JP5851517B2 - ショートパルスファイバーレーザー - Google Patents

ショートパルスファイバーレーザー Download PDF

Info

Publication number
JP5851517B2
JP5851517B2 JP2013544555A JP2013544555A JP5851517B2 JP 5851517 B2 JP5851517 B2 JP 5851517B2 JP 2013544555 A JP2013544555 A JP 2013544555A JP 2013544555 A JP2013544555 A JP 2013544555A JP 5851517 B2 JP5851517 B2 JP 5851517B2
Authority
JP
Japan
Prior art keywords
laser
lens
resonator
fiber
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013544555A
Other languages
English (en)
Other versions
JP2013546201A (ja
JP2013546201A5 (ja
Inventor
ドミトリ シマノブスキー,
ドミトリ シマノブスキー,
アンドレイ スタロドゥムーブ,
アンドレイ スタロドゥムーブ,
Original Assignee
コヒレント, インコーポレイテッド
コヒレント, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コヒレント, インコーポレイテッド, コヒレント, インコーポレイテッド filed Critical コヒレント, インコーポレイテッド
Publication of JP2013546201A publication Critical patent/JP2013546201A/ja
Publication of JP2013546201A5 publication Critical patent/JP2013546201A5/ja
Application granted granted Critical
Publication of JP5851517B2 publication Critical patent/JP5851517B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/0805Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Lasers (AREA)

Description

(発明の技術分野)
本発明は、一般に、ファイバーレーザーに関連する。本発明は、特に、モードロックファイバーレーザーに関連する。
(背景技術の論述)
超ショートパルスの安定した低ノイズ光源は、超高速分光学、多光子励起顕微鏡法、ミクロ機械加工、調波発生、ならびにポンピングパラメトリック増幅器および発振器を含む広範囲の用途にとって重要である。そのような光源は、通例、当業者によって超高速レーザーと呼ばれる。最も一般的な超高速レーザーは、広い利得バンド幅を有する結晶利得媒質(たとえば、チタンドープサファイア(Ti:サファイア))を有する固体レーザーである。
ファイバーレーザーは、固体超高速レーザーに魅力的な代案を提示する。そのようなレーザは、広範囲のパルス繰返し周波数(たとえば、約10メガヘルツ(MHz)と400MHzとの間)において動作する能力を提供し、かつコンパクトなパッケージに含まれうる。固体結晶レーザーと比較すると、ファイバーレーザーは、大きなキャビティー内分散を有する。これは、レーザーの共振器(キャビティー)光路の大部分が、ガラス(ファイバー)中であり、空気中ではないからである。キャビティー内分散が小さくなるほど、獲得されうるパルスは短くなるということが、よく知られている。
ファイバーレーザーにおけるキャビティー内分散を減らすいくつかの方法がある。1つは、チャープファイバーブラッグ格子(CFBG)を使用する。別のものは、バルク回折格子に基づいたコンプレッサーおよびストレッチャー配置を使用する。さらに別の方法は、光子バンドギャップファイバー、または特別に設計された分散プロファイルを有する他の特別なファイバーを使用することにより、利得ファイバーおよびキャビティー内構成要素によって提供された分散を補償する。
チャープファイバーブラッグ格子(CFBG)は、ファイバー分散が完全には補償されない場合、すべてのファイバーキャビティーからピコ秒パルスを発生させるために、しばしば使用される。しかし、たとえば1ピコ秒毎ナノメートル(ps/nm)より小さい、小さな分散において、CFBGは、概して低い反射率(<40%)を有する。そのような低い反射率は、モードロックファイバーレーザーにおいてそのような格子を使用することを困難にし、そのモードロックファイバーレーザーにおいてモードロックに要求される反射率は、概して50%より高い。モードロックファイバーレーザーは、1ピコ秒(ps)より短いパルスが要求される場合に、しばしば使用される。
回折格子に基づいたコンプレッサー配置は、調節可能な分散を提供し、その分散は、キャビティー内分散を正確に補償するために調整されうる。そのようなコンプレッサー配置の例10が、図1に描写される。コンプレッサー10は、間隔をあけられてかつ互いに平行に配置された本質的に同一の回折格子12Aおよび12Bを、鏡14と一緒に含み、その鏡14は、基板18の上の多層反射コーティング16を含む。
ここで、入力パルスPInは、λ−λのスペクトルバンド幅、および中心波長λを有する。キャビティー内分散の結果としてλのようなより短い波長が、λのようなより長い波長よりも遅れ、それによってパルスの存続時間(長さ)を増加させることが、想定される。格子12Aは、パルス波長を異なる角度で回折し、λのようなより長い波長は、λのようなより短い波長よりも大きな角度で回折する。格子12Bは、様々に回折された波長を、平行な経路に沿って、鏡14に入射するように指向する。鏡14は、波長をそれらの入射経路に沿って反射することにより、入力パルスの経路上で、出力パルスPoutとして再結合させる。より長い波長の経路が、より短い波長の経路よりも長いので、より短い波長は、出力パルスが、入力パルスよりも短い存続時間を有するほど十分に、より長い波長に「追いつく」。
モードロックファイバーレーザーの端鏡に使用される「格子対」パルスコンプレッサー(たとえば、コンプレッサー10)の鏡を用いて、1psより短いパルスが獲得されてきた。しかし、そのようなコンプレッサーは、特定の欠点を有する。一欠点は、コンプレッサーのスペクトル選択性が非常に低い場合、コンプレッサーを有するレーザーキャビティーにおけるレージング波長の制御が困難であるということである。例の目的で、図2は、透過格子(たとえば、格子12Aおよび12B)の典型的な測定された回折効率を概略的に図示する。回折効率は、約1000nmと1080nmとの間のスペクトル(波長)範囲にわたって、ほんの数パーセントだけ変動するということが見られうる。したがって、図1の先行技術コンプレッサーは、よくても、この範囲において弱い波長選択性であると、説明されえ、この範囲は、イッテルビウム(Yb)ドープ利得ファイバーのおよそ全ての利得範囲(発光範囲)を表す。
図3は、図1のコンプレッサー10のような格子対コンプレッサーを含むモードロックファイバーレーザーの典型的な先行技術配置20を概略的に図示する。レーザー20は、コンプレッサー10の鏡14と可飽和ブラッグレフレクター(SBR)22との間に形成された共振キャビティーを有し、そのSBR22はレーザーの受動モードロックを提供する。共振キャビティー(共振器)は、アクティブ(ドープ)ファイバー26、ならびに連結器28および30のスルーファイバー32および36を含み、そのスルーファイバー32および36は、アクティブファイバーに継がれる。SBR22は、可飽和吸収体およびブラッグレフレクターから形成される。SBR22の一表面は基板26に取り付けられ、反対の表面はファイバー36に突合せ連結される。レンズ40は、放射がコンプレッサー10に入る前に、共振器のファイバー部分からの放射をコリメートする。レンズ40は、コンプレッサーからの放射を集束させ、共振器のファイバー部分内に戻す。半波長板42は、格子12Bおよび12Aを通した透過を最大にするために、戻ってくる放射の偏光を調節する。連結器30は、ポンピング放射を共振器のファイバー部分内にファイバー38経由で連結する波長分割多重方式(WDM)連結器である。連結器28は、循環する放射の一部を共振器の外へファイバー34経由でモードロック出力パルスとして連結する部分的連結器である。
図4は、約850nmと1150nmとの間の波長範囲にわたる吸収スペクトル(連続した曲線)および発光スペクトル(破線の曲線)を概略的に図示する。発光曲線は、約975nmに中心をもつ強く狭いピークを有し、そのピークは、通例Ybドープファイバーにとって好ましいポンピング波長である約980nmの波長に中心をもつ吸収スペクトルにおけるピークに部分的に重なり合う。より長い波長において、発光曲線は、約1035nmと約1040nmとの間のピーク利得を伴い比較的強く変動する。コンプレッサー10の比較的弱いスペクトル選択性が原因で、かつ共振器内に他のいずれのスペクトル選択性デバイスもないので、利得曲線は、波長選択工程を支配し、(980nm放射によってポンピングされる)共振器は、1035nmから1040nmまでのピーク利得範囲において振動する。
スペクトル選択性の欠如に加えて、格子対コンプレッサーの別の欠点は、循環する放射が、各格子を通る、前方へのおよび逆の経路をなすということである。図2に図示されるように、たとえ約95%の効率が与えられても、4つの経路は、約20%の共振器損失を導入する。アクティブファイバー26が高い利得を有し、かつ共振器が比較的高い損失に耐えうるが、そのような損失は、ファイバーレーザーの全効率から損なわれる。さらに別の欠点は、回折格子の高いコストであり、その回折格子は、レーザーキャビティーにおいてはるかに高価な構成要素である。2つのそのような格子を含むことは、比較的安価なレーザーであるものを非常に高価にする。
利得ファイバーの利得バンド幅内のレージング波長を決定するのに十分に高いスペクトル選択性を有するが、2つの回折格子を要求しない、キャビティー内コンプレッサー配置に対するニーズがある。そのようなコンプレッサーは、制御可能なレージング波長を有する低コストフェムト秒レーザーシステムを作ることを可能にし、その制御可能なレージング波長は、そのようなシステムの用途の範囲を拡張しうる。
(発明の概要)
本発明に従う装置の一局面は、利得バンド幅を有するファイバー利得媒質を含むレーザー共振器を含む。ポンピング放射源は、レーザー共振器においてレーザー放射を発生させるための利得ファイバーにエネルギーを与えるように配置される。モードロック要素は、レーザー放射をモードロックパルスとして発生させるために共振器に設けられ、モードロックパルスは、利得ファイバーを通って伝搬する間に分散を受ける。波長選択性分散補償デバイスは、モードロックパルスによって受けられた分散を補償するため、および利得ファイバーの利得バンド幅内のモードロックパルスの中心波長を選択するためにレーザー共振器に設けられる。
本発明の装置の好ましい実施形態において、波長選択性分散補償デバイスは、間に透過回折格子を有する第一および第二のレンズを含む。利得ファイバーから出る放射は、第一のレンズによってコリメートされ、回折格子によって回折されて光線の、スペクトルで部類分けされたファンにされ、第二のレンズによって平面鏡に集束させられ、その平面鏡は、スペクトルで広げられた光線を反射して第一のレンズを通して回折格子まで戻す。回折格子は、スペクトルで広げられた光線を指向して第一のレンズに戻し、その第一のレンズは光線を集束させてファイバー内に戻す。スペクトル選択および分散補償は、格子と第二のレンズとの間の間隔を選択的に変えることによって、選択的に変えられうる。デバイスにおいて1つの回折格子しかないので、損失は、本質的にスペクトル選択性のない先行技術の格子対補償デバイスと比べて、有意に減少させられる。
本願明細書は、例えば、以下の項目も提供する。
(項目1)
レーザー装置であって、該装置は、
利得バンド幅を有するファイバー利得媒質を含むレーザー共振器と、
該レーザー共振器においてレーザー放射を発生させるための該利得ファイバーにエネルギーを与えるように配置されたポンピング放射源と、
該共振器に設けられた、該レーザー放射をモードロックパルスとして発生させるためのモードロック要素であって、該モードロックパルスは、該利得ファイバーを通って伝搬する間に分散を受ける、モードロック要素と、
該モードロックパルスによって受けられた該分散を補償するため、および該利得ファイバーの該利得バンド幅内のモードロックパルスの中心波長を選択するための波長選択性分散補償デバイスと
を含む装置。
(項目2)
前記波長選択性デバイスは、前記パルスのスペクトルバンド幅も選択する、項目1に記載の装置。
(項目3)
前記レーザー共振器は、第一および第二の端鏡の間に形成された線形レーザー共振器である、項目1に記載の装置。
(項目4)
前記波長選択性分散補償デバイスは、第一および第二のレンズと、該第一および第二のレンズの間の回折格子と、該第二のレンズの次にくる平面鏡とを含み、該平面鏡は、前記レーザー共振器の前記第一の端鏡として機能し、該第一および第二のレンズ、該回折格子、および該鏡は、前記パルスの前記中心波長およびスペクトルバンド幅を選択しかつ前記分散補償を提供するように、構成されている、項目3に記載の装置。
(項目5)
前記モードロック要素は、前記レーザー共振器の前記第二の端鏡として機能する可飽和ブラッグ鏡である、項目4に記載の装置。
(項目6)
前記可飽和ブラッグ鏡は、前記利得ファイバーに突合せ連結されている、項目5に記載の装置。
(項目7)
前記共振器は、進行波レーザー共振器である、項目1に記載の装置。
(項目8)
前記進行波レーザー共振器は、
前記ファイバー利得媒質を含む一方向の伝搬部分と、
前記波長選択性分散補償デバイスの構成要素と第一の偏光回転デバイスとを含み、かつ第一の戻す鏡によって終端をなされている第一の両方向の伝搬部分と、
前記モードロックデバイスと第二の偏光回転デバイスとを含み、かつ第二の戻す鏡によって終端をなされている第二の両方向の伝搬部分と
を有し、該第一および第二の両方向の伝搬部分は、該第一および第二の偏光回転デバイスと協同した偏光ビームスプリッターによって、該一方向の伝搬部分と接続されかつ互いに接続されている、項目7に記載の装置。
(項目9)
前記波長選択性分散補償デバイスは、第一および第二のレンズと、該第一および第二のレンズの間の回折格子と、該第二のレンズの次にくる平面鏡とを含み、該平面鏡は、前記第一の戻す鏡として機能し、該第一および第二のレンズ、該回折格子、および該鏡は、前記パルスの前記中心波長およびスペクトルバンド幅を選択しかつ前記分散補償を提供するように、構成され、該第一のレンズは、前記共振器の前記一方向の伝搬部分に設けられ、該第二のレンズおよび該回折格子は、該共振器の前記第一の両方向の伝搬部分に設けられている、項目8に記載の装置。
(項目10)
前記モードロック要素は、前記共振器の前記第二の両方向の伝搬部分の前記第二の戻す鏡として機能する可飽和ブラッグ鏡である、項目9に記載の装置。
(項目11)
レーザー装置であって、該装置は、
利得バンド幅を有するファイバー利得媒質を含む線形レーザー共振器であって、該レーザー共振器は、長手方向の共振器軸を有し、一端において可飽和ブラッグレフレクターによって終端をなされ、もう一端において平面鏡によって終端をなされ、該可飽和ブラッグレフレクターは、モードロック要素として機能する、線形レーザー共振器と、
該レーザー共振器においてレーザー放射を発生させるための該利得ファイバーにエネルギーを与えるように配置されたポンピング放射源であって、該レーザー放射は、モードロックパルスとして発生させられ、該モードロックパルスは、該利得ファイバーを通って伝搬する間に分散を受ける、ポンピング放射源と、
利得ファイバーと該平面鏡との間の該レーザー共振器に設けられた第一のレンズ、回折格子、および第二のレンズであって、該回折格子は、該第一および第二のレンズの間に設けられている、第一のレンズ、回折格子、および第二のレンズと
を含み、該第一および第二のレンズ、該回折格子、および該平面鏡は、該ファイバーを通って伝搬する該パルスによって受けられた該分散を補償する分散を提供しかつ該利得ファイバーの該利得バンド幅内の該モードロックパルスの中心波長を選択するように、配置されている、
装置。
(項目12)
前記第一のレンズは、該第一のレンズのおよそ焦点距離だけ前記ファイバーから軸方向に間隔をあけられ、前記第二のレンズは、該第二のレンズのおよそ焦点距離だけ前記平面鏡から軸方向に間隔をあけられ、該第二のレンズは、該第二のレンズの該焦点距離とは異なる距離だけ前記格子から軸方向に間隔をあけられている、項目11に記載の装置。
(項目13)
前記補償する分散、前記利得ファイバーの前記利得バンド幅内の前記モードロックパルスの前記中心波長、および該モードロックパルスの前記スペクトルバンド幅のうちの1つ以上を変えるために、前記格子と前記第二のレンズとの間の前記距離は、選択的に可変である、項目12に記載の装置。
(項目14)
前記利得ファイバーの前記利得バンド幅内の前記モードロックパルスの中心波長を選択するために、前記平面鏡は、前記長手方向の共振器軸に直角をなす軸について選択的に傾けることができる、項目12に記載の装置。
(項目15)
レーザー装置であって、該装置は、
利得バンド幅を有するファイバー利得媒質を含む進行波レーザー共振器と、
該レーザー共振器においてレーザー放射を発生させるための該利得ファイバーにエネルギーを与えるように配置されたポンピング放射源と、
該共振器に設けられた、該レーザー放射をモードロックパルスとして発生させるためのモードロック要素であって、該モードロックパルスは、該利得ファイバーを通って伝搬する間に分散を受ける、モードロック要素と、
該レーザー共振器に設けられた、該モードロックパルスによって受けられた該分散を補償するための分散補償デバイスと
を含む装置。
(項目16)
前記分散補償デバイスは、前記モードロックパルスの中心波長を選択するように構成されている、項目15に記載の装置。
(項目17)
前記進行波レーザー共振器は、
前記ファイバー利得媒質を含む一方向の伝搬部分と、
前記分散補償デバイスの構成要素と第一の偏光回転デバイスとを含み、かつ第一の戻す鏡によって終端をなされている第一の両方向の伝搬部分と、
前記モードロックデバイスと第二の偏光回転デバイスとを含み、かつ第二の戻す鏡によって終端をなされている第二の両方向の伝搬部分と
を有し、該第一および第二の両方向の伝搬部分は、該第一および第二の偏光回転デバイスと協同した偏光ビームスプリッターによって、該一方向の伝搬部分と接続されかつ互いに接続されている、項目16に記載の装置。
(項目18)
前記波長選択性分散補償デバイスは、第一および第二のレンズと、該第一および第二のレンズの間の回折格子と、該第二のレンズの次にくる平面鏡とを含み、該平面鏡は、前記第一の戻す鏡として機能し、該第一および第二のレンズ、該回折格子、および該鏡は、前記パルスの前記中心波長およびスペクトルバンド幅を選択しかつ前記分散補償を提供するように、構成され、該第一のレンズは、前記共振器の前記一方向の伝搬部分に設けられ、該第二のレンズおよび該回折格子は、該共振器の前記第一の両方向の伝搬部分に設けられている、項目17に記載の装置。
(項目19)
前記モードロック要素は、前記共振器の前記第二の両方向の伝搬部分の前記第二の戻す鏡として機能する可飽和ブラッグ鏡である、項目18に記載の装置。
(項目20)
前記レーザー共振器の前記一方向の伝搬部分は、第三のレンズを含み、該共振器内の周回において、該共振器の該一方向の伝搬部分における前記利得ファイバーから出るレーザー放射は、該第三のレンズによってコリメートされ、指向されて前記偏光ビームスプリッターを通って該共振器の前記第一の両方向の伝搬部分に入り、前記第一の方向転換鏡によって反射されて該共振器の該第一の両方向の伝搬部分から出て、該偏光ビームスプリッターによって指向されて該共振器の前記第二の両方向の伝搬部分に入り、前記可飽和ブラッグ鏡から反射されて該共振器の該第二の両方向の伝搬部分から出て、該偏光ビームスプリッターを通して透過させられ、前記第一のレンズによって集束させられて該利得ファイバー内に戻される、項目19に記載の装置。
(項目21)
パルスファイバーレーザーであって、該レーザーは、
第一および第二の端鏡によって終端をなされている共振器と、
該共振器内に設けられた利得ファイバーと、
該利得ファイバーを励起するためのポンピング源と、
レーザーパルスを発生させるために該レーザーをモードロックするように配置された、該共振器における可飽和吸収体と、
該共振器において該利得ファイバーの一端と該第一の端鏡との間に設けられ、かつ該レーザーパルスにおいて該ファイバーから引き起こされる分散を補償するように該第一の端鏡と共に配置された透明格子と
を含むレーザー。
(項目22)
前記格子と前記利得ファイバーとの間に設けられた、光を集束させて前記ファイバーに入れるための第一のレンズと、該格子と前記第一の端鏡との間に設けられた第二のレンズとをさらに含む、項目21に記載のレーザー。
(項目23)
前記第一の端鏡の表面に対する法線は、前記第二のレンズの光軸に関して傾けられる、項目22に記載のレーザー。
(項目24)
前記第二のレンズと前記第一の端鏡との間に設けられた、前記レーザーの前記スペクトルバンド幅を狭くするための開口板をさらに含む、項目23に記載のレーザー。
(項目25)
前記第二のレンズと前記第一の端鏡との間に設けられた、前記レーザーの前記スペクトルバンド幅を狭くするための開口板をさらに含む、項目22に記載のレーザー。
本明細書の一部に組み込まれかつ一部をなす添付の図面は、本発明の原理を明らかにする役目をする、上記に与えられた概略の説明および下記に与えられる好ましい実施形態の詳細な説明と共に、本発明の好ましい実施形態を概略的に図示する。
図1は、間隔をあけられかつ互いに平行な第一および第二の回折格子を含む先行技術のパルスコンプレッサーを概略的に図示し、第一の格子は、1つの入射ビームを広げて発散スペクトル成分にするように配置され、第二の格子は、スペクトル成分を互いに平行に鏡に入射するように指向するように配置され、鏡は、スペクトル成分を反射して入射経路に沿って戻すように配置され、そのスペクトル成分は、第一の格子によって再結合させられて入射ビームの経路に沿って戻る。 図2は、商業上利用可能な回折格子についての波長の関数として、1000ナノメートルと1080ナノメートルとの間の範囲における波長の関数として、絶対回折効率を概略的に図示するグラフである。 図3は、図1のパルスコンプレッサーと同様でありかつ分散補償デバイスとして機能する格子対パルスコンプレッサーを含む先行技術モードロックファイバーレーザーを概略的に図示し、そのファイバーレーザーは、パルスコンプレッサーの鏡とモードロックデバイスとして機能する可飽和ブラッグレフレクターとの間に形成された共振キャビティーを有する。 図4は、イッテルビウムドープ利得ファイバーについての850ナノメートルから1150ナノメートルまでの波長範囲における波長の関数として、吸収および発光断面積を概略的に図示するグラフである。 図5は、本発明に従った、レンズおよび平面鏡と協同した回折格子を含むキャビティー内分散補償デバイスの1つの好ましい実施形態を概略的に図示し、格子および鏡はそれぞれ、デバイスが分散もスペクトル選択性も提供しない中立モードにあるように、レンズからレンズの焦点距離だけ軸方向に間隔をあけられている。 図6は、図5のデバイスを概略的に図示するが、格子は、デバイスが負の分散を提供し、パルスコンプレッサーとして機能し、さらにパルスのスペクトルバンド幅を制限するためにスペクトル選択性の態様で機能するように、レンズからレンズの焦点距離より大きく間隔をあけられている。 図6Aは、図6のデバイスを概略的に図示するが、鏡は、パルスのバンド幅を制限することに加えてパルスの特定の波長を選択するために、レンズに対して傾いている。 図7は、本発明に従った、図3のレーザーと同様の線形共振器モードロックファイバーレーザーの好ましい実施形態を概略的に図示するが、格子対パルスコンプレッサーは、本発明に従った、図6の構成におけるスペクトル選択性キャビティー内分散補償デバイスと取り替えられている。 図8は、図6Aに描写されたスペクトル選択性分散補償デバイスの平面鏡を傾けることによって、図7の装置の例において発生させられた異なる中心波長のパルスについての測定された光学スペクトルを概略的に図示するグラフである。 図9は、本発明に従った、図6の構成におけるスペクトル選択性キャビティー内分散補償デバイスを含む、本発明に従ったリング共振器ファイバーレーザーの好ましい実施形態を概略的に図示し、モードロックは、可飽和ブラッグレフレクターによって提供されている。
(発明の詳細な説明)
同様の構成要素が同様の参照数字によって示されている図面の参照を続けると、図5は、本発明に従って、キャビティー内分散補償デバイス50の1つの好ましい実施形態を概略的に図示する。デバイス50は、透過回折格子52と、光軸56を有する正レンズ54と、平面鏡58とを含む。鏡58は、ファイバー利得媒質を含む線形レーザー共振器の一端の鏡を提供する。利得媒質のための接続ファイバー60は、フェルール62によって終端をなされる。
放射パルスは、初め、ファイバー60(フェルール62)から発散ビーム64として出る。ビーム64は、開口数(NA)を有し、そのビーム64は、NAおよびファイバー60のコア直径によって決定される。発散ビーム64は、光軸68を有する正レンズ66によってコリメートされる。コリメートされたビームは、図5において64Cと示され、かつここで、レンズ66の光軸68に中心をもつ断面を有すると想定される。光軸68は、レンズ54の光軸56と回折格子52で交わる。
前方に伝搬するビーム64Cは、パルスのスペクトルバンド幅に対応するスペクトルバンド幅を有し、すべてのスペクトル成分がビーム断面にわたって等しく分布する。回折格子52において、スペクトル成分は、回折格子上のビーム64Cの入射面(つまり図面の平面)において広げられてビームの連続的なファンにされる。図面において、例証の簡単のために、最長および最短の波長ビームのみ描写される。
この描写において、格子52のビーム64Cの入射点は、レンズの焦点距離fに等しい距離Dだけレンズ54から軸方向に間隔をあけられ、鏡58は、同じ焦点距離だけレンズから間隔をあけられる。すべてのスペクトル成分ビームは、鏡に集束させられることにより、鏡において細長いスペクトルを形成する。すべての成分は、鏡58によって反射されて入射経路に沿って戻され、格子52によって結合されて戻りの伝搬するコリメートされたビーム64Cにされ、そのビーム64Cは、レンズ66によって集束させられてファイバー60内に戻される。
当業者は、特定の配置(図5の格子、レンズ、および鏡)をフーリエ「パルス波形器」と同様であると認識しえ、そのフーリエ「パルス波形器」において、鏡58は、パルスのスペクトル成分を選択的に減衰させるかまたは除去するように配置された、ピクセル化された反射型空間光変調器(SLM)によって取り替えられる。実際、そのような配置は、少なくとも理論上は、レーザーの動作波長を決定するために要求される選択性を提供しうる。しかし、本発明の目的はレーザーのコストを最小にすることであるので、スペクトル選択性は、他の手段によって達成される。
特に図5に描写されるように、デバイス50は、分散補償も、スペクトル選択性も提供せず、まさにこの構成においては決して使用されない。分散補償とスペクトル選択性との両方は、デバイスの1つ以上の簡単な再構成によって提供されうる。例の目的で、依然として焦点距離fだけ間隔をあけられた、レンズ54および鏡58の群は、矢印Aによって示されるように、格子52の方へ、または格子52から離して動かされることにより、距離Dを変化させることによって、幾分かのスペクトル(主としてバンド幅)選択性と一緒に分散補償を提供しうる。これらの構成要素は、移動ステージに取り付けられることにより、選択的に可変な分散を有するデバイスを生成しうる。あるいは、格子52、レンズ54、およびフェルール62の組み合わせは、レンズ54および鏡58が固定された状態で、動かされうる。格子がレンズの焦点距離内に動かされる場合、分散の符号は、格子がレンズからの焦点距離以上である場合の正反対のものである。
中心波長選択性は、図5に矢印Cによって示されるように、鏡58を、軸56と直角をなす軸59について傾けることによって提供されうる。レンズ54は、同様の態様で傾けられることにより、中心波長選択性を達成しうる。中心波長選択性は、格子上のビームの入射面における格子52上の前方へ伝搬するコリメートされたビーム64Cの入射点を変化させることによっても提供されうる。中心波長選択性は、矢印Sによって示されるように、軸56と直角方向に移動可能な開口板55を鏡58の前に設けることによっても提供されうる。板における開口部の幅(高さ)は、鏡によって反射されて戻されたスペクトルのバンド幅を制限するように選択されうる。
図6は、分散補償およびスペクトルバンド幅選択性を提供するデバイス50の一構成50Aを概略的に図示する。ここで、格子52およびレンズ54の軸方向の間隔Dは、レンズ54の焦点距離fより大きい。格子54によって広げられた光線は、それらの入射経路に沿って戻ってこず、かつ格子によって再結合されない。より長い波長成分は、より短い波長成分よりも長い経路上をデバイス50を通って進み、必要な分散補償を提供する。
スペクトル成分は、それらの入射経路に戻ってこないので、すべての成分の仮想の(一度)戻るビームは、入射面(図面の平面)において入射ビームよりも幅広であり、かつ最短の波長成分の波長から最長の波長成分の波長までのビーム幅にわたってスペクトルで部類分けされる(空間的に「チャープされる」)。しかし、(図6において平行模様をつけられた)入射ビーム64Cのビーム経路に向いている(重なる)スペクトル勾配の成分だけが集束させられてファイバー60内に戻される。他の成分は、レンズの口径の外に向いているか、またはレンズによってファイバーのNA(平行模様をつけられたビーム64)の範囲外に集束させられるかのどちらかであり、ファイバーによって導かれることができない。それゆえ、デバイスによって終端をなされる共振器において振動しうる放射のバンド幅は、デバイスの構成およびファイバーのNA(出力ビーム64のNA)によって決定される。この例において、そのバンド幅は、デバイスによって有意に狭くされている。
ここで、図6において、利得ファイバーのNAの外の光線は、本発明のデバイスにおいて、スペクトル選択がどのように達成されるかを図示するためだけに描写され、かつ放射がレージングの前の一時的なステージにおいてファイバーから初めに出る場合にのみ存在するということが留意されるべきである。定常状態の動作において、回折格子から戻り、ファイバーのNA内に向いている波長のバンドの範囲外の波長の放射はない。したがって、波長選択メカニズム自身は、損失を生成しない。唯一の有意な損失は、経路あたり100%よりも小さい効率で、格子を通る2つの経路から生じる。
入射ビーム経路に重なる戻りの伝搬する成分は、依然としてビームにわたってスペクトルで部類分けされるが、ファイバーを通る戻りの経路によって均質化される。本発明のデバイスのこの構成において、狭くされたバンド幅の中心波長は、波長選択性デバイスがない場合のバンド幅の中心波長とほぼ同じであるということも留意されるべきである。しかし、デバイスを含むファイバーレーザーの実際の振動波長は、ファイバーの利得曲線上の狭くされたバンド幅の位置によって異なりうる。
図6Aは、デバイス50の別の構成50Bを概略的に図示し、この構成50Bは、分散補償、スペクトルバンド幅選択性、および中心波長選択性を提供する。構成50Bは、鏡58に対する法線57がレンズ54の軸56に対して小さな角度αだけ傾いているということを除いて、図6の構成50Aと同様である。これは、入射ビームの経路に重なる波長がスペクトルの長い波長側からのものであるように、格子から戻る方向におけるスペクトルの部類分けが、レンズ66の軸68に関して横方向に動かされる原因となる。反対方向に鏡58を傾けることは、デバイスのスペクトル勾配の短い波長側から波長を選択する。選択されたバンド幅は、傾けることによってどんな中心波長が選択されても、ほぼ同じである。
図7は、本発明に従った、モードロックファイバーレーザーの1つの好ましい実施形態80を概略的に図示する。レーザー80は、先行技術のレーザー20のスペクトル非選択性格子対キャビティー内分散補償器が、レーザー80において、本発明に従うスペクトル選択性キャビティー内分散補償器と取り替えられているということを除いて、図3のレーザー20と同様の定常波または線形共振器レーザーである。レーザー80において、描写される本発明の補償器の構成は、図6Aを参照して上記で説明された構成50Bである。
図8は、図7の装置の実験的な例から測定されたパルススペクトルの再現を概略的に図示するグラフである。この例において、利得ファイバー26は、1%Ybドープファイバーである。ファイバー32は、0.12のNAを有する。レンズ66は、11.0ミリメートル(mm)の焦点距離を有する。レンズ54は、50.0mmの焦点距離を有し、格子52から68.0mmだけ軸方向に間隔をあけられている。この配置は、スペクトルバンド幅を約20ナノメートルに制限した。格子は、Farum、DenmarkのIbsen Photonics ASからの1250本毎ミリメートル格子である。中心波長は、図6Aに図示されるように鏡28を傾けることによって、約1020nm(長破線の曲線)から1045nm(短破線の曲線)まで調整された。ピーク利得は、連続した曲線が調整される約1035nmにおいてである。
図9は、本発明に従った、モードロック進行波ファイバーレーザーの実施形態82を概略的に図示する。レーザー82は、進行波共振器83を含み、その進行波共振器83は、ループまたは一方向の伝搬部分83Aと、直線または両方向の伝搬部分83Bおよび83Cとを含む。一方向の伝搬部分は、二色性ビームスプリッター85と、一方向の伝搬を提供するファラデーアイソレーター91と、偏光ビームスプリッターキューブ90と、利得ファイバー84とによって形成される。ビームスプリッターキューブ90は、一方向の伝搬部分を両方向の伝搬部分と接続し、かつ両方向の伝搬部分を互いに接続する。
利得ファイバーは、ダイオードレーザー光源87からの放射によって光ポンピングされる。二色性鏡88は、ポンピング放射波長に対して高い透過性があり、かつファイバーレーザーによって発生させられた放射に対して高い反射性がある。レンズ86は、利得ファイバーからのレーザー放射をコリメートし、かつポンピング放射を集束させて利得ファイバー内に入れる。ループ部分においてレーザー放射は、矢印Pによって示されるように、図面の平面において平面偏光される。直線部分において偏光は、伝搬方向および放射が通過する光学的構成要素の偏光特性に従って変動する。
共振器83内の周回において、利得ファイバー86からのレーザー放射は、二色性鏡85によって反射され、偏光ビームスプリッター90によって透過させられて共振器部分83Bに入る。偏光面は、ファラデー旋光器92を通過し、鏡94によって反射されてスペクトル選択性キャビティー内分散補償デバイス50Aに入る。本発明に従って、放射は、反射されてデバイス50Aから戻り、再びファラデー旋光器92を通り抜け、偏光ビームスプリッター90によって反射されて共振器83の直線部分83Cに入る。ファラデー旋光器92は、2つの経路上で90°の偏光の回転を提供するために四分の一波長板と取り替えられうるということが留意されるべきである。
部分83Cにおいて、放射は、放射の偏光を円形にする四分の一波長板96を通過する。この放射は、レンズ98によってSBR22上に集束させられる。放射は、SBRによって反射され、レンズ98によって再びコリメートされ、四分の一波長板を通る戻りの経路によって偏光面の90°回転と共に平面偏光され、偏光ビームスプリッターキューブによって透過させられて共振器のループ部分83Aに入る。ループ部分83Aにおいて、放射は、放射の一部(たとえば、約20%)を出力放射(モードロックパルス)として反射する前面偏光子100を通り抜ける。残りの放射は、レンズ102によって集束させられて利得ファイバー84内に戻される。
ここで、デバイス50Aを出発する放射は、デバイスによって付与された空間的なチャープ(スペクトル勾配)を有し、かつその空間的なチャープを、放射が集束させられて利得ファイバー内に戻されるまで保持するということが留意されるべきである。したがって、レンズ102は、図7のレーザー80におけるレンズ66と同じ機能を有し、利得ファイバーのNAは、デバイス50Aの空間的なチャープから波長の範囲を選択する開口部を提供する。
共振器83は、表面的な考察において、追加の分岐を有するリング共振器であるように見えるが、共振器は、実際は、上記で説明された周回順序を有する単一の共振器実体であるということが強調される。直線部分において反対に伝搬するビームは異なる偏光特性を有するので、共振器の直線部分において建設的または破壊的な干渉はない。
要約すると、本明細書中に説明されたファイバーレーザーは、中にモードロック要素を有する共振器と、たった1つの回折格子を含む本発明の波長選択性分散補償デバイスとを含む。1つの格子しかないので、デバイスにおける損失は、スペクトル選択性のない先行技術の格子対デバイスと比べて、有意に減少させられる。レーザーの説明において、モードロック要素は、可飽和ブラッグレフレクターである。しかし、キャビティー内損失または利得を調節することに基づいた別のタイプのモードロック要素(たとえば、音響光学変調器および電気光学変調器、または非線形偏光回転変調器)が、本発明の精神および範囲から逸脱することなしに使用されうる。
本発明は、好ましい実施形態および他の実施形態に関して上記で説明されている。しかし、本発明は、説明されかつ描写された実施形態に制限されない。逆に、本発明は、本明細書に添付の特許請求の範囲によってのみ制限される。

Claims (13)

  1. レーザー装置であって、該装置は、
    利得バンド幅を有するファイバー利得媒質を含むレーザー共振器であって、該共振器は、平面端鏡を含む、レーザー共振器と、
    該レーザー共振器においてレーザー放射を発生させるための利得ファイバーにエネルギーを与えるように配置されたポンピング放射源と、
    該共振器に設けられた、該レーザー放射をモードロックパルスとして発生させるためのモードロック要素であって、該モードロックパルスは、該利得ファイバーを通って伝搬する間に分散を受ける、モードロック要素と、
    該モードロックパルスによって受けられた該分散を補償するため、および該利得ファイバーの該利得バンド幅内の該モードロックパルスの中心波長を選択するための波長選択性分散補償デバイスであって、該波長選択性分散補償デバイスは、該共振器内において該平面端鏡の近くに設けられた単一の回折格子と、該格子と該平面端鏡との間に設けられた第一のレンズと、第二のレンズとを含み、該格子は、該第二のレンズと該第一のレンズとの間に設けられている、波長選択性分散補償デバイスと
    を含む、装置。
  2. 前記波長選択性分散補償デバイスは、前記パルスのスペクトルバンド幅も選択する、請求項1に記載の装置。
  3. 前記レーザー共振器は、前記平面端鏡と第二の端鏡との間に形成された線形レーザー共振器である、請求項1に記載の装置。
  4. 前記モードロック要素は、前記レーザー共振器の第二の端鏡として機能する可飽和ブラッグ鏡である、請求項1に記載の装置。
  5. 前記可飽和ブラッグ鏡は、前記利得ファイバーに突合せ連結されている、請求項4に記載の装置。
  6. 前記共振器は、進行波レーザー共振器である、請求項1に記載の装置。
  7. レーザー装置であって、該装置は、
    利得バンド幅を有するファイバー利得媒質を含む線形レーザー共振器であって、該レーザー共振器は、長手方向の共振器軸を有し、一端において可飽和ブラッグレフレクターによって終端をなされ、もう一端において平面鏡によって終端をなされ、該可飽和ブラッグレフレクターは、モードロック要素として機能する、線形レーザー共振器と、
    該レーザー共振器においてレーザー放射を発生させるための利得ファイバーにエネルギーを与えるように配置されたポンピング放射源であって、該レーザー放射は、モードロックパルスとして発生させられ、該モードロックパルスは、該利得ファイバーを通って伝搬する間に分散を受ける、ポンピング放射源と、
    利得ファイバーと該平面鏡との間の該レーザー共振器に設けられた第一のレンズ、単一の回折格子、および第二のレンズであって、該単一の回折格子は、該第一のレンズと該第二のレンズの間に設けられている、第一のレンズ、単一の回折格子、および第二のレンズと
    を含み、該第一および第二のレンズ、該単一の回折格子、および該平面鏡は、該利得ファイバーを通って伝搬する該パルスによって受けられた該分散を補償する分散を提供しかつ該利得ファイバーの該利得バンド幅内の該モードロックパルスの中心波長を選択するように、配置されている、
    装置。
  8. 前記第一のレンズは、該第一のレンズのおよそ焦点距離だけ前記利得ファイバーから軸方向に間隔をあけられ、前記第二のレンズは、該第二のレンズのおよそ焦点距離だけ前記平面鏡から軸方向に間隔をあけられ、該第二のレンズは、該第二のレンズの該焦点距離とは異なる距離だけ前記単一の回折格子から軸方向に間隔をあけられている、請求項7に記載の装置。
  9. 前記補償する分散、前記利得ファイバーの前記利得バンド幅内の前記モードロックパルスの前記中心波長、および該モードロックパルスのスペクトルバンド幅のうちの1つ以上を変えるために、前記単一の回折格子と前記第二のレンズとの間の前記距離は、選択的に可変である、請求項8に記載の装置。
  10. 前記利得ファイバーの前記利得バンド幅内の前記モードロックパルスの中心波長を選択するために、前記平面鏡は、前記長手方向の共振器軸に直角をなす軸について選択的に傾けることができる、請求項8に記載の装置。
  11. パルスファイバーレーザーであって、該レーザーは、
    第一および第二の端鏡によって終端をなされている共振器であって、該第一の端鏡は、平面鏡である、共振器と、
    該共振器内に設けられた利得ファイバーと、
    該利得ファイバーを励起するためのポンピング源と、
    レーザーパルスを発生させるために該レーザーをモードロックするように配置された、該共振器における可飽和吸収体と、
    該共振器において該利得ファイバーの一端と該第一の端鏡との間に設けられた単一の透明格子と、
    該格子と該第一の端鏡との間に設けられた第一のレンズと、
    該利得ファイバーの一端と該単一の透明格子との間に設けれた第二のレンズと
    を含み、
    該第一および第二のレンズ、該単一の透明格子、および該第一の端鏡は、該レーザーパルスにおいて該ファイバーから引き起こされる分散を補償し、該利得ファイバーの該利得バンド幅内の該モードロックパルスの中心波長を選択するように配置されている、レーザー。
  12. 前記第一の端鏡の表面に対する法線は、前記第のレンズの光軸に関して傾けられる、請求項11に記載のレーザー。
  13. 前記第のレンズと前記第一の端鏡との間に設けられた、前記レーザーのスペクトルバンド幅を狭くするための開口板をさらに含む、請求項12に記載のレーザー。
JP2013544555A 2010-12-14 2011-12-06 ショートパルスファイバーレーザー Active JP5851517B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/967,343 US8654799B2 (en) 2010-12-14 2010-12-14 Short-pulse fiber-laser
US12/967,343 2010-12-14
PCT/US2011/063572 WO2012082472A2 (en) 2010-12-14 2011-12-06 Short-pulse fiber-laser

Publications (3)

Publication Number Publication Date
JP2013546201A JP2013546201A (ja) 2013-12-26
JP2013546201A5 JP2013546201A5 (ja) 2014-11-13
JP5851517B2 true JP5851517B2 (ja) 2016-02-03

Family

ID=45406873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013544555A Active JP5851517B2 (ja) 2010-12-14 2011-12-06 ショートパルスファイバーレーザー

Country Status (3)

Country Link
US (2) US8654799B2 (ja)
JP (1) JP5851517B2 (ja)
WO (1) WO2012082472A2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092730A (ja) * 2012-11-06 2014-05-19 Canon Inc 回折格子、それを用いた光学装置
WO2015059310A1 (en) * 2013-10-25 2015-04-30 Atla Lasers As Graphene-based optical sub-system
JP6190318B2 (ja) * 2014-05-19 2017-08-30 日本電信電話株式会社 レーザー発振器
JP6190317B2 (ja) * 2014-05-19 2017-08-30 日本電信電話株式会社 レーザー発振器
TWI748976B (zh) 2016-02-02 2021-12-11 日商新力股份有限公司 發送裝置及通信系統
US9720250B1 (en) * 2016-04-05 2017-08-01 Dicon Fiberobtics, Inc. Tunable optical filter with adjustable bandwidth
FR3054082B1 (fr) * 2016-07-13 2019-03-15 Thales Compresseur compact et a forte puissance moyenne
JP6699005B2 (ja) 2017-02-09 2020-05-27 株式会社Nttドコモ ボケ補償システム
US10944233B2 (en) 2017-07-10 2021-03-09 Coherent, Inc. Polarized fiber-laser
US10490968B1 (en) 2018-05-18 2019-11-26 Ofs Fitel, Llc Self-starting, passively modelocked figure eight fiber laser
US11233372B2 (en) * 2019-06-25 2022-01-25 Lumentum Operations Llc Femtosecond pulse stretching fiber oscillator
US11417999B2 (en) * 2019-06-27 2022-08-16 Lumentum Operations Llc Femtosecond fiber oscillator
US20210359483A1 (en) * 2020-05-13 2021-11-18 National University Of Singapore Visible and tunable ring cavity laser source
JP7449903B2 (ja) * 2021-07-29 2024-03-14 横河計測株式会社 第1光学系、分光器、及び光学装置
CN114488408A (zh) * 2022-01-20 2022-05-13 昂纳信息技术(深圳)有限公司 可调谐光滤波器及光通道监测模块
CN117374700B (zh) * 2023-12-08 2024-03-12 安徽中科光栅科技有限公司 基于光栅刻线间距变化的超快激光脉冲压缩装置及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US5627848A (en) * 1995-09-05 1997-05-06 Imra America, Inc. Apparatus for producing femtosecond and picosecond pulses from modelocked fiber lasers cladding pumped with broad area diode laser arrays
US6668115B2 (en) * 2000-12-22 2003-12-23 Avanex Corporation Method, apparatus, and system for compensation of amplifier gain slope and chromatic dispersion utilizing a virtually imaged phased array
US20020196816A1 (en) * 2001-06-22 2002-12-26 Masataka Shirasaki Wavelength tunable pulse laser
US6879426B1 (en) * 2001-07-06 2005-04-12 Purdue Research Foundation System and method for programmable polarization-independent phase compensation of optical signals
US6603600B2 (en) 2001-11-21 2003-08-05 Coherent, Inc. Chirped pulse amplification method and apparatus
GB2395353B (en) 2002-02-18 2004-10-13 Univ Southampton Pulsed light sources
JP2004055626A (ja) 2002-07-16 2004-02-19 Nippon Telegr & Teleph Corp <Ntt> パルス幅制御装置並びにそれを用いたTHz電磁波発生装置及び発生方法
JP2004173054A (ja) 2002-11-21 2004-06-17 Olympus Corp 分散補償器及び分散補償システム
TWI245473B (en) * 2003-06-30 2005-12-11 Delta Electronics Inc Tunable laser source and wavelength selecting method thereof
JP2006324613A (ja) * 2005-05-17 2006-11-30 Alnair Labs:Kk 受動モード同期短パルス光ファイバレーザおよびスキャニングパルスレーザ
DE102005042073B4 (de) * 2005-08-31 2010-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Faserlaser
JP2007085931A (ja) * 2005-09-22 2007-04-05 Fujinon Corp 光断層画像化装置
US8571075B2 (en) 2010-11-29 2013-10-29 Imra America, Inc. Frequency comb source with large comb spacing
US7430071B2 (en) 2006-05-16 2008-09-30 Coherent, Inc. Adjustable pulse-shaper
EP2662674A3 (en) * 2007-01-19 2014-06-25 The General Hospital Corporation Rotating disk reflection for fast wavelength scanning of dispersed broadbend light
US7688493B2 (en) 2007-06-11 2010-03-30 Coherent, Inc. Non-fourier pulse-shapers including a combined pulse-shaper and pulse-compressor
US20090003391A1 (en) 2007-06-28 2009-01-01 Shenping Li Low-repetition-rate ring-cavity passively mode-locked fiber laser
US7864821B2 (en) 2007-09-28 2011-01-04 Fujifilm Corporation Mode-locked solid-state laser apparatus
EP2223396B1 (en) 2007-12-18 2018-09-12 NKT Photonics A/S Mode-locked fiber laser with improved life-time of saturable absorber
JP5341096B2 (ja) * 2008-09-09 2013-11-13 株式会社メガオプト モード同期ファイバーレーザーおよびモード同期ファイバーレーザーを用いたパルスレーザー光の発振方法

Also Published As

Publication number Publication date
WO2012082472A3 (en) 2013-01-03
US9059564B2 (en) 2015-06-16
JP2013546201A (ja) 2013-12-26
US8654799B2 (en) 2014-02-18
WO2012082472A2 (en) 2012-06-21
US20120147908A1 (en) 2012-06-14
US20140204964A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5851517B2 (ja) ショートパルスファイバーレーザー
JP5615397B2 (ja) 非線形オプティカルループミラーを備えたレーザ
US9276372B2 (en) Laser with non-linear optical loop mirror
KR101718177B1 (ko) 펄스폭 변환 장치 및 광 증폭 시스템
Bruesselbach et al. 200 W self-organized coherent fiber arrays
JP2013546201A5 (ja)
KR20080055974A (ko) 파이버 레이저
US9331451B2 (en) Pump radiation arrangement and method for pumping a laser-active medium
US8494016B2 (en) Mode locked laser system
US10516246B2 (en) Spatially-distributed gain element self-phase-locked, laser apparatus and method
US20110064096A1 (en) Mid-IR laser employing Tm fiber laser and optical parametric oscillator
CN104953461A (zh) 一种基于扭摆模腔和体光栅的固体激光器
JP2006332666A (ja) 全ファイバをベースにした1ミクロンにおける短パルス増幅
EP2557641B1 (en) Pulse fiber laser device
US8891562B2 (en) Tuneable laser source
JP5341096B2 (ja) モード同期ファイバーレーザーおよびモード同期ファイバーレーザーを用いたパルスレーザー光の発振方法
Jain et al. Passive coherent locking of fiber lasers using volume Bragg gratings
JP5524381B2 (ja) パルス幅変換装置および光増幅システム
US20100329289A1 (en) Method and apparatus for generating optical beats
US10566758B2 (en) Fiber laser oscillator having thin filter reflector
Moloney et al. Novel designs and coupling schemes for affordable high-energy laser modules
Ibarra-Escamilla et al. Wavelength tunable high power laser using a double-clad Er: Yb doped fiber
Chen et al. Alternate Wavelength-Switching in a Dual-Wavelength Mode-Locked Fiber Laser
JP2008258422A (ja) ファイバレーザ発振器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151202

R150 Certificate of patent or registration of utility model

Ref document number: 5851517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250