03 Non-contact power transmission system

Publications (2)

Publication Number Publication Date
JP2013162609A JP2013162609A (en) 2013-08-19
JP5859864B2 true JP5859864B2 (en) 2016-02-16

Family

ID=49174454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021977A Active JP5859864B2 (en) 2012-02-03 2012-02-03 Non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP5859864B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518647B1 (en) * 2013-12-29 2015-05-11 현대다이모스(주) Apparatus for supplying power of sear
JP6310258B2 (en) * 2014-01-16 2018-04-11 矢崎総業株式会社 Slide sheet feeding mechanism
JP2015139229A (en) * 2014-01-20 2015-07-30 Kddi株式会社 Wireless power supply device and wireless power reception device
JP2016013042A (en) * 2014-06-30 2016-01-21 古河電気工業株式会社 Power transmission system
JP6694528B2 (en) * 2017-05-31 2020-05-13 デチャン シート カンパニー リミテッド−ドンタン Wireless power transmission device for seat
WO2018229841A1 (en) * 2017-06-12 2018-12-20 中国電力株式会社 Wireless power supply device
JP6874641B2 (en) * 2017-10-26 2021-05-19 株式会社オートネットワーク技術研究所 Power supply system
JP6969315B2 (en) 2017-11-22 2021-11-24 株式会社アイシン Wireless power transmission system
KR101997869B1 (en) * 2017-12-28 2019-07-08 주식회사 디에스시동탄 Wireless swivel device for seat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50002389D1 (en) * 1999-10-01 2003-07-03 Kiekert Ag DEVICE FOR WIRELESS DATA AND ENERGY TRANSMISSION
KR101036290B1 (en) * 2002-09-20 2011-05-23 소니 주식회사 Sold state imaging device and production method therefor
JP5365306B2 (en) * 2009-03-31 2013-12-11 富士通株式会社 Wireless power supply system
WO2011132272A1 (en) * 2010-04-21 2011-10-27 トヨタ自動車株式会社 Vehicle parking assistance device and electric vehicle equipped with same
JP5524724B2 (en) * 2010-06-08 2014-06-18 株式会社東海理化電機製作所 Vehicle power supply device

Also Published As

Publication number Publication date
JP2013162609A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5859864B2 (en) Non-contact power transmission system
WO2013115245A1 (en) Non-contact power transmitting system
JP5365306B2 (en) Wireless power supply system
US10541561B2 (en) Power feed system
US8519569B2 (en) Wireless power supply system and wireless power supply method
US9634493B2 (en) Resonant frequency control method, electric power transmitting device, electric power receiving device in magnetic resonant type power transmission system
KR101248453B1 (en) Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus
US20160233726A1 (en) Tunable wireless energy transfer systems
JP6120088B2 (en) Coil unit
US20130234530A1 (en) Wireless power transfer system and wireless power transfer method
JP2012147659A (en) Power feeding device, and non-contact power feeding system having power feeding device
EP2866328B1 (en) Non-contact power transmission device
WO2013054399A1 (en) Power transmitting apparatus, power receiving apparatus, and power transmitting system
US20130234529A1 (en) Wireless power transfer apparatus and wireless power transfer method
JP2012135117A (en) Non-contact power transmission system
US9197101B2 (en) Wireless electric power transmission apparatus
WO2013183700A1 (en) Power reception device and contactless power transmission system
US20180159376A1 (en) Wireless power transmission device
JP5767469B2 (en) Power supply system
JP2020080602A (en) Non-contact power supply system for traveling mobile
JP2012034524A (en) Wireless power transmission apparatus
US10454317B2 (en) Wireless power transmission device and wireless power transmission system for wireless power transmission without a power transmission coil change
EP2728710B1 (en) Electrical supply system
JP2015109762A (en) Device and method for non-contact power transmission
JP5991380B2 (en) Non-contact power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151217

R150 Certificate of patent or registration of utility model

Ref document number: 5859864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250