JP5856821B2 - Ascites filtration concentrator - Google Patents

Ascites filtration concentrator Download PDF

Info

Publication number
JP5856821B2
JP5856821B2 JP2011256180A JP2011256180A JP5856821B2 JP 5856821 B2 JP5856821 B2 JP 5856821B2 JP 2011256180 A JP2011256180 A JP 2011256180A JP 2011256180 A JP2011256180 A JP 2011256180A JP 5856821 B2 JP5856821 B2 JP 5856821B2
Authority
JP
Japan
Prior art keywords
ascites
filter
concentration
filtration
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011256180A
Other languages
Japanese (ja)
Other versions
JP2012125557A (en
Inventor
美和子 烏田
美和子 烏田
琢磨 岩崎
琢磨 岩崎
順子 徳永
順子 徳永
善弘 森下
善弘 森下
威 助川
威 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2011256180A priority Critical patent/JP5856821B2/en
Publication of JP2012125557A publication Critical patent/JP2012125557A/en
Application granted granted Critical
Publication of JP5856821B2 publication Critical patent/JP5856821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

本発明は、腹水を濾過濃縮する装置及び高濃度タンパク質溶液の製造方法に関する。   The present invention relates to an apparatus for filtering and concentrating ascites and a method for producing a high concentration protein solution.

従来、肝硬変などの腹水や胸水(以下、腹水と総称する)の溜まり易い患者に対して、腹水中のタンパク質を利用して患者の血中タンパク質濃度を上昇させるため、貯留部に針を刺し体外に排出した腹水を、中空糸膜などを用いた2種のフィルタにより濾過濃縮処理し、濃厚タンパク質溶液を得、これを患者に点滴する腹水濾過濃縮再静注法が行われている(例えば、特許文献1参照)。2種のフィルタの1つ目は腹水中に含まれるがん細胞、血球成分などの細胞成分を除くための濾過フィルタであり、細胞成分を通過させず、水分、タンパク質などの溶質成分は通過させるような孔径を有する膜が用いられる。一方もうひとつのフィルタは希薄なタンパク質濃度である腹水から除水し、タンパク質を濃縮するための濃縮フィルタであり、タンパク質成分はほとんど通過せず、水分、電解質などは通過させる膜が用いられる。通常、利便性の観点から、濾過器で細胞成分を濾別した腹水を濃縮器で濃縮する方法が取られ、これらを連続して行う装置が用いられる。   Conventionally, for patients who have a tendency to collect ascites or pleural effusion (hereinafter collectively referred to as ascites) such as cirrhosis, the protein in the ascites is used to increase the patient's blood protein concentration. Ascites drained into the ascites is filtered and concentrated with two types of filters using hollow fiber membranes, etc. to obtain a concentrated protein solution, and this is instilled into the patient ascites filtered concentrated re-injection method (for example, Patent Document 1). The first of the two types of filters is a filter for removing cell components such as cancer cells and blood cell components contained in ascites, and does not allow cell components to pass through, but allows solute components such as moisture and protein to pass through. A membrane having such a pore size is used. On the other hand, the other filter is a concentration filter for dehydrating ascites, which is a dilute protein concentration, and concentrating the protein. A membrane that hardly passes protein components and allows moisture, electrolytes, etc. to pass through is used. In general, from the viewpoint of convenience, a method of concentrating ascites obtained by filtering cell components with a filter with a concentrator is used, and a device that performs these continuously is used.

特開2009−297242号公報JP 2009-297242 A

患者に投与するタンパク質溶液は、投与後患者の血中タンパク質濃度を増加させる目的もあるため、ある程度高い濃度であることが必要となるが、そのために高い濃縮倍率になるよう濃縮する必要がある。処理する腹水のタンパク質濃度が濃くなると、濃縮用フィルタはタンパク質により目詰まりし、濃縮速度が低下してしまい、目標とする濃縮倍率に濃縮できない場合がある。このような場合、一旦濃縮不十分の状態でタンパク質溶液を回収し、追加で濃縮するといった非常に煩雑な工程を経る必要があり、さらに場合によっては濃縮用フィルタを新しいものと交換する必要があるため、施行者にとり、作業面、作業時間で負担のかかるものである上、経済面の不利益もある。また、患者にとってもタンパク質溶液が投与されるまでの拘束時間が長くなるという不利益がある。   The protein solution to be administered to a patient also has a purpose of increasing the blood protein concentration of the patient after administration, and therefore needs to be at a somewhat high concentration. For this purpose, it needs to be concentrated to a high concentration ratio. When the protein concentration of the ascites to be processed becomes high, the concentration filter is clogged with protein, the concentration rate is reduced, and there is a case where it cannot be concentrated to the target concentration ratio. In such a case, it is necessary to go through a very complicated process such as collecting the protein solution in an insufficiently concentrated state and then concentrating it additionally. In some cases, it is necessary to replace the concentration filter with a new one. Therefore, it is burdensome for the implementer in terms of work and time, and there is also an economic disadvantage. In addition, there is a disadvantage that the patient has a long restraint time until the protein solution is administered.

一方、腹水が貯留する患者は、大別すると肝硬変などの疾患が元で貯留する肝性腹水患者と、胃癌、卵巣癌、大腸癌などの癌が元で貯留する癌性腹水患者に分けられる。従来、本治療は主に肝性腹水患者に対して施行されることがほとんどであったが、近年、癌性腹水患者に対して本治療を実施することの治療効果が認められつつあり、癌性腹水患者に対する施行機会が増加している。しかし癌性腹水は一般的に肝性腹水よりタンパク質濃度が濃い傾向があるため、前記のような追加濃縮工程が必要な場合が頻発していた。   On the other hand, patients with ascites can be broadly divided into patients with hepatic ascites that accumulates due to diseases such as cirrhosis and those with cancer ascites that retains cancers such as stomach cancer, ovarian cancer, and colon cancer. In the past, this treatment was mostly performed mainly for patients with hepatic ascites, but in recent years, the therapeutic effect of implementing this treatment for patients with cancerous ascites has been recognized. Opportunities for patients with ascites are increasing. However, since cancerous ascites generally tends to have a higher protein concentration than hepatic ascites, the additional concentration step as described above is frequently required.

また、特許文献1には、濃縮フィルタの廃液側に設けられた吸引装置により濃縮する方法において、濃縮フィルタの下流に陰圧発生装置を設置し、堆積物の堆積を抑制する方法が開示されているが、この方法においても吸引装置の途中に設けられた圧開放ラインを開放し、濃縮器にかかる吸引圧を開放させる、施行者による対応が必要であった。   Further, Patent Document 1 discloses a method in which a negative pressure generator is installed downstream of a concentration filter to suppress accumulation of deposits in a method of concentration using a suction device provided on the waste liquid side of the concentration filter. However, even in this method, it is necessary to take action by the practitioner to open the pressure release line provided in the middle of the suction device and release the suction pressure applied to the concentrator.

本発明は、上記従来法の問題点に対し、腹水などの希薄なタンパク質溶液を濃縮し、濃厚なタンパク質溶液を得る方法において、目詰まりによる処理速度低下をきたさず、追加濃縮工程など施行者の負担なしで高いタンパク質濃度の濃厚タンパク質溶液を得る腹水濾過濃縮装置及び高濃度タンパク質溶液の製造方法を提供することにある。   The present invention is a method for concentrating a dilute protein solution such as ascites to obtain a concentrated protein solution in response to the above-mentioned problems of the conventional method. It is an object of the present invention to provide an ascites filtration and concentration device for obtaining a concentrated protein solution having a high protein concentration without burden and a method for producing a high concentration protein solution.

本発明者らは、濃縮器の目詰まりには装置に用いる濃縮フィルタの限外濾過性能が関係することを見出し、腹水を濃縮処理するのにも最適な限外濾過性能を有する濃縮用フィルタを用いた装置とすることによって濃縮速度の低下が抑えられ、またタンパク質を損失することなく高倍率にまで濃縮できることを見出し、本発明を完成するに至った。すなわち、本発明は以下に関する。   The inventors of the present invention have found that the ultrafiltration performance of the concentration filter used in the apparatus is related to the clogging of the concentrator, and a concentration filter having the optimum ultrafiltration performance for the concentration treatment of ascites. By using the apparatus used, it was found that the reduction in the concentration rate was suppressed, and that the protein could be concentrated to a high magnification without loss, and the present invention was completed. That is, the present invention relates to the following.

〔1〕
細胞成分を含む採取されたタンパク質溶液を貯留する貯留容器と、
前記貯留容器内のタンパク質溶液中に存在する前記細胞成分を分離可能な中空糸膜型の腹水濾過用フィルタと、
一端が前記貯留容器に接続され他端が前記腹水濾過用フィルタの入口に接続された第1の流路と、
限外濾過性能が85mL〜150mL/分/200mmHgであり親水性高分子が付与されたポリスルホン系中空糸膜型の腹水濃縮用フィルタと、
前記腹水濾過用フィルタの濾過側出口に接続され、他端が前記腹水濃縮用フィルタの入口に接続された第2の流路と、
前記腹水濾過用フィルタの出口に接続された第3の流路と、
前記腹水濃縮用フィルタで濃縮されたタンパク質溶液を回収する回収容器と、
一端が前記腹水濃縮用フィルタの出口に接続され、他端が前記回収容器に接続された第4の流路と、
前記腹水濃縮用フィルタの濾過側出口に接続された第5の流路と、
を備えた、腹水濾過濃縮装置。
[1]
A storage container for storing a collected protein solution containing cellular components;
A hollow fiber membrane type ascites filtration filter capable of separating the cellular components present in the protein solution in the storage container;
A first flow path having one end connected to the storage container and the other end connected to the inlet of the ascites filter;
A polysulfone-based hollow fiber membrane type ascites concentration filter having an ultrafiltration performance of 85 mL to 150 mL / min / 200 mmHg and provided with a hydrophilic polymer;
A second flow path connected to the filtration-side outlet of the ascites filter and the other end connected to the inlet of the ascites filter;
A third flow path connected to the outlet of the ascites filter,
A collection container for collecting the protein solution concentrated by the ascites filter,
A fourth flow path having one end connected to the outlet of the ascites concentration filter and the other end connected to the collection container;
A fifth flow path connected to the filtration side outlet of the ascites concentration filter;
Ascites filtration and concentration device.

〔2〕
前記貯留容器内に貯留された前記タンパク質溶液を前記第1の流路を通して前記腹水濾過用フィルタに送液し、前記細胞成分が除去された濾過済タンパク質溶液を前記腹水濾過用フィルタの濾過側出口から前記第2の流路に送出させるとともに、前記細胞成分を含む溶液を前記腹水濾過用フィルタの出口から第3の流路に排出させるステップと、
前記第2の流路に送出された前記濾過済タンパク質溶液を前記腹水濃縮用フィルタに送液し、濃縮された濃厚タンパク質溶液を前記腹水濃縮用フィルタの出口から第4の流路に送出させるとともに、水溶液を前記腹水濃縮用フィルタの濾過側出口から第5の流路に水溶液を排出させるステップと、
前記第4の流路に送出された前記濃厚タンパク質溶液を、前記回収容器に回収するステップと、を行い、
前記第1〜第5の流路のうちの少なくとも1つの流路の流量を制御する制御手段を更に備える、請求項1に記載の腹水濾過濃縮装置。
[2]
The protein solution stored in the storage container is fed to the ascites filter through the first flow path, and the filtered protein solution from which the cellular components have been removed is filtered to the ascites filter. And discharging the solution containing the cell component from the outlet of the ascites filter to the third channel, and
The filtered protein solution sent to the second flow path is sent to the ascites concentration filter, and the concentrated concentrated protein solution is sent from the outlet of the ascites concentration filter to the fourth flow path. Discharging the aqueous solution from the filtration side outlet of the ascites concentration filter to the fifth flow path;
Collecting the concentrated protein solution delivered to the fourth flow path in the collection container;
The ascites filtration concentrating device according to claim 1, further comprising control means for controlling a flow rate of at least one of the first to fifth channels.

〔3〕
前記制御手段は、前記第1の流路に設けられた送液ポンプを含む、請求項2に記載の腹水濾過濃縮装置。
[3]
The ascites filtration and concentration apparatus according to claim 2, wherein the control means includes a liquid feed pump provided in the first flow path.

〔4〕
前記腹水濾過用フィルタは、該腹水濾過用フィルタの入口における液体の落差圧が前記貯留容器と前記第1の流路との接続部における液体の落差圧よりも低くなるような位置に配置され、かつ、
前記回収容器は、該回収容器と前記第4の流路との接続部における液体の落差圧が前記腹水濃縮用フィルタの出口における液体の落差圧よりも低くなるような位置に配置された、請求項1に記載の腹水濾過濃縮装置。
[4]
The ascites filter is disposed at a position such that the drop pressure of the liquid at the inlet of the ascites filter is lower than the drop pressure of the liquid at the connection between the storage container and the first flow path. And,
The recovery container is disposed at a position such that a liquid drop pressure at a connection portion between the recovery container and the fourth flow path is lower than a liquid drop pressure at an outlet of the ascites concentration filter. Item 2. The ascites filtration concentration device according to Item 1.

〔5〕
前記腹水濃縮用フィルタは、該腹水濃縮用フィルタの入口における液体の落差圧が前記腹水濾過用フィルタの濾過側出口における液体の落差圧と等しくなるような位置に配置された、請求項4に記載の腹水濾過濃縮装置。
[5]
5. The ascites concentration filter is disposed at a position such that a drop pressure of liquid at an inlet of the ascites filter is equal to a drop pressure of liquid at a filtration side outlet of the ascites filter. Ascites filtration concentrator.

〔6〕
前記腹水濃縮用フィルタは、該腹水濃縮用フィルタの入口における液体の落差圧が前記腹水濾過用フィルタの濾過側出口における液体の落差圧よりも低くなるような位置に配置された、請求項4に記載の腹水濾過濃縮装置。
[6]
The ascites concentration filter is disposed at a position such that a drop pressure of liquid at an inlet of the ascites filter is lower than a drop pressure of liquid at a filtration side outlet of the ascites filter. The ascites filtration and concentration apparatus described.

〔7〕
前記腹水濃縮用フィルタの限外濾過性能が腹水の濃縮処理に最適なものであることから、腹水の濃縮が1回で足り、追加濃縮工程を必要としないことを特徴とする、請求項1〜6のいずれか1項に記載の腹水濾過濃縮装置。
[7]
Since the ultrafiltration performance of the ascites concentration filter is optimal for ascites concentration treatment, ascites need only be concentrated once, and no additional concentration step is required. The ascites filtration concentrating device according to any one of 6.

〔8〕
前記腹水濃縮用フィルタによる1回の濃縮で、タンパク質濃度を5倍以上に濃縮することが可能なことを特徴とする、請求項1〜7のいずれか1項に記載の腹水濾過濃縮装置。
[8]
The ascites filtration concentrating device according to any one of claims 1 to 7, wherein the concentration of the protein can be concentrated five times or more by one concentration by the ascites concentration filter.

〔9〕
前記腹水濃縮用フィルタによる1回の濃縮で、タンパク質濃度が7g/dl以上の濃厚タンパク質溶液を得られることを特徴とする、請求項1〜8のいずれか1項に記載の腹水濾過濃縮装置。
[9]
The ascites filtration and concentration apparatus according to any one of claims 1 to 8, wherein a concentrated protein solution having a protein concentration of 7 g / dl or more can be obtained by one concentration by the ascites concentration filter.

〔10〕
細胞成分を含む採取されたタンパク質溶液を貯留する貯留容器と、
前記貯留容器内のタンパク質溶液中に存在する前記細胞成分を分離可能な中空糸膜型の腹水濾過用フィルタと、
一端が前記貯留容器に接続され他端が前記腹水濾過用フィルタの入口に接続された第1の流路と、
時間当たりのタンパク質濃縮倍率が0.1倍/分以上であり親水性高分子が付与されたポリスルホン系中空糸膜型の腹水濃縮用フィルタと、
前記腹水濾過用フィルタの濾過側出口に接続され、他端が前記腹水濃縮用フィルタの入口に接続された第2の流路と、
前記腹水濾過用フィルタの出口に接続された第3の流路と、
前記腹水濃縮用フィルタで濃縮されたタンパク質溶液を回収する回収容器と、
一端が前記腹水濃縮用フィルタの出口に接続され、他端が前記回収容器に接続された第4の流路と、
前記腹水濃縮用フィルタの濾過側出口に接続された第5の流路と、
を備えた、腹水濾過濃縮装置。
[10]
A storage container for storing a collected protein solution containing cellular components;
A hollow fiber membrane type ascites filtration filter capable of separating the cellular components present in the protein solution in the storage container;
A first flow path having one end connected to the storage container and the other end connected to the inlet of the ascites filter;
A polysulfone-based hollow fiber membrane type ascites concentration filter to which a protein concentration rate per hour is 0.1 times / min or more and a hydrophilic polymer is added;
A second flow path connected to the filtration-side outlet of the ascites filter and the other end connected to the inlet of the ascites filter;
A third flow path connected to the outlet of the ascites filter,
A collection container for collecting the protein solution concentrated by the ascites filter,
A fourth flow path having one end connected to the outlet of the ascites concentration filter and the other end connected to the collection container;
A fifth flow path connected to the filtration side outlet of the ascites concentration filter;
Ascites filtration and concentration device.

〔11〕
タンパク質濃度が5g/dL以下の低濃度タンパク質溶液を貯留容器に貯留する工程と、
前記貯留容器に貯留された前記低濃度タンパク質溶液を、限外濾過性能が85mL〜150mL/分/200mmHgであり親水性高分子が付与されたポリスルホン系中空糸膜型フィルタに通液させ、前記フィルタの濾過側出口からタンパク質濃度が100mg/dL以下である低濃度タンパク質溶液を送出させるとともに、前記フィルタの出口からタンパク質濃度が7g/dL以上である高濃度タンパク質溶液を送出させる工程と、
前記フィルタの出口から送出された前記高濃度タンパク質溶液を回収容器に回収する工程と、を含む、高濃度タンパク質溶液の製造方法。
[11]
Storing a low concentration protein solution having a protein concentration of 5 g / dL or less in a storage container;
The low-concentration protein solution stored in the storage container is passed through a polysulfone-based hollow fiber membrane filter having an ultrafiltration performance of 85 mL to 150 mL / min / 200 mmHg and provided with a hydrophilic polymer, and the filter A step of feeding a low concentration protein solution having a protein concentration of 100 mg / dL or less from the outlet of the filtration side, and a step of sending a high concentration protein solution having a protein concentration of 7 g / dL or more from the outlet of the filter;
Recovering the high-concentration protein solution delivered from the outlet of the filter in a recovery container.

本発明の腹水濾過濃縮装置及び高濃度タンパク質溶液の製造方法は、高効率に濃縮できるよう、最適な限外濾過性能を有するフィルタを用いることを特徴としているため、濃縮速度の低下はほとんど発生しない。よって施行者の手技を容易にでき、また短時間で処理が完了する。   The ascites filtration concentrating device and the method for producing a high concentration protein solution of the present invention are characterized by using a filter having an optimum ultrafiltration performance so that it can be concentrated with high efficiency. . Therefore, the procedure of the enforcer can be facilitated and the processing is completed in a short time.

本発明の腹水濾過濃縮装置の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the ascites filtration concentration apparatus of this invention. 本発明の腹水濾過濃縮装置の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the ascites filtration concentration apparatus of this invention. 本発明の腹水濾過濃縮装置の第3実施形態を示す図である。It is a figure which shows 3rd Embodiment of the ascites filtration concentration apparatus of this invention. 濃縮用フィルタに係る腹水濃縮性能の試験装置を示す図である。It is a figure which shows the test apparatus of the ascites concentration performance based on the filter for concentration.

以下、本発明を実施するための最良の形態(以下、「本実施の形態」という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

(第1実施形態)
本発明の第1実施形態として、図1に示す腹水濾過濃縮装置100の構成及び当該装置100を用いて腹水(タンパク質溶液)を濾過濃縮し濃厚タンパク質溶液(高濃度タンパク質溶液)を得る方法の一例を示す。
(First embodiment)
As a first embodiment of the present invention, an example of the configuration of the ascites filtration concentration device 100 shown in FIG. 1 and a method for obtaining a concentrated protein solution (high concentration protein solution) by filtering and concentrating ascites (protein solution) using the device 100. Indicates.

まず、患者の腹水は貯留容器1に採取され貯留される。一般に、腹水は、タンパク質濃度が5g/dL以下の低濃度タンパク質溶液である。貯留容器1の出口1bは、第1流路31と接続され、当該第1流路31を介して濾過用フィルタ3の入口3aと接続される。貯留容器1の腹水は第1流路31を介し、濾過用フィルタ3に供給される。濾過用フィルタ3の中で、細胞成分は濾過膜を通過できないため、濾過用フィルタ3の濾液出口3cからは細胞成分が除かれた、タンパク質を含む濾過後腹水が排出される。濾過用フィルタ3の出口3bには第3流路33が接続されており、細胞成分を含む腹水の一部は、第3流路33を通じて装置100外に排出される。濾液出口3cは、第2流路32を介して濃縮用フィルタ4の腹水流入口4aに接続されており、濾液出口3cから排出される濾過後腹水は、第2流路32を介して濃縮用フィルタ4に導入される。   First, the patient's ascites is collected and stored in the storage container 1. In general, ascites is a low concentration protein solution with a protein concentration of 5 g / dL or less. The outlet 1 b of the storage container 1 is connected to the first flow path 31 and is connected to the inlet 3 a of the filter 3 for filtration via the first flow path 31. Ascites fluid in the storage container 1 is supplied to the filter 3 for filtration via the first flow path 31. In the filter 3 for filtration, since the cell component cannot pass through the filtration membrane, the ascites after filtration including the protein from which the cell component has been removed is discharged from the filtrate outlet 3c of the filter 3 for filtration. A third flow path 33 is connected to the outlet 3 b of the filter 3 for filtration, and a part of ascites containing cell components is discharged out of the device 100 through the third flow path 33. The filtrate outlet 3 c is connected to the ascites inlet 4 a of the concentration filter 4 via the second flow path 32, and the post-filtered ascites discharged from the filtrate outlet 3 c is concentrated via the second flow path 32. Introduced into the filter 4.

濃縮用フィルタ4の中では濾過後腹水の水分などが濾別され、濾液排出口4cに接続された第5流路35より装置100外に排出される。ここで濾液排出口4cから排出される液体は、タンパク質濃度が100mg/dL以下である低濃度タンパク質溶液である。濃縮用フィルタ4の孔径は、濾過用フィルタ3の孔径よりも小さい。濾過後腹水に含まれていたタンパク質は濾過膜を通過せず濃縮用フィルタ4内に保持されるので、上記の水分の排出によって濾過後腹水のタンパク質濃度が高まり、濃厚タンパク質溶液として濃縮用フィルタ4の濃縮液出口4bより排出される。濃縮用フィルタ4の濃縮液出口4bは、第4流路34を介して回収容器2の入口2aに接続されており、濃縮液出口4bより排出された濃厚タンパク質溶液は、第4流路34を介して回収容器2に回収される。ここで回収される濃厚タンパク質溶液は、少なくとも貯留容器1の腹水よりもタンパク質濃度が高い高濃度タンパク質溶液であり、例えば、タンパク質濃度が7g/dL以上である。   In the concentration filter 4, the ascites water after filtration is separated and discharged from the apparatus 100 through the fifth flow path 35 connected to the filtrate outlet 4 c. Here, the liquid discharged from the filtrate outlet 4c is a low concentration protein solution having a protein concentration of 100 mg / dL or less. The pore diameter of the concentration filter 4 is smaller than the pore diameter of the filtration filter 3. Since the protein contained in the ascites after filtration does not pass through the filtration membrane and is retained in the concentration filter 4, the protein concentration in the ascites after filtration is increased by the drainage of the water, and the concentration filter 4 is concentrated as a concentrated protein solution. From the concentrated liquid outlet 4b. The concentrate outlet 4b of the concentration filter 4 is connected to the inlet 2a of the collection container 2 via the fourth channel 34, and the concentrated protein solution discharged from the concentrate outlet 4b passes through the fourth channel 34. Through the collection container 2. The concentrated protein solution recovered here is a high-concentration protein solution having a protein concentration higher than that of at least ascites in the storage container 1, for example, the protein concentration is 7 g / dL or more.

貯留容器1及び回収容器2は液体を貯留することができればどのようなものでもよいが、通常、取り扱い性の観点から、ポリ塩化ビニル製のバッグが用いられる。容器の大きさは採取してきた腹水の量などにより決定される。   The storage container 1 and the recovery container 2 may be anything as long as they can store a liquid, but usually a polyvinyl chloride bag is used from the viewpoint of handleability. The size of the container is determined by the amount of ascites collected.

濾過用フィルタ3は細胞成分と水分、及び電解質やタンパク質などの溶質成分を分離できれば特に限定されるものではない。フィルタの構造、形状、寸法としては、貯留容器1または濃縮用フィルタ4と接続する流路と接続ができる腹水流入口、及び濾過腹水出口を備えていれば制限はない。また濾過用フィルタ3に用いられる中空糸について、素材は特に限定はなく、製膜時に孔径制御がしやすく且つ化学的安定性に優れる理由から、ポリエチレンなどのポリオレフィン系、ポリスルホン系、再生セルロース系、ポリビニルアルコール系などが好ましい。これら例示した中空糸素材には他の材料が含有されていても良く、また化学的に修飾されていても良い。通常、孔径が0.2μm以下で、かつタンパク質の透過率が80%以上である中空糸膜フィルタが用いられる。   The filter 3 for filtration is not particularly limited as long as it can separate cell components and moisture, and solute components such as electrolytes and proteins. The structure, shape, and dimensions of the filter are not limited as long as it includes an ascites inflow port that can be connected to the flow path connected to the storage container 1 or the concentration filter 4 and a filtered ascites outlet. Further, the hollow fiber used in the filter 3 for filtration is not particularly limited, and for reasons of easy pore size control during film formation and excellent chemical stability, polyolefins such as polyethylene, polysulfones, regenerated celluloses, Polyvinyl alcohol is preferred. These exemplified hollow fiber materials may contain other materials or may be chemically modified. Usually, a hollow fiber membrane filter having a pore size of 0.2 μm or less and a protein permeability of 80% or more is used.

図1は濾過用フィルタ3を内圧濾過方式で使用し、腹水濾過を行っているが、細胞成分を濾別することができれば、外圧濾過方式とすることもできる、また第3流路33を封止し、デッドエンド方式で濾過することもできるし、第3流路33を開放しクロスフロー方式とすることもできる。   In FIG. 1, the filtration filter 3 is used in an internal pressure filtration system to perform ascites filtration. However, if cell components can be separated, the external pressure filtration system can be used, and the third flow path 33 is sealed. It can be stopped and filtered by a dead end method, or the third flow path 33 can be opened to be a cross flow method.

本発明の装置を構成するそれぞれの流路31〜35も貯留容器1、回収容器2、濾過用フィルタ3および濃縮用フィルタ4と接続できるものであれば材質、寸法などに限定はない。通常、流路31〜35を形成するチューブとして、ポリ塩化ビニルなどから製造される軟質チューブが用いられる。   As long as each flow path 31-35 which comprises the apparatus of this invention can be connected with the storage container 1, the collection container 2, the filter 3 for filtration, and the filter 4 for concentration, there is no limitation in a material, a dimension, etc. Usually, a soft tube manufactured from polyvinyl chloride or the like is used as a tube forming the flow paths 31 to 35.

貯留容器1から濾過用フィルタ3への腹水の送液はどのような手段でもよい。例示するならば、図1に示すように第1流路31にポンプ5を設置し送液しても良い。ポンプ5としてはローラーポンプや輸液ポンプなどが一般的に用いられる。この場合、ポンプ5の駆動を制御する制御装置41を設けても良い。制御装置41は、ポンプ5の駆動を制御することにより、第1流路31における腹水の流量(単位時間当たりの送液量)を制御する。制御装置41は、例えばコンピュータであり、所望の制御に係る情報を施行者に入力させる入力端末を兼ねてもよい。また、第2流路32および第3流路33上にも送液ポンプを追加してもよい。   Any means may be used for feeding ascites from the storage container 1 to the filter 3 for filtration. For example, as shown in FIG. 1, a pump 5 may be installed in the first flow path 31 to send liquid. As the pump 5, a roller pump or an infusion pump is generally used. In this case, a control device 41 that controls the driving of the pump 5 may be provided. The control device 41 controls the flow rate of ascites in the first flow path 31 (the amount of liquid delivered per unit time) by controlling the driving of the pump 5. The control device 41 is, for example, a computer, and may also serve as an input terminal that allows an enforcer to input information related to desired control. Further, a liquid feed pump may be added also on the second flow path 32 and the third flow path 33.

第4流路34の途中に制御部14が設置され、第5の流路35途中に制御部15が設置されている。制御部14は第4流路34の流量を調整し、制御部15は第5流路35の流量を調整する。制御部14,15によって、濃縮用フィルタ4の濾液の排出量と濃厚タンパク質溶液の量とのバランスを調整し、濃縮倍率を調整することができる。   The control unit 14 is installed in the middle of the fourth flow path 34, and the control unit 15 is installed in the middle of the fifth flow path 35. The control unit 14 adjusts the flow rate of the fourth flow path 34, and the control unit 15 adjusts the flow rate of the fifth flow path 35. The control units 14 and 15 can adjust the balance between the discharge amount of the filtrate of the concentration filter 4 and the amount of the concentrated protein solution, and can adjust the concentration ratio.

制御部14及び15は、濃縮用フィルタ4に供給された腹水のうち、濃縮用フィルタ4から濾過されて濃縮液出口4bから排出される濾液量と、回収容器2に向かう液量と、のバランスを制御できればどのようなものでもよい。制御部14,15は、例示すれば、ローラークランプなどの流路を圧迫し流路抵抗を調整し制御するものでもよく、一定の陰圧又は陽圧をかけることで各流路34,35の流量を制御するものでもよく、またローラーポンプや輸液ポンプ等といったような流量を制御する装置であってもよい。濃縮用フィルタ4から濾過されて排出される液量と回収容器に向かう液量のバランスを制御できれば制御部14,15はいずれかのみが存在してもよい。また、制御部14,15を制御装置41からの制御信号で駆動するものとして流路34,35の流量を制御装置41で制御するものとしてもよい。   The control units 14 and 15 balance the amount of filtrate that is filtered from the concentration filter 4 and discharged from the concentrated solution outlet 4b in the ascites supplied to the concentration filter 4 and the amount of liquid that is directed to the collection container 2. Anything can be used as long as it can be controlled. For example, the control units 14 and 15 may control the flow path resistance by adjusting a flow path resistance such as a roller clamp, and applying a certain negative pressure or positive pressure to each of the flow paths 34 and 35. It may be a device that controls the flow rate, or may be a device that controls the flow rate, such as a roller pump or an infusion pump. Only one of the control units 14 and 15 may exist as long as the balance between the amount of liquid filtered and discharged from the concentration filter 4 and the amount of liquid directed to the collection container can be controlled. Further, the flow rate of the flow paths 34 and 35 may be controlled by the control device 41 by driving the control units 14 and 15 with a control signal from the control device 41.

図1に示す装置100では、第1流路31が濾過用フィルタ3の下方に接続され、第3流路33が濾過用フィルタ3の上方に接続されているが、これを逆にしても同様の効果が得られる。また、第2流路32は、濾過用フィルタ3の中空糸外側室部分に通じていれば、いずれの位置に接続されていてもよい。   In the apparatus 100 shown in FIG. 1, the first flow path 31 is connected to the lower side of the filtration filter 3 and the third flow path 33 is connected to the upper side of the filtration filter 3. The effect is obtained. The second flow path 32 may be connected to any position as long as it communicates with the hollow fiber outer chamber portion of the filter 3 for filtration.

本発明で用いられる濃縮用フィルタ4の限外濾過性能は85mL〜150mL/分/200mmHgである。限外濾過性能がこの範囲以下であると、濃縮中に濾液の排出量が低下し、十分に濃縮されたタンパク質溶液が得られない。また95mL/分/200mmHg以上であればより目詰まりのおそれが低く、好ましい。150mL/分/200mmHg以上であるとタンパク質が濾液中に漏れ出てしまい、十分な濃度のタンパク質濃度が得られないので適さない。   The ultrafiltration performance of the concentration filter 4 used in the present invention is 85 mL to 150 mL / min / 200 mmHg. If the ultrafiltration performance is less than this range, the amount of filtrate discharged during concentration is reduced, and a sufficiently concentrated protein solution cannot be obtained. Moreover, if it is 95 mL / min / 200 mmHg or more, the possibility of clogging is lower, which is preferable. If it is 150 mL / min / 200 mmHg or more, the protein leaks into the filtrate, and a sufficient protein concentration cannot be obtained.

本発明の限外濾過性能とは、以下に示すような試験により規定される。タンパク質濃度を6g/dLに調整した牛血漿を用意し、ローラーポンプにより毎分200mLの定速で濃縮用フィルタに送液する。このとき、濃縮器の濾液排出口は開放状態である。濃縮用フィルタの回収液出口に接続した回路を圧迫し、フィルタ内外にかかる圧力差(以下、TMPとも言う)が200mmHgとなるよう調整する。このとき、濾液排出口から排出される濾液の時間当たり容積を測定する。TMPは以下のように算出する。
TMP=(フィルタ入口側の圧力+フィルタ出口側の圧力)/2−濾液側圧力
The ultrafiltration performance of the present invention is defined by the following test. Prepare bovine plasma with a protein concentration adjusted to 6 g / dL, and send it to the filter for concentration at a constant speed of 200 mL per minute with a roller pump. At this time, the filtrate outlet of the concentrator is open. Pressure is applied to the circuit connected to the recovery liquid outlet of the concentration filter, and the pressure difference applied to the inside and outside of the filter (hereinafter also referred to as TMP) is adjusted to 200 mmHg. At this time, the volume per hour of the filtrate discharged from the filtrate outlet is measured. TMP is calculated as follows.
TMP = (Filter inlet side pressure + Filter outlet side pressure) / 2− Filtrate side pressure

また本発明では、濃縮効率の観点から中空糸膜を用いたフィルタを用いる。ここで言う中空糸膜は、その形状、寸法は特に限定されるものでは無く、上記限外濾過性能を有するものであれば良い。材質については、製膜時に孔径制御がしやすく且つ化学的安定性に優れる理由から、ポリスルホン系がよい。ポリスルホン系高分子は、芳香族化合物であることから放射線耐性に特に優れており、また、熱や化学的処理にも非常に強く、安全性にも優れている。従って、様々な製膜条件を採択できるとともに放射線滅菌が可能となり、腹水濃縮器に用いる膜材質として特に好ましい。なお、「〜系」とは、ホモポリマーのみではなく、他のモノマーとの共重合体や化学修飾された類縁体も含むという意味である。   In the present invention, a filter using a hollow fiber membrane is used from the viewpoint of concentration efficiency. The hollow fiber membrane here is not particularly limited in its shape and dimensions, and any hollow fiber membrane may be used as long as it has the above ultrafiltration performance. As the material, polysulfone is preferable because it is easy to control the pore diameter during film formation and is excellent in chemical stability. Since the polysulfone polymer is an aromatic compound, it is particularly excellent in radiation resistance, is extremely resistant to heat and chemical treatment, and is excellent in safety. Accordingly, various membrane forming conditions can be adopted and radiation sterilization can be performed, which is particularly preferable as a membrane material used in the ascites concentrator. In addition, “to system” means not only a homopolymer but also a copolymer with another monomer and a chemically modified analog.

ここで言うポリスルホン系高分子(以下、PSfと称することがある)とは、スルホン結合を有する高分子化合物の総称であり、特に規定するものではないが、例えば、繰返し単位が下記の式(1)、式(2)、式(3)、式(4)および式(5)で示されるポリスルホン系ポリマーが挙げられる。これらの芳香環の一部に置換基が導入された修飾ポリマーであっても構わない。工業的に入手し易い点から、繰返し単位が式(1)、式(2)および式(3)で示される芳香族ポリスルホン系ポリマーが好ましく、中でも(1)式で示す化学構造を持つポリスルホンが特に好ましい。このビスフェノール型ポリスルホン樹脂は、例えばソルベイ・アドバンスド・ポリマーズより「ユーデル(登録商標)」の商品名で市販されており、重合度等によっていくつかの種類が存在するが特に限定するものではない。   The polysulfone-based polymer (hereinafter sometimes referred to as PSf) as used herein is a general term for polymer compounds having a sulfone bond, and is not particularly defined. For example, the repeating unit is represented by the following formula (1 ), Formula (2), formula (3), formula (4), and polysulfone-based polymer represented by formula (5). It may be a modified polymer in which a substituent is introduced into a part of these aromatic rings. Aromatic polysulfone-based polymers represented by the formula (1), formula (2) and formula (3) are preferred from the viewpoint of industrial availability, and among them, polysulfone having a chemical structure represented by formula (1) is preferred. Particularly preferred. This bisphenol-type polysulfone resin is commercially available, for example, from Solvay Advanced Polymers under the trade name “Udel (registered trademark)”, and there are several types depending on the degree of polymerization, but there is no particular limitation.

Figure 0005856821
Figure 0005856821

本発明におけるポリスルホン系中空糸膜は、親水性高分子により、親水性を持たせたものが好ましい。ポリスルホン系高分子だけでは中空糸膜表面が疎水性となり、このような表面にはタンパク質が吸着しやすく、タンパク質の回収性能を低下させる原因になるためである。親水性高分子としては、ポリビニルピロリドン(以下、PVPと称することがある)や、ポリエチレングリコール、ポリビニルアルコール、ポリプロピレングリコール等が挙げられるが、中でもPVPが親水化の効果や安全性の面より好ましい。PVPについても分子量等によっていくつかの種類が存在し、例えば、市販品としてPVPのK−15、30、90(いずれもアイ・エス・ピー(ISP)社製)等を挙げることができる。本発明で使用するPVPの分子量(粘度平均分子量)は1万〜200万、好ましくは5万〜150万である。親水性高分子の膜中の含有率はポリマー全量の3〜20%、好ましくは3〜10%である。含有率が3%以下の場合には親水化剤としての効果が薄れ、また含有率が20%を越えた場合には製膜原液の粘度が上がりすぎるため生産上好ましくない。   The polysulfone-based hollow fiber membrane in the present invention is preferably made hydrophilic by a hydrophilic polymer. This is because the surface of the hollow fiber membrane becomes hydrophobic only with the polysulfone-based polymer, and the protein is easily adsorbed on such a surface, which causes a decrease in the protein recovery performance. Examples of the hydrophilic polymer include polyvinyl pyrrolidone (hereinafter sometimes referred to as PVP), polyethylene glycol, polyvinyl alcohol, polypropylene glycol, and the like. Among them, PVP is preferable from the viewpoint of hydrophilization effect and safety. There are several types of PVP depending on the molecular weight and the like. Examples of commercially available products include PVP K-15, 30, 90 (all manufactured by ISP Corporation). The molecular weight (viscosity average molecular weight) of PVP used in the present invention is 10,000 to 2,000,000, preferably 50,000 to 1,500,000. The content of the hydrophilic polymer in the film is 3 to 20%, preferably 3 to 10% of the total amount of the polymer. When the content is 3% or less, the effect as a hydrophilizing agent is diminished, and when the content exceeds 20%, the viscosity of the film-forming stock solution is excessively increased, which is not preferable for production.

親水化されたポリスルホン中空糸膜の製造方法は、公知の乾湿式製膜技術を利用できる。まず、ポリスルホン系高分子とポロビニルピロリドンなどの親水性高分子を両方に共通の溶媒に溶解し、均一な紡糸原液を調製する。このような共通溶媒としては、親水性高分子がポリビニルピロリドンの場合には、例えば、ジメチルアセトアミド(以下、DMACと称する)、ジメチルスルホキシド、N−メチル−2−ピロリドン、ジメチルホルムアミド、スルホラン、ジオキサン等の溶媒、あるいは上記溶媒2種以上の混合液からなる溶媒が挙げられる。なお、孔径制御のため、紡糸原液には水などの添加物を加えても良い。   As a method for producing a hydrophilic polysulfone hollow fiber membrane, a known dry / wet film-forming technique can be used. First, a polysulphone polymer and a hydrophilic polymer such as polovinylpyrrolidone are dissolved in a common solvent to prepare a uniform spinning solution. As such a common solvent, when the hydrophilic polymer is polyvinylpyrrolidone, for example, dimethylacetamide (hereinafter referred to as DMAC), dimethylsulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, sulfolane, dioxane, etc. Or a solvent composed of a mixture of two or more of the above solvents. In order to control the pore size, additives such as water may be added to the spinning dope.

中空糸膜を製膜するに際しては、チューブインオリフィス型の紡糸口金を用い、該紡糸口金のオリフィスからの紡糸原液と、チューブからの中空内液と、を同時に空中に吐出させる。中空内液は紡糸原液を凝固させる為のものであり、水、または水を主体とした凝固液が使用できる。中空内液は、目的とする中空糸膜の限外濾過性能などの性能に応じてその組成等は決めていけば良く、一概には決められないが、一般的には紡糸原液に使った溶剤と水との混合溶液が好適に使用される。例えば、中空内液として、0〜65重量%のDMAC水溶液などが用いられる。紡糸口金から中空内液とともに吐出された紡糸原液は、空走部を走行し、紡糸口金下部に設置した水を主体とする凝固浴中へ導入、浸漬されて凝固が完了する。その後、凝固した中空糸の洗浄工程等を経て、湿潤状態の中空糸膜巻き取り機で巻き取り、中空糸膜の束を得、その後乾燥する。あるいは、洗浄工程を経て、続いて乾燥機内にて乾燥を行い、中空糸束を得ても良く、製造方法を特定するものではない。   When forming the hollow fiber membrane, a tube-in-orifice type spinneret is used, and the spinning solution from the orifice of the spinneret and the hollow internal solution from the tube are simultaneously discharged into the air. The hollow inner liquid is for coagulating the spinning dope, and water or a coagulating liquid mainly composed of water can be used. The composition of the hollow inner liquid should be determined according to the performance of the intended hollow fiber membrane, such as the ultrafiltration performance, and cannot be determined in general, but generally the solvent used for the spinning dope A mixed solution of water and water is preferably used. For example, a 0-65 wt% DMAC aqueous solution or the like is used as the hollow inner liquid. The spinning stock solution discharged from the spinneret together with the hollow inner liquid travels through the idle running portion, and is introduced and immersed in a coagulation bath mainly composed of water installed at the lower part of the spinneret to complete the coagulation. Thereafter, the solidified hollow fiber is subjected to a washing step and the like, and then wound with a wet hollow fiber membrane winder to obtain a bundle of hollow fiber membranes, and then dried. Alternatively, a hollow fiber bundle may be obtained through a washing process and then drying in a dryer, and the production method is not specified.

中空糸を用いたフィルタの製造方法に関しても公知の方法を利用すればよい。例えば、中空糸膜束を流体の出入口を持つ筒状の容器へ挿入し、両束端にポリウレタン等のポッティング剤を注入してポッティング層を形成して両端をシールした後、硬化後の余分なポッティング剤を切断除去し中空糸端面を開口させ、流体の出入口を持つヘッダーを取り付けることにより製造できる。この方法により中空糸膜束が容器に充填され、中空糸膜内側室と中空糸膜外側室とが形成され、中空糸膜内側室に通じる流体出入口および中空糸膜外側室に通じる流体出入口を持つ中空糸膜型濃縮フィルタが製造できる。   A known method may be used for a method for producing a filter using a hollow fiber. For example, a hollow fiber membrane bundle is inserted into a cylindrical container having a fluid inlet / outlet port, a potting agent such as polyurethane is injected into both ends of the bundle to form a potting layer, and both ends are sealed. It can be produced by cutting and removing the potting agent, opening the end face of the hollow fiber, and attaching a header having a fluid inlet / outlet. By this method, the hollow fiber membrane bundle is filled in the container, a hollow fiber membrane inner chamber and a hollow fiber membrane outer chamber are formed, and has a fluid inlet / outlet leading to the hollow fiber membrane inner chamber and a fluid inlet / outlet leading to the hollow fiber membrane outer chamber. A hollow fiber membrane type concentration filter can be manufactured.

本発明の装置及び方法により得られる濃厚タンパク質溶液のタンパク質濃度は7g/dL以上である。この濃度以下であると、患者に投与しても、患者の血中タンパク質濃度上昇効果が低く、患者が再度腹水を貯留してしまいやすいなどの弊害がある。またタンパク質濃度は10g/dL以上とすることが上記効果から好ましい。   The protein concentration of the concentrated protein solution obtained by the apparatus and method of the present invention is 7 g / dL or more. If the concentration is lower than this concentration, even if it is administered to a patient, the effect of increasing the blood protein concentration of the patient is low, and the patient tends to accumulate ascites again. The protein concentration is preferably 10 g / dL or more from the above effect.

本発明の装置及び方法は、追加濃縮工程なしに、短時間で、タンパク質濃度を5倍程度まで濃縮することを可能としたものである。濃縮後のタンパク質濃度を、初期のタンパク質濃度で割った値をタンパク質濃縮倍率とし、タンパク質濃縮倍率を、濃縮後のタンパク質溶液の液量が初期のタンパク質溶液の液量の5分の1以下に達するのに必要な時間(分)で割った値を、時間当たりのタンパク質濃縮倍率とすると、時間当たりのタンパク質濃縮倍率は、0.10倍/分以上であることが好ましく、0.15倍/分以上であることがより好ましい。   The apparatus and method of the present invention can concentrate the protein concentration up to about 5 times in a short time without an additional concentration step. The value obtained by dividing the concentrated protein concentration by the initial protein concentration is defined as the protein concentration ratio. The protein concentration ratio after the concentration reaches one fifth or less of the initial protein solution volume. When the value divided by the time (minutes) required for the above is defined as the protein concentration rate per hour, the protein concentration rate per hour is preferably 0.10 times / minute or more, preferably 0.15 times / minute. More preferably.

(第2実施形態)
図2に示す腹水濾過濃縮装置200は、各構成部位における液体の落差圧により腹水を送液するようにしたものである。落差圧を利用した送液を行うために、腹水濾過濃縮装置200では、濾過用フィルタ3の入口3aにおける液体の落差圧が、貯留容器1の出口1bにおける液体の落差圧よりも低くなるように配置され、かつ、回収容器2の入口2aにおける液体の落差圧が、濃縮用フィルタ4の濃縮液出口4bにおける液体の落差圧よりも低くなるように配置されている。また、濃縮用フィルタ4の腹水流入口4aにおける液体の落差圧が、濾過用フィルタ3の濾液出口3cにおける液体の落差圧よりも低くなるように配置されている。
(Second Embodiment)
The ascites filtration and concentration apparatus 200 shown in FIG. 2 is configured to send ascites by the drop pressure of the liquid at each component. In order to perform liquid feeding using the drop pressure, in the ascites filtration and concentration apparatus 200, the drop pressure of the liquid at the inlet 3 a of the filter 3 for filtration is lower than the drop pressure of the liquid at the outlet 1 b of the storage container 1. The liquid drop pressure at the inlet 2 a of the recovery container 2 is lower than the liquid drop pressure at the concentrate outlet 4 b of the concentration filter 4. The liquid drop pressure at the ascites inlet 4 a of the concentration filter 4 is arranged to be lower than the liquid drop pressure at the filtrate outlet 3 c of the filter 3 for filtration.

上記のような配置の具体例として、図2に示すように、濾過用フィルタ3と貯留容器1とは、入口3aの上下位置が出口1bの上下位置よりも低くなるような位置関係で配置される。回収容器2と濃縮用フィルタ4とは、入口2aの上下位置が濃縮液出口4bの上下位置よりも低くなるような位置関係で配置される。また、濃縮用フィルタ4と濾過用フィルタ3とは、腹水流入口4aの上下位置が濾液出口3cの上下位置よりも低くなるような位置関係で配置される。以上のような配置により、各流路31〜35で落差圧を利用した送液が行われるので、ポンプ5や制御装置41(図1参照)を省略することもできる。なお、図2に表わされる各部位の上下位置関係は、実際の腹水濾過濃縮装置200の各部位の上下位置関係にそのまま対応するものとする。また、腹水濾過濃縮装置200において、前述の腹水濾過濃縮装置100と同一又は同等な構成部分には同一符号を付し重複する説明を省略する。   As a specific example of the above arrangement, as shown in FIG. 2, the filter 3 for filtration and the storage container 1 are arranged in a positional relationship such that the vertical position of the inlet 3a is lower than the vertical position of the outlet 1b. The The collection container 2 and the concentration filter 4 are arranged in a positional relationship such that the vertical position of the inlet 2a is lower than the vertical position of the concentrate outlet 4b. Further, the concentration filter 4 and the filtration filter 3 are arranged in such a positional relationship that the vertical position of the ascites inlet 4a is lower than the vertical position of the filtrate outlet 3c. With the arrangement as described above, liquid feeding using a drop pressure is performed in each of the flow paths 31 to 35, so that the pump 5 and the control device 41 (see FIG. 1) can be omitted. Note that the vertical position relationship of each part shown in FIG. 2 corresponds to the vertical position relation of each part of the actual ascites filtration concentrator 200 as it is. Further, in the ascites filtration and concentration apparatus 200, the same or equivalent components as those of the ascites filtration and concentration apparatus 100 described above are denoted by the same reference numerals and redundant description is omitted.

(第3実施形態)
図3に示す腹水濾過濃縮装置300では、濃縮用フィルタ4の腹水流入口4aにおける液体の落差圧が、濾過用フィルタ3の濾液出口3cにおける液体の落差圧と等しくなるように配置されている。具体的には、濃縮用フィルタ4と濾過用フィルタ3とは、腹水流入口4aの上下位置が濾液出口3cの上下位置と同じ高さになるような位置関係で配置される。これ以外の部位の位置関係は前述の腹水濾過濃縮装置200と同様である。なお、図3に表わされる各部位の上下位置関係は、実際の腹水濾過濃縮装置300の各部位の上下位置関係にそのまま対応するものとする。また、腹水濾過濃縮装置300において、前述の腹水濾過濃縮装置200と同一又は同等な構成部分には同一符号を付し重複する説明を省略する。
(Third embodiment)
In the ascites filtration concentrator 300 shown in FIG. 3, the liquid drop pressure at the ascites inlet 4 a of the concentration filter 4 is arranged to be equal to the liquid drop pressure at the filtrate outlet 3 c of the filter 3. Specifically, the concentration filter 4 and the filtration filter 3 are arranged in a positional relationship such that the vertical position of the ascites inlet 4a is the same height as the vertical position of the filtrate outlet 3c. The positional relationship of other parts is the same as that of the ascites filtration and concentration apparatus 200 described above. Note that the vertical position relationship of each part shown in FIG. 3 corresponds to the vertical position relation of each part of the actual ascites filtration concentrator 300 as it is. In the ascites filtration and concentration apparatus 300, the same or equivalent components as those of the ascites filtration and concentration apparatus 200 described above are denoted by the same reference numerals, and redundant description is omitted.

以上説明した腹水濾過濃縮装置100,200,300及び高濃度タンパク質溶液の製造方法によれば、濃縮用フィルタ4が、腹水を濃縮処理するのに最適な限外濾過性能を有するので、濃縮速度の低下が抑えられ、またタンパク質を損失することなく高倍率にまで濃縮することができる。また、濃縮用フィルタ4の最適な限外濾過性能ゆえに、濃縮速度の低下はほとんど発生しない。よって施行者の手技を容易にでき、また短時間で処理が完了するので、患者は早くタンパク質溶液の投与を受けることができ、拘束時間が短い。   According to the ascites filtration concentration apparatus 100, 200, 300 and the method for producing a high-concentration protein solution described above, the concentration filter 4 has an ultrafiltration performance that is optimal for concentrating ascites. The decrease is suppressed, and the protein can be concentrated to a high magnification without loss. Further, due to the optimum ultrafiltration performance of the concentration filter 4, the concentration rate hardly decreases. Therefore, the procedure of the practitioner can be facilitated, and the treatment can be completed in a short time, so that the patient can receive the protein solution quickly and the restraint time is short.

以下、実施例に従って本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail according to an Example, this invention is not limited to these.

以下、腹水濃縮性能の試験の方法を示す。3g/dLの総タンパク質濃度に調整した牛血漿を擬似腹水とし、3L用意した。擬似腹水として細胞成分のない牛血漿を用いていることから、本擬似腹水は濾過器を通過したものとみなすことができるため、本試験では濾過器を省略しても結果に影響はないと判断し、濾過用フィルタ3は省略した方法で実施した。すなわち、図4に示す試験装置400によって、実施例・比較例に係る各濃縮用フィルタ54の性能試験を行った。試験装置400は、図1に示す装置100において、第1流路31と第2流路32とを、濾過用フィルタ3を介さずに直接接続する構造としたものである。貯留容器1及び回収容器2にはポリ塩化ビニル製のバッグを用い、おのおのの流路にはポリ塩化ビニル製のチューブ、ポンプ5にはローラーポンプ、制御部15としてローラークランプを用いた。ポンプ5を毎分100mLの流量となるよう調整し、擬似腹水を濃縮用フィルタ54へ導入した。   The test method for ascites concentration performance is shown below. Bovine plasma adjusted to a total protein concentration of 3 g / dL was used as simulated ascites, and 3 L was prepared. Since bovine plasma with no cellular components is used as simulated ascites, this simulated ascites can be regarded as having passed through a filter. And the filter 3 for filtration was implemented by the method which abbreviate | omitted. That is, the performance test of each concentration filter 54 according to the example and the comparative example was performed by the test apparatus 400 shown in FIG. The test apparatus 400 has a structure in which the first flow path 31 and the second flow path 32 are directly connected to each other in the apparatus 100 shown in FIG. Polyvinyl chloride bags were used for the storage container 1 and the collection container 2, polyvinyl chloride tubes were used for the respective flow paths, roller pumps were used for the pump 5, and roller clamps were used as the control unit 15. The pump 5 was adjusted to a flow rate of 100 mL per minute, and simulated ascites was introduced into the concentration filter 54.

濃縮目標については、濃厚タンパク質溶液として15g/dL程度のタンパク質濃度を得るために、濃厚タンパク質溶液のタンパク質濃度が、被処理液のタンパク質濃度の5倍程度になるまで濃縮することを目標とした。タンパク質濃度を5倍程度に濃縮するため、濃厚タンパク質溶液の液量が、被処理液の液量の5分の1以下になるよう調節を行った。具体的には、濃縮用フィルタ54の濾液排出口4cより排出される廃液の流量と、濃縮用フィルタ54の上方に設置した回収容器2への流入量と、をローラークランプ15の流路35圧迫度によって調整しながら、擬似腹水の濃縮を行った。3Lの擬似腹水全てを濃縮用フィルタ54へ導入したところ、すなわち30分後にローラーポンプを停止し、回収容器2に回収された液量を重量法で測定し、液量が被処理液の5分の1以下に達していればここで処理を終了し、達していなければ、回路、ローラーポンプを組み替え、回収容器2内の回収液の追加濃縮を行った。追加濃縮量は、濃厚タンパク質溶液の液量が被処理液の5分の1以下に達するのに必要な、残り廃液量を計算し、これに基づき実施した。各フィルタの評価は追加濃縮が必要であったか否かと、目標までの濃縮処理にかかった時間、及び回収された濃厚タンパク質溶液のタンパク質濃度を指標とした。   Regarding the concentration target, in order to obtain a protein concentration of about 15 g / dL as a concentrated protein solution, it was aimed to concentrate until the protein concentration of the concentrated protein solution was about 5 times the protein concentration of the liquid to be treated. In order to concentrate the protein concentration to about 5 times, the amount of the concentrated protein solution was adjusted to be 1/5 or less of the amount of the liquid to be treated. Specifically, the flow rate of the waste liquid discharged from the filtrate outlet 4 c of the concentration filter 54 and the amount of inflow into the collection container 2 installed above the concentration filter 54 are compressed by the flow path 35 of the roller clamp 15. While adjusting according to the degree, the simulated ascites was concentrated. When all the 3 L of simulated ascites were introduced into the concentration filter 54, that is, after 30 minutes, the roller pump was stopped and the amount of liquid collected in the collection container 2 was measured by gravimetric method. If it has reached 1 or less, the process is terminated. If not, the circuit and the roller pump are reassembled, and the recovery liquid in the recovery container 2 is additionally concentrated. The additional concentrated amount was calculated based on the amount of remaining waste liquid required for the amount of the concentrated protein solution to reach 1/5 or less of the liquid to be treated. The evaluation of each filter was based on whether or not additional concentration was necessary, the time required for the concentration process up to the target, and the protein concentration of the collected concentrated protein solution.

[実施例1]
ポリスルホン樹脂(ソルベイ社製、P−1700)18重量部、ポリビニルピロリドン(以下PVPとも言う)(日本触媒社製、K−85N)5重量部、N,N−ジメチルアセトアミド(以下、DMACとも言う)77重量部からなる均一な製膜原液を作成した。40重量%のN,N−ジメチルアセトアミド水溶液を中空内液と同時に二重紡口から押し出し、外界から遮断するためにとりつけたフードの中を通って30cm下方に設けた50℃の水からなる凝固浴中に浸漬し50m/minの速度で巻取った。得られた中空糸膜は20重量%のグリセリン水溶液で処理した後、75℃で乾燥した。膜面積1.5m2になるように中空糸膜束を調整し、筒状容器に装填し、両端をポリウレタン樹脂でポッティング加工してポリスルホン中空糸膜フィルタを作製した。本フィルタの限外濾過性能は107mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタ54として腹水濃縮性能試験に供したところ、全ての擬似腹水を追加濃縮せずに液量が被処理液の5分の1以下になるまで処理することができ、追加濃縮工程は不要であった。よって濃縮時間は30分である。時間当たりのタンパク質濃縮倍率は、0.17倍/分であった。得られたタンパク質溶液の濃度を表1に示す。
[Example 1]
18 parts by weight of a polysulfone resin (Solvay, P-1700), 5 parts by weight of polyvinylpyrrolidone (hereinafter also referred to as PVP) (N-catalyst, K-85N), N, N-dimethylacetamide (hereinafter also referred to as DMAC) A uniform film-forming stock solution consisting of 77 parts by weight was prepared. A 40% by weight aqueous solution of N, N-dimethylacetamide was extruded from the double nozzle simultaneously with the hollow inner solution, passed through a hood attached to block it from the outside, and coagulated with 50 ° C. water provided 30 cm below. It was immersed in a bath and wound up at a speed of 50 m / min. The resulting hollow fiber membrane was treated with a 20% by weight aqueous glycerin solution and then dried at 75 ° C. The hollow fiber membrane bundle was adjusted so as to have a membrane area of 1.5 m 2, loaded into a cylindrical container, and both ends were potted with a polyurethane resin to produce a polysulfone hollow fiber membrane filter. The ultrafiltration performance of this filter was 107 mL / min / 200 mmHg. When this filter was subjected to the ascites concentration performance test as the above-described concentration filter 54, it was possible to process all the simulated ascites until the liquid volume became 1/5 or less of the liquid to be treated without additional concentration. An additional concentration step was not necessary. Therefore, the concentration time is 30 minutes. The protein concentration rate per hour was 0.17 times / min. Table 1 shows the concentration of the obtained protein solution.

[実施例2]
膜面積を1.1m2になるようにした以外は実施例1と同じ方法で、ポリスルホン中空糸膜フィルタを作製した。本フィルタの限外濾過性能は88mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタ54として腹水濃縮性能試験に供したところ、全ての擬似腹水を処理し、回収液量を測定したところ、全ての擬似腹水を追加濃縮せずに液量が被処理液の5分の1以下になるまで処理することができ、追加濃縮工程は不要であった。よって濃縮時間は30分である。時間当たりのタンパク質濃縮倍率は0.17倍/分であった。得られたタンパク質溶液の濃度を表1に示す。
[Example 2]
A polysulfone hollow fiber membrane filter was produced in the same manner as in Example 1 except that the membrane area was 1.1 m2. The ultrafiltration performance of this filter was 88 mL / min / 200 mmHg. When this filter was subjected to the ascites concentration performance test as the above-described concentration filter 54, all simulated ascites were processed and the amount of recovered liquid was measured, and the liquid volume was treated without additional concentration of all simulated ascites. It was possible to process until the liquid became 1/5 or less, and an additional concentration step was unnecessary. Therefore, the concentration time is 30 minutes. The protein concentration rate per hour was 0.17 times / min. Table 1 shows the concentration of the obtained protein solution.

[実施例3]
膜面積を2.1m2になるようにした以外は実施例1と同じ方法で、ポリスルホン中空糸膜フィルタを作製した。本フィルタの限外濾過性能は134mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタ54として腹水濃縮性能試験に供したところ、全ての擬似腹水を処理し、回収液量を測定したところ、全ての擬似腹水を追加濃縮せずに液量が被処理液の5分の1以下になるまで処理することがで、追加濃縮工程は不要であった。よって濃縮時間は30分である。時間当たりのタンパク質濃縮倍率は0.16倍/分であった。得られたタンパク質溶液の濃度を表1に示す。
[Example 3]
A polysulfone hollow fiber membrane filter was produced in the same manner as in Example 1 except that the membrane area was 2.1 m 2. The ultrafiltration performance of this filter was 134 mL / min / 200 mmHg. When this filter was subjected to the ascites concentration performance test as the above-described concentration filter 54, all the simulated ascites were processed and the amount of the recovered liquid was measured. It was possible to treat the solution until it was 1/5 or less of the liquid, and an additional concentration step was unnecessary. Therefore, the concentration time is 30 minutes. The protein concentration rate per hour was 0.16 times / min. Table 1 shows the concentration of the obtained protein solution.

[比較例1]
限外濾過性能が77mL/分/200mmHgである旭化成クラレメディカル社製の腹水濃縮器、AHF-UNH(ポリアクリロニトリル中空糸、1.1m2)を用い、当該濾過器を前述の濃縮用フィルタ54に適用して腹水濃縮性能試験を実施した。全ての擬似腹水を処理し、回収液量を測定したところ、液量が被処理液の5分の1以下に達しておらず、追加濃縮工程が必要であった。追加濃縮工程により、液量が被処理液の5分の1以下に達するのに、30分の時間を要したため、濃縮時間は1時間であった。時間当たりのタンパク質濃縮倍率は0.09倍/分であった。得られたタンパク質溶液の濃度を表1に示す。
[Comparative Example 1]
Using an ascites concentrator manufactured by Asahi Kasei Kuraray Medical Co., Ltd. with an ultrafiltration performance of 77 mL / min / 200 mmHg, AHF-UNH (polyacrylonitrile hollow fiber, 1.1 m2), and applying the filter to the aforementioned concentration filter 54 Ascites fluid concentration performance test was conducted. When all the simulated ascites were processed and the amount of the collected liquid was measured, the amount of liquid did not reach 1/5 or less of the liquid to be treated, and an additional concentration step was necessary. The additional concentration step required 30 minutes for the liquid volume to reach 1/5 or less of the liquid to be treated, so the concentration time was 1 hour. The protein concentration rate per hour was 0.09 times / min. Table 1 shows the concentration of the obtained protein solution.

[比較例2]
PSf(ソルベイ社製、P−1700)18重量部、PVP(日本触媒社製、K−85N)4.5重量部、ジメチルアセトアミド77.5重量部からなる均一な紡糸原液を作成した。DMAC57%水溶液の中空内液と同時に二重紡口から押し出し外界から遮断するためにとりつけたフードの中を通って90cm下方に設けた水よりなる75℃の凝固浴に浸漬し、40m/分の速度で巻き取った。得られた中空糸膜は40重量%のグリセリン水溶液で処理した後、80 ℃で乾燥した。
[Comparative Example 2]
A uniform spinning dope comprising 18 parts by weight of PSf (manufactured by Solvay, P-1700), 4.5 parts by weight of PVP (manufactured by Nippon Shokubai Co., Ltd., K-85N) and 77.5 parts by weight of dimethylacetamide was prepared. Simultaneously with a hollow inner solution of DMAC 57% aqueous solution, it was extruded from a double nozzle and passed through a hood attached to be cut off from the outside, immersed in a 75 ° C. coagulation bath composed of water provided 90 cm below, and 40 m / min. Winded up at speed. The obtained hollow fiber membrane was treated with a 40% by weight glycerin aqueous solution and then dried at 80 ° C.

膜面積2.0m2になるように中空糸膜束を調整し、筒状容器に装填し両端をポリウレタン樹脂でポッティング加工してポリスルホン中空糸膜フィルタを作製した。本フィルタの限外濾過性能は170mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタ54として腹水濃縮性能試験に供したところ、30分程度で、被処理液の5分の1液量のタンパク質溶液を得た。しかし、タンパク質は濃縮されておらず、得られたタンパク質溶液のタンパク質濃度は処理前とほぼ同じであった。時間当たりのタンパク質濃縮倍率は0.03倍/分であった。得られたタンパク質溶液の濃度を表1に示す。   A hollow fiber membrane bundle was adjusted so as to have a membrane area of 2.0 m 2, loaded into a cylindrical container, and potted at both ends with a polyurethane resin to prepare a polysulfone hollow fiber membrane filter. The ultrafiltration performance of this filter was 170 mL / min / 200 mmHg. When this filter was subjected to the ascites concentration performance test as the above-described concentration filter 54, a protein solution having a volume of 1/5 of the liquid to be treated was obtained in about 30 minutes. However, the protein was not concentrated, and the protein concentration of the obtained protein solution was almost the same as that before the treatment. The protein concentration rate per hour was 0.03 times / min. Table 1 shows the concentration of the obtained protein solution.

Figure 0005856821
Figure 0005856821

実施例1、2では、追加濃縮工程なく、また7g/dL以上の濃いタンパク質溶液を得ることができた。一方限外濾過性能が低いフィルタを使用した比較例1では追加濃縮工程が必要で、濃縮に時間がかかる。また、限外濾過性能が非常に高いフィルタを用いた比較例2では、タンパク質が濃縮されておらず、低いタンパク質濃度のタンパク質溶液しか得られない。   In Examples 1 and 2, a thick protein solution of 7 g / dL or more could be obtained without additional concentration step. On the other hand, in Comparative Example 1 using a filter with low ultrafiltration performance, an additional concentration step is required, and it takes time to concentrate. Moreover, in the comparative example 2 using the filter with very high ultrafiltration performance, protein is not concentrated and only a protein solution with a low protein concentration can be obtained.

以上より、本発明の装置及び方法を実施すると、短時間で、高濃度のタンパク質溶液を得ることができる。   As described above, when the apparatus and method of the present invention are implemented, a protein solution with a high concentration can be obtained in a short time.

1…貯留容器、1b…出口(貯留容器と第1流路との接続部)、2…回収容器、2a…入口(回収容器と第4流路との接続部)、3…濾過用フィルタ、3a…濾過用フィルタの入口、3b…濾過用フィルタの出口、3c…濾液出口(腹水濾過用フィルタの濾過側出口)、4…濃縮用フィルタ、4a…腹水流入口(腹水濃縮用フィルタの入口)、4b…濃縮液出口(腹水濃縮用フィルタの出口)、4c…濾液排出口(腹水濃縮用フィルタの濾過側出口)、5…ポンプ(制御手段)、14,15…制御部(制御手段)、31…第1流路、32…第2流路、33…第3流路、34…第4流路、35…第5流路、41…制御装置(制御手段)、100,200,300…腹水濾過濃縮装置。   DESCRIPTION OF SYMBOLS 1 ... Storage container, 1b ... Outlet (connection part of a storage container and a 1st flow path), 2 ... Recovery container, 2a ... Inlet (connection part of a collection container and a 4th flow path), 3 ... Filter for filtration, 3a: Filtration filter inlet, 3b: Filtration filter outlet, 3c: Filtrate outlet (filtration side outlet of ascites filter), 4: Concentration filter, 4a: Ascites flow inlet (ascites concentration filter inlet) 4b ... Concentrate outlet (exit of ascites concentration filter), 4c ... Filtrate outlet (filter side outlet of ascites concentration filter), 5 ... Pump (control means), 14, 15 ... Control section (control means), DESCRIPTION OF SYMBOLS 31 ... 1st flow path, 32 ... 2nd flow path, 33 ... 3rd flow path, 34 ... 4th flow path, 35 ... 5th flow path, 41 ... Control apparatus (control means), 100, 200, 300 ... Ascites filtration concentrator.

Claims (9)

細胞成分を含む採取されたタンパク質溶液を貯留する貯留容器と、
前記貯留容器内のタンパク質溶液中に存在する前記細胞成分を分離可能な中空糸膜型の腹水濾過用フィルタと、
一端が前記貯留容器に接続され他端が前記腹水濾過用フィルタの入口に接続された第1の流路と、
限外濾過性能が85mL〜150mL/分/200mmHgであり親水性高分子が付与されたポリスルホン系中空糸膜型の腹水濃縮用フィルタと、
前記腹水濾過用フィルタの濾過側出口に接続され、他端が前記腹水濃縮用フィルタの入口に接続された第2の流路と、
前記腹水濾過用フィルタの出口に接続された第3の流路と、
前記腹水濃縮用フィルタで濃縮されたタンパク質溶液を回収する回収容器と、
一端が前記腹水濃縮用フィルタの出口に接続され、他端が前記回収容器に接続された第4の流路と、
前記腹水濃縮用フィルタの濾過側出口に接続された第5の流路と、
を備えた、腹水濾過濃縮装置。
A storage container for storing a collected protein solution containing cellular components;
A hollow fiber membrane type ascites filtration filter capable of separating the cellular components present in the protein solution in the storage container;
A first flow path having one end connected to the storage container and the other end connected to the inlet of the ascites filter;
A polysulfone-based hollow fiber membrane type ascites concentration filter having an ultrafiltration performance of 85 mL to 150 mL / min / 200 mmHg and provided with a hydrophilic polymer;
A second flow path connected to the filtration-side outlet of the ascites filter and the other end connected to the inlet of the ascites filter;
A third flow path connected to the outlet of the ascites filter,
A collection container for collecting the protein solution concentrated by the ascites filter,
A fourth flow path having one end connected to the outlet of the ascites concentration filter and the other end connected to the collection container;
A fifth flow path connected to the filtration side outlet of the ascites concentration filter;
Ascites filtration and concentration device.
前記貯留容器内に貯留された前記タンパク質溶液を前記第1の流路を通して前記腹水濾過用フィルタに送液し、前記細胞成分が除去された濾過済タンパク質溶液を前記腹水濾過用フィルタの濾過側出口から前記第2の流路に送出させるとともに、前記細胞成分を含む溶液を前記腹水濾過用フィルタの出口から第3の流路に排出させるステップと、
前記第2の流路に送出された前記濾過済タンパク質溶液を前記腹水濃縮用フィルタに送液し、濃縮された濃厚タンパク質溶液を前記腹水濃縮用フィルタの出口から第4の流路に送出させるとともに、水溶液を前記腹水濃縮用フィルタの濾過側出口から第5の流路に水溶液を排出させるステップと、
前記第4の流路に送出された前記濃厚タンパク質溶液を、前記回収容器に回収するステップと、を行い、
前記第1〜第5の流路のうちの少なくとも1つの流路の流量を制御する制御手段を更に備える、請求項1に記載の腹水濾過濃縮装置。
The protein solution stored in the storage container is fed to the ascites filter through the first flow path, and the filtered protein solution from which the cellular components have been removed is filtered to the ascites filter. And discharging the solution containing the cell component from the outlet of the ascites filter to the third channel, and
The filtered protein solution sent to the second flow path is sent to the ascites concentration filter, and the concentrated concentrated protein solution is sent from the outlet of the ascites concentration filter to the fourth flow path. Discharging the aqueous solution from the filtration side outlet of the ascites concentration filter to the fifth flow path;
Collecting the concentrated protein solution delivered to the fourth flow path in the collection container;
The ascites filtration concentrating device according to claim 1, further comprising control means for controlling a flow rate of at least one of the first to fifth channels.
前記制御手段は、前記第1の流路に設けられた送液ポンプを含む、請求項2に記載の腹水濾過濃縮装置。   The ascites filtration and concentration apparatus according to claim 2, wherein the control means includes a liquid feed pump provided in the first flow path. 前記腹水濾過用フィルタは、該腹水濾過用フィルタの入口における液体の落差圧が前記貯留容器と前記第1の流路との接続部における液体の落差圧よりも低くなるような位置に配置され、かつ、
前記回収容器は、該回収容器と前記第4の流路との接続部における液体の落差圧が前記腹水濃縮用フィルタの出口における液体の落差圧よりも低くなるような位置に配置された、請求項1に記載の腹水濾過濃縮装置。
The ascites filter is disposed at a position such that the drop pressure of the liquid at the inlet of the ascites filter is lower than the drop pressure of the liquid at the connection between the storage container and the first flow path. And,
The recovery container is disposed at a position such that a liquid drop pressure at a connection portion between the recovery container and the fourth flow path is lower than a liquid drop pressure at an outlet of the ascites concentration filter. Item 2. The ascites filtration concentration device according to Item 1.
前記腹水濃縮用フィルタは、該腹水濃縮用フィルタの入口における液体の落差圧が前記腹水濾過用フィルタの濾過側出口における液体の落差圧と等しくなるような位置に配置された、請求項4に記載の腹水濾過濃縮装置。   5. The ascites concentration filter is disposed at a position such that a drop pressure of liquid at an inlet of the ascites filter is equal to a drop pressure of liquid at a filtration side outlet of the ascites filter. Ascites filtration concentrator. 前記腹水濃縮用フィルタは、該腹水濃縮用フィルタの入口における液体の落差圧が前記腹水濾過用フィルタの濾過側出口における液体の落差圧よりも低くなるような位置に配置された、請求項4に記載の腹水濾過濃縮装置。   The ascites concentration filter is disposed at a position such that a drop pressure of liquid at an inlet of the ascites filter is lower than a drop pressure of liquid at a filtration side outlet of the ascites filter. The ascites filtration and concentration apparatus described. 前記腹水濃縮用フィルタの限外濾過性能が腹水の濃縮処理に最適なものであることから、腹水の濃縮が1回で足り、追加濃縮工程を必要としないことを特徴とする、請求項1〜6のいずれか1項に記載の腹水濾過濃縮装置。   Since the ultrafiltration performance of the ascites concentration filter is optimal for ascites concentration treatment, ascites need only be concentrated once, and no additional concentration step is required. The ascites filtration concentrating device according to any one of 6. 前記腹水濃縮用フィルタによる1回の濃縮で、タンパク質濃度を5倍以上に濃縮することが可能なことを特徴とする、請求項1〜7のいずれか1項に記載の腹水濾過濃縮装置。   The ascites filtration concentrating device according to any one of claims 1 to 7, wherein the concentration of the protein can be concentrated five times or more by one concentration by the ascites concentration filter. 前記腹水濃縮用フィルタによる1回の濃縮で、タンパク質濃度が7g/dl以上の濃厚タンパク質溶液を得られることを特徴とする、請求項1〜8のいずれか1項に記載の腹水濾過濃縮装置。   The ascites filtration and concentration apparatus according to any one of claims 1 to 8, wherein a concentrated protein solution having a protein concentration of 7 g / dl or more can be obtained by one concentration by the ascites concentration filter.
JP2011256180A 2010-11-26 2011-11-24 Ascites filtration concentrator Active JP5856821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011256180A JP5856821B2 (en) 2010-11-26 2011-11-24 Ascites filtration concentrator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010264212 2010-11-26
JP2010264212 2010-11-26
JP2011256180A JP5856821B2 (en) 2010-11-26 2011-11-24 Ascites filtration concentrator

Publications (2)

Publication Number Publication Date
JP2012125557A JP2012125557A (en) 2012-07-05
JP5856821B2 true JP5856821B2 (en) 2016-02-10

Family

ID=46643286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011256180A Active JP5856821B2 (en) 2010-11-26 2011-11-24 Ascites filtration concentrator

Country Status (2)

Country Link
JP (1) JP5856821B2 (en)
CN (1) CN202538643U (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176140A1 (en) * 2012-05-25 2013-11-28 旭化成メディカル株式会社 Method and apparatus for producing high-concentration protein solution
JP6230907B2 (en) * 2013-12-27 2017-11-15 旭化成メディカル株式会社 Ascites filtration and concentration system, filter and concentrator washing method in ascites filtration and concentration system, and filtrate and concentrate recovery method during washing of filter and concentrator
TWI584830B (en) * 2014-10-16 2017-06-01 Asahi Kasei Medical Co Ltd Hollow fiber membrane type body fluid filtration device, and protein solution filtration method
JP6397781B2 (en) * 2015-02-26 2018-09-26 旭化成メディカル株式会社 Concentrator
JP6989907B2 (en) * 2016-09-27 2022-02-15 吉和 米満 A device for aseptically processing suspensions
JP6895828B2 (en) * 2017-07-07 2021-06-30 旭化成メディカル株式会社 Body cavity fluid treatment device
JP6478426B2 (en) * 2017-07-07 2019-03-06 旭化成メディカル株式会社 Body cavity fluid treatment device
JP2021062209A (en) * 2019-10-10 2021-04-22 旭化成メディカル株式会社 Ascitic fluid filtration and concentration apparatus
CN112642294A (en) * 2019-10-10 2021-04-13 旭化成医疗株式会社 Ascites filtering and concentrating device
CN112251333B (en) * 2020-10-12 2022-09-27 北京诺德观呈医疗科技有限公司 Device and method for purifying cell exosomes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607854A (en) * 1983-06-27 1985-01-16 株式会社クラレ Anionic bodyfluid filtering membrane
IT1217332B (en) * 1988-02-02 1990-03-22 Dideco Spa PROCEDURE FOR THE EXTRA-BODY TREATMENT OF ASCITIC LIQUID
JP2769712B2 (en) * 1989-03-22 1998-06-25 川澄化学工業株式会社 Manufacturing method of fluid treatment device
JP3066151B2 (en) * 1991-11-11 2000-07-17 株式会社クラレ Ascites treatment equipment
JPH09220455A (en) * 1996-10-04 1997-08-26 Toyobo Co Ltd Hollow yarn type selective separation membrane
JP4892824B2 (en) * 2004-11-04 2012-03-07 東レ株式会社 Method for producing hollow fiber membrane separation membrane and method for using hollow fiber membrane separation membrane produced by the production method
JP5062631B2 (en) * 2008-06-12 2012-10-31 圭祐 松崎 Ascites treatment system and operating method thereof

Also Published As

Publication number Publication date
JP2012125557A (en) 2012-07-05
CN202538643U (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5856821B2 (en) Ascites filtration concentrator
JP5873170B2 (en) Method and apparatus for producing high concentration protein solution
JP3117575B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
US7563376B2 (en) Plasma purification membrane and plasma purification system
US10188991B2 (en) Permselective asymmetric membranes
JP6522001B2 (en) Hollow fiber filtration membrane
JP6298649B2 (en) Method for producing washed platelets
KR102230435B1 (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
WO2015125852A1 (en) Hollow fiber membrane module for cleaning platelet suspension
WO1997034687A1 (en) Hollow yarn membrane used for blood purification and blood purifier
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
KR101757859B1 (en) Dual-layer hollow fiber membrane containing nanoparticles and manufacturing method thereof
WO2009125598A1 (en) Hydrophilic polyethersulfone filtration membrane, method for production thereof, and stock solution of production of membrane
JP3934340B2 (en) Blood purifier
JP4103037B2 (en) Diaphragm cleaning hollow fiber membrane and method for producing the same
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
WO1996035504A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JPH0211263B2 (en)
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JP7131038B2 (en) Hollow fiber membrane for ascites filtration
JP5196509B2 (en) Hollow fiber membrane for blood purification and method for producing the same
JP2000210544A (en) Production of semipermeable membrane
JPH10109023A (en) Hollow fiber type selective separation membrane
JP2005261601A (en) Hollow fiber type plasma component separator with little protein adsorption amount

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5856821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350