JP5645385B2 - Endoscopic light projecting unit and endoscopic device equipped with the same - Google Patents

Endoscopic light projecting unit and endoscopic device equipped with the same Download PDF

Info

Publication number
JP5645385B2
JP5645385B2 JP2009225405A JP2009225405A JP5645385B2 JP 5645385 B2 JP5645385 B2 JP 5645385B2 JP 2009225405 A JP2009225405 A JP 2009225405A JP 2009225405 A JP2009225405 A JP 2009225405A JP 5645385 B2 JP5645385 B2 JP 5645385B2
Authority
JP
Japan
Prior art keywords
light
endoscope
projecting unit
light projecting
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009225405A
Other languages
Japanese (ja)
Other versions
JP2011072424A (en
Inventor
水由 明
明 水由
寛人 加賀屋
寛人 加賀屋
雄一 鳥居
雄一 鳥居
飯田 孝之
孝之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009225405A priority Critical patent/JP5645385B2/en
Publication of JP2011072424A publication Critical patent/JP2011072424A/en
Application granted granted Critical
Publication of JP5645385B2 publication Critical patent/JP5645385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

本発明は、内視鏡用投光ユニット、及びこれを搭載した内視鏡装置に関する。 The present invention relates to an endoscope light projecting unit and an endoscope apparatus equipped with the same.

生体内部の観察や治療等を行うための医療用内視鏡を始めとする内視鏡装置においては、内視鏡挿入部の先端に照明窓と観察窓が配設され、照明窓から照明光を出射して観察窓を通じて観察画像を取得するようになっている。照明窓には、例えば、キセノンランプ等の光源装置からの光が光ファイババンドル等の導光部材によって導かれ、出射するようになっている。近年、このような光源装置を利用する照明光に代えて、レーザ光源を用い、内視鏡挿入部先端に配置した蛍光体を励起発光させて照明光を生成するものが利用されつつある。   In an endoscope apparatus such as a medical endoscope for observing or treating the inside of a living body, an illumination window and an observation window are disposed at the distal end of the endoscope insertion portion, and illumination light is emitted from the illumination window. And an observation image is acquired through the observation window. For example, light from a light source device such as a xenon lamp is guided to and emitted from the illumination window by a light guide member such as an optical fiber bundle. In recent years, instead of illumination light using such a light source device, a laser light source is used to generate illumination light by exciting and emitting a phosphor disposed at the distal end of an endoscope insertion portion.

また、内視鏡装置は、より高精細な撮像画像の取得や高フレームレートでの撮像の要望が強く、高強度な照明光が必要とされている。そのため、上記の蛍光体の周囲には、励起発光した光を照明光として有効に利用するため、高反射率の反射膜を設けることが望ましい。この高反射率の反射膜としては、一般に、銀、アルミ等の金属膜が適していることが知られている。   In addition, endoscope apparatuses have a strong demand for acquisition of higher-definition captured images and imaging at a high frame rate, and high intensity illumination light is required. For this reason, it is desirable to provide a reflective film having a high reflectance around the phosphor to effectively use the excited light as illumination light. It is known that a metal film such as silver or aluminum is generally suitable as the reflective film having a high reflectance.

ところが、内視鏡挿入部の内部は、体腔内に挿入する際に高湿となる上、湾曲部等の摺動部には二硫化モリブデンを含むグリースが潤滑剤として利用されており、さらに、医療用内視鏡装置においては、検査使用後に過酢酸等を含む殺菌消毒薬に浸す洗浄処理が施される。そのため、内視鏡挿入部の内部では、水分や薬品に弱い蛍光体は劣化し易く、金属反射膜は酸化や硫化によって反射率が低下し易い環境となる。例えば、銀は酸化や硫化により黒化して、アルミは酸化により白濁する。そのため、高反射率の金属膜を反射率を低下させずに使用し続けることは困難となり、また、光ファイバの出射端では、固定、放熱、密着等の目的で広く使用されているシリコーン系の接着剤から揮発したシロキ酸が堆積し、これによっても光量の低下を招くことになる。   However, the inside of the endoscope insertion part becomes highly humid when inserted into a body cavity, and grease containing molybdenum disulfide is used as a lubricant for a sliding part such as a curved part, In a medical endoscope apparatus, a cleaning process in which the medical endoscope apparatus is immersed in a disinfectant containing peracetic acid or the like is performed after use. Therefore, inside the endoscope insertion portion, a phosphor that is weak against moisture and chemicals is likely to be deteriorated, and the metal reflective film is in an environment in which the reflectance is likely to decrease due to oxidation or sulfuration. For example, silver becomes black due to oxidation or sulfuration, and aluminum becomes cloudy due to oxidation. Therefore, it is difficult to continue to use a highly reflective metal film without reducing the reflectance, and at the output end of the optical fiber, a silicone-based material widely used for fixing, heat dissipation, adhesion, etc. Siloxy acid volatilized from the adhesive is deposited, and this also causes a decrease in the amount of light.

特開平7−289513号公報JP-A-7-289513

本発明は、使用環境によらず照明光強度の低下を招くことのない内視鏡用投光ユニット、及びこれを搭載した内視鏡装置を提供することを目的とする。 The present invention aims to provide an endoscope apparatus an endoscopic light projecting units without causing a decrease in illumination intensity regardless of the use environment, and that it is mounted.

本発明の上記目的は、下記構成により達成される。
(1) 被検体内に挿入される内視鏡挿入部の先端硬性部に形成された穿設孔に配置され、照明光を照射する内視鏡用投光ユニットであって、
光源からの光を導いて先端の光出射端から光を出射する導光部材と、
前記導光部材の光出射端からの出射光を受けて該出射光を波長変換する波長変換部材と、
前記波長変換部材を収容し、一端側が前記導光部材の光出射端を貫通させた状態で封止される外筒部材と、
前記外筒部材の他端側に固定され該他端側を封止する透光性部材と、
前記外筒部材の内部で前記波長変換部材により波長変換された光を反射する金属反射膜と、
を備え、
前記外筒部材は、筒状のスリーブからなり、前記波長変換部材と前記金属反射膜とを内部に収容した状態で封止された密封構造となっている内視鏡用投光ユニット。
(2)上記内視鏡用投光ユニットが搭載された内視鏡装置。
The above object of the present invention is achieved by the following configurations.
(1) An endoscope projection unit that is disposed in a drilled hole formed in a distal end rigid portion of an endoscope insertion portion that is inserted into a subject, and that emits illumination light.
A light guide member that guides light from the light source and emits light from the light exit end of the tip;
A wavelength converting member that receives the emitted light from the light emitting end of the light guide member and converts the wavelength of the emitted light;
An outer cylinder member that houses the wavelength conversion member and is sealed in a state where one end side penetrates the light emitting end of the light guide member;
A translucent member that is fixed to the other end of the outer cylinder member and seals the other end;
A metal reflective film that reflects the light wavelength-converted by the wavelength conversion member inside the outer cylindrical member;
With
The endoscope light projecting unit, wherein the outer cylinder member is formed of a cylindrical sleeve and has a sealed structure in which the wavelength conversion member and the metal reflection film are sealed inside.
(2) An endoscope apparatus on which the endoscope projection unit is mounted.

本発明の内視鏡用投光ユニット、及びこれを搭載した内視鏡装置によれば、金属反射膜を用いても反射特性が低下せず、また、蛍光体の劣化を招くことなく、常に高強度の照明光を安定して得ることができる。 According to the endoscope projection unit of the present invention and the endoscope apparatus equipped with the same, even if a metal reflective film is used, the reflection characteristics are not lowered, and the phosphor is not deteriorated at all times. High intensity illumination light can be obtained stably.

本発明の実施形態を説明するための図で、内視鏡装置の概念的なブロック構成図である。It is a figure for demonstrating embodiment of this invention, and is a notional block block diagram of an endoscope apparatus. 図1に示す内視鏡装置の一例としての外観図である。It is an external view as an example of the endoscope apparatus shown in FIG. 紫色レーザ光源からの紫色レーザ光と、青色レーザ光源からの青色レーザ光及び青色レーザ光が蛍光体により波長変換された発光スペクトルとを示すグラフであるIt is a graph which shows the violet laser beam from a violet laser light source, the blue laser beam from a blue laser light source, and the emission spectrum by which the wavelength conversion of the blue laser beam was carried out with the fluorescent substance. 投光ユニットの基本的な構成例を示す断面図である。It is sectional drawing which shows the basic structural example of a light projection unit. 多層構造を有する蛍光体の構成図である。It is a block diagram of the fluorescent substance which has a multilayer structure. 内視鏡先端部の概略的な構成を示す斜視図である。It is a perspective view which shows the schematic structure of an endoscope front-end | tip part. 図6に示す内視鏡先端部の分解図である。FIG. 7 is an exploded view of the distal end portion of the endoscope shown in FIG. 6. 図6のA−A断面図である。It is AA sectional drawing of FIG. 投光ユニットの第1の変形例を示す断面構成図である。It is a section lineblock diagram showing the 1st modification of a light projection unit. 投光ユニットの第2の変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of a light projection unit. 図10に示す投光ユニットを内視鏡先端部に配置する場合の光源との接続の様子を示すブロック図である。It is a block diagram which shows the mode of a connection with the light source in the case of arrange | positioning the light projection unit shown in FIG. 10 in an endoscope front-end | tip part. 投光ユニットの第3の変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of a light projection unit. 投光ユニットの第4の変形例を示す断面図である。It is sectional drawing which shows the 4th modification of a light projection unit. 内視鏡先端部の概略的な構成を示す斜視図である。It is a perspective view which shows the schematic structure of an endoscope front-end | tip part. 図14に示す内視鏡先端部の分解図である。It is an exploded view of the endoscope front-end | tip part shown in FIG. 投光ユニットを鉗子孔に挿入した例を示す構成図である。It is a block diagram which shows the example which inserted the light projection unit in the forceps hole. (A)は蛍光体に光ファイバを接続した状態を示す工程説明図、(B)は蛍光体の側面と背面に金属反射膜を製膜した状態を示す工程説明図、(C)は蛍光体と金属反射膜をガラス封止した状を示す工程説明図である。(A) is process explanatory drawing which shows the state which connected the optical fiber to fluorescent substance, (B) is process explanatory drawing which shows the state which formed the metal reflective film in the side surface and back surface of fluorescent substance, (C) is fluorescent substance It is process explanatory drawing which shows the state which sealed the metal reflective film with glass.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、内視鏡装置の概念的なブロック構成図、図2は図1に示す内視鏡装置の一例としての外観図である。
図1、図2に示すように、医療機器の一つである内視鏡装置100は、内視鏡11と、この内視鏡11が接続される制御装置13とを有する。制御装置13には、画像情報等を表示する表示部15と、入力操作を受け付ける入力部17が接続されている。内視鏡11は、被検体内に挿入される内視鏡挿入部19の先端から照明光を出射する照明光学系と、被観察領域を撮像する撮像素子21(図1参照)を含む撮像光学系とを有する、電子内視鏡である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the present invention, and is a conceptual block diagram of an endoscope apparatus. FIG. 2 is an external view as an example of the endoscope apparatus shown in FIG.
As shown in FIGS. 1 and 2, an endoscope apparatus 100 that is one of medical devices includes an endoscope 11 and a control device 13 to which the endoscope 11 is connected. The control device 13 is connected to a display unit 15 that displays image information and an input unit 17 that receives an input operation. The endoscope 11 includes an imaging optical that includes an illumination optical system that emits illumination light from the distal end of an endoscope insertion portion 19 that is inserted into a subject, and an imaging element 21 (see FIG. 1) that captures an observation region. An electronic endoscope having a system.

また、内視鏡11は、内視鏡挿入部19と、内視鏡挿入部19の先端の湾曲操作や観察のための操作を行う操作部23(図2参照)と、内視鏡11を制御装置13に着脱自在に接続するコネクタ部25A,25Bを備える。なお、図示はしないが、操作部23及び内視鏡挿入部19の内部には、組織採取用処置具等を挿入する鉗子チャンネルや、送気・送水用のチャンネル等、各種のチャンネルが設けられる。   The endoscope 11 includes an endoscope insertion unit 19, an operation unit 23 (see FIG. 2) for performing an operation for bending and observing the distal end of the endoscope insertion unit 19, and the endoscope 11. Connector portions 25A and 25B that are detachably connected to the control device 13 are provided. Although not shown, various channels such as a forceps channel for inserting a tissue collection treatment instrument and the like, a channel for air supply / water supply, and the like are provided inside the operation unit 23 and the endoscope insertion unit 19. .

内視鏡挿入部19は、可撓性を持つ軟性部31と、湾曲部33と、先端部(以降、内視鏡先端部とも呼称する)35から構成される。内視鏡先端部35には、図1に示すように、被観察領域へ光を照射する照射口37A,37Bと、被観察領域の画像情報を取得するCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子21が配置されている。また、撮像素子21の受光面には対物レンズユニット39が配置される。   The endoscope insertion portion 19 includes a flexible soft portion 31, a bending portion 33, and a tip portion (hereinafter also referred to as an endoscope tip portion) 35. As shown in FIG. 1, the endoscope distal end portion 35 has irradiation ports 37A and 37B for irradiating light to the observation region, a CCD (Charge Coupled Device) image sensor or CMOS for acquiring image information of the observation region. (Complementary Metal-Oxide Semiconductor) An image sensor 21 such as an image sensor is disposed. An objective lens unit 39 is disposed on the light receiving surface of the image sensor 21.

湾曲部33は、軟性部31と先端部35との間に設けられ、図2に示す操作部23に配置されたアングルノブ22の回動操作により湾曲自在にされている。この湾曲部33は、内視鏡11が使用される被検体の部位等に応じて、任意の方向、任意の角度に湾曲でき、内視鏡先端部35の照射口37A,37B及び撮像素子21の観察方向を、所望の観察部位に向けることができる。また、内視鏡挿入部19の照射口37A,37Bの内部構造については、詳細を後述する。   The bending portion 33 is provided between the flexible portion 31 and the distal end portion 35, and can be bent by a turning operation of the angle knob 22 disposed in the operation portion 23 shown in FIG. The bending portion 33 can be bent in an arbitrary direction and an arbitrary angle according to a part of the subject in which the endoscope 11 is used, and the irradiation ports 37A and 37B of the endoscope distal end portion 35 and the imaging element 21. Can be directed to a desired observation site. Details of the internal structure of the irradiation ports 37A and 37B of the endoscope insertion portion 19 will be described later.

制御装置13は、内視鏡先端部35の照射口37A,37Bに供給する照明光を発生する光源装置41と、撮像素子21からの画像信号を画像処理するプロセッサ43とを備え、コネクタ部25A,25Bを介して内視鏡11に接続される。また、プロセッサ43には、前述の表示部15と入力部17が接続されている。プロセッサ43は、内視鏡11の操作部23や入力部17からの指示に基づいて、内視鏡11から伝送されてくる撮像信号を画像処理し、表示用画像を生成して表示部15へ供給する。   The control device 13 includes a light source device 41 that generates illumination light to be supplied to the irradiation ports 37A and 37B of the endoscope distal end portion 35, and a processor 43 that performs image processing on an image signal from the imaging element 21, and a connector portion 25A. , 25B to the endoscope 11. Further, the display unit 15 and the input unit 17 are connected to the processor 43. The processor 43 performs image processing on the imaging signal transmitted from the endoscope 11 based on an instruction from the operation unit 23 or the input unit 17 of the endoscope 11, generates a display image, and outputs the display image to the display unit 15. Supply.

光源装置41は、中心波長445nmの青色レーザ光源(白色照明用光源)45と、中心波長405nmの紫色レーザ光源(特殊光光源)47とを発光源として備えている。これら各光源45,47の半導体発光素子LD1,LD2からの発光は、光源制御部49により個別に制御されており、青色レーザ光源45の出射光と、紫色レーザ光源47の出射光の光量比は変更自在になっている。   The light source device 41 includes a blue laser light source (white illumination light source) 45 having a central wavelength of 445 nm and a violet laser light source (special light source) 47 having a central wavelength of 405 nm as light emission sources. Light emission from the semiconductor light emitting elements LD1 and LD2 of each of the light sources 45 and 47 is individually controlled by the light source control unit 49, and the light quantity ratio between the emitted light of the blue laser light source 45 and the emitted light of the violet laser light source 47 is It can be changed freely.

青色レーザ光源45及び紫色レーザ光源47は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。また、上記光源として、発光ダイオード等の発光体を用いた構成としてもよい。   As the blue laser light source 45 and the violet laser light source 47, a broad area type InGaN laser diode can be used, and an InGaNAs laser diode or a GaNAs laser diode can also be used. In addition, a light-emitting body such as a light-emitting diode may be used as the light source.

これら各光源45,47から出射されるレーザ光は、集光レンズ(図示略)によりそれぞれ光ファイバに入力され、合波器であるコンバイナ51と、分波器であるカプラ53を介してコネクタ部25Aに伝送される。なお、これに限らず、コンバイナ51とカプラ53を用いずに各光源45,47からのレーザ光を直接コネクタ部25Aに送出する構成であってもよい。   Laser light emitted from each of the light sources 45 and 47 is input to an optical fiber by a condenser lens (not shown), and is connected to a connector section via a combiner 51 that is a multiplexer and a coupler 53 that is a duplexer. 25A. However, the present invention is not limited to this, and the configuration may be such that the laser light from each of the light sources 45 and 47 is sent directly to the connector portion 25A without using the combiner 51 and the coupler 53.

中心波長445nmの青色レーザ光、及び中心波長405nmの紫色レーザ光が合波され、コネクタ部25Aまで伝送されたレーザ光は、光ファイバ55A,55Bによって、それぞれ内視鏡11の内視鏡先端部35まで伝搬される。そして、青色レーザ光は、内視鏡先端部35の光ファイバ55A,55Bの光出射端に配置された波長変換部材である蛍光体57を励起して蛍光を発光させる。また、一部の青色レーザ光は、そのまま蛍光体57を透過する。紫色レーザ光は、蛍光体57を略励起させることなく透過して、狭帯域波長の特殊光観察用の照明光となる。   The laser beam combined with the blue laser beam having the center wavelength of 445 nm and the violet laser beam having the center wavelength of 405 nm and transmitted to the connector unit 25A is transmitted through the optical fibers 55A and 55B to the distal end portion of the endoscope 11 respectively. Up to 35. Then, the blue laser light excites the phosphor 57, which is a wavelength conversion member disposed at the light emitting ends of the optical fibers 55A and 55B of the endoscope distal end portion 35, and emits fluorescence. Some of the blue laser light passes through the phosphor 57 as it is. The violet laser light is transmitted without substantially exciting the phosphor 57 and becomes illumination light for special light observation with a narrow band wavelength.

光ファイバ55A,55Bは、マルチモードファイバであり、一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3〜0.5mmの細径なファイバケーブルを使用できる。   The optical fibers 55A and 55B are multimode fibers. As an example, a thin fiber cable having a core diameter of 105 μm, a cladding diameter of 125 μm, and a diameter of φ0.3 to 0.5 mm including a protective layer serving as an outer shell can be used. .

蛍光体57は、青色レーザ光の一部を吸収して緑色〜黄色に励起発光する複数種の蛍光体(例えばYAG系蛍光体、或いはBAM(BaMgAl1017)等の蛍光体)を含んで構成される。これにより、青色レーザ光を励起光とする緑色〜黄色の励起光と、蛍光体57により吸収されず透過した青色レーザ光とが合わされて、白色(疑似白色)の照明光となる。本構成例のように、半導体発光素子を励起光源として用いれば、高い発光効率で高強度の白色光が得られ、白色光の強度を容易に調整できる上に、白色光の色温度、色度の変化を小さく抑えることができる。 The phosphor 57 includes a plurality of types of phosphors (for example, a YAG phosphor or a phosphor such as BAM (BaMgAl 10 O 17 )) that absorbs a part of blue laser light and emits green to yellow light. Composed. Thereby, the green to yellow excitation light using the blue laser light as excitation light and the blue laser light transmitted without being absorbed by the phosphor 57 are combined to form white (pseudo white) illumination light. If a semiconductor light-emitting element is used as an excitation light source as in this configuration example, high-intensity white light can be obtained with high luminous efficiency, the intensity of white light can be easily adjusted, and the color temperature and chromaticity of white light can be adjusted. Can be kept small.

上記の蛍光体57は、レーザ光の可干渉性により生じるスペックルに起因して、撮像の障害となるノイズの重畳や、動画像表示を行う際のちらつきの発生を防止できる。また、蛍光体57は、蛍光体を構成する蛍光物質と、充填剤となる固定・固化用樹脂との屈折率差を考慮して、蛍光物質そのものと充填剤に対する粒径を、赤外域の光に対して吸収が小さく、かつ散乱が大きい材料で構成することが好ましい。これにより、赤色や赤外域の光に対して光強度を落とすことなく散乱効果が高められ、光学的損失が小さくなる。   The phosphor 57 described above can prevent noise superimposition that causes an obstacle to imaging or flickering when performing moving image display due to speckles caused by the coherence of laser light. In addition, the phosphor 57 takes into account the difference in refractive index between the phosphor constituting the phosphor and the fixing / solidifying resin serving as the filler, and the particle size of the phosphor itself and the filler is set to the light in the infrared region. In contrast, it is preferable to use a material that has low absorption and high scattering. This enhances the scattering effect without reducing the light intensity for red or infrared light, and reduces the optical loss.

図3は、紫色レーザ光源47からの紫色レーザ光と、青色レーザ光源45からの青色レーザ光及び青色レーザ光が蛍光体57により波長変換された発光スペクトルとを示すグラフである。紫色レーザ光は、中心波長405nmの輝線(プロファイルA)で表される。また、青色レーザ光は、中心波長445nmの輝線で表され、青色レーザ光による蛍光体57からの励起発光光は、概ね450nm〜700nmの波長帯域で発光強度が増大する分光強度分布となる。この励起発光光と青色レーザ光によるプロファイルBによって、前述した白色光が形成される。   FIG. 3 is a graph showing the violet laser light from the violet laser light source 47 and the emission spectrum obtained by wavelength-converting the blue laser light and the blue laser light from the blue laser light source 45 by the phosphor 57. The violet laser beam is represented by an emission line (profile A) having a center wavelength of 405 nm. The blue laser light is represented by a bright line having a central wavelength of 445 nm, and the excitation light emitted from the phosphor 57 by the blue laser light has a spectral intensity distribution in which the emission intensity increases in a wavelength band of approximately 450 nm to 700 nm. The white light described above is formed by the profile B of the excitation emission light and the blue laser light.

ここで、本明細書でいう白色光とは、厳密に可視光の全ての波長成分を含むものに限らず、例えば、基準色であるR(赤),G(緑),B(青)等、特定の波長帯の光を含むものであればよく、例えば、緑色から赤色にかけての波長成分を含む光や、青色から緑色にかけての波長成分を含む光等も広義に含むものとする。   Here, the white light referred to in the present specification is not limited to the one that strictly includes all wavelength components of visible light, and examples thereof include R (red), G (green), and B (blue) that are reference colors. As long as it includes light in a specific wavelength band, for example, light including a wavelength component from green to red, light including a wavelength component from blue to green, and the like are broadly included.

この内視鏡装置100では、プロファイルAとプロファイルBとの発光強度を光源制御部49により相対的に増減制御して、任意の輝度バランスの照明光を生成することもできる。   In the endoscope apparatus 100, the light emission intensity of the profile A and the profile B can be relatively increased and decreased by the light source control unit 49 to generate illumination light having an arbitrary luminance balance.

再び図1に戻り説明する。上記のように青色レーザ光と蛍光体57からの励起発光光による白色光、及び紫色レーザ光による狭帯域光からなる照明光は、内視鏡11の先端部35から被検体の被観察領域に向けて照射される。そして、照明光が照射された被観察領域の様子を対物レンズユニット39により撮像素子21の受光面上に結像させて撮像する。   Returning again to FIG. As described above, the illumination light composed of the blue laser light and the white light generated by the excitation light emitted from the phosphor 57 and the narrow-band light generated by the purple laser light is transmitted from the distal end portion 35 of the endoscope 11 to the observation region of the subject. Irradiated toward. Then, the state of the observation area irradiated with the illumination light is imaged on the light receiving surface of the image sensor 21 by the objective lens unit 39 and imaged.

撮像後に撮像素子21から出力される撮像画像の画像信号は、スコープケーブル59を通じてA/D変換器61に伝送されてデジタル信号に変換され、コネクタ部25Bを介してプロセッサ43の画像処理部63に入力される。画像処理部63は、デジタル信号に変換された撮像素子21からの撮像画像信号に対して、ホワイトバランス補正、ガンマ補正、輪郭強調、色補正等の各種処理を施す。画像処理部63で処理された撮像画像信号は、制御部65に送られて、制御部65で各種情報と共に内視鏡観察画像にされて表示部15に表示され、必要に応じて、メモリやストレージ装置からなる記憶部67に記憶される。   An image signal of a captured image output from the image sensor 21 after imaging is transmitted to the A / D converter 61 through the scope cable 59 and converted into a digital signal, and is transmitted to the image processing unit 63 of the processor 43 via the connector unit 25B. Entered. The image processing unit 63 performs various processes such as white balance correction, gamma correction, contour enhancement, and color correction on the captured image signal from the image sensor 21 converted into a digital signal. The picked-up image signal processed by the image processing unit 63 is sent to the control unit 65, converted into an endoscopic observation image together with various information by the control unit 65, and displayed on the display unit 15. It is stored in the storage unit 67 comprising a storage device.

次に、内視鏡挿入部19の先端部35に配置され、照明光を出射する投光ユニット71について詳細に説明する。
投光ユニット71の基本的な構成例を図4に示した。図1に示す2つの投光ユニット71は、それぞれ同一の構成を有している。図4に示すように、投光ユニット71は、光源装置41からの光をコネクタ部25Aから内視鏡先端部35まで導き、先端の光出射端から出射する導光部材としての光ファイバ55と、光ファイバ55から出射される光を受けて励起発光する蛍光体57とを有する。また、蛍光体57の外周を覆うと共に、一端側が光ファイバ55を延出させた状態で封止され、他端側が開口部を有する外筒部材73と、外筒部材73の他端側を封止する透光性部材であるサファイアガラス75とを有する。また、蛍光体57の外側には、蛍光体57により発光した光を反射する金属反射膜77が配置されている。投光ユニット71は、金属反射膜77が外筒部材73の中に封止され、外筒部材73の外部には表出しない構造となっている。
Next, the light projecting unit 71 disposed at the distal end portion 35 of the endoscope insertion portion 19 and emitting illumination light will be described in detail.
A basic configuration example of the light projecting unit 71 is shown in FIG. The two light projecting units 71 shown in FIG. 1 have the same configuration. As shown in FIG. 4, the light projecting unit 71 guides light from the light source device 41 from the connector portion 25 </ b> A to the endoscope distal end portion 35, and an optical fiber 55 as a light guide member that emits from the light emitting end at the distal end. And a phosphor 57 that receives and emits light emitted from the optical fiber 55. Further, the outer periphery of the phosphor 57 is covered, the one end side is sealed with the optical fiber 55 extended, and the other end side is sealed with the outer cylinder member 73 having an opening, and the other end side of the outer cylinder member 73 is sealed. It has sapphire glass 75 which is a translucent member to stop. A metal reflection film 77 that reflects light emitted from the phosphor 57 is disposed outside the phosphor 57. The light projecting unit 71 has a structure in which the metal reflection film 77 is sealed in the outer cylinder member 73 and is not exposed to the outside of the outer cylinder member 73.

外筒部材73の内部には、光ファイバ55を支持する連通孔が穿設されたフェルール79が設けられ、光ファイバ55を外筒部材73の中心軸上に保持している。   A ferrule 79 having a communication hole for supporting the optical fiber 55 is provided inside the outer cylinder member 73, and holds the optical fiber 55 on the central axis of the outer cylinder member 73.

また、蛍光体57は、光ファイバ55の光出射端から離間した位置に配置され、光ファイバ55からの出射光が隙間領域81で拡散されて広いビーム径になった後に蛍光体57へ照射されるようにしている。これにより、外光による蛍光体57の発光(一次励起)に寄与する体積を増加させ、発光効率をより高めている。   The phosphor 57 is disposed at a position away from the light emitting end of the optical fiber 55, and the emitted light from the optical fiber 55 is diffused in the gap region 81 to have a wide beam diameter, and then the phosphor 57 is irradiated. I try to do it. Thereby, the volume which contributes to light emission (primary excitation) of the fluorescent substance 57 by external light is increased, and the luminous efficiency is further increased.

金属反射膜77は、外筒部材73の内周面における、蛍光体57の外周面との間及び隙間領域81に形成され、また、フェルール79の蛍光体57に対面するフェルール側面79bに形成されている。つまり、金属反射膜77は、蛍光体57の光ファイバ55からの光導入部分と、透光性部材75に対面する部分とを除く蛍光体57の外側に形成され、これにより、蛍光体57からの発光光を、金属反射膜77により繰り返し反射させて、高い光利用効率でサファイアガラス75側へ出射させている。   The metal reflection film 77 is formed on the inner peripheral surface of the outer cylindrical member 73 between the outer peripheral surface of the phosphor 57 and in the gap region 81, and is formed on the ferrule side surface 79 b facing the phosphor 57 of the ferrule 79. ing. In other words, the metal reflection film 77 is formed outside the phosphor 57 excluding the light introduction portion of the phosphor 57 from the optical fiber 55 and the portion facing the translucent member 75. The emitted light is repeatedly reflected by the metal reflective film 77 and emitted toward the sapphire glass 75 side with high light utilization efficiency.

この金属反射膜77は、メッキ、蒸着、スパッタ等により形成される薄膜状の反射膜である。   The metal reflection film 77 is a thin film-like reflection film formed by plating, vapor deposition, sputtering, or the like.

外筒部材73は、ステンレス鋼、ニッケル、銅、銅−タングステン合金、銅−モリブデン系複合材料、リン青銅等の硬質材料、或いはカーボンからなるスリーブで、外筒部材73の一端部の開口部は、サファイアガラス75を接着剤82により固定することで封止し、他端部は、光ファイバ55を接着剤83に貫通させた状態で封止した密封構造となっている。これらの接着剤82,83としては、シロキ酸揮発のない例えばエポキシ系接着剤等が利用できる。また、外筒部材73を上記金属材料のような高熱伝導率材料で形成することで、蛍光体57付近で生じる熱をいち早く拡散させることができ、局所的な加熱を防止できる。   The outer cylinder member 73 is a sleeve made of a hard material such as stainless steel, nickel, copper, copper-tungsten alloy, copper-molybdenum-based composite material, phosphor bronze, or carbon, and an opening at one end of the outer cylinder member 73 is The sapphire glass 75 is sealed by fixing it with an adhesive 82, and the other end has a sealed structure in which the optical fiber 55 is passed through the adhesive 83 and sealed. As these adhesives 82 and 83, for example, an epoxy-based adhesive that does not volatilize siloxy acid can be used. Moreover, by forming the outer cylinder member 73 with a high thermal conductivity material such as the above metal material, heat generated in the vicinity of the phosphor 57 can be quickly diffused, and local heating can be prevented.

金属反射膜77は、銀やアルミニウムが利用でき、特に銀は反射率が高いことから望ましい。銀を金属反射膜77に用いる場合には、銀の表面に有機系硫化防止層を形成したり、銀にビスマスを添加して反射性、耐食性を向上させることもできる。また、十分な厚みを確保することができれば、金属反射膜77に代えてアルミナ反射膜を用いることもできる。   The metal reflective film 77 can be made of silver or aluminum, and silver is particularly preferable because of its high reflectance. When silver is used for the metal reflection film 77, an organic sulfidation prevention layer can be formed on the surface of silver, or bismuth can be added to silver to improve reflectivity and corrosion resistance. If a sufficient thickness can be secured, an alumina reflective film can be used instead of the metal reflective film 77.

上記構成の投光ユニット71の基本構成によれば、光ファイバ55の光軸と平行に、蛍光体57とサファイアガラス75とがこの順で配置されることで、光ファイバ55から出射された光を、前方へ高効率で照明光として出射させることができる。   According to the basic configuration of the light projecting unit 71 having the above-described configuration, the phosphor 57 and the sapphire glass 75 are arranged in this order in parallel with the optical axis of the optical fiber 55, so that the light emitted from the optical fiber 55. Can be emitted forward as illumination light with high efficiency.

なお、外筒部材73は、上記のフェルール79を別部品として内装する構成であるが、これに代えて、スリーブの一端側に光ファイバ55を中心軸に支持するための肉厚部を形成した構成にしてもよく、この場合は部品点数が減り、組立工程を簡単にできる。   The outer cylinder member 73 is configured to include the ferrule 79 as a separate component, but instead, a thick portion for supporting the optical fiber 55 on the central axis is formed on one end side of the sleeve. In this case, the number of parts is reduced, and the assembly process can be simplified.

また、蛍光体57は、図5に示すように、光ファイバ55の光出射端に対面する側から反対側の出射面側にかけて拡径する、略円錐状の中心層85と、その外側層86の多層構造として、中心層85を蛍光体材料の配合密度を高く、外側層86を低くする構成としてもよい。この場合、光ファイバ55からの光が蛍光体57A内を中心層85に沿って透過することで、高効率で蛍光体57Aを発光させることができる。また、外側層86に光拡散材を混在させておけば、中心層85等からの発光が蛍光体57Aの全体に拡散されてより均等な発光が得られる。   Further, as shown in FIG. 5, the phosphor 57 has a substantially conical center layer 85 whose diameter increases from the side facing the light emitting end of the optical fiber 55 to the opposite emitting surface side, and its outer layer 86. As the multi-layer structure, the central layer 85 may have a structure in which the blending density of the phosphor material is high and the outer layer 86 is low. In this case, the light from the optical fiber 55 is transmitted through the phosphor 57A along the center layer 85, so that the phosphor 57A can emit light with high efficiency. If a light diffusing material is mixed in the outer layer 86, light emitted from the center layer 85 and the like is diffused throughout the phosphor 57A, and more uniform light emission is obtained.

次に、上記の投光ユニット71を搭載した内視鏡の具体的な構成例を説明する。
図6は内視鏡先端部の概略的な構成を示す斜視図、図7は図6に示す内視鏡先端部の分解図である。
図6、図7に示すように、内視鏡先端部35は、長手方向に沿って複数の穿設孔が形成されたステンレス鋼等からなる先端硬性部87に、前述の投光ユニット等の各種部品が取り付けられて構成される。先端硬性部87は、図1に示した撮像素子21を含む撮像光学系が収容される穿設孔87aを有し、この穿設孔87aを中心とするその両脇側に形成された穿設孔87b,87cに投光ユニット71A,71Bがそれぞれ挿入される。
Next, a specific configuration example of an endoscope equipped with the light projecting unit 71 will be described.
6 is a perspective view showing a schematic configuration of the distal end portion of the endoscope, and FIG. 7 is an exploded view of the distal end portion of the endoscope shown in FIG.
As shown in FIGS. 6 and 7, the endoscope distal end portion 35 has a distal end rigid portion 87 made of stainless steel or the like in which a plurality of perforations are formed along the longitudinal direction, and the above-described light projecting unit or the like. Various parts are attached and configured. The distal end rigid portion 87 has a perforation hole 87a in which an imaging optical system including the image sensor 21 shown in FIG. 1 is accommodated, and the perforations formed on both sides of the perforation hole 87a. The light projecting units 71A and 71B are inserted into the holes 87b and 87c, respectively.

また、先端硬性部87の先端側には先端ゴムキャップ89が被せられ、また、先端硬性部87の外周には図示はしない外皮チューブが被せられる。先端ゴムキャップ89には先端硬性部87の各穿設孔87a,87b,87c,・・・に対応した穿設孔89a,89b,89c,・・・が形成されて、対物レンズユニット39による観察窓や、投光ユニット71A,71Bの照射口37A,37Bを開口させている。   The distal end hard portion 87 is covered with a distal end rubber cap 89, and the outer periphery of the distal end rigid portion 87 is covered with an unshown skin tube. The tip rubber cap 89 is formed with perforations 89a, 89b, 89c,... Corresponding to the perforations 87a, 87b, 87c,. Windows and irradiation ports 37A and 37B of the light projecting units 71A and 71B are opened.

ここで、図8に図6のA−A断面図を示した。投光ユニット71A,71Bは、先端硬性部87の穿設孔87b、87cに挿入させた後、穿設孔87b,87cと連通する一対の横孔91(図6,図7参照)から止めネジ(イモビス)93で締め付けることで、投光ユニット71A,71Bが先端硬性部87に固定される。   Here, FIG. 8 shows an AA cross-sectional view of FIG. The light projecting units 71A and 71B are inserted into the drill holes 87b and 87c of the tip rigid portion 87, and then set screws from a pair of lateral holes 91 (see FIGS. 6 and 7) communicating with the drill holes 87b and 87c. The light projecting units 71 </ b> A and 71 </ b> B are fixed to the distal end hard portion 87 by tightening with (Imobis) 93.

上記構成の投光ユニット71A,71Bによれば、蛍光体57とその外側の金属反射膜77とが外筒部材73の内部に一体に収容された状態で封止されているので、内視鏡挿入部19の内部環境が、高湿であったり、二硫化モリブデンを含むグリースが近傍に塗布されていたり、殺菌消毒液が一部に侵入することがあっても、投光ユニット71A,71Bの内部に影響が及ぶことがない。従って、金属反射膜77が硫化又は酸化したり、蛍光体が劣化する等の照明光強度が低下する要因が排除され、安定した高輝度の照明光の供給が可能となる。   According to the light projecting units 71A and 71B having the above configuration, the phosphor 57 and the metal reflective film 77 on the outside thereof are sealed in a state of being integrally accommodated inside the outer cylinder member 73. Even if the internal environment of the insertion portion 19 is high in humidity, grease containing molybdenum disulfide is applied in the vicinity, or the sterilizing / disinfecting liquid may invade partly, the light projecting units 71A and 71B The inside is not affected. Therefore, factors that lower the illumination light intensity, such as the metal reflection film 77 being sulfurized or oxidized, or the deterioration of the phosphor, are eliminated, and stable and high-intensity illumination light can be supplied.

また、投光ユニット71A,71Bは、先端硬性部87の穿設孔87b,87cに挿通された状態で止めネジ93によって固定するので、投光ユニット71A,71Bの交換が容易となり、内視鏡のメンテナンス性が向上する。つまり、内視鏡の長期使用により照明光強度の減衰や色調の変化等の症状が現れたときに、新しい投光ユニットへの取り換えが簡単に行える。   Further, since the light projecting units 71A and 71B are fixed by the set screws 93 while being inserted into the drilled holes 87b and 87c of the distal end rigid portion 87, the light projecting units 71A and 71B can be easily replaced. The maintainability is improved. In other words, when symptoms such as attenuation of illumination light intensity or change in color tone appear due to long-term use of the endoscope, replacement with a new light projecting unit can be easily performed.

次に、投光ユニットの他の構成例について順次説明する。
図9は投光ユニットの第1の変形例を示す断面構成図である。この投光ユニット72Aは、図4に示す投光ユニット71を、外筒部材73と管状部材97との二重管構造にしている。つまり、外筒部材73の内側に、光ファイバ55を保持するフェルール79と蛍光体57とを固定する管状部材97が一体となって収容されて、フェルール側面79b及び管状部材97内側のフェルール側面79bから蛍光体57側の開口97aまでの範囲に金属反射膜77を形成している。なお、以降の説明では、図4に示す部材と同じ部材に対しては同一の符号を付与することで、その説明を簡略化又は省略する。
Next, other configuration examples of the light projecting unit will be sequentially described.
FIG. 9 is a cross-sectional configuration diagram illustrating a first modification of the light projecting unit. In the light projecting unit 72A, the light projecting unit 71 shown in FIG. 4 has a double tube structure of an outer tubular member 73 and a tubular member 97. That is, the ferrule 79 that holds the optical fiber 55 and the tubular member 97 that fixes the phosphor 57 are integrally accommodated inside the outer cylindrical member 73, and the ferrule side surface 79 b and the ferrule side surface 79 b inside the tubular member 97 are accommodated. To the opening 97a on the phosphor 57 side, a metal reflection film 77 is formed. In the following description, the same members as those shown in FIG. 4 are denoted by the same reference numerals, and the description thereof is simplified or omitted.

この投光ユニット72Aの構成によれば、一端側がサファイアガラス75を接着剤82で封止した外筒部材73と、管状部材97に一体に接続されるフェルール79、蛍光体57、金属反射膜77の発光体ユニット99と、をそれぞれ個別に組み立て、その後にこれらを組み合わせて投光ユニット72Aに仕上げることができる。即ち、組み立てた発光体ユニット99を、一端側が封止された外筒部材73内に挿入し、光ファイバ55の導出側を外筒部材73の内周面との間で接着剤83により密封することで、図9に示す投光ユニット72Aが作製される。これによれば、製造工程の分割が可能となり、また、いずれか一方、或いは双方を作り置きすることもでき、製造時のタクトアップが図られる。   According to the configuration of the light projecting unit 72A, an outer cylindrical member 73 having one end side sealed with a sapphire glass 75 with an adhesive 82, a ferrule 79 integrally connected to the tubular member 97, a phosphor 57, and a metal reflective film 77. The light emitter units 99 can be individually assembled and then combined to finish the light projecting unit 72A. That is, the assembled light emitting unit 99 is inserted into the outer cylinder member 73 whose one end is sealed, and the lead-out side of the optical fiber 55 is sealed with the adhesive 83 between the inner peripheral surface of the outer cylinder member 73. Thus, the light projecting unit 72A shown in FIG. 9 is produced. According to this, it is possible to divide the manufacturing process, and it is also possible to make either one or both of them, thereby improving the tact time at the time of manufacturing.

なお、発光体ユニット99は、外筒部材73の内周面との間に図示しない充填剤や接着剤を封入することで、外筒部材73に対して固定される。   The light emitter unit 99 is fixed to the outer cylinder member 73 by enclosing a filler or an adhesive (not shown) between the inner peripheral surface of the outer cylinder member 73.

次に、投光ユニットの第2の変形例を説明する。
図10は投光ユニットの第2の変形例を示す断面図である。この投光ユニット72Bは、図9に示す発光体ユニット99を複数(図示例では2つ)、外筒部材73内に封止した構造としている。各発光体ユニット99A,99Bの光軸は、互いに傾斜させて配置しており、投光ユニット72Bの出射光軸が交差することで、より均等に広い範囲を照明することが可能となる。
Next, a second modification of the light projecting unit will be described.
FIG. 10 is a cross-sectional view showing a second modification of the light projecting unit. The light projecting unit 72B has a structure in which a plurality (two in the illustrated example) of the light emitter units 99 shown in FIG. The light emitter units 99A and 99B are arranged so that the optical axes thereof are inclined with each other, and the emission optical axes of the light projecting units 72B intersect to illuminate a wider range more evenly.

図11は、図10に示す投光ユニット72Bを内視鏡先端部に配置する場合の光源との接続の様子を示すブロック図である。図10に示す投光ユニット72Bを一対、図6〜図8に示す内視鏡に組み込む場合は、片側の投光ユニット72Bから2本の光ファイバ55−A,55−Bが導出された合計4本の光ファイバが、カプラ53に接続される。光源45,47からの光は、合波された後、カプラ53から分岐された各光ファイバ55−A,55−Bによって、それぞれ内視鏡先端部の投光ユニット72Bの対にそれぞれ分波されて伝送される。これにより、各投光ユニット72Bに均等な照明光が供給され、各発光体ユニット99A,99Bから均等に出射されることになる。   FIG. 11 is a block diagram illustrating a connection state with a light source when the light projecting unit 72B illustrated in FIG. 10 is disposed at the distal end portion of the endoscope. When a pair of the light projecting units 72B shown in FIG. 10 is incorporated in the endoscope shown in FIGS. 6 to 8, the total of the two optical fibers 55-A and 55-B derived from the light projecting unit 72B on one side. Four optical fibers are connected to the coupler 53. The lights from the light sources 45 and 47 are multiplexed and then demultiplexed by the optical fibers 55-A and 55-B branched from the coupler 53, respectively, into a pair of light projecting units 72B at the endoscope distal end. And transmitted. Thereby, uniform illumination light is supplied to each light projecting unit 72B, and is emitted equally from each light emitter unit 99A, 99B.

次に、投光ユニットの第3の変形例を説明する。
図12は投光ユニットの第3の変形例を示す断面図である。この投光ユニット72Cは、図10に示す投光ユニット72Bの一方の発光体ユニット99Bを、蛍光体57に代えて光偏向・拡散部材101を用いて発光体ユニット99Cとした点の他は、投光ユニット72Bと同様の構成である。
Next, a third modification of the light projecting unit will be described.
FIG. 12 is a cross-sectional view showing a third modification of the light projecting unit. The light projecting unit 72C is configured such that one light emitter unit 99B of the light projecting unit 72B shown in FIG. 10 is replaced with a light emitter unit 99C using a light deflecting / diffusing member 101 instead of the phosphor 57. The configuration is the same as that of the light projecting unit 72B.

この発光体ユニット99Cは、光ファイバ55−Bに蛍光体57の励起光とは異なる種類の光を導入して、波長変換することなく拡散光として出射する。各光ファイバと光源との接続を図11に示す接続形態とした場合、白色照明用光源45を点灯させたときは、光ファイバ55−Aを通じて発光体ユニット99Aから出射し、特殊光光源47を点灯させたときは、光ファイバ55−Bを通じて発光体ユニット99Cから出射する。   This light emitter unit 99C introduces light of a different type from the excitation light of the phosphor 57 into the optical fiber 55-B and emits it as diffused light without wavelength conversion. When the connection between each optical fiber and the light source is as shown in FIG. 11, when the white illumination light source 45 is turned on, the light is emitted from the light emitter unit 99A through the optical fiber 55-A, and the special light source 47 is turned on. When lit, the light is emitted from the light emitter unit 99C through the optical fiber 55-B.

光偏向・拡散部材101は、特殊光光源47からのレーザ光を透過させる材料であればよく、例えば透光性を有する樹脂材料やガラス等が用いられる。さらには、光偏向・拡散部材101は、樹脂材料やガラスの表面等に、微小凹凸や屈折率の異なる粒子(フィラー等)を混在させた光拡散層を設けた構成や、半透明体の材料を用いた構成としてもよい。これにより、光偏向・拡散部材101から出射する透過光は、所定の照射領域内で光量が均一化された狭帯域波長の照明光となる。   The light deflecting / diffusing member 101 may be any material that transmits the laser light from the special light source 47, and for example, a light-transmitting resin material or glass is used. Furthermore, the light deflection / diffusion member 101 has a configuration in which a light diffusion layer in which fine irregularities or particles (fillers, etc.) having different refractive indexes are mixed on a resin material or glass surface, or a semi-transparent material. It is good also as a structure using. Thereby, the transmitted light emitted from the light deflection / diffusion member 101 becomes illumination light with a narrow band wavelength in which the amount of light is made uniform within a predetermined irradiation region.

この投光ユニット72Cの構成によれば、特殊光光源47からの光を蛍光体57を通じて照射する場合と比較して、蛍光体57の無用な励起によるエネルギロスがなくなり、より高強度の光が出射可能となる。また、僅かに励起発光する蛍光体57からの光が、観察画像に色むら等のノイズとなって現れることを防止できる。   According to the configuration of the light projecting unit 72C, energy loss due to unnecessary excitation of the phosphor 57 is eliminated and higher intensity light is emitted compared to the case where the light from the special light source 47 is irradiated through the phosphor 57. The light can be emitted. Further, it is possible to prevent light from the fluorescent material 57 that is slightly excited and emitted from appearing as noise such as color unevenness in the observation image.

次に、投光ユニットの第4の変形例を説明する。
図13は投光ユニットの第4の変形例を示す断面図である。この投光ユニット72Dは、図9に示す投光ユニット72Aに加えて、光ファイバ55−Bと、光ファイバ55−Bを保持するフェルール79と、このフェルール79のフェルール側面79bに金属反射膜77を形成した発光体ユニット99Dを備えている。また、外筒部材73の開口部に配置されるサファイアガラス75に代えて、前述の光偏向・拡散部材101と同様の光偏向・拡散部材103を配置している。
Next, the 4th modification of a light projection unit is demonstrated.
FIG. 13 is a sectional view showing a fourth modification of the light projecting unit. In addition to the light projecting unit 72A shown in FIG. 9, the light projecting unit 72D includes an optical fiber 55-B, a ferrule 79 that holds the optical fiber 55-B, and a metal reflecting film 77 on the ferrule side surface 79b of the ferrule 79. The light emitter unit 99D is formed. Further, in place of the sapphire glass 75 disposed in the opening of the outer cylinder member 73, a light deflection / diffusion member 103 similar to the above-described light deflection / diffusion member 101 is disposed.

この投光ユニット72Dの構成によれば、図12に示す投光ユニット72Cよりも部品点数を少なくでき、小型化に有利な構成にできる。   According to the configuration of the light projecting unit 72D, the number of components can be reduced as compared with the light projecting unit 72C shown in FIG.

以上の投光ユニットの変形例2〜4の構成は、一本の投光ユニット内に複数の発光体ユニットを配置して、複数の出射光軸を設けた構成であるが、内視鏡先端部に更に複数の投光ユニットを設けて、照明光の出射光軸を増設した構成としてもよい。ここでは、内視鏡先端部の撮像光学系が収容される穿設孔87aを中心とする両脇側に、二対(合計4本)の投光ユニットを配置した構成例を説明する。   The above-described configurations of the modification examples 2 to 4 of the light projecting unit are a configuration in which a plurality of light emitter units are arranged in one light projecting unit and a plurality of emission optical axes are provided. A plurality of light projecting units may be further provided in the section, and the configuration may be such that the outgoing light axis of illumination light is increased. Here, a configuration example will be described in which two pairs (a total of four) of light projecting units are arranged on both sides centering on a hole 87a in which the imaging optical system at the distal end portion of the endoscope is accommodated.

図14は内視鏡先端部の概略的な構成を示す斜視図、図15は図14に示す内視鏡先端部の分解図である。
本構成例においては、図14、図15に示すように、内視鏡先端部35の先端硬性部87に投光ユニットを合計4本設けてある。先端硬性部87は、図1に示した撮像素子21を含む撮像光学系が収容される穿設孔87aを有し、この穿設孔87aを中心とするその両脇側に形成された穿設孔87b1、87c1に、例えば図4に示す構成の投光ユニット71A,71Bがそれぞれ挿入され、穿設孔87b2,87c2に投光ユニット71C,71Dがそれぞれ挿入される。
14 is a perspective view showing a schematic configuration of the distal end portion of the endoscope, and FIG. 15 is an exploded view of the distal end portion of the endoscope shown in FIG.
In this configuration example, as shown in FIGS. 14 and 15, a total of four light projecting units are provided in the distal end rigid portion 87 of the endoscope distal end portion 35. The distal end rigid portion 87 has a perforation hole 87a in which an imaging optical system including the image sensor 21 shown in FIG. 1 is accommodated, and the perforations formed on both sides of the perforation hole 87a. For example, the light projecting units 71A and 71B having the configuration shown in FIG. 4 are inserted into the holes 87b1 and 87c1, respectively, and the light projecting units 71C and 71D are inserted into the drilled holes 87b2 and 87c2, respectively.

また、各投光ユニット71A,71B,71C,741Dは、投光ユニット71A,71Bの組から同種の光が出射され、また、投光ユニット71C,71Dの組から同種の光が出射されるように、それぞれ光源と接続されている。   Each of the light projecting units 71A, 71B, 71C, and 741D emits the same kind of light from the set of the light projecting units 71A and 71B, and the same kind of light is emitted from the set of the light projecting units 71C and 71D. In addition, each is connected to a light source.

上記構成により、撮像光学系を挟んだ両脇側から同種の光が照射され、照明むらが低減された均一な照明光が得られる。   With the above configuration, the same kind of light is irradiated from both sides sandwiching the imaging optical system, and uniform illumination light with reduced illumination unevenness can be obtained.

以上説明した各投光ユニットの構成によれば、内視鏡先端部に対して着脱自在に配置することができ、投光ユニットを収容する穿設孔を任意に位置に配置する等、内視鏡先端部の設計自由度が高められる。また、投光ユニットが細径の外筒部材に一体化された構成となっているため、細径の照明器具としても利用できる。例えば、図16に示すように、内視鏡挿入部19の鉗子孔105に投光ユニット71を挿入して、内視鏡先端部35から突出させて任意の位置に光照射することもできる。特に、光線力学療法(Photodynamic Therapy : PDT)等への利用も好適に行える。   According to the configuration of each light projecting unit described above, the endoscope can be detachably disposed with respect to the distal end portion of the endoscope, and a hole for accommodating the light projecting unit can be disposed at an arbitrary position. The degree of freedom in designing the mirror tip is increased. In addition, since the light projecting unit is integrated with the thin outer cylinder member, the light projecting unit can also be used as a thin light fixture. For example, as shown in FIG. 16, it is also possible to insert a light projecting unit 71 into the forceps hole 105 of the endoscope insertion portion 19 and project it from the endoscope distal end portion 35 to irradiate light at an arbitrary position. In particular, it can be suitably used for photodynamic therapy (PDT).

また、投光ユニットの構成としては、上記の各構成の他、蛍光体の外側に配置される金属反射膜をガラス封止することも可能である。図17(A),(B)、(C)に蛍光体と金属反射膜をガラス封止する工程を示した。   Moreover, as a structure of a light projection unit, it is also possible to glass seal the metal reflective film arrange | positioned on the outer side of fluorescent substance other than said each structure. FIGS. 17A, 17B, and 17C show a process of sealing the phosphor and the metal reflective film with glass.

図17(A)に示すように、蛍光体57に光ファイバ55を接続した状態で、図17(B)に示すように蛍光体57の側面と背面に金属反射膜77をメッキ、蒸着、スパッタ等により製膜する。そして、蛍光体57の表面に金属反射膜77が形成された状態で、図17(C)に示すように、金属反射膜77及び蛍光体57の外周を化学的に安定なガラスにより封止する。   As shown in FIG. 17A, with the optical fiber 55 connected to the phosphor 57, a metal reflective film 77 is plated, evaporated, and sputtered on the side and back of the phosphor 57 as shown in FIG. 17B. A film is formed by, for example. Then, with the metal reflection film 77 formed on the surface of the phosphor 57, as shown in FIG. 17C, the outer periphery of the metal reflection film 77 and the phosphor 57 is sealed with chemically stable glass. .

この構成によれば、金属反射膜77が蛍光体57の外側に製膜された状態でガラス封止されるため、金属反射膜77の変質や蛍光体57の劣化が生じにくくなる。これにより、使用環境によらずに、常に安定した高輝度の光照射が可能となる。   According to this configuration, the metal reflective film 77 is sealed with glass in a state where the metal reflective film 77 is formed on the outside of the phosphor 57, so that the metal reflective film 77 is hardly deteriorated and the phosphor 57 is hardly deteriorated. Thereby, it is possible to constantly and stably irradiate light with high brightness regardless of the use environment.

本発明は上記の実施形態に限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。例えば、内視鏡装置は電子内視鏡に限らず、ファイバースコープであってもよい。   The present invention is not limited to the above-described embodiments, and those skilled in the art can change or apply the present invention based on the description of the specification and well-known techniques. included. For example, the endoscope apparatus is not limited to an electronic endoscope but may be a fiberscope.

以上の通り、本明細書には次の事項が開示されている。
(1) 医療機器先端部に配置されて光を照射する投光ユニットであって、
光源からの光を先端部まで導いて出射する導光部材と、
前記導光部材から出射される光を受けて波長変換する波長変換部材と、
前記波長変換部材の外周を覆うと共に、一端側が前記導光部材を延出させた状態で封止され、他端側が開口部を有する外筒部材と、
前記外筒部材の他端側を封止する透光性部材と、
を備え、
前記波長変換部材の外側に、該波長変換部材により波長変換された光を反射する金属反射膜が設けられ、該金属反射膜が前記外筒部材内に封止されている投光ユニット。
この投光ユニットによれば、光反射率の高い金属反射膜を用いても、金属反射膜が外筒部材内に封止されているため、酸化や硫化による反射率の低下を生じることがなく、使用環境によらず常に高強度の照明光を出射することができる。
As described above, the following items are disclosed in this specification.
(1) A light projecting unit that is disposed at the distal end of a medical device and emits light,
A light guide member that guides and emits light from the light source to the tip,
A wavelength conversion member that receives light emitted from the light guide member and converts the wavelength;
An outer cylinder member that covers the outer periphery of the wavelength conversion member and is sealed in a state where one end side extends the light guide member, and the other end side has an opening,
A translucent member for sealing the other end of the outer cylinder member;
With
A light projecting unit in which a metal reflection film that reflects light wavelength-converted by the wavelength conversion member is provided outside the wavelength conversion member, and the metal reflection film is sealed in the outer cylinder member.
According to this light projecting unit, even if a metal reflective film having a high light reflectance is used, the metal reflective film is sealed in the outer cylindrical member, so that there is no reduction in reflectance due to oxidation or sulfuration. High intensity illumination light can always be emitted regardless of the use environment.

(2) (1)の投光ユニットであって、
前記金属反射膜が、前記波長変換部材の前記導光部材からの光導入部分と前記透光性部材に対面する部分とを除く前記波長変換部材の外側の少なくとも一部に配置された投光ユニット。
この投光ユニットによれば、波長変換部材からの光を金属反射膜により繰り返し反射させることができ、高い光利用効率で光出射が可能となる。
(2) The light projecting unit of (1),
The light projecting unit in which the metal reflection film is disposed on at least a part of the outside of the wavelength conversion member excluding a light introduction portion from the light guide member of the wavelength conversion member and a portion facing the translucent member. .
According to this light projecting unit, light from the wavelength conversion member can be repeatedly reflected by the metal reflecting film, and light can be emitted with high light utilization efficiency.

(3) (1)又は(2)の投光ユニットであって、
前記金属反射膜が、銀を含んで構成された投光ユニット。
この投光ユニットによれば、高い反射率により高強度の光を出射することができる。
(3) The light projecting unit according to (1) or (2),
A light projecting unit in which the metal reflective film includes silver.
According to this light projecting unit, high intensity light can be emitted with high reflectivity.

(4) (1)〜(3)のいずれかの投光ユニットであって、
前記外筒部材が、筒状のスリーブと、前記導光部材を貫通させて前記スリーブの一端側を封止する封止部材とを備える投光ユニット。
この投光ユニットによれば、外筒部材が、筒状のスリーブと封止部材とに分かれて構成されることで、簡単な部品形状にでき、生産性が向上する。
(4) The light projecting unit according to any one of (1) to (3),
The light projecting unit, wherein the outer cylinder member includes a cylindrical sleeve and a sealing member that penetrates the light guide member and seals one end side of the sleeve.
According to the light projecting unit, the outer cylinder member is divided into the cylindrical sleeve and the sealing member, so that a simple part shape can be obtained, and productivity is improved.

(5) (1)〜(4)のいずれかの投光ユニットであって、
前記導光部材が光ファイバである投光ユニット。
この投光ユニットによれば、光ファイバにより高強度の光を導光することができ、しかも導光部材を細径にできる。
(5) The light projecting unit according to any one of (1) to (4),
A light projecting unit in which the light guide member is an optical fiber.
According to this light projecting unit, high-intensity light can be guided by the optical fiber, and the light guide member can have a small diameter.

(6) (1)〜(5)のいずれかの投光ユニットであって、
前記導光部材を前記外筒部材の内部で支持する保持部材を備えた投光ユニット。
この投光ユニットによれば、導光部材が保持部材により安定して支持され、波長変換部材の中心に向けて光を容易に出射させることができる。
(6) The light projecting unit according to any one of (1) to (5),
A light projecting unit including a holding member that supports the light guide member inside the outer cylinder member.
According to this light projecting unit, the light guide member is stably supported by the holding member, and light can be easily emitted toward the center of the wavelength conversion member.

(7) (1)〜(6)のいずれかの投光ユニットであって、
前記導光部材の光軸と平行に前記波長変換部材と前記透光性部材とがこの順で配置された投光ユニット。
この投光ユニットによれば、導光部材からの光出射方向に沿って波長変換部材と透光性部材が配置されるので、効率良く出射光強度を高めることができる。
(7) The light projecting unit according to any one of (1) to (6),
A light projecting unit in which the wavelength conversion member and the translucent member are arranged in this order in parallel with the optical axis of the light guide member.
According to this light projecting unit, since the wavelength conversion member and the translucent member are disposed along the light emission direction from the light guide member, the emitted light intensity can be increased efficiently.

(8) (1)〜(7)のいずれかの投光ユニットであって、
前記波長変換部材と、前記導光部材の先端部とが離間して配置された投光ユニット。
この投光ユニットによれば、導光部材からの出射光が隙間領域で拡散されて広いビーム径になった後に波長変換部材へ照射されるようになる。従って、外光による波長変換部材の発光(一次励起)に寄与する体積を増加させ、発光効率をより高められる。
(8) The light projecting unit according to any one of (1) to (7),
The light projecting unit in which the wavelength conversion member and the tip portion of the light guide member are spaced apart.
According to this light projecting unit, the light emitted from the light guide member is diffused in the gap region to have a wide beam diameter, and then irradiated to the wavelength conversion member. Therefore, the volume contributing to light emission (primary excitation) of the wavelength conversion member by external light can be increased, and the light emission efficiency can be further increased.

(9) (1)〜(8)のいずれかの投光ユニットであって、
複数本の前記導光部材が前記外筒部材に挿通され、
前記複数本中のいずれかの導光部材と、該導光部材の光出射側に配置される前記波長変換部材とが一体に構成された第1の発光体ユニットを、前記外筒部材の内側に複数本並設した投光ユニット。
この投光ユニットによれば、第1の発光体ユニットをそれぞれ個別に組み立て、その後に外筒部材と組み合わせて投光ユニットに仕上げることができる。これによれば、製造工程の分割が可能となり、また、いずれか一方、或いは双方を作り置きすることもでき、製造時のタクトアップが図られる。
(9) The light projecting unit according to any one of (1) to (8),
A plurality of the light guide members are inserted through the outer cylinder member,
A first light emitter unit in which any one of the plurality of light guide members and the wavelength conversion member disposed on the light emitting side of the light guide member are integrally formed is provided inside the outer cylindrical member. Multiple floodlight units installed side by side.
According to this light projecting unit, the first light emitter units can be individually assembled and then combined with the outer cylinder member to be finished into a light projecting unit. According to this, it is possible to divide the manufacturing process, and it is also possible to make either one or both of them, thereby improving the tact time at the time of manufacturing.

(10) (1)〜(8)のいずれかの投光ユニットであって、
複数本の前記導光部材が前記外筒部材に挿通され、
前記複数本中のいずれかの前記導光部材と、該導光部材の光出射端に配置される前記波長変換部材とが一体に構成された第1の発光体ユニットと、
前記導光部材とは異なる他の導光部材と、該導光部材の光出射端に配置される光拡散部材とが一体に構成された第2の発光体ユニットと、
を前記外筒部材の内側に並設した投光ユニット。
この投光ユニットによれば、波長変換部材を通じて照射する光と、光拡散部材を通じて照射する光とをそれぞれ個別に選択可能となり、波長変換部材の無用な励起によるエネルギロスがなくなり、より高強度の光が出射可能となる。
(10) The light projecting unit according to any one of (1) to (8),
A plurality of the light guide members are inserted through the outer cylinder member,
A first light emitter unit in which the light guide member of any one of the plurality and the wavelength conversion member disposed at a light emitting end of the light guide member are configured integrally;
A second light emitter unit in which another light guide member different from the light guide member and a light diffusing member arranged at a light emitting end of the light guide member are integrally formed;
Is a light projecting unit arranged in parallel inside the outer cylinder member.
According to this light projecting unit, the light irradiated through the wavelength conversion member and the light irradiated through the light diffusing member can be individually selected, energy loss due to unnecessary excitation of the wavelength conversion member is eliminated, and higher intensity is achieved. Light can be emitted.

(11) (9)又は(10)の投光ユニットであって、
前記外筒部材内の発光体ユニットが、互いに出射光軸を傾斜して配置された投光ユニット。
この投光ユニットによれば、出射光軸が交差することで、より均等に広い範囲を照明することが可能となる。
(11) The light projecting unit according to (9) or (10),
A light projecting unit in which the light emitter units in the outer cylinder member are arranged with the outgoing optical axes inclined with respect to each other.
According to this light projecting unit, it is possible to illuminate a wider range more evenly by the crossing of the outgoing optical axes.

(12) (1)〜(8)のいずれかの投光ユニットであって、
複数本の前記導光部材が前記外筒部材に挿通され、
前記複数本中のいずれかの導光部材と、該導光部材の光出射側に配置される前記波長変換部材とが一体に構成された第1の発光体ユニットと、
前記導光部材とは異なる他の導光部材と、を前記外筒部材の内側に並設した投光ユニット。
この投光ユニットによれば、第1の発光体ユニットと、これとは別に導光される導光部材とを並設することで、波長変換部材を通して照射する光と、波長変換部材を通さずに照射する光とを区別して光照射させることができる。
(12) The light projecting unit according to any one of (1) to (8),
A plurality of the light guide members are inserted through the outer cylinder member,
A first light emitter unit in which any one of the plurality of light guide members and the wavelength conversion member disposed on the light emitting side of the light guide member are configured integrally;
A light projecting unit in which another light guide member different from the light guide member is arranged inside the outer cylinder member.
According to the light projecting unit, the first light emitter unit and the light guide member guided separately from the light emitter unit are arranged in parallel, so that the light irradiated through the wavelength conversion member does not pass through the wavelength conversion member. The light can be irradiated separately from the light to be irradiated.

(13) (1)〜(12)のいずれかの投光ユニットが搭載された医療機器。
この医療機器によれば、高湿環境、二硫化モリブデンと近接配置される環境、過酢酸等の殺菌消毒薬に浸される環境等、金属反射膜が酸化や硫化によって反射率が低下し易すくなる環境下であっても、金属反射膜が外筒部材内に封止されているため、金属反射膜の高い反射率を低下させずに維持できる。これにより、高輝度の照明光を常に安定して得ることができる。
(13) A medical device on which the light projecting unit according to any one of (1) to (12) is mounted.
According to this medical device, the reflectance of the metal reflective film easily decreases due to oxidation or sulfuration, such as a high humidity environment, an environment close to molybdenum disulfide, or an environment immersed in a disinfectant such as peracetic acid. Even in such an environment, since the metal reflective film is sealed in the outer cylinder member, the high reflectance of the metal reflective film can be maintained without being lowered. Thereby, high-intensity illumination light can always be obtained stably.

(14) (13)の医療機器として構成され、
被検体内に挿入される内視鏡挿入部の先端で、被検体内を観察するための観察窓を挟んだ両脇側に、少なくとも一対の前記投光ユニットを配置した内視鏡装置。
この内視鏡装置によれば、投光ユニットが観察窓を挟んだ両側に配置されるため、観察画像に影が生じにくくなる。
(14) (13) configured as a medical device,
An endoscope apparatus in which at least a pair of the light projecting units are arranged on both sides of an observation window for observing the inside of a subject at the distal end of an endoscope insertion portion to be inserted into the subject.
According to this endoscope apparatus, since the light projecting units are arranged on both sides of the observation window, a shadow is hardly generated in the observation image.

11 内視鏡
13 制御装置
19 内視鏡挿入部
21 撮像素子
35 内視鏡先端部
37A,37B 照射口
41 光源装置
45 青色レーザ光源
47 紫色レーザ光源
55,55A,55B 光ファイバ(導光部材)
57 蛍光体(波長変換部材)
71,71A,71B,72,72A,72B,72C,72D 投光ユニット
73 外筒部材
75 サファイアガラス(透光性部材)
77 金属反射膜
79 フェルール(保持部材)
79a 連通孔
79b フェルール側面
81 隙間領域
82,83 接着剤
87 先端硬性部
87a,87b,87c 穿設孔
97 管状部材
99,99A,99B,99C 発光体ユニット
100 内視鏡装置
101 光偏向・拡散部材
103 光偏向・拡散部材
DESCRIPTION OF SYMBOLS 11 Endoscope 13 Control apparatus 19 Endoscope insertion part 21 Image pick-up element 35 End-of-endoscope part 37A, 37B Irradiation port 41 Light source device 45 Blue laser light source 47 Purple laser light source 55, 55A, 55B Optical fiber (light guide member)
57 Phosphor (wavelength conversion member)
71, 71A, 71B, 72, 72A, 72B, 72C, 72D Light projection unit 73 Outer cylinder member 75 Sapphire glass (translucent member)
77 Metal reflective film 79 Ferrule (holding member)
79a Communicating hole 79b Ferrule side surface 81 Crevice region 82, 83 Adhesive 87 Hard end portion 87a, 87b, 87c Drilling hole 97 Tubular member 99, 99A, 99B, 99C Light emitting unit 100 Endoscope device 101 Light deflection / diffusion member 103 Light deflection / diffusion member

Claims (12)

被検体内に挿入される内視鏡挿入部の先端硬性部に形成された穿設孔に配置され、照明光を照射する内視鏡用投光ユニットであって、
光源からの光を導いて先端の光出射端から光を出射する導光部材と、
前記導光部材の光出射端からの出射光を受けて該出射光を波長変換する波長変換部材と、
前記波長変換部材を収容し、一端側が前記導光部材の光出射端を貫通させた状態で封止される外筒部材と、
前記外筒部材の他端側に固定され該他端側を封止する透光性部材と、
前記外筒部材の内部で前記波長変換部材により波長変換された光を反射する金属反射膜と、
を備え、
前記外筒部材は、筒状のスリーブからなり、前記波長変換部材と前記金属反射膜とを内部に収容した状態で封止された密封構造となっている内視鏡用投光ユニット。
An endoscope projection unit that is disposed in a drilled hole formed in a distal end rigid portion of an endoscope insertion portion that is inserted into a subject, and that irradiates illumination light.
A light guide member that guides light from the light source and emits light from the light exit end of the tip;
A wavelength converting member that receives the emitted light from the light emitting end of the light guide member and converts the wavelength of the emitted light;
An outer cylinder member that houses the wavelength conversion member and is sealed in a state where one end side penetrates the light emitting end of the light guide member;
A translucent member that is fixed to the other end of the outer cylinder member and seals the other end;
A metal reflective film that reflects the light wavelength-converted by the wavelength conversion member inside the outer cylindrical member;
With
The endoscope light projecting unit, wherein the outer cylinder member is formed of a cylindrical sleeve and has a sealed structure in which the wavelength conversion member and the metal reflection film are sealed inside.
請求項1記載の内視鏡用投光ユニットであって、
前記金属反射膜は、前記波長変換部材の前記導光部材からの光導入部分と前記透光性部材に対面する部分とを除く前記波長変換部材の外側の、前記外筒部材の内周面に形成される内視鏡用投光ユニット。
The endoscope light projecting unit according to claim 1,
The metal reflection film is formed on an inner peripheral surface of the outer cylinder member outside the wavelength conversion member excluding a light introduction portion from the light guide member of the wavelength conversion member and a portion facing the translucent member. Endoscope projection unit to be formed.
請求項1又は請求項2記載の内視鏡用投光ユニットであって、
前記金属反射膜は、銀を含んで構成された内視鏡用投光ユニット。
An endoscope light projecting unit according to claim 1 or 2,
The metal reflecting film is an endoscope light projecting unit configured to contain silver.
請求項1〜請求項3のいずれか1項記載の内視鏡用投光ユニットであって、
前記外筒部材が、前記導光部材を貫通させて前記スリーブの一端側を封止する封止部材を備える内視鏡用投光ユニット。
It is the light projection unit for endoscopes of any one of Claims 1-3,
The outer cylinder member, an endoscopic light projecting unit comprising a sealing member for sealing one end of the sleeve by penetrating the light guide member.
請求項1〜請求項4のいずれか1項記載の内視鏡用投光ユニットであって、
前記導光部材が光ファイバである内視鏡用投光ユニット。
An endoscope projection unit according to any one of claims 1 to 4,
An endoscope projection unit in which the light guide member is an optical fiber.
請求項1〜請求項5のいずれか1項記載の内視鏡用投光ユニットであって、
前記導光部材を前記外筒部材の内部で支持する保持部材を備えた内視鏡用投光ユニット。
An endoscope projection unit according to any one of claims 1 to 5,
An endoscope light projecting unit including a holding member that supports the light guide member inside the outer cylinder member.
請求項1〜請求項6のいずれか1項記載の内視鏡用投光ユニットであって、
前記波長変換部材と、前記導光部材の前記光出射端とが離間して配置された内視鏡用投光ユニット。
It is the light projection unit for endoscopes of any one of Claims 1-6 ,
An endoscope light projecting unit in which the wavelength conversion member and the light emitting end of the light guide member are spaced apart.
請求項1〜請求項7のいずれか1項記載の内視鏡用投光ユニットであって、
複数本の前記導光部材が前記外筒部材の内部に挿通され、
前記複数本中少なくともいずれかの導光部材の前記光出射端に、前記波長変換部材が配置された内視鏡用投光ユニット。
An endoscope projection unit according to any one of claims 1 to 7 ,
A plurality of the light guide members are inserted into the outer cylinder member,
An endoscope projection unit in which the wavelength conversion member is disposed at the light emitting end of at least one of the plurality of light guide members.
請求項8記載の内視鏡用投光ユニットであって、
前記複数本中の少なくともいずれかの導光部材の前記光出射端に、光拡散部材が配置された内視鏡用投光ユニット。
An endoscope light projecting unit according to claim 8 ,
An endoscope projection unit in which a light diffusing member is disposed at the light exit end of at least one of the plurality of light guide members.
請求項8又は請求項9記載の内視鏡用投光ユニットであって、
前記導光部材が、前記外筒部材内で互いに光軸を傾斜させ、出射光軸が交差するように配置された内視鏡用投光ユニット。
An endoscope light projecting unit according to claim 8 or 9 ,
An endoscopic light projecting unit in which the light guide members are arranged such that their optical axes are inclined with respect to each other within the outer cylinder member, and the outgoing optical axes intersect.
請求項1〜請求項10のいずれか1項記載の内視鏡用投光ユニットが搭載された内視鏡装置。 An endoscope apparatus in which the endoscope light projecting unit according to any one of claims 1 to 10 is mounted. 請求項11記載の内視鏡装置であって、
前記内視鏡挿入部の先端で、被検体内を観察するための観察窓を挟んだ両脇側に、少なくとも一対の前記投光ユニットを配置した内視鏡装置。
The endoscope apparatus according to claim 11 , wherein
An endoscope apparatus in which at least a pair of the light projecting units are arranged on both sides of an observation window for observing the inside of a subject at the distal end of the endoscope insertion portion.
JP2009225405A 2009-09-29 2009-09-29 Endoscopic light projecting unit and endoscopic device equipped with the same Expired - Fee Related JP5645385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225405A JP5645385B2 (en) 2009-09-29 2009-09-29 Endoscopic light projecting unit and endoscopic device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225405A JP5645385B2 (en) 2009-09-29 2009-09-29 Endoscopic light projecting unit and endoscopic device equipped with the same

Publications (2)

Publication Number Publication Date
JP2011072424A JP2011072424A (en) 2011-04-14
JP5645385B2 true JP5645385B2 (en) 2014-12-24

Family

ID=44017087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225405A Expired - Fee Related JP5645385B2 (en) 2009-09-29 2009-09-29 Endoscopic light projecting unit and endoscopic device equipped with the same

Country Status (1)

Country Link
JP (1) JP5645385B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
RU2510235C2 (en) 2008-03-18 2014-03-27 Новадак Текнолоджиз Инк. Imaging system for combined full-colour reflectance and near-infrared imaging
JP5484303B2 (en) * 2010-12-10 2014-05-07 富士フイルム株式会社 Endoscope illumination optical system unit and manufacturing method thereof
CN102743145A (en) * 2011-04-21 2012-10-24 富士胶片株式会社 Light projection unit used for endoscope
JP5508339B2 (en) * 2011-05-25 2014-05-28 富士フイルム株式会社 Endoscopic light projecting unit
JP5851123B2 (en) * 2011-06-13 2016-02-03 オリンパス株式会社 Lighting device
EP2676594B1 (en) 2011-07-19 2019-01-16 Olympus Corporation Endoscope apparatus
CN103917149B (en) 2011-11-10 2015-04-15 富士胶片株式会社 Illumination optics unit for endoscope and method for producing same
JP5649747B2 (en) * 2011-12-19 2015-01-07 富士フイルム株式会社 Endoscope lighting unit and endoscope
JP6103820B2 (en) * 2012-05-11 2017-03-29 オリンパス株式会社 Endoscope illumination optical system and endoscope
JP6164802B2 (en) * 2012-05-28 2017-07-19 オリンパス株式会社 Light source device
WO2014002882A1 (en) * 2012-06-27 2014-01-03 コニカミノルタ株式会社 Optical fiber assembly, method of fabricating same, and probe
JP2014082154A (en) * 2012-10-18 2014-05-08 Olympus Corp Light source device capable of switching illumination direction and imaging device including the same
EP3136942A4 (en) * 2014-04-29 2018-01-17 Boston Scientific Scimed, Inc. Lumen-less illumination system
CN106794248B (en) * 2014-08-27 2020-01-14 富士胶片株式会社 Composition for photodynamic therapy, sterilization method, sterilization system, and method for operating sterilization system
WO2017013780A1 (en) 2015-07-23 2017-01-26 オリンパス株式会社 Imaging system and endoscope system
CN113648067A (en) 2015-11-13 2021-11-16 史赛克欧洲运营有限公司 System and method for illumination and imaging of an object
EP4155716A1 (en) 2016-01-26 2023-03-29 Stryker European Operations Limited Image sensor assembly
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
WO2017214730A1 (en) 2016-06-14 2017-12-21 Novadaq Technologies Inc. Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
EP3580609B1 (en) 2017-02-10 2023-05-24 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
EP3582676B1 (en) * 2017-02-15 2023-08-16 Lazurite Holdings LLC Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source
FR3066279A1 (en) * 2017-05-15 2018-11-16 Kamax Innovative System OPTICAL FIBER WITH FUNCTIONALIZED EXPLORATION END
JP6450492B1 (en) * 2018-07-19 2019-01-09 パナソニック株式会社 Endoscopic illumination device and endoscope system
WO2021028969A1 (en) * 2019-08-09 2021-02-18 オリンパス株式会社 Optical device, wireless endoscope, and endoscope system
JP7141540B2 (en) * 2019-08-27 2022-09-22 富士フイルム株式会社 Illumination optical system for endoscope
JP7377496B2 (en) * 2020-07-06 2023-11-10 冨士色素株式会社 Wavelength conversion member for endoscope and endoscope using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289513A (en) * 1994-04-20 1995-11-07 Fuji Photo Optical Co Ltd Light source connector of endoscope
JP4689190B2 (en) * 2004-05-18 2011-05-25 オリンパス株式会社 Endoscope device and endoscope adapter
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
JP2007044350A (en) * 2005-08-11 2007-02-22 Olympus Medical Systems Corp Endoscope
JP5014885B2 (en) * 2007-06-13 2012-08-29 オリンパス株式会社 Illumination device and endoscope device
JP5109498B2 (en) * 2007-06-22 2012-12-26 日亜化学工業株式会社 Light emitting device
JP2009153712A (en) * 2007-12-26 2009-07-16 Olympus Corp Light source device and endoscope apparatus comprising the same

Also Published As

Publication number Publication date
JP2011072424A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5645385B2 (en) Endoscopic light projecting unit and endoscopic device equipped with the same
JP7280394B2 (en) Endoscope light source device
JP5997676B2 (en) Endoscope light source device and endoscope system using the same
JP5309120B2 (en) Endoscope device
JP5587120B2 (en) Endoscope light source device
EP2343006A1 (en) Medical apparatus and endoscope apparatus
JP5649747B2 (en) Endoscope lighting unit and endoscope
JP2014000301A (en) Light source device and endoscope system
JP2011147757A (en) Medical apparatus and endoscope apparatus
US8573824B2 (en) Illumination optical unit for endoscope and method of manufacturing the same
WO2013140961A1 (en) Light source device and endoscopic system
JP2009297290A (en) Endoscope apparatus and image processing method thereof
US10856731B2 (en) Illumination unit and endoscope
JP2012120635A (en) Illumination optical system unit for endoscope and method of manufacturing the same
JP2006198424A (en) Endoscope
JP2012115372A (en) Endoscope apparatus
JP2012139435A (en) Electronic endoscope
JP2014121363A (en) Light source device and endoscope system using the same
JP6438830B2 (en) Position adjustment method
JP2012070822A (en) Light source device and endoscopic diagnostic systen
JP2014132918A (en) Light source device and endoscope system using the same
JP2019030743A (en) Light source device for endoscope, endoscope system, and position adjusting method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5645385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees