JP5540816B2 - Evaporator unit - Google Patents

Evaporator unit Download PDF

Info

Publication number
JP5540816B2
JP5540816B2 JP2010072527A JP2010072527A JP5540816B2 JP 5540816 B2 JP5540816 B2 JP 5540816B2 JP 2010072527 A JP2010072527 A JP 2010072527A JP 2010072527 A JP2010072527 A JP 2010072527A JP 5540816 B2 JP5540816 B2 JP 5540816B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
evaporator
flow path
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010072527A
Other languages
Japanese (ja)
Other versions
JP2011202921A (en
Inventor
剛 沖ノ谷
剛史 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010072527A priority Critical patent/JP5540816B2/en
Priority to DE201110014410 priority patent/DE102011014410A1/en
Publication of JP2011202921A publication Critical patent/JP2011202921A/en
Application granted granted Critical
Publication of JP5540816B2 publication Critical patent/JP5540816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • F28F9/002Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • F28F9/0217Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、冷凍サイクルに用いられる蒸発器ユニットに関する。   The present invention relates to an evaporator unit used in a refrigeration cycle.

従来、この種の蒸発器ユニットが特許文献1、2に記載されている。特許文献1の従来技術では、蒸発器に内部熱交換器が一体化されている。具体的には、内部熱交換器が蒸発器の熱交換器コアと並んで一体に構成されている。   Conventionally, this type of evaporator unit is described in Patent Documents 1 and 2. In the prior art of Patent Document 1, an internal heat exchanger is integrated with the evaporator. Specifically, the internal heat exchanger is integrally formed side by side with the heat exchanger core of the evaporator.

特許文献2の従来技術では、蒸発器に内部熱交換器と膨張弁とが一体的に組み付けられている。具体的には、蒸発器と内部熱交換器との間に膨張弁が挟まれて組み付けられている。   In the prior art of Patent Document 2, an internal heat exchanger and an expansion valve are integrally assembled with an evaporator. Specifically, an expansion valve is sandwiched and assembled between the evaporator and the internal heat exchanger.

特開2006−97911号公報JP 2006-97911 A 特開2001−21234号公報JP 2001-21234 A

しかしながら、上記特許文献1の従来技術では、膨張弁が蒸発器に一体化されていないので、膨張弁を蒸発器に接続するための接続配管等が必要になって接続構成が複雑化してしまう。   However, since the expansion valve is not integrated with the evaporator in the prior art disclosed in Patent Document 1, connection piping for connecting the expansion valve to the evaporator is required, and the connection configuration is complicated.

この点、上記特許文献2の従来技術では、内部熱交換器および膨張弁が蒸発器に一体的に組み付けられているので、膨張弁を蒸発器に接続するための接続配管が不要であり、接続構成が簡素になる。   In this regard, in the prior art disclosed in Patent Document 2, since the internal heat exchanger and the expansion valve are integrally assembled with the evaporator, a connection pipe for connecting the expansion valve to the evaporator is not necessary. The configuration is simplified.

しかしながら、上記特許文献2の従来技術では、蒸発器と内部熱交換器との間に膨張弁が挟まれているので、蒸発器と膨張弁との接続部、および膨張弁と内部熱交換器との接続部で冷媒漏れが発生する虞がある。   However, since the expansion valve is sandwiched between the evaporator and the internal heat exchanger in the prior art of Patent Document 2, the connection between the evaporator and the expansion valve, and the expansion valve and the internal heat exchanger There is a possibility that refrigerant leakage may occur at the connecting portion.

ここで、蒸発器、膨張弁および内部熱交換器を一体ろう付けすれば、蒸発器、膨張弁および内部熱交換器の接続部における冷媒漏れを効果的に防止できる。しかしながら、膨張弁を一体ろう付けすると膨張弁が熱変形して、膨張弁内部の通路形状、寸法等を所期の設計通りに維持できないという不具合が生じる。   Here, if the evaporator, the expansion valve, and the internal heat exchanger are brazed together, it is possible to effectively prevent refrigerant leakage at the connection portion of the evaporator, the expansion valve, and the internal heat exchanger. However, when the expansion valve is integrally brazed, the expansion valve is thermally deformed, and there arises a problem that the shape and dimensions of the passage inside the expansion valve cannot be maintained as intended.

本発明は上記点に鑑みて、接続構成が簡素であり、かつ冷媒漏れに対するシール性が高い蒸発器ユニットを提供することを目的とする。   In view of the above points, an object of the present invention is to provide an evaporator unit having a simple connection configuration and high sealing performance against refrigerant leakage.

上記目的を達成するため、請求項1に記載の発明では、冷凍サイクルを構成する蒸発器(15)と、
冷凍サイクルの高圧側冷媒と低圧側冷媒とを熱交換させる内部熱交換器(13)と、
冷凍サイクルの膨張弁(14)が組み付けられる膨張弁組付部(29)とを備え、
膨張弁組付部(29)には、膨張弁(14)の冷媒入口(14a)に流入する冷媒が流れる入口側流路(29b)と、膨張弁(14)の冷媒出口(14b)から流出した冷媒が流れる出口側流路(29c)とが形成され、
蒸発器(15)、内部熱交換器(13)および膨張弁組付部(29)は、いずれも金属で形成され、かつ互いに一体ろう付けされており、
入口側流路(29b)は、内部熱交換器(13)の高圧側冷媒出口(13c)から膨張弁(14)の冷媒入口(14a)に至る内部熱交換器−膨張弁冷媒流路(29b)であり、
出口側流路(29c)は、膨張弁(14)の冷媒出口(14b)から蒸発器(15)に至る膨張弁−蒸発器冷媒流路(29c)であり、
膨張弁組付部(29)には、蒸発器(15)から内部熱交換器(13)のうち低圧側冷媒入口(13d)に至る蒸発器−内部熱交換器冷媒流路(29d)が形成されていることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, an evaporator (15) constituting a refrigeration cycle;
An internal heat exchanger (13) for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the refrigeration cycle;
An expansion valve assembly (29) to which the expansion valve (14) of the refrigeration cycle is assembled,
The expansion valve assembly (29) flows out of the inlet-side flow path (29b) through which the refrigerant flowing into the refrigerant inlet (14a) of the expansion valve (14) flows and the refrigerant outlet (14b) of the expansion valve (14). An outlet-side flow path (29c) through which the refrigerant flows is formed,
The evaporator (15), the internal heat exchanger (13), and the expansion valve assembly (29) are all formed of metal and brazed together .
The inlet-side flow path (29b) is an internal heat exchanger-expansion valve refrigerant flow path (29b) from the high-pressure side refrigerant outlet (13c) of the internal heat exchanger (13) to the refrigerant inlet (14a) of the expansion valve (14). ) And
The outlet side flow path (29c) is an expansion valve-evaporator refrigerant flow path (29c) from the refrigerant outlet (14b) of the expansion valve (14) to the evaporator (15),
In the expansion valve assembly (29), an evaporator-internal heat exchanger refrigerant flow path (29d) extending from the evaporator (15) to the low-pressure side refrigerant inlet (13d) of the internal heat exchanger (13) is formed. It is characterized by being.

これによると、蒸発器(15)のみの一体ろう付けを行った後に内部熱交換器(13)および膨張弁(14)を蒸発器(15)に組み付けする場合と比較して、一体ろう付け後の接続箇所を低減できる。その結果、接続構成を簡素化できるとともに、冷媒漏れに対するシール性を高めることができる。   According to this, compared with the case where the internal heat exchanger (13) and the expansion valve (14) are assembled to the evaporator (15) after the integral brazing of only the evaporator (15), after the integral brazing. Can be reduced. As a result, the connection configuration can be simplified and the sealing performance against refrigerant leakage can be enhanced.

さらに、請求項1に記載の発明では、膨張弁(14)の冷媒入口(14a)に流入する冷媒が流れる入口側流路(29b)を、内部熱交換器(13)の高圧側冷媒出口(13c)から膨張弁(14)の冷媒入口(14a)に至る内部熱交換器−膨張弁冷媒流路(29b)とし、膨張弁(14)の冷媒出口(14b)から流出した冷媒が流れる出口側流路(29c)を、膨張弁(14)の冷媒出口(14b)から蒸発器(15)に至る膨張弁−蒸発器冷媒流路(29c)とし、膨張弁組付部(29)に、蒸発器(15)から内部熱交換器(13)のうち低圧側冷媒入口(13d)に至る蒸発器−内部熱交換器冷媒流路(29d)を形成することにより、内部熱交換器(13)、膨張弁(14)および蒸発器(15)間の流路を膨張弁組付部(29)に集約することができるので、流路構成を簡素化できる。 Furthermore, in the first aspect of the present invention, the inlet-side flow path (29b) through which the refrigerant flowing into the refrigerant inlet (14a) of the expansion valve (14) flows is connected to the high-pressure side refrigerant outlet (13) of the internal heat exchanger (13). 13c) is used as an internal heat exchanger-expansion valve refrigerant flow path (29b) from the refrigerant inlet (14a) of the expansion valve (14), and the outlet side through which the refrigerant flowing out of the refrigerant outlet (14b) of the expansion valve (14) flows. The flow path (29c) is an expansion valve-evaporator refrigerant flow path (29c) from the refrigerant outlet (14b) of the expansion valve (14) to the evaporator (15), and is evaporated to the expansion valve assembly (29). An internal heat exchanger (13) by forming an evaporator-internal heat exchanger refrigerant flow path (29d) from the condenser (15) to the low-pressure side refrigerant inlet (13d) of the internal heat exchanger (13), The flow path between the expansion valve (14) and the evaporator (15) is connected to the expansion valve assembly (2 It is possible to aggregate the), it can be simplified flow channel configuration.

請求項に記載の発明では、請求項に記載の蒸発器ユニットにおいて、蒸発器(15)は、熱交換コア部(21a、22a)の冷媒流路を形成する複数のチューブ(23)を有し、
膨張弁−蒸発器冷媒流路(29c)および蒸発器−内部熱交換器冷媒流路(29d)には、複数のチューブ(23)のうち少なくとも一部のチューブの端部が挿入されていることを特徴とする。
In the invention described in claim 2, in the evaporator unit according to claim 1, evaporator (15), the heat exchange core part (21a, 22a) a plurality of tubes to form a refrigerant flow path (23) Have
End portions of at least some of the tubes (23) are inserted into the expansion valve-evaporator refrigerant flow path (29c) and the evaporator-internal heat exchanger refrigerant flow path (29d). It is characterized by.

これによると、膨張弁組付部(29)が、複数のチューブ(23)に対する冷媒の分配・集合を行うタンク部の役割を兼ねることができるので、ユニット体格を小型化できる。   According to this, since the expansion valve assembly part (29) can also serve as a tank part that distributes and collects the refrigerant to the plurality of tubes (23), the unit size can be reduced in size.

具体的には、請求項に記載の発明のように、請求項に記載の蒸発器ユニットにおいて、膨張弁組付部(29)には、膨張弁(14)のうち冷媒入口(14a)および冷媒出口(14b)の形成部位が挿入される膨張弁挿入穴(29a)が形成され、
膨張弁挿入穴(29a)は、内部熱交換器−膨張弁冷媒流路(29b)および膨張弁−蒸発器冷媒流路(29c)に連通し、
膨張弁組付部(29)は、膨張弁挿入穴(29a)を形成する膨張弁挿入穴形成部材(30)と、複数のチューブ(23)のうち少なくとも一部のチューブの端部が挿入されるチューブ挿入部材(31)とに分割して形成されているのが好ましい。
Specifically, as in the invention according to claim 3, in the evaporator unit according to claim 2, the expansion valve assembly portion (29), the refrigerant inlet of the expansion valve (14) (14a) And an expansion valve insertion hole (29a) into which the formation site of the refrigerant outlet (14b) is inserted,
The expansion valve insertion hole (29a) communicates with the internal heat exchanger-expansion valve refrigerant flow path (29b) and the expansion valve-evaporator refrigerant flow path (29c),
The expansion valve assembly portion (29) is inserted with an expansion valve insertion hole forming member (30) that forms an expansion valve insertion hole (29a), and an end of at least a part of the plurality of tubes (23). It is preferable that the tube insertion member (31) is divided and formed.

請求項に記載の発明では、請求項ないしのいずれか1つに記載の蒸発器ユニットにおいて、内部熱交換器(13)には、高圧側冷媒出口(13c)を形成する高圧側出口端部(13e)と、低圧側冷媒入口(13d)を形成する低圧側入口端部(13)とが互いに分離して形成され、
内部熱交換器−膨張弁冷媒流路(29b)の入口部には、高圧側出口端部(13e)が挿入され、
蒸発器−内部熱交換器冷媒流路(29d)の出口部には、低圧側入口端部(13)が挿入されていることを特徴とする。
The invention according to claim 4, in the evaporator unit according to any one of claims 1 to 3, the internal heat exchanger (13), the high-pressure-side outlet for forming a high-pressure side refrigerant outlet (13c) end and (13e), the low-pressure side inlet end to form a low-pressure refrigerant inlet (13d) and (13 f) are formed separately from each other,
A high-pressure side outlet end (13e) is inserted into the inlet of the internal heat exchanger-expansion valve refrigerant channel (29b),
A low-pressure side inlet end (13 f ) is inserted into the outlet of the evaporator-internal heat exchanger refrigerant channel (29d).

これにより、内部熱交換器(13)と膨張弁組付部(29)とを簡素な構成でもって接続できる。   Thereby, an internal heat exchanger (13) and an expansion valve assembly part (29) can be connected with a simple structure.

請求項に記載の発明では、請求項ないしのいずれか1つに記載の蒸発器ユニットにおいて、ノズル部(40a)から噴射される高い速度の冷媒流により冷媒吸引口(40b)から冷媒を吸引し、ノズル部(40a)から噴射された冷媒と冷媒吸引口(40b)から吸引された冷媒とを混合して吐出するエジェクタ(40)が組み付けられるエジェクタ組付部(43)を備え、
蒸発器(15)は、エジェクタ(40)の出口側に接続されてエジェクタ(40)から吐出された冷媒を蒸発させる第1蒸発器(21)、および冷媒吸引口(40b)に接続されてエジェクタ(40)に吸引される冷媒を蒸発させる第2蒸発器(22)であり、
エジェクタ組付部(43)には、ノズル部(40a)の入口に流入する冷媒が流れるノズル部入口側流路(43b)と、冷媒吸引口(40b)に吸引される冷媒が流れる冷媒吸引口側流路(43c)と、エジェクタ(40)の出口から流出した冷媒が流れるエジェクタ出口側流路(43d)とが形成され、
エジェクタ組付部(43)は、金属で形成され、かつ第1、第2蒸発器(21、22)、内部熱交換器(13)および膨張弁組付部(29)と一体ろう付けされていることを特徴とする。
In the invention described in claim 5, in the evaporator unit according to any one of claims 1 to 4, the refrigerant from the refrigerant suction port (40b) by high speed flow of refrigerant ejected from the nozzle portion (40a) An ejector assembly portion (43) to which an ejector (40) for mixing and discharging the refrigerant injected from the nozzle portion (40a) and the refrigerant sucked from the refrigerant suction port (40b) is assembled,
The evaporator (15) is connected to the outlet side of the ejector (40) and is connected to the first evaporator (21) for evaporating the refrigerant discharged from the ejector (40) and the refrigerant suction port (40b). A second evaporator (22) for evaporating the refrigerant sucked by (40);
The ejector assembly part (43) has a nozzle part inlet side flow path (43b) through which refrigerant flowing into the inlet of the nozzle part (40a) flows, and a refrigerant suction port through which refrigerant sucked into the refrigerant suction port (40b) flows. A side flow path (43c) and an ejector outlet side flow path (43d) through which the refrigerant flowing out from the outlet of the ejector (40) flows are formed,
The ejector assembly (43) is formed of metal and brazed integrally with the first and second evaporators (21, 22), the internal heat exchanger (13), and the expansion valve assembly (29). It is characterized by being.

これにより、エジェクタ(40)を備える冷凍サイクルにおいて、接続構成を簡素化できるとともに、冷媒漏れに対するシール性を高めることができる。   Thereby, in a refrigerating cycle provided with an ejector (40), while being able to simplify a connection structure, the sealing performance with respect to refrigerant | coolant leakage can be improved.

請求項に記載の発明では、請求項に記載の蒸発器ユニットにおいて、膨張弁組付部(29)には、内部熱交換器(13)のうち高圧側冷媒の出口とノズル部入口側流路(43b)とを連通する高圧冷媒流路(29e)が形成され、
高圧冷媒流路(29e)およびノズル部入口側流路(43b)は、内部熱交換器(13)の高圧側冷媒出口(13c)からノズル部(40a)の入口に至る内部熱交換器−ノズル部冷媒流路を構成していることを特徴とする。
According to a sixth aspect of the present invention, in the evaporator unit according to the fifth aspect , the expansion valve assembly portion (29) includes an outlet of the high-pressure side refrigerant and an inlet side of the nozzle portion of the internal heat exchanger (13). A high-pressure refrigerant flow path (29e) communicating with the flow path (43b) is formed;
The high pressure refrigerant flow path (29e) and the nozzle part inlet side flow path (43b) are an internal heat exchanger-nozzle extending from the high pressure side refrigerant outlet (13c) of the internal heat exchanger (13) to the inlet of the nozzle part (40a). A partial refrigerant flow path is configured.

これにより、内部熱交換器(13)、膨張弁(14)および第1、第2蒸発器(21、22)間の流路と、内部熱交換器(13)およびエジェクタ(40)間の流路とを膨張弁組付部(29)およびエジェクタ組付部(43)に集約することができるので、流路構成を簡素化できる。   Thereby, the flow path between the internal heat exchanger (13), the expansion valve (14) and the first and second evaporators (21, 22), and the flow between the internal heat exchanger (13) and the ejector (40). Since the passages can be integrated into the expansion valve assembly portion (29) and the ejector assembly portion (43), the flow path configuration can be simplified.

請求項に記載の発明では、請求項またはに記載の蒸発器ユニットにおいて、冷媒吸引口側流路(43c)は、第2蒸発器(22)からエジェクタ(40)の冷媒吸引口(40b)に至る蒸発器−冷媒吸引口冷媒流路(43c)であり、
エジェクタ出口側流路(43d)は、エジェクタ(40)の出口から第1蒸発器(21)に至るエジェクタ−蒸発器冷媒流路(43d)であることを特徴とする。
According to a seventh aspect of the present invention, in the evaporator unit according to the fifth or sixth aspect , the refrigerant suction port side channel (43c) extends from the second evaporator (22) to the refrigerant suction port (40) of the ejector (40). 40b) the evaporator-refrigerant suction port refrigerant flow path (43c),
The ejector outlet side flow path (43d) is an ejector-evaporator refrigerant flow path (43d) extending from the outlet of the ejector (40) to the first evaporator (21).

これにより、第1、第2蒸発器(21、22)およびエジェクタ(40)間の流路をエジェクタ組付部(43)に集約することができるので、流路構成を簡素化できる。   Thereby, since the flow path between the first and second evaporators (21, 22) and the ejector (40) can be concentrated in the ejector assembly (43), the flow path configuration can be simplified.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の第1実施形態における冷凍サイクルの全体構成図である。It is a whole lineblock diagram of the refrigerating cycle in a 1st embodiment of the present invention. 第1実施形態における一体化ユニットの全体構成を示す二面図である。It is a two-plane figure which shows the whole structure of the integrated unit in 1st Embodiment. 図2の膨張弁組付部の近傍を示す正面図である。It is a front view which shows the vicinity of the expansion valve assembly | attachment part of FIG. 図2のサイドプレートを示す二面図、断面図および斜視図である。FIG. 3 is a two-side view, a cross-sectional view, and a perspective view showing the side plate of FIG. 2. 図2の上側タンク部を示す二面図である。FIG. 3 is a two-side view showing an upper tank part of FIG. 2. (a)は図5のA矢視図であり、(b)は図5のB−B断面図である。(A) is A arrow directional view of FIG. 5, (b) is BB sectional drawing of FIG. 図2のチューブ挿入部材を示す二面図である。It is a two-plane figure which shows the tube insertion member of FIG. 図2の膨張弁挿入穴形成部材を示す三面図である。FIG. 3 is a trihedral view showing the expansion valve insertion hole forming member of FIG. 2. 図2の一体化ユニットの正面図である。It is a front view of the integrated unit of FIG. 図9の膨張弁組付部を示す二面図である。FIG. 10 is a two-side view showing the expansion valve assembly part of FIG. 9. 本発明の第2実施形態における冷凍サイクルの全体構成図である。It is a whole block diagram of the refrigerating cycle in 2nd Embodiment of this invention. 図1のエジェクタを示す断面図である。It is sectional drawing which shows the ejector of FIG. 第2実施形態における一体化ユニットの全体構成を示す二面図である。It is a two-view figure which shows the whole structure of the integrated unit in 2nd Embodiment. 図13のエジェクタ組付部を示す二面図である。It is a two-plane figure which shows the ejector assembly part of FIG. 図13の膨張弁組付部を示す二面図である。It is a two-plane figure which shows the expansion valve assembly | attachment part of FIG. 他の実施形態におけるサイドプレートを示す斜視図である。It is a perspective view which shows the side plate in other embodiment. 他の実施形態における一体化ユニットの全体構成を示す二面図である。It is a two-view figure which shows the whole structure of the integrated unit in other embodiment.

(第1実施形態)
以下、本発明における蒸発器ユニットおよびそれを用いた冷凍サイクルの実施形態を説明する。蒸発器ユニットは、冷凍サイクルを構成するために配管を介して冷凍サイクルの他の構成部品である圧縮機および凝縮器と接続される。蒸発器ユニットは、ひとつの形態では室内機として空気を冷却する用途に用いられる。また、蒸発器ユニットは、他の形態では室外機として用いることができる。
(First embodiment)
Hereinafter, embodiments of an evaporator unit and a refrigeration cycle using the same according to the present invention will be described. The evaporator unit is connected to a compressor and a condenser, which are other components of the refrigeration cycle, via pipes in order to configure the refrigeration cycle. In one embodiment, the evaporator unit is used as an indoor unit for cooling air. Moreover, an evaporator unit can be used as an outdoor unit in another form.

図1〜図10は本発明の第1実施形態を示すもので、図1は第1実施形態による冷凍サイクル10を車両用冷凍サイクル装置に適用した例を示す。本実施形態の冷凍サイクル10において、冷媒を吸入圧縮する圧縮機11は、電磁クラッチ、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。   FIGS. 1-10 shows 1st Embodiment of this invention, FIG. 1 shows the example which applied the refrigerating cycle 10 by 1st Embodiment to the refrigerating cycle apparatus for vehicles. In the refrigeration cycle 10 of the present embodiment, a compressor 11 that sucks and compresses refrigerant is rotationally driven by a vehicle travel engine (not shown) via an electromagnetic clutch, a belt, and the like.

圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。   The compressor 11 may be a variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or a fixed capacity compressor that adjusts the refrigerant discharge capacity by changing the operating rate of the compressor operation by switching the electromagnetic clutch. Either of these may be used. Further, if an electric compressor is used as the compressor 11, the refrigerant discharge capacity can be adjusted by adjusting the rotation speed of the electric motor.

この圧縮機11の冷媒吐出側には放熱器12が配置されている。放熱器12は圧縮機11から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。   A radiator 12 is disposed on the refrigerant discharge side of the compressor 11. The radiator 12 cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and outside air (air outside the vehicle compartment) blown by a cooling fan (not shown).

ここで、冷凍サイクル10の冷媒として、本実施形態ではフロン系、HC系等の冷媒のように高圧圧力が臨界圧力を超えない冷媒を用いて、蒸気圧縮式の亜臨界サイクルを構成している。このため、放熱器12は冷媒を凝縮する凝縮器として作用する。   Here, as the refrigerant of the refrigeration cycle 10, in this embodiment, a refrigerant whose high pressure does not exceed the critical pressure, such as a refrigerant of chlorofluorocarbon or HC, constitutes a vapor compression subcritical cycle. . For this reason, the radiator 12 acts as a condenser that condenses the refrigerant.

放熱器12の出口側には内部熱交換器13が接続されている。内部熱交換器13には、放熱器12から流出した高圧側冷媒が流れる高圧側冷媒流路13aと、圧縮機11に吸入される低圧側冷媒が流れる低圧側冷媒流路13bとが形成されている。   An internal heat exchanger 13 is connected to the outlet side of the radiator 12. The internal heat exchanger 13 is formed with a high-pressure side refrigerant flow path 13 a through which the high-pressure side refrigerant flowing out from the radiator 12 flows and a low-pressure side refrigerant flow path 13 b through which the low-pressure side refrigerant sucked into the compressor 11 flows. Yes.

内部熱交換器13が高圧側冷媒と低圧側冷媒とを熱交換させることにより、蒸発器15における入口側冷媒と出口側冷媒とのエンタルピ差(冷凍能力)を増大することができる。   When the internal heat exchanger 13 exchanges heat between the high-pressure side refrigerant and the low-pressure side refrigerant, the enthalpy difference (refrigeration capacity) between the inlet-side refrigerant and the outlet-side refrigerant in the evaporator 15 can be increased.

内部熱交換器13の高圧側冷媒出口13c側には膨張弁14の冷媒入口14aが接続されている。膨張弁14は内部熱交換器13の高圧側冷媒流路13aからの液冷媒を減圧する減圧手段である。   A refrigerant inlet 14 a of the expansion valve 14 is connected to the high-pressure side refrigerant outlet 13 c side of the internal heat exchanger 13. The expansion valve 14 is a decompression unit that decompresses the liquid refrigerant from the high-pressure side refrigerant flow path 13 a of the internal heat exchanger 13.

膨張弁14の冷媒出口14b側には蒸発器15が接続されている。蒸発器15の出口側は内部熱交換器13の低圧側冷媒入口13dに接続されている。内部熱交換器13の低圧側冷媒出口は圧縮機11の吸入側に接続されている。   An evaporator 15 is connected to the refrigerant outlet 14 b side of the expansion valve 14. The outlet side of the evaporator 15 is connected to the low-pressure side refrigerant inlet 13 d of the internal heat exchanger 13. The low-pressure side refrigerant outlet of the internal heat exchanger 13 is connected to the suction side of the compressor 11.

蒸発器15は、図示しないケース内に収納され、そして、このケース内に構成される空気通路に共通の電動送風機16により空気(被冷却空気)を矢印A1のごとく送風し、この送風空気を蒸発器15で冷却するようになっている。   The evaporator 15 is housed in a case (not shown), and air (cooled air) is blown as indicated by an arrow A1 by an electric blower 16 common to an air passage configured in the case, and the blown air is evaporated. It cools with the vessel 15.

蒸発器15で冷却された冷風を冷却対象空間(図示せず)に送り込み、これにより、蒸発器15にて冷却対象空間を冷却するようになっている。   The cool air cooled by the evaporator 15 is sent to a space to be cooled (not shown), and the space to be cooled is thereby cooled by the evaporator 15.

なお、本実施形態の冷凍サイクル10を車両空調用冷凍サイクル装置に適用する場合は車室内空間が冷却対象空間となる。また、本実施形態の冷凍サイクル10を冷凍車用冷凍サイクル装置に適用する場合は冷凍車の冷凍冷蔵庫内空間が冷却対象空間となる。   In addition, when applying the refrigeration cycle 10 of this embodiment to the refrigeration cycle apparatus for vehicle air conditioning, a vehicle interior space becomes a space to be cooled. In addition, when the refrigeration cycle 10 of the present embodiment is applied to a refrigeration vehicle refrigeration cycle apparatus, the space inside the refrigeration refrigerator of the refrigeration vehicle is a space to be cooled.

本実施形態では、内部熱交換器13、膨張弁14および蒸発器15を1つの一体化ユニット20として組み付けている。   In the present embodiment, the internal heat exchanger 13, the expansion valve 14, and the evaporator 15 are assembled as one integrated unit 20.

図2は一体化ユニット20の全体構成の概要を示す二面図である。本実施形態では、蒸発器15は、空気流れA1の上流側(風上側)に配置される第1蒸発器21と、空気流れA1の下流側(風下側)に配置される第2蒸発器22とを一体化した構造になっている。   FIG. 2 is a two-view diagram showing an outline of the overall configuration of the integrated unit 20. In the present embodiment, the evaporator 15 includes a first evaporator 21 disposed on the upstream side (windward side) of the air flow A1 and a second evaporator 22 disposed on the downstream side (leeward side) of the air flow A1. It has a structure that integrates with.

第1、第2蒸発器21、22はそれぞれ熱交換コア部21a、22aと、この熱交換コア部21a、22aの上下両側に位置するタンク部21b、21c、22b、22cとを備えている。   The first and second evaporators 21 and 22 include heat exchange core portions 21a and 22a, and tank portions 21b, 21c, 22b, and 22c located on both upper and lower sides of the heat exchange core portions 21a and 22a, respectively.

以下、第1蒸発器21の熱交換コア部21aを第1熱交換コア部21aと言い、第2蒸発器22の熱交換コア部22aを第2熱交換コア部22aと言う。   Hereinafter, the heat exchange core part 21a of the first evaporator 21 is referred to as a first heat exchange core part 21a, and the heat exchange core part 22a of the second evaporator 22 is referred to as a second heat exchange core part 22a.

第1、第2熱交換コア部21a、22aは、それぞれ上下方向に延びる複数のチューブ23を備えている。これら複数のチューブ23の間には、被熱交換媒体(冷却される空気)が通る通路が形成される。これら複数のチューブ23相互間には、フィン24を配置し、チューブ23とフィン24とを接合することができる。   The first and second heat exchange core portions 21a and 22a each include a plurality of tubes 23 extending in the vertical direction. A passage through which the heat exchange medium (cooled air) passes is formed between the plurality of tubes 23. Fins 24 can be arranged between the plurality of tubes 23 so that the tubes 23 and the fins 24 can be joined.

本実施形態では、第1、第2熱交換コア部21a、22aは、チューブ23とフィン24との積層構造からなる。このチューブ23とフィン24は第1、第2熱交換コア部21a、22aの左右方向に交互に積層配置される。   In the present embodiment, the first and second heat exchange core portions 21 a and 22 a have a laminated structure of tubes 23 and fins 24. The tubes 23 and the fins 24 are alternately stacked in the left-right direction of the first and second heat exchange core portions 21a, 22a.

なお、図2では、チューブ23とフィン24の積層構造の一部のみ図示しているが、熱交換コア部21a、22aの全域にチューブ23とフィン24の積層構造が構成され、この積層構造の空隙部を電動送風機16の送風空気が通過するようになっている。   In FIG. 2, only a part of the laminated structure of the tube 23 and the fin 24 is illustrated, but the laminated structure of the tube 23 and the fin 24 is configured over the entire area of the heat exchange core portions 21a and 22a. The air blown by the electric blower 16 passes through the gap.

チューブ23は冷媒通路を構成するもので、断面形状が空気流れ方向A1に沿って扁平な扁平チューブよりなる。フィン24は薄板材を波状に曲げ成形したコルゲートフィンであり、チューブ23の平坦な外面側に接合され空気側伝熱面積を拡大する。   The tube 23 constitutes a refrigerant passage, and is formed of a flat tube whose cross-sectional shape is flat along the air flow direction A1. The fin 24 is a corrugated fin formed by bending a thin plate material into a wave shape, and is joined to the flat outer surface side of the tube 23 to expand the air-side heat transfer area.

第1熱交換コア部21aのチューブ23と第2熱交換コア部22aのチューブ23は互いに独立した冷媒通路を構成し、第1熱交換コア部21aの上下両側のタンク部21b、21cと、第2熱交換コア部22aの上下両側のタンク部22b、22cは互いに独立した冷媒通路空間を構成する。   The tube 23 of the first heat exchange core part 21a and the tube 23 of the second heat exchange core part 22a constitute independent refrigerant passages, and tank parts 21b and 21c on both upper and lower sides of the first heat exchange core part 21a, 2 The tank portions 22b and 22c on both the upper and lower sides of the heat exchange core portion 22a constitute independent refrigerant passage spaces.

第1熱交換コア部21aの上下両側のタンク部21b、21cの内部空間は、第1熱交換コア部21aのチューブ23の上下両端部に連通するようになっている。同様に、第2熱交換コア部22aの上下両側のタンク部22b、22cの内部空間は、第2熱交換コア部22aのチューブ23の上下両端部に連通するようになっている。   The internal spaces of the tank portions 21b and 21c on both the upper and lower sides of the first heat exchange core portion 21a communicate with the upper and lower end portions of the tube 23 of the first heat exchange core portion 21a. Similarly, the internal spaces of the tank portions 22b and 22c on the upper and lower sides of the second heat exchange core portion 22a communicate with the upper and lower ends of the tube 23 of the second heat exchange core portion 22a.

これにより、上下両側のタンク部21b、21c、22b、22cは、それぞれ対応する熱交換コア部21a、22aの複数のチューブ23へ冷媒流れを分配する役割、および複数のチューブ23からの冷媒流れを集合する役割を果たす。   Thereby, the tank parts 21b, 21c, 22b, and 22c on both upper and lower sides respectively distribute the refrigerant flow to the plurality of tubes 23 of the corresponding heat exchange core parts 21a and 22a, and the refrigerant flows from the plurality of tubes 23, respectively. Play the role of gathering.

2つの上側タンク部21b、22b、および2つの下側タンク部21c、22cは隣接しているので、2つの上側タンク部21b、22b同士、および2つの下側タンク部21c、22c同士を一体的に成形することができる。もちろん、2つの上側タンク部21b、22b、および2つの下側タンク部21c、22cをそれぞれ独立の部材として成形してもよい。   Since the two upper tank portions 21b and 22b and the two lower tank portions 21c and 22c are adjacent to each other, the two upper tank portions 21b and 22b and the two lower tank portions 21c and 22c are integrated with each other. Can be molded. Of course, the two upper tank portions 21b and 22b and the two lower tank portions 21c and 22c may be formed as independent members.

下側タンク部21c、22cの長手方向一端部には、一体化ユニット20の1つの冷媒入口25および1つの冷媒出口26が形成されている。   One refrigerant inlet 25 and one refrigerant outlet 26 of the integrated unit 20 are formed at one end in the longitudinal direction of the lower tank portions 21c and 22c.

第1、第2熱交換コア部21a、22aの両側面部には、第1、第2熱交換コア部21a、22aを保持するサイドプレート27、28がろう付け固定されている。サイドプレート27、28は、第1、第2熱交換コア部21a、22aの側方にてチューブ23の長手方向に延びる形状を有しており、上下両側のタンク部21b、21c、22b、22cにもろう付け固定されている。   Side plates 27 and 28 holding the first and second heat exchange core portions 21a and 22a are brazed and fixed to both side surfaces of the first and second heat exchange core portions 21a and 22a. The side plates 27 and 28 have a shape extending in the longitudinal direction of the tube 23 on the side of the first and second heat exchange core portions 21a and 22a, and tank portions 21b, 21c, 22b and 22c on both upper and lower sides. Also brazed and fixed.

なお、チューブ23、フィン24、タンク部21b、21c、22b、22c、サイドプレート27、28等の蒸発器構成部品の具体的材質としては、熱伝導性やろう付け性に優れた金属であるアルミニウムが好適であり、このアルミニウム材にて各部品を成形することにより、第1、第2蒸発器21、22の全体構成を一体ろう付けにて組み付けることができる。   In addition, as a concrete material of evaporator components, such as the tube 23, the fin 24, the tank parts 21b, 21c, 22b, 22c, and the side plates 27, 28, aluminum which is a metal excellent in thermal conductivity and brazing property It is suitable, and the whole structure of the 1st, 2nd evaporators 21 and 22 can be assembled | attached by integral brazing by shape | molding each component with this aluminum material.

本実施形態では、内部熱交換器13および膨張弁組付部29もろう付けにて第1、第2蒸発器21、22と一体に組み付けるようになっている。膨張弁組付部29は、蒸発器部品と同様にアルミニウム材(金属材)にて成形されており、第1、第2蒸発器21、22の上側タンク部21b、22bの長手方向一端部にろう付け固定されている。   In the present embodiment, the internal heat exchanger 13 and the expansion valve assembly portion 29 are also assembled integrally with the first and second evaporators 21 and 22 by brazing. The expansion valve assembly portion 29 is formed of an aluminum material (metal material) in the same manner as the evaporator parts, and is provided at one end in the longitudinal direction of the upper tank portions 21b and 22b of the first and second evaporators 21 and 22. It is fixed by brazing.

これに対し、膨張弁14は内部に微小通路を形成しているので、膨張弁14をろう付けすると、ろう付け時の高温度(アルミニウムのろう付け温度:600℃付近)にて膨張弁14が熱変形して、膨張弁14内部の通路形状、寸法等を所期の設計通りに維持できないという不具合が生じる。   On the other hand, since the expansion valve 14 has a micro passage formed therein, when the expansion valve 14 is brazed, the expansion valve 14 is at a high temperature during brazing (a brazing temperature of aluminum: around 600 ° C.). Due to thermal deformation, there arises a problem that the passage shape, dimensions, etc. inside the expansion valve 14 cannot be maintained as designed.

そこで、膨張弁14については、図3に示すように、第1、第2蒸発器21、22、内部熱交換器13および膨張弁組付部29の一体ろう付けを行った後に、膨張弁組付部29に組み付けするようにしてある。   Therefore, as shown in FIG. 3, the expansion valve 14 is assembled after the first and second evaporators 21 and 22, the internal heat exchanger 13 and the expansion valve assembly portion 29 are integrally brazed. It is designed to be assembled to the attaching part 29.

より具体的に、第1、第2蒸発器21、22、内部熱交換器13および膨張弁組付部29の組み付け構造を説明すると、内部熱交換器13は、第1、第2蒸発器21、22の両サイドプレート27、28のうち冷媒入口25および冷媒出口26側のサイドプレート27と一体化されている。   More specifically, the assembly structure of the first and second evaporators 21 and 22, the internal heat exchanger 13 and the expansion valve assembly portion 29 will be described. The internal heat exchanger 13 includes the first and second evaporators 21. , 22 are integrated with the side plate 27 on the refrigerant inlet 25 and refrigerant outlet 26 side.

本実施形態では、図4に示すように、サイドプレート27の内部に、高圧側冷媒流路13aおよび低圧側冷媒流路13bをチューブ23の長手方向に直線状かつ平行に貫通するように形成することによって、内部熱交換器13をサイドプレート27と一体化している。このような内部熱交換器13(すなわちサイドプレート27)は押し出し成形にて一体成形することができる。   In the present embodiment, as shown in FIG. 4, the high-pressure side refrigerant flow path 13 a and the low-pressure side refrigerant flow path 13 b are formed in the side plate 27 so as to penetrate the tube 23 in a straight line and in parallel. Thus, the internal heat exchanger 13 is integrated with the side plate 27. Such an internal heat exchanger 13 (that is, the side plate 27) can be integrally formed by extrusion molding.

内部熱交換器13のうち上下タンク部21b、21c、22b、22c側の端部は、膨張弁組付部29に挿入されて接合されている。   Ends on the upper and lower tank portions 21 b, 21 c, 22 b, 22 c side of the internal heat exchanger 13 are inserted into and joined to the expansion valve assembly portion 29.

本実施形態では、内部熱交換器13のうち上側タンク部21b、22c側の端部は、高圧側冷媒出口13cを形成する高圧側出口端部13eと、低圧側冷媒入口13dを形成する低圧側入口端部13fとに分離されている。具体的には、内部熱交換器13の端部に切欠部13gを形成することによって、高圧側出口端部13eと低圧側入口端部13fとを分離している。   In the present embodiment, the end portions on the upper tank portions 21b and 22c side of the internal heat exchanger 13 are the high pressure side outlet end portion 13e that forms the high pressure side refrigerant outlet 13c and the low pressure side that forms the low pressure side refrigerant inlet 13d. It is separated into an inlet end 13f. Specifically, the high pressure side outlet end portion 13e and the low pressure side inlet end portion 13f are separated by forming a notch 13g at the end of the internal heat exchanger 13.

図3に示すように、膨張弁組付部29には、膨張弁14が挿入される膨張弁挿入穴29aが形成されている。膨張弁14は、冷媒入口14aおよび冷媒出口14bが膨張弁挿入穴29a内に位置するように、冷媒入口14aおよび冷媒出口14bの形成部位が膨張弁挿入穴29aに挿入される。   As shown in FIG. 3, the expansion valve assembly portion 29 is formed with an expansion valve insertion hole 29a into which the expansion valve 14 is inserted. The expansion valve 14 is inserted into the expansion valve insertion hole 29a so that the refrigerant inlet 14a and the refrigerant outlet 14b are positioned in the expansion valve insertion hole 29a.

膨張弁組付部29の内部には、内部熱交換器13の高圧側冷媒出口13cから膨張弁14の冷媒入口14aに至る内部熱交換器−膨張弁冷媒流路29bと、膨張弁14の冷媒出口14bから第2蒸発器22に至る膨張弁−蒸発器冷媒流路29cと、第1蒸発器21から内部熱交換器13の低圧側冷媒入口13dに至る蒸発器−内部熱交換器冷媒流路29dとが形成されている。   Inside the expansion valve assembly 29, there are an internal heat exchanger-expansion valve refrigerant flow path 29 b from the high-pressure side refrigerant outlet 13 c of the internal heat exchanger 13 to the refrigerant inlet 14 a of the expansion valve 14, and the refrigerant of the expansion valve 14. An expansion valve-evaporator refrigerant flow path 29c from the outlet 14b to the second evaporator 22, and an evaporator-internal heat exchanger refrigerant flow path from the first evaporator 21 to the low-pressure side refrigerant inlet 13d of the internal heat exchanger 13. 29d.

内部熱交換器−膨張弁冷媒流路29bは、膨張弁14の冷媒入口14aに流入する冷媒が流れる入口側流路である。膨張弁−蒸発器冷媒流路29cは、膨張弁14の冷媒出口14bから流出した冷媒が流れる出口側流路である。   The internal heat exchanger-expansion valve refrigerant flow path 29b is an inlet-side flow path through which the refrigerant flowing into the refrigerant inlet 14a of the expansion valve 14 flows. The expansion valve / evaporator refrigerant flow path 29c is an outlet side flow path through which the refrigerant flowing out from the refrigerant outlet 14b of the expansion valve 14 flows.

膨張弁組付部29には、第1、第2熱交換コア部21a、22aの複数のチューブ23のうち一部のチューブの端部が挿入されている。これにより、膨張弁組付部29は、上側タンク部21b、22bの一部を構成している。   End portions of some of the tubes 23 of the first and second heat exchange core portions 21 a and 22 a are inserted into the expansion valve assembly portion 29. Thereby, the expansion valve assembly | attachment part 29 comprises some upper side tank parts 21b and 22b.

図5は、一体化ユニット20のうち膨張弁組付部29近傍部位の二面図であり、膨張弁14を取り外した状態を示している。図6は図5のA矢視図およびB−B断面図である。   FIG. 5 is a two-side view of the vicinity of the expansion valve assembly portion 29 in the integrated unit 20 and shows a state where the expansion valve 14 is removed. 6 is a view taken in the direction of arrow A and a cross-sectional view taken along the line BB in FIG.

本実施形態では、膨張弁組付部29は、膨張弁挿入穴29aを形成する膨張弁挿入穴形成部材30と、複数のチューブ23の端部が挿入されるチューブ挿入部材31とに分割して形成されている。   In this embodiment, the expansion valve assembly portion 29 is divided into an expansion valve insertion hole forming member 30 that forms the expansion valve insertion hole 29a and a tube insertion member 31 into which the ends of the plurality of tubes 23 are inserted. Is formed.

膨張弁挿入穴形成部材30およびチューブ挿入部材31は、上側タンク部21b、22bも構成している。具体的には、上側タンク部21b、22bは、膨張弁挿入穴形成部材30、チューブ挿入部材31、プレートヘッダ32およびタンクヘッダ33で構成されている。   The expansion valve insertion hole forming member 30 and the tube insertion member 31 also constitute upper tank portions 21b and 22b. Specifically, the upper tank portions 21 b and 22 b are configured by an expansion valve insertion hole forming member 30, a tube insertion member 31, a plate header 32, and a tank header 33.

より具体的には、上側タンク部21b、22bは、長手方向一端部が膨張弁挿入穴形成部材30、チューブ挿入部材31およびプレートヘッダ32で構成され、残余の部位がチューブ挿入部材31、プレートヘッダ32およびタンクヘッダ33で構成されている。チューブ挿入部材31は、プレートヘッダ32とタンクヘッダ33との間に挟まれる中間プレートの役割を果たしている。   More specifically, the upper tank portions 21b and 22b have one end portion in the longitudinal direction formed of the expansion valve insertion hole forming member 30, the tube insertion member 31, and the plate header 32, and the remaining portions are the tube insertion member 31 and the plate header. 32 and a tank header 33. The tube insertion member 31 serves as an intermediate plate that is sandwiched between the plate header 32 and the tank header 33.

図6(b)に示すように、プレートヘッダ32には、第1熱交換コア部21aのチューブ23の上端部が嵌合されて接合される第1チューブ嵌合孔32aと、第2熱交換コア部22aのチューブ23の上端部が嵌合されて接合される第2チューブ嵌合孔32bとが形成されている。   As shown in FIG. 6B, the plate header 32 has a first tube fitting hole 32a to which the upper end portion of the tube 23 of the first heat exchange core portion 21a is fitted and joined, and a second heat exchange. A second tube fitting hole 32b is formed in which the upper end portion of the tube 23 of the core portion 22a is fitted and joined.

図7はチューブ挿入部材31の二面図である。図6(b)、図8に示すように、チューブ挿入部材31には、プレートヘッダ32の第1チューブ嵌合孔32aと重合して第1熱交換コア部21aのチューブ23の上端部が挿入される第1チューブ挿入孔31aと、プレートヘッダ32の第2チューブ嵌合孔32bと重合して第2熱交換コア部22aのチューブ23の上端部が挿入される第2チューブ挿入孔31bとが形成されている。   FIG. 7 is a two-side view of the tube insertion member 31. As shown in FIGS. 6B and 8, the tube insertion member 31 is inserted into the upper end portion of the tube 23 of the first heat exchange core portion 21a by overlapping with the first tube fitting hole 32a of the plate header 32. The first tube insertion hole 31a and the second tube insertion hole 31b into which the upper end portion of the tube 23 of the second heat exchange core portion 22a is inserted by overlapping with the second tube fitting hole 32b of the plate header 32. Is formed.

チューブ挿入部材31は、長手方向一端部が図6(a)に示すように膨張弁挿入穴形成部材30とプレートヘッダ32との間に挟まれてろう付け固定され、残余の部位が図6(b)に示すようにタンクヘッダ33とプレートヘッダ32との間に挟まれてろう付け固定されている。   As shown in FIG. 6A, the tube insertion member 31 is sandwiched between the expansion valve insertion hole forming member 30 and the plate header 32 and fixed by brazing, as shown in FIG. As shown in b), it is sandwiched between the tank header 33 and the plate header 32 and fixed by brazing.

図8は膨張弁挿入穴形成部材30の三面図である。図6、図8に示すように、膨張弁挿入穴形成部材30およびタンクヘッダ33には、上側タンク部21b、22bの長手方向に延びてチューブ挿入部材31の第1チューブ挿入孔31aと対向する第1タンク溝30a、33aが形成されている。第1タンク溝30a、33aは、第1蒸発器21の上側タンク部21bの内部空間を構成している。   FIG. 8 is a three-side view of the expansion valve insertion hole forming member 30. As shown in FIGS. 6 and 8, the expansion valve insertion hole forming member 30 and the tank header 33 extend in the longitudinal direction of the upper tank portions 21 b and 22 b and face the first tube insertion hole 31 a of the tube insertion member 31. First tank grooves 30a and 33a are formed. The first tank grooves 30 a and 33 a constitute an internal space of the upper tank portion 21 b of the first evaporator 21.

同様に、膨張弁挿入穴形成部材30およびタンクヘッダ33には、上側タンク部21b、22bの長手方向に延びてチューブ挿入部材31の第2チューブ挿入孔31bと対向する第2タンク溝30b、33bが形成されている。第2タンク溝30b、33bは、上側タンク部22bの内部空間を構成している。   Similarly, the expansion valve insertion hole forming member 30 and the tank header 33 have second tank grooves 30b, 33b that extend in the longitudinal direction of the upper tank portions 21b, 22b and face the second tube insertion hole 31b of the tube insertion member 31. Is formed. The second tank grooves 30b and 33b constitute an internal space of the upper tank portion 22b.

図5(b)、図6(b)に示すように、プレートヘッダ32には、内部熱交換器13の高圧側出口端部13eが嵌合されて接合される高圧側出口端部嵌合孔32cと、内部熱交換器13の低圧側入口端部13fが嵌合されて接合される低圧側入口端部嵌合孔32dとが形成されている。   As shown in FIGS. 5B and 6B, the plate header 32 is fitted with and joined to the high-pressure outlet end fitting hole of the high-pressure outlet outlet 13e of the internal heat exchanger 13. 32c and a low pressure side inlet end fitting hole 32d to which the low pressure side inlet end 13f of the internal heat exchanger 13 is fitted and joined are formed.

図6(b)、図7に示すように、チューブ挿入部材31には、プレートヘッダ32の高圧側出口端部嵌合孔32cと重合して内部熱交換器13の高圧側出口端部13eが挿入される高圧側出口端部挿入穴31cと、プレートヘッダ32の低圧側入口端部嵌合孔32dと重合して内部熱交換器13の低圧側入口端部13fが挿入される低圧側入口端部挿入穴31dとが形成されている。図5(a)に示すように、チューブ挿入部材31の低圧側入口端部挿入穴31dは、膨張弁挿入穴形成部材30の第1タンク溝30aと対向している。   As shown in FIG. 6B and FIG. 7, the tube insertion member 31 overlaps with the high-pressure outlet end fitting hole 32 c of the plate header 32 to form a high-pressure outlet end 13 e of the internal heat exchanger 13. The high pressure side outlet end insertion hole 31c to be inserted and the low pressure side inlet end fitting hole 32d of the plate header 32 overlap with the low pressure side inlet end 13f of the internal heat exchanger 13 to be inserted. A part insertion hole 31d is formed. As shown in FIG. 5A, the low pressure side inlet end insertion hole 31 d of the tube insertion member 31 faces the first tank groove 30 a of the expansion valve insertion hole forming member 30.

図5、図6、図8に示すように、膨張弁挿入穴形成部材30には、冷媒流路をなす第1、第2流路穴30c、30dが形成されている。図5(a)に示すように、第1流路穴30cは、チューブ挿入部材31の高圧側出口端部挿入穴31cと重合し、膨張弁挿入穴29aに連通している。第2流路穴30dは、膨張弁挿入穴29aからタンク溝30bまで延びている。   As shown in FIGS. 5, 6, and 8, the expansion valve insertion hole forming member 30 is formed with first and second flow path holes 30 c and 30 d that form a refrigerant flow path. As shown in FIG. 5A, the first flow path hole 30c overlaps with the high pressure side outlet end insertion hole 31c of the tube insertion member 31, and communicates with the expansion valve insertion hole 29a. The second flow path hole 30d extends from the expansion valve insertion hole 29a to the tank groove 30b.

チューブ挿入部材31の高圧側出口端部挿入穴31cおよび膨張弁挿入穴形成部材30の第1流路穴30cは、膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bを構成している。内部熱交換器−膨張弁冷媒流路29bの入口部には、内部熱交換器13の高圧側出口端部13eが挿入されている。   The high pressure side outlet end insertion hole 31c of the tube insertion member 31 and the first flow path hole 30c of the expansion valve insertion hole forming member 30 constitute an internal heat exchanger-expansion valve refrigerant flow path 29b of the expansion valve assembly 29. doing. The high-pressure side outlet end 13e of the internal heat exchanger 13 is inserted into the inlet of the internal heat exchanger-expansion valve refrigerant channel 29b.

膨張弁挿入穴形成部材30の第2流路穴30dは、膨張弁組付部29の膨張弁−蒸発器冷媒流路29cを構成している。   The second flow path hole 30 d of the expansion valve insertion hole forming member 30 constitutes an expansion valve-evaporator refrigerant flow path 29 c of the expansion valve assembly part 29.

膨張弁挿入穴形成部材30のタンク溝30aおよびチューブ挿入部材31の低圧側入口端部挿入穴31dは、膨張弁組付部29の蒸発器−内部熱交換器冷媒流路29dを構成している。蒸発器−内部熱交換器冷媒流路29dの出口部には、内部熱交換器13の低圧側入口端部13eが挿入されている
ここで、図2に示す第1蒸発器21の上側タンク部21bを第1上側タンク部21bと言い、第2蒸発器22の上側タンク部22bを第2上側タンク部22bと言う。
The tank groove 30a of the expansion valve insertion hole forming member 30 and the low pressure side inlet end insertion hole 31d of the tube insertion member 31 constitute an evaporator-internal heat exchanger refrigerant channel 29d of the expansion valve assembly 29. . The low pressure side inlet end portion 13e of the internal heat exchanger 13 is inserted into the outlet portion of the evaporator-internal heat exchanger refrigerant channel 29d. Here, the upper tank portion of the first evaporator 21 shown in FIG. 21b is referred to as a first upper tank portion 21b, and the upper tank portion 22b of the second evaporator 22 is referred to as a second upper tank portion 22b.

第1上側タンク部21bの内部空間の長手方向の略中央部には仕切板(図示せず)が配置され、この仕切板によって第1上側タンク部21bの内部空間は、長手方向の2つの空間すなわち左側空間34と右側空間35とに仕切られている。第1上側タンク部21bの左側空間34は、膨張弁組付部29の蒸発器−内部熱交換器冷媒流路29dを介して内部熱交換器13の低圧側冷媒流路入口13f(すなわち低圧側冷媒流路13b)に連通している。   A partition plate (not shown) is disposed at a substantially central portion in the longitudinal direction of the internal space of the first upper tank portion 21b, and the internal space of the first upper tank portion 21b is divided into two longitudinal spaces by this partition plate. That is, the left space 34 and the right space 35 are partitioned. The left side space 34 of the first upper tank portion 21b is connected to the low-pressure side refrigerant flow path inlet 13f (that is, the low-pressure side) of the internal heat exchanger 13 via the evaporator-internal heat exchanger refrigerant flow path 29d of the expansion valve assembly section 29. It communicates with the refrigerant flow path 13b).

第2上側タンク部22bの内部空間の長手方向の略中央部には仕切板(図示せず)が配置され、この仕切板によって第2上側タンク部22bの内部空間は、長手方向の2つの空間すなわち左側空間36と右側空間37とに仕切られている。第2上側タンク部22bの左側空間36は、膨張弁組付部29の膨張弁−蒸発器冷媒流路29cに連通している。   A partition plate (not shown) is disposed at a substantially central portion in the longitudinal direction of the internal space of the second upper tank portion 22b, and the internal space of the second upper tank portion 22b is divided into two spaces in the longitudinal direction by the partition plate. That is, it is partitioned into a left space 36 and a right space 37. The left side space 36 of the second upper tank portion 22b communicates with the expansion valve-evaporator refrigerant flow path 29c of the expansion valve assembly portion 29.

両上側タンク部21b、22bの右側空間35、37同士は、図示しない冷媒流路によって連通している。   The right spaces 35 and 37 of the upper tank portions 21b and 22b communicate with each other through a refrigerant channel (not shown).

第1上側タンク部21bの左側空間34は、複数のチューブ23からの冷媒を集合させる集合タンクとしての役割を果たし、第1上側タンク部21bの右側空間35は、冷媒を複数のチューブ23へ分配する分配タンクとしての役割を果たす。   The left side space 34 of the first upper tank part 21 b serves as a collecting tank that collects the refrigerant from the plurality of tubes 23, and the right side space 35 of the first upper tank part 21 b distributes the refrigerant to the plurality of tubes 23. Serves as a distribution tank.

第2上側タンク部22bの左側空間36は、冷媒を複数のチューブ23へ分配する分配タンクとしての役割を果たし、第2上側タンク部22bの右側空間37は、複数のチューブ23からの冷媒を集合させる集合タンクとしての役割を果たす。   The left space 36 of the second upper tank portion 22b serves as a distribution tank that distributes the refrigerant to the plurality of tubes 23, and the right space 37 of the second upper tank portion 22b collects the refrigerant from the plurality of tubes 23. It plays a role as a collecting tank.

図3に示すように、膨張弁14は、蒸発器21、22等を一体ろう付けする組み付け工程(ろう付け工程)の終了後に、膨張弁組付部29の膨張弁挿入穴29aに差し込まれる。   As shown in FIG. 3, the expansion valve 14 is inserted into the expansion valve insertion hole 29 a of the expansion valve assembly portion 29 after the assembly process (brazing process) for integrally brazing the evaporators 21, 22 and the like.

具体的には、膨張弁14は、冷媒入口14aが膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bに連通し、冷媒出口14bが膨張弁組付部29の膨張弁−蒸発器冷媒流路29cに連通するように膨張弁組付部29に組み付けられる。   Specifically, in the expansion valve 14, the refrigerant inlet 14a communicates with the internal heat exchanger of the expansion valve assembly part 29-expansion valve refrigerant flow path 29b, and the refrigerant outlet 14b is an expansion valve of the expansion valve assembly part 29- The expansion valve assembly 29 is assembled to communicate with the evaporator refrigerant flow path 29c.

これにより、内部熱交換器13の高圧側冷媒流路13aは、膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bを介して膨張弁14の冷媒入口14aと連通し、膨張弁14の冷媒出口14bは、膨張弁組付部29の膨張弁−蒸発器冷媒流路29cを介して上側タンク部22bの左側空間36と連通する。   As a result, the high-pressure side refrigerant flow path 13a of the internal heat exchanger 13 communicates with the refrigerant inlet 14a of the expansion valve 14 via the internal heat exchanger-expansion valve refrigerant flow path 29b of the expansion valve assembly 29, and expands. The refrigerant outlet 14 b of the valve 14 communicates with the left space 36 of the upper tank portion 22 b via the expansion valve-evaporator refrigerant flow path 29 c of the expansion valve assembly portion 29.

このとき、膨張弁14とともにOリング38を膨張弁組付部29の膨張弁挿入穴29a内に組み付ける。このOリング38により、膨張弁14の冷媒入口14aと冷媒出口14bとの間がシールされる。   At this time, the O-ring 38 is assembled together with the expansion valve 14 into the expansion valve insertion hole 29 a of the expansion valve assembly portion 29. The O-ring 38 seals between the refrigerant inlet 14a and the refrigerant outlet 14b of the expansion valve 14.

さらに、膨張弁14は、膨張弁組付部29のうち膨張弁挿入穴29aが開口する側の端部にシール接合される。本実施形態では、膨張弁14は、膨張弁組付部29とのシール接合部がアルミニウム等の金属材で成形されており、膨張弁組付部29に抵抗溶接により金属シール接合される。これにより、膨張弁14と膨張弁組付部29との間からの冷媒漏れが防止される。   Furthermore, the expansion valve 14 is sealed and joined to the end of the expansion valve assembly portion 29 on the side where the expansion valve insertion hole 29a opens. In the present embodiment, the expansion valve 14 has a seal joint portion with the expansion valve assembly portion 29 formed of a metal material such as aluminum, and is metal-sealed to the expansion valve assembly portion 29 by resistance welding. Thereby, refrigerant leakage from between the expansion valve 14 and the expansion valve assembly portion 29 is prevented.

本実施形態では、膨張弁14として、コイル14cへの通電によって弁体14dを駆動して弁開度(冷媒流量)を調整する電気式膨張弁を用いている。また、膨張弁14として、圧縮機11の吸入側冷媒(後述の蒸発器出口側冷媒)の温度と圧力とに基づいて圧縮機吸入側冷媒の過熱度を検出し、圧縮機吸入側冷媒の過熱度が予め設定された所定値となるように弁開度(冷媒流量)を調整する温度式膨張弁を用いてもよい。   In the present embodiment, an electric expansion valve that adjusts the valve opening (refrigerant flow rate) by driving the valve element 14d by energizing the coil 14c is used as the expansion valve 14. The expansion valve 14 detects the degree of superheat of the compressor suction-side refrigerant based on the temperature and pressure of the suction-side refrigerant (evaporator outlet-side refrigerant described later) of the compressor 11, and overheats the compressor suction-side refrigerant. A temperature type expansion valve that adjusts the valve opening degree (refrigerant flow rate) so that the degree becomes a predetermined value set in advance may be used.

膨張弁14は、その弁体の変位方向に延びる細長の円筒形状となっており、その細長円筒形状の長手方向を上側タンク部21b、22bの長手方向に一致させて、膨張弁14が上側タンク部21b、22bと平行に設置されている。   The expansion valve 14 has an elongated cylindrical shape extending in the displacement direction of the valve body, and the expansion valve 14 is aligned with the longitudinal direction of the upper tank portions 21b and 22b so that the expansion valve 14 is in the upper tank. It is installed in parallel with the parts 21b and 22b.

この構成は、膨張弁14と蒸発器21、22とをコンパクトに配置することができ、ひいては、ユニット全体の体格をコンパクトにまとめることができる。しかも、膨張弁14は、蒸発器21、22と一体ろう付けされた膨張弁組付部29内に配置され、その冷媒入口14aおよび冷媒出口14bを膨張弁組付部29内において直接に開口させて設置されている。この構成は、冷媒配管を減らすことを可能とする。   With this configuration, the expansion valve 14 and the evaporators 21 and 22 can be arranged in a compact manner, and as a result, the physique of the entire unit can be gathered in a compact manner. Moreover, the expansion valve 14 is disposed in an expansion valve assembly portion 29 that is brazed integrally with the evaporators 21 and 22, and the refrigerant inlet 14 a and the refrigerant outlet 14 b are directly opened in the expansion valve assembly portion 29. Installed. This configuration makes it possible to reduce refrigerant piping.

以上の構成において一体化ユニット20全体の冷媒流路を図9、図10により具体的に説明する。なお、図10では、図示の都合上、膨張弁組付部29の内部に挿入されている膨張弁14を実線で示している。   The refrigerant flow path of the entire integrated unit 20 in the above configuration will be specifically described with reference to FIGS. 9 and 10. In FIG. 10, for convenience of illustration, the expansion valve 14 inserted into the expansion valve assembly portion 29 is indicated by a solid line.

一体化ユニット20の冷媒入口25に流入した冷媒はまず、矢印a1のように内部熱交換器13の高圧側冷媒流路13aを通過して熱交換され、この熱交換後の冷媒は、矢印a2のように膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bを経て膨張弁14を通過して減圧され、この減圧後の低圧冷媒は膨張弁組付部29の膨張弁−蒸発器冷媒流路29cを経て矢印a3のように第2蒸発器22の上側タンク部22bの左側空間36に流入する。   The refrigerant flowing into the refrigerant inlet 25 of the integrated unit 20 first passes through the high-pressure side refrigerant flow path 13a of the internal heat exchanger 13 as indicated by an arrow a1, and is subjected to heat exchange. The refrigerant after this heat exchange is indicated by an arrow a2. In this way, the internal pressure of the expansion valve assembly 29 is reduced through the expansion valve 14 via the expansion valve refrigerant flow path 29b, and the low-pressure refrigerant after the decompression is expanded in the expansion valve assembly 29. The refrigerant flows into the left space 36 of the upper tank portion 22b of the second evaporator 22 as indicated by an arrow a3 through the evaporator refrigerant flow path 29c.

この左側空間36の冷媒は第2蒸発器22の熱交換コア部22aの左側部の複数のチューブ23を矢印a4のように下降して第2蒸発器22の下側タンク部22c内の左側部に流入する。この下側タンク部22c内には仕切板が設けられていないので、この下側タンク部22cの左側部から冷媒は矢印a5のように右側部へと移動する。   The refrigerant in the left space 36 descends the plurality of tubes 23 on the left side of the heat exchange core portion 22a of the second evaporator 22 as indicated by an arrow a4, and the left side portion in the lower tank portion 22c of the second evaporator 22. Flow into. Since no partition plate is provided in the lower tank portion 22c, the refrigerant moves from the left side portion of the lower tank portion 22c to the right side portion as indicated by an arrow a5.

この下側タンク部22cの右側部の冷媒は第2蒸発器22の熱交換コア部22aの右側部の複数のチューブ23を矢印a6のように上昇して第2蒸発器22の上側タンク部22bの右側空間37に流入し、さらに、ここから冷媒は矢印a7のように第1蒸発器21の上側タンク部21bの右側空間35へと流れる。   The refrigerant on the right side of the lower tank portion 22c moves up the plurality of tubes 23 on the right side of the heat exchange core portion 22a of the second evaporator 22 as indicated by an arrow a6, and the upper tank portion 22b of the second evaporator 22 Then, the refrigerant flows into the right space 35 of the upper tank portion 21b of the first evaporator 21 as indicated by an arrow a7.

この右側空間35の冷媒は矢印a8のように第1蒸発器21の熱交換コア部21aの右側部の複数のチューブ23を下降して第1蒸発器21の下側タンク部21c内の右側部に流入する。この下側タンク部21c内には仕切板が設けられていないので、この下側タンク部21cの右側部から冷媒は矢印a9のように左側部へと移動する。   The refrigerant in the right space 35 descends the plurality of tubes 23 on the right side of the heat exchange core portion 21a of the first evaporator 21 as indicated by an arrow a8, and the right side portion in the lower tank portion 21c of the first evaporator 21. Flow into. Since no partition plate is provided in the lower tank portion 21c, the refrigerant moves from the right side portion of the lower tank portion 21c to the left side as indicated by an arrow a9.

この下側タンク部21cの左側部の冷媒は第1蒸発器21の熱交換コア部21aの左側部の複数のチューブ23を矢印a10のように上昇して第1蒸発器21の上側タンク部21bの左側空間34に流入する。この左側空間34内の冷媒は矢印a11のように膨張弁組付部29の蒸発器−内部熱交換器冷媒流路29dを経て、矢印a12のように内部熱交換器13の低圧側冷媒流路13bを通過して熱交換され、この熱交換後の冷媒は一体化ユニット20の冷媒出口26へと流れる。   The refrigerant on the left side of the lower tank portion 21c moves up the plurality of tubes 23 on the left side of the heat exchange core portion 21a of the first evaporator 21 as indicated by an arrow a10, and the upper tank portion 21b of the first evaporator 21. Flows into the left side space 34. The refrigerant in the left space 34 passes through the evaporator-internal heat exchanger refrigerant flow path 29d of the expansion valve assembly 29 as indicated by an arrow a11, and passes through the low pressure side refrigerant flow path of the internal heat exchanger 13 as indicated by an arrow a12. Heat is exchanged through 13b, and the refrigerant after this heat exchange flows to the refrigerant outlet 26 of the integrated unit 20.

一体化ユニット20は以上のような冷媒流路構成を持つため、一体化ユニット20全体として冷媒入口25および冷媒出口26を1つずつ設けるだけでよい。   Since the integrated unit 20 has the refrigerant flow path configuration as described above, it is only necessary to provide one refrigerant inlet 25 and one refrigerant outlet 26 as the integrated unit 20 as a whole.

次に、第1実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮されて吐出された高温高圧状態の冷媒は放熱器12に流入する。放熱器12では高温の冷媒が外気により冷却されて凝縮する。放熱器12から流出した高圧冷媒は一体化ユニット20の冷媒入口25に流入する。   Next, the operation of the first embodiment will be described. When the compressor 11 is driven by the vehicle engine, the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 11 flows into the radiator 12. In the radiator 12, the high-temperature refrigerant is cooled and condensed by the outside air. The high-pressure refrigerant that has flowed out of the radiator 12 flows into the refrigerant inlet 25 of the integrated unit 20.

冷媒入口25に流入した冷媒は内部熱交換器13の高圧側冷媒流路13aを通過して、この高圧側冷媒流路13aにて低圧側冷媒流路13bの低圧側冷媒と熱交換され、熱交換後の冷媒が膨張弁14を通過する。   The refrigerant flowing into the refrigerant inlet 25 passes through the high-pressure side refrigerant flow path 13a of the internal heat exchanger 13 and is heat-exchanged with the low-pressure side refrigerant of the low-pressure side refrigerant flow path 13b in this high-pressure side refrigerant flow path 13a. The exchanged refrigerant passes through the expansion valve 14.

この膨張弁14では、蒸発器15(第1、第2蒸発器21、22)の出口冷媒(圧縮機吸入冷媒)の過熱度が所定値となるように弁開度(冷媒流量)が調整され、高圧冷媒が減圧される。この膨張弁14通過後の冷媒(中間圧冷媒)は蒸発器15における図9の矢印a4〜a10の冷媒流路にて冷媒が流れる。   In the expansion valve 14, the valve opening degree (refrigerant flow rate) is adjusted so that the degree of superheat of the outlet refrigerant (compressor suction refrigerant) of the evaporator 15 (first and second evaporators 21, 22) becomes a predetermined value. The high-pressure refrigerant is depressurized. The refrigerant (intermediate pressure refrigerant) that has passed through the expansion valve 14 flows in the refrigerant flow path indicated by arrows a4 to a10 in FIG.

この間に、蒸発器15では、低温の低圧冷媒が矢印A1方向の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、内部熱交換器13の低圧側冷媒流路13bを通過して、この低圧側冷媒流路13bにて高圧側冷媒流路13aの高圧側冷媒と熱交換され、熱交換後の冷媒が一体化ユニット20の冷媒出口26から圧縮機11に吸入され、再び圧縮される。   During this time, in the evaporator 15, the low-temperature low-pressure refrigerant absorbs heat from the blown air in the direction of the arrow A1 and evaporates. The vapor-phase refrigerant after evaporation passes through the low-pressure side refrigerant flow path 13b of the internal heat exchanger 13, and exchanges heat with the high-pressure side refrigerant of the high-pressure side refrigerant flow path 13a in the low-pressure side refrigerant flow path 13b. The refrigerant after the heat exchange is sucked into the compressor 11 from the refrigerant outlet 26 of the integrated unit 20 and is compressed again.

以上のごとく、本実施形態によると、内部熱交換器13、膨張弁14および蒸発器15を図2に示すように1つの構造体、すなわち一体化ユニット20として組み付け、それにより、一体化ユニット20全体として冷媒入口25および冷媒出口26をそれぞれ1つ設けるだけで済むようにしている。   As described above, according to the present embodiment, the internal heat exchanger 13, the expansion valve 14 and the evaporator 15 are assembled as one structure, that is, the integrated unit 20 as shown in FIG. As a whole, only one refrigerant inlet 25 and one refrigerant outlet 26 are provided.

その結果、冷凍サイクル10の車両への搭載時には、上記各種部品13、14、15を内蔵する一体化ユニット20全体として、1つの冷媒入口25を放熱器12の出口側に接続し、1つの冷媒出口26を圧縮機11の吸入側に接続するだけで、配管接続作業を終了できる。   As a result, when the refrigeration cycle 10 is mounted on a vehicle, one refrigerant inlet 25 is connected to the outlet side of the radiator 12 as a whole of the integrated unit 20 including the various parts 13, 14, 15. The piping connection operation can be completed simply by connecting the outlet 26 to the suction side of the compressor 11.

そのため、上記各種部品13、14、15をそれぞれ独立の部品として構成し、これら各部品相互間をそれぞれ配管結合する場合と比較して、配管を簡素化して蒸発器15を有する冷凍サイクル10の車両への搭載性を大幅に向上できるとともに、サイクル部品点数を減少してコスト低減を図ることができる。   Therefore, the various parts 13, 14, and 15 are configured as independent parts, and the vehicle of the refrigeration cycle 10 having the evaporator 15 with simplified piping as compared with the case where these parts are connected to each other by piping. As a result, the number of cycle parts can be reduced and the cost can be reduced.

さらに、一体化ユニット20によると、上記各種部品13、14、15相互間の接続通路長さを短縮できるので、冷媒流路の圧損を低減できると同時に、低圧冷媒と周辺雰囲気との熱交換を効果的に縮小できる。これにより、蒸発器15の冷却性能を向上できる。   Furthermore, according to the integrated unit 20, since the length of the connection passage between the various parts 13, 14, 15 can be shortened, the pressure loss of the refrigerant flow path can be reduced, and at the same time, heat exchange between the low-pressure refrigerant and the ambient atmosphere can be performed. Can be reduced effectively. Thereby, the cooling performance of the evaporator 15 can be improved.

特に、一体化ユニット20によると、蒸発器15、内部熱交換器13および膨張弁組付部29の一体ろう付けを行った後に膨張弁14を膨張弁組付部29に組み付けするので、蒸発器15のみの一体ろう付けを行った後に内部熱交換器13および膨張弁14を蒸発器15に組み付けする場合と比較して、一体ろう付け後の接続箇所を低減できる。その結果、接続構成を簡素化して一体化ユニット20の組み付け工数を低減できるとともに、冷媒漏れに対するシール性を高めることができる。   In particular, according to the integrated unit 20, the expansion valve 14 is assembled to the expansion valve assembly 29 after the evaporator 15, the internal heat exchanger 13 and the expansion valve assembly 29 are integrally brazed. Compared to the case where the internal heat exchanger 13 and the expansion valve 14 are assembled to the evaporator 15 after performing only 15 integral brazing, the number of connection points after integral brazing can be reduced. As a result, the connection configuration can be simplified, the number of assembling steps of the integrated unit 20 can be reduced, and the sealing performance against refrigerant leakage can be enhanced.

しかも、一体ろう付け後に組み付けされる膨張弁14を膨張弁組付部29に金属シール接合しているので、冷媒漏れに対するシール性をより高めることができる。   And since the expansion valve 14 assembled | attached after integral brazing is metal-seal-joined to the expansion valve assembly | attachment part 29, the sealing performance with respect to a refrigerant | coolant leak can be improved more.

また、本実施形態によると、膨張弁組付部29が上側タンク部21b、22bの一部を構成しているので、膨張弁組付部29による一体化ユニット20の体格増大を抑制できる。   Moreover, according to this embodiment, since the expansion valve assembly part 29 comprises a part of upper tank part 21b, 22b, the increase in the physique of the integrated unit 20 by the expansion valve assembly part 29 can be suppressed.

(第2実施形態)
上記第1実施形態では、内部熱交換器13、膨張弁14および第1、第2蒸発器21、22を1つの一体化ユニット20として組み付けているが、本実施形態では、上記各種部品13、14、21、22に加え、エジェクタ40をも1つの一体化ユニット41として組み付けている。
(Second Embodiment)
In the first embodiment, the internal heat exchanger 13, the expansion valve 14, and the first and second evaporators 21 and 22 are assembled as one integrated unit 20, but in the present embodiment, the various components 13, In addition to 14, 21, and 22, the ejector 40 is also assembled as one integrated unit 41.

図11に示すように、本実施形態の冷凍サイクル10は、エジェクタ40を備えるエジェクタ式冷凍サイクルを構成しており、内部熱交換器13の高圧側冷媒出口13cと膨張弁14の冷媒入口14aとの間)に設けられた分岐点Zから冷媒分岐通路42が分岐され、この冷媒分岐通路42の下流側にエジェクタ40が接続されている。   As shown in FIG. 11, the refrigeration cycle 10 of the present embodiment constitutes an ejector refrigeration cycle including an ejector 40, and includes a high-pressure side refrigerant outlet 13 c of the internal heat exchanger 13 and a refrigerant inlet 14 a of the expansion valve 14. The refrigerant branch passage 42 is branched from a branch point Z provided between the ejector 40 and the ejector 40 is connected to the downstream side of the refrigerant branch passage 42.

エジェクタ40は冷媒を減圧する減圧手段であるとともに、高速で噴射される冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行う流体輸送を冷媒循環手段(運動量輸送式ポンプ)でもある。   The ejector 40 is a decompression means for decompressing the refrigerant, and is also a refrigerant circulation means (momentum transport type pump) for fluid transportation that circulates the refrigerant by a suction action (convolution action) of the refrigerant flow injected at high speed.

図12に示すように、エジェクタ40には、膨張弁14通過後の冷媒(中間圧冷媒)の通路面積を小さく絞って、冷媒をさらに減圧膨張させるノズル部40aと、ノズル部40aの冷媒噴出口と同一空間に配置され、第2蒸発器22からの気相冷媒を吸引する冷媒吸引口40bとが備えられている。   As shown in FIG. 12, the ejector 40 has a nozzle portion 40a for reducing the passage area of the refrigerant (intermediate pressure refrigerant) after passing through the expansion valve 14 to further expand the refrigerant under reduced pressure, and a refrigerant outlet of the nozzle portion 40a. And a refrigerant suction port 40b for sucking the gas-phase refrigerant from the second evaporator 22 is provided.

さらに、ノズル部40aおよび冷媒吸引口40bの冷媒流れ下流側部位には、ノズル部40aからの高速度の冷媒流と冷媒吸引口40bの吸引冷媒とを混合する混合部40cが設けられている。そして、混合部40cの冷媒流れ下流側に昇圧部をなすディフューザ部40dが配置されている。このディフューザ部40dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。   Furthermore, a mixing unit 40c that mixes the high-speed refrigerant flow from the nozzle unit 40a and the suction refrigerant from the refrigerant suction port 40b is provided in the refrigerant flow downstream portion of the nozzle unit 40a and the refrigerant suction port 40b. And the diffuser part 40d which makes a pressure | voltage rise part is arrange | positioned in the refrigerant | coolant flow downstream of the mixing part 40c. The diffuser portion 40d is formed in a shape that gradually increases the refrigerant passage area, and functions to decelerate the refrigerant flow to increase the refrigerant pressure, that is, to convert the velocity energy of the refrigerant into pressure energy.

本実施形態では、エジェクタ40として、ノズル部40aの通路面積を調整可能になっている可変エジェクタを用いている。具体的には、ノズル部40aの通路内にニードル40eが挿入され、このニードル40eの位置を電気的アクチュエータにより制御して通路面積を調整する機構となっている。なお、エジェクタ40として、ノズル部40aの通路面積が一定になっている固定エジェクタを用いてもよい。   In the present embodiment, a variable ejector that can adjust the passage area of the nozzle portion 40 a is used as the ejector 40. Specifically, a needle 40e is inserted into the passage of the nozzle portion 40a, and the position of the needle 40e is controlled by an electric actuator to adjust the passage area. As the ejector 40, a fixed ejector in which the passage area of the nozzle portion 40a is constant may be used.

図11に示すように、分岐点Zから分岐した冷媒分岐通路42の下流側はノズル部40aの入口に接続されている。エジェクタ40の出口(すなわちディフューザ部40dの出口)側は第1蒸発器21に接続され、この第1蒸発器21の出口側は内部熱交換器13の低圧側冷媒入口13dに接続される。   As shown in FIG. 11, the downstream side of the refrigerant branch passage 42 branched from the branch point Z is connected to the inlet of the nozzle portion 40a. The outlet of the ejector 40 (that is, the outlet of the diffuser section 40 d) is connected to the first evaporator 21, and the outlet side of the first evaporator 21 is connected to the low-pressure side refrigerant inlet 13 d of the internal heat exchanger 13.

一方、膨張弁14の冷媒出口14b側に第2蒸発器22が接続され、第2蒸発器22の出口側はエジェクタ40の冷媒吸引口40bに接続されている。   On the other hand, the second evaporator 22 is connected to the refrigerant outlet 14 b side of the expansion valve 14, and the outlet side of the second evaporator 22 is connected to the refrigerant suction port 40 b of the ejector 40.

次に、一体化ユニット41の具体例を図13〜図15により説明すると、図13はこの一体化ユニット41の全体構成の概要を示す二面図である。本実施形態では、内部熱交換器13、膨張弁組付部29およびエジェクタ組付部43もろう付けにて第1、第2蒸発器21、22と一体に組み付けるようになっている。   Next, a specific example of the integrated unit 41 will be described with reference to FIGS. 13 to 15. FIG. 13 is a two-view diagram showing an outline of the overall configuration of the integrated unit 41. In the present embodiment, the internal heat exchanger 13, the expansion valve assembly portion 29, and the ejector assembly portion 43 are also assembled integrally with the first and second evaporators 21 and 22 by brazing.

これに対し、エジェクタ40はノズル部40aに高精度な微小通路を形成しているので、エジェクタ40をろう付けすると、ろう付け時の高温度(アルミニウムのろう付け温度:600℃付近)にてノズル部40aが熱変形して、ノズル部40aの通路形状、寸法等を所期の設計通りに維持できないという不具合が生じる。   On the other hand, since the ejector 40 forms a highly accurate minute passage in the nozzle portion 40a, when the ejector 40 is brazed, the nozzle is formed at a high temperature during brazing (a brazing temperature of aluminum: around 600 ° C.). The part 40a is thermally deformed, resulting in a problem that the passage shape and dimensions of the nozzle part 40a cannot be maintained as designed.

そこで、エジェクタ40については、第1、第2蒸発器21、22、内部熱交換器13、膨張弁組付部29およびエジェクタ組付部43の一体ろう付けを行った後に、蒸発器側に組み付けするようにしてある。   Accordingly, the ejector 40 is assembled to the evaporator side after the first and second evaporators 21 and 22, the internal heat exchanger 13, the expansion valve assembly 29 and the ejector assembly 43 are integrally brazed. I have to do it.

エジェクタ組付部43は、膨張弁組付部29と同様にアルミニウム材(金属材)にて成形されており、第1、第2蒸発器21、22の上側タンク部21b、22bの長手方向他端部(膨張弁組付部29と反対側の端部)にろう付け固定されている。   The ejector assembling portion 43 is formed of an aluminum material (metal material) in the same manner as the expansion valve assembling portion 29, and the longitudinal direction of the upper tank portions 21 b and 22 b of the first and second evaporators 21 and 22. It is fixed by brazing to the end (the end opposite to the expansion valve assembly 29).

図14に示すように、エジェクタ組付部43には、エジェクタ40が挿入されるエジェクタ挿入穴43aが形成されている。なお、図14では、図示の都合上、エジェクタ組付部43の内部に挿入されているエジェクタ40を実線で示している。   As shown in FIG. 14, an ejector insertion hole 43 a into which the ejector 40 is inserted is formed in the ejector assembly portion 43. In FIG. 14, for convenience of illustration, the ejector 40 inserted into the ejector assembly 43 is indicated by a solid line.

エジェクタ40は、ノズル部40aの入口、冷媒吸引口40bおよびディフューザ部40dの出口の形成部位がエジェクタ挿入穴43aに挿入される。これにより、ノズル部40aの入口、冷媒吸引口40bおよびディフューザ部40dの出口がエジェクタ挿入穴43a内に位置することとなる。   As for the ejector 40, the formation part of the inlet of the nozzle part 40a, the refrigerant | coolant suction port 40b, and the exit of the diffuser part 40d is inserted in the ejector insertion hole 43a. Thereby, the inlet of the nozzle part 40a, the refrigerant | coolant suction port 40b, and the outlet of the diffuser part 40d will be located in the ejector insertion hole 43a.

図14、図15に示すように、膨張弁組付部29の内部およびエジェクタ組付部43の内部には、内部熱交換器13の高圧側冷媒出口13cからエジェクタ40のノズル部40aの入口に至る内部熱交換器−ノズル部冷媒流路29e、43bが形成されている。内部熱交換器−ノズル部冷媒流路29e、43bは、図11に示す冷媒分岐通路42を構成している。   As shown in FIGS. 14 and 15, the interior of the expansion valve assembly 29 and the interior of the ejector assembly 43 are connected from the high-pressure side refrigerant outlet 13 c of the internal heat exchanger 13 to the nozzle 40 a of the ejector 40. The internal heat exchanger-nozzle part refrigerant flow paths 29e and 43b are formed. The internal heat exchanger-nozzle part refrigerant flow paths 29e and 43b constitute a refrigerant branch passage 42 shown in FIG.

内部熱交換器−ノズル部冷媒流路29e、43bは、膨張弁組付部29に形成された高圧冷媒流路29eと、エジェクタ組付部43に形成されたノズル部入口側流路43bとで構成されている。   The internal heat exchanger-nozzle part refrigerant flow paths 29e and 43b are composed of a high-pressure refrigerant flow path 29e formed in the expansion valve assembly part 29 and a nozzle part inlet-side flow path 43b formed in the ejector assembly part 43. It is configured.

膨張弁組付部29の高圧冷媒流路29eは、内部熱交換器13の高圧側冷媒出口13cとエジェクタ組付部43のノズル部入口側流路43bとを連通する流路である。エジェクタ組付部43のノズル部入口側流路43bは、ノズル部40aの入口に流入する冷媒が流れる流路である。   The high pressure refrigerant flow path 29e of the expansion valve assembly part 29 is a flow path that connects the high pressure side refrigerant outlet 13c of the internal heat exchanger 13 and the nozzle part inlet side flow path 43b of the ejector assembly part 43. The nozzle part inlet side flow path 43b of the ejector assembly part 43 is a flow path through which the refrigerant flowing into the inlet of the nozzle part 40a flows.

エジェクタ組付部43の内部には、第2蒸発器15からエジェクタ40の冷媒吸引口40bに至る蒸発器−冷媒吸引口冷媒流路43cと、エジェクタ40のディフューザ部40dの出口から第1蒸発器21に至るエジェクタ−蒸発器冷媒流路43dとが形成されている。   Inside the ejector assembly 43, there are an evaporator-refrigerant suction port refrigerant channel 43 c extending from the second evaporator 15 to the refrigerant suction port 40 b of the ejector 40, and a first evaporator from the outlet of the diffuser portion 40 d of the ejector 40. Thus, an ejector-evaporator refrigerant flow path 43d extending to 21 is formed.

蒸発器−冷媒吸引口冷媒流路43cは、冷媒吸引口40bに吸引される冷媒が流れる冷媒吸引口側流路である。エジェクタ−蒸発器冷媒流路43dは、エジェクタ40の出口から流出した冷媒が流れるエジェクタ出口側流路である。   The evaporator-refrigerant suction port refrigerant channel 43c is a refrigerant suction port side channel through which the refrigerant sucked into the refrigerant suction port 40b flows. The ejector-evaporator refrigerant flow path 43d is an ejector outlet side flow path through which the refrigerant flowing out from the outlet of the ejector 40 flows.

エジェクタ組付部43には、第1、第2熱交換コア部21a、22aの複数のチューブ23のうち一部のチューブの端部が挿入されており、エジェクタ組付部43は上側タンク部21b、22bの一部を構成している。   End portions of some of the tubes 23 of the first and second heat exchange core portions 21a and 22a are inserted into the ejector assembling portion 43, and the ejector assembling portion 43 serves as the upper tank portion 21b. , 22b.

本実施形態では、エジェクタ組付部43は、エジェクタ挿入穴43aを形成するエジェクタ挿入穴形成部材44と、管状部材45と、チューブ挿入部材31とに分割して形成されている。管状部材45は、膨張弁挿入穴形成部材30とエジェクタ挿入穴形成部材44との間にて上側タンク部21b、22bの長手方向と平行に配置され、膨張弁組付部29とエジェクタ挿入穴形成部材44とを繋いでいる。   In the present embodiment, the ejector assembly portion 43 is formed by being divided into an ejector insertion hole forming member 44 that forms the ejector insertion hole 43 a, a tubular member 45, and a tube insertion member 31. The tubular member 45 is disposed between the expansion valve insertion hole forming member 30 and the ejector insertion hole forming member 44 in parallel with the longitudinal direction of the upper tank portions 21b and 22b, and forms the expansion valve assembly portion 29 and the ejector insertion hole. The member 44 is connected.

図15に示すように、管状部材45のうち膨張弁組付部29側の端部は、膨張弁組付部29の内部熱交換器−ノズル部冷媒流路29eに連通している。膨張弁組付部29の内部熱交換器−ノズル部冷媒流路29eは内部熱交換器−膨張弁冷媒流路29bから分岐しており、その分岐点は図11に示す冷媒分岐通路42の分岐点Zを構成している。   As shown in FIG. 15, the end of the tubular member 45 on the expansion valve assembly portion 29 side communicates with the internal heat exchanger-nozzle portion refrigerant flow path 29 e of the expansion valve assembly portion 29. The internal heat exchanger-nozzle part refrigerant flow path 29e of the expansion valve assembly 29 is branched from the internal heat exchanger-expansion valve refrigerant flow path 29b, and the branch point is a branch of the refrigerant branch path 42 shown in FIG. A point Z is formed.

図14に示すように、上側タンク部21b、22bは、長手方向他端部(膨張弁組付部29と反対側の端部)がチューブ挿入部材31、プレートヘッダ32およびエジェクタ挿入穴形成部材44で構成されている。   As shown in FIG. 14, the upper tank portions 21 b and 22 b have the other end in the longitudinal direction (the end opposite to the expansion valve assembly portion 29) at the tube insertion member 31, the plate header 32, and the ejector insertion hole forming member 44. It consists of

エジェクタ挿入穴形成部材44には、上側タンク部21b、22bの長手方向に延びてチューブ挿入部材31の第1チューブ挿入孔31aと対向する第1タンク溝44aが形成されている。第1タンク溝44aは、第1蒸発器21の上側タンク部21bの右側空間35を構成している。   The ejector insertion hole forming member 44 is formed with a first tank groove 44 a that extends in the longitudinal direction of the upper tank portions 21 b and 22 b and faces the first tube insertion hole 31 a of the tube insertion member 31. The first tank groove 44 a constitutes the right space 35 of the upper tank portion 21 b of the first evaporator 21.

同様に、エジェクタ挿入穴形成部材44には、上側タンク部21b、22bの長手方向に延びてチューブ挿入部材31の第2チューブ挿入孔31bと対向する第2タンク溝44bが形成されている。第2タンク溝44bは、第2蒸発器22の上側タンク部22bの右側空間37を構成している。   Similarly, the ejector insertion hole forming member 44 is formed with a second tank groove 44b extending in the longitudinal direction of the upper tank portions 21b and 22b and facing the second tube insertion hole 31b of the tube insertion member 31. The second tank groove 44 b constitutes the right space 37 of the upper tank portion 22 b of the second evaporator 22.

さらに、エジェクタ挿入穴形成部材44には、冷媒流路をなす第1、第2、第3流路穴44c、44d、44dが形成されている。   Further, the ejector insertion hole forming member 44 is formed with first, second, and third flow path holes 44c, 44d, and 44d that form a refrigerant flow path.

第1流路穴44cは、管状部材45の他端部とエジェクタ挿入穴43aとを連通している。第2流路穴44dは、第2タンク溝44bからエジェクタ挿入穴43aまで延びている。第3流路穴44eは、エジェクタ挿入穴43aから第1タンク溝44aまで延びている。   The first flow path hole 44c communicates the other end portion of the tubular member 45 and the ejector insertion hole 43a. The second flow path hole 44d extends from the second tank groove 44b to the ejector insertion hole 43a. The third flow path hole 44e extends from the ejector insertion hole 43a to the first tank groove 44a.

管状部材45の内部空間45aおよびエジェクタ挿入穴形成部材44の第1流路穴44cは、エジェクタ組付部43の内部熱交換器−ノズル部冷媒流路43bを構成している。   The internal space 45 a of the tubular member 45 and the first flow path hole 44 c of the ejector insertion hole forming member 44 constitute an internal heat exchanger-nozzle part refrigerant flow path 43 b of the ejector assembly part 43.

エジェクタ挿入穴形成部材44の第2タンク溝44bおよび第2流路穴44dは、エジェクタ組付部43の蒸発器−冷媒吸引口冷媒流路43cを構成している。   The second tank groove 44 b and the second flow path hole 44 d of the ejector insertion hole forming member 44 constitute an evaporator-refrigerant suction port refrigerant flow path 43 c of the ejector assembly portion 43.

エジェクタ挿入穴形成部材44の第3流路穴44eおよび第1タンク溝44aは、エジェクタ組付部43のエジェクタ−蒸発器冷媒流路43dを構成している。   The third flow path hole 44e and the first tank groove 44a of the ejector insertion hole forming member 44 constitute an ejector-evaporator refrigerant flow path 43d of the ejector assembly portion 43.

エジェクタ40は、蒸発器21、22等を一体ろう付けする組み付け工程(ろう付け工程)の終了後に、エジェクタ組付部43のエジェクタ挿入穴43aに差し込まれる。   The ejector 40 is inserted into the ejector insertion hole 43a of the ejector assembly portion 43 after the assembly process (brazing process) for integrally brazing the evaporators 21, 22 and the like.

具体的には、エジェクタ40は、ノズル部40aの入口がエジェクタ組付部43の内部熱交換器−ノズル部冷媒流路43bに連通し、冷媒吸引口40bがエジェクタ組付部43の蒸発器−冷媒吸引口冷媒流路43cに連通し、ディフューザ部40dの出口がエジェクタ組付部43のエジェクタ−蒸発器冷媒流路43dに連通するようにエジェクタ組付部43に組み付けられる。   Specifically, in the ejector 40, the inlet of the nozzle portion 40a communicates with the internal heat exchanger-nozzle portion refrigerant flow path 43b of the ejector assembly portion 43, and the refrigerant suction port 40b is an evaporator of the ejector assembly portion 43- The refrigerant suction port communicates with the refrigerant flow path 43c, and is assembled to the ejector assembly section 43 so that the outlet of the diffuser section 40d communicates with the ejector-evaporator refrigerant flow path 43d of the ejector assembly section 43.

これにより、内部熱交換器13の高圧側冷媒流路13aは、膨張弁組付部29およびエジェクタ組付部43の内部熱交換器−ノズル部冷媒流路29e、43bを介してエジェクタ40のノズル部40aの入口と連通し、第2蒸発器22の上側タンク部22bの右側空間37は、エジェクタ組付部43の蒸発器−冷媒吸引口冷媒流路43cを介してエジェクタ40の冷媒吸引口40bと連通し、エジェクタ40のディフューザ部40dの出口は、エジェクタ組付部43のエジェクタ−蒸発器冷媒流路43dを介して第1蒸発器21の上側タンク部21bの右側空間35と連通する。   Thereby, the high pressure side refrigerant flow path 13a of the internal heat exchanger 13 is connected to the nozzle of the ejector 40 via the internal heat exchanger-nozzle section refrigerant flow paths 29e and 43b of the expansion valve assembly section 29 and the ejector assembly section 43. The right side space 37 of the upper tank portion 22b of the second evaporator 22 communicates with the inlet of the portion 40a and the refrigerant suction port 40b of the ejector 40 via the evaporator-refrigerant suction port refrigerant channel 43c of the ejector assembly portion 43. The outlet of the diffuser part 40d of the ejector 40 communicates with the right space 35 of the upper tank part 21b of the first evaporator 21 via the ejector-evaporator refrigerant flow path 43d of the ejector assembly part 43.

このとき、エジェクタ組付部43のエジェクタ挿入穴43a内にOリング(図示せず)を組み付ける。このOリングにより、エジェクタ40のノズル部40aの入口と冷媒吸引口40bとディフューザ部40dの出口との間がシールされる。   At this time, an O-ring (not shown) is assembled in the ejector insertion hole 43a of the ejector assembly portion 43. This O-ring seals the gap between the inlet of the nozzle portion 40a of the ejector 40, the refrigerant suction port 40b, and the outlet of the diffuser portion 40d.

さらに、エジェクタ40は、エジェクタ組付部43のうちエジェクタ挿入穴43aが開口する側の端部にシール接合される。本実施形態では、エジェクタ40は、エジェクタ組付部43とのシール接合部がアルミニウム等の金属材で成形されており、エジェクタ組付部43に抵抗溶接により金属シール接合される。これにより、エジェクタ40とエジェクタ組付部43との間からの冷媒漏れが防止される。   Further, the ejector 40 is sealed and joined to the end of the ejector assembly portion 43 on the side where the ejector insertion hole 43a is opened. In the present embodiment, the ejector 40 has a seal joint portion with the ejector assembly portion 43 formed of a metal material such as aluminum, and is metal-sealed to the ejector assembly portion 43 by resistance welding. Thereby, the refrigerant | coolant leak from between the ejector 40 and the ejector assembly part 43 is prevented.

エジェクタ40は、そのノズル部40aの軸方向に延びる細長の円筒形状となっており、その細長円筒形状の長手方向を上側タンク部21b、22bの長手方向に一致させて、エジェクタ40が上側タンク部21b、22bと平行に設置されている。   The ejector 40 has an elongated cylindrical shape extending in the axial direction of the nozzle portion 40a. The longitudinal direction of the elongated cylindrical shape is made to coincide with the longitudinal direction of the upper tank portions 21b and 22b, so that the ejector 40 becomes the upper tank portion. It is installed in parallel with 21b and 22b.

この構成は、エジェクタ40と蒸発器21、22とをコンパクトに配置することができ、ひいては、ユニット全体の体格をコンパクトにまとめることができる。しかも、エジェクタ40は、蒸発器21、22と一体ろう付けされたエジェクタ組付部43内に配置され、そのノズル部40aの入口、冷媒吸引口40bおよびディフューザ部40dの出口をエジェクタ組付部43内において直接に開口させて設置されている。この構成は、冷媒配管を減らすことを可能とする。   With this configuration, the ejector 40 and the evaporators 21 and 22 can be arranged in a compact manner, and as a result, the physique of the entire unit can be gathered in a compact manner. In addition, the ejector 40 is disposed in an ejector assembly portion 43 integrally brazed with the evaporators 21 and 22, and the ejector assembly portion 43 is connected to the inlet of the nozzle portion 40a, the refrigerant suction port 40b, and the outlet of the diffuser portion 40d. It is installed with a direct opening inside. This configuration makes it possible to reduce refrigerant piping.

また、本実施形態では、第1蒸発器21が第2蒸発器22と隣接して設けられており、エジェクタ40の下流側端部は、第1蒸発器21の分配タンク(上側タンク部21bの右側空間35)と隣接して設置されている。この構成は、エジェクタ40からの流出冷媒をごく短い簡単な冷媒通路(エジェクタ−蒸発器冷媒流路43d)にて第1蒸発器21側へ供給できるという利点を提供する。   Moreover, in this embodiment, the 1st evaporator 21 is provided adjacent to the 2nd evaporator 22, and the downstream edge part of the ejector 40 is the distribution tank (upper tank part 21b of the 1st evaporator 21). It is installed adjacent to the right space 35). This configuration provides an advantage that the refrigerant flowing out from the ejector 40 can be supplied to the first evaporator 21 side through a very short simple refrigerant passage (ejector-evaporator refrigerant flow path 43d).

以上の構成において一体化ユニット41全体の冷媒流路を図14、図15により具体的に説明すると、一体化ユニット41の冷媒入口25に流入した冷媒はまず、矢印b1のように内部熱交換器13の高圧側冷媒流路13aを通過して低圧側冷媒流路13bを流れる低圧側冷媒と熱交換され、この熱交換後の冷媒は膨張弁組付部29内において、膨張弁14に向かう内部熱交換器−膨張弁冷媒流路29bの流れと、矢印b2の内部熱交換器−ノズル部冷媒流路29e、43bの流れとに分岐される。   The refrigerant flow of the entire integrated unit 41 in the above configuration will be specifically described with reference to FIGS. 14 and 15. First, the refrigerant flowing into the refrigerant inlet 25 of the integrated unit 41 is first an internal heat exchanger as indicated by an arrow b1. Heat exchange with the low-pressure side refrigerant flowing through the high-pressure side refrigerant flow path 13a and flowing through the low-pressure side refrigerant flow path 13b. The refrigerant after the heat exchange is directed to the expansion valve 14 in the expansion valve assembly 29. The flow is branched into the flow of the heat exchanger-expansion valve refrigerant flow path 29b and the flow of the internal heat exchanger-nozzle part refrigerant flow paths 29e, 43b indicated by the arrow b2.

矢印b2の内部熱交換器−ノズル部冷媒流路29e、43bを流れる冷媒は、エジェクタ40(ノズル部40a→混合部40c→ディフューザ部40d)を通過して減圧され、この減圧後の低圧冷媒はエジェクタ組付部43のエジェクタ−蒸発器冷媒流路43dを経て矢印b3のように第1蒸発器21の上側タンク部21bの右側空間35に流入する。   The refrigerant flowing through the internal heat exchanger-nozzle part refrigerant passages 29e and 43b indicated by the arrow b2 passes through the ejector 40 (nozzle part 40a → mixing part 40c → diffuser part 40d) and is depressurized. It flows into the right space 35 of the upper tank portion 21b of the first evaporator 21 as shown by the arrow b3 through the ejector-evaporator refrigerant flow path 43d of the ejector assembly portion 43.

この右側空間35の冷媒は第1蒸発器21の熱交換コア部21aの右側部の複数のチューブ23を矢印b4のように下降して第1蒸発器21の下側タンク部21c内の右側部に流入する。この下側タンク部21c内には仕切板が設けてないので、この下側タンク部21cの右側部から冷媒は矢印b5のように左側部へと移動する。   The refrigerant in the right space 35 descends the plurality of tubes 23 on the right side of the heat exchange core portion 21a of the first evaporator 21 as shown by the arrow b4, and the right side portion in the lower tank portion 21c of the first evaporator 21. Flow into. Since no partition plate is provided in the lower tank portion 21c, the refrigerant moves from the right side portion of the lower tank portion 21c to the left side as indicated by an arrow b5.

この下側タンク部21cの左側部の冷媒は第1蒸発器21の熱交換コア部21aの左側部の複数のチューブ23を矢印b6のように上昇して第1蒸発器21の上側タンク部21bの左側空間34に流入し、さらに、ここから冷媒は矢印b7のように膨張弁組付部29の蒸発器−内部熱交換器冷媒流路29dを経て矢印b8のように内部熱交換器13の低圧側冷媒流路13bを通過して高圧側冷媒流路13aを流れる高圧側冷媒と熱交換され、この熱交換後の冷媒は一体化ユニット20の冷媒出口26へと流れる。   The refrigerant on the left side of the lower tank portion 21c moves up the plurality of tubes 23 on the left side of the heat exchange core portion 21a of the first evaporator 21 as shown by the arrow b6, and the upper tank portion 21b of the first evaporator 21. Then, the refrigerant flows through the evaporator-internal heat exchanger refrigerant flow path 29d of the expansion valve assembly 29 as indicated by an arrow b7 and passes through the refrigerant flow path 29d of the internal heat exchanger 13 as indicated by an arrow b8. Heat exchange is performed with the high-pressure side refrigerant that passes through the low-pressure side refrigerant flow path 13b and flows through the high-pressure side refrigerant flow path 13a, and the refrigerant after the heat exchange flows to the refrigerant outlet 26 of the integrated unit 20.

これに対し、内部熱交換器−膨張弁冷媒流路29bを膨張弁14へ向かって流れる冷媒は膨張弁14を通過して減圧され、この減圧後の低圧冷媒は膨張弁組付部29の膨張弁−蒸発器冷媒流路29cを経て矢印b9のように第2蒸発器22の上側タンク部22bの左側空間36に流入する。   In contrast, the refrigerant flowing through the internal heat exchanger-expansion valve refrigerant flow path 29b toward the expansion valve 14 passes through the expansion valve 14 and is depressurized, and the low-pressure refrigerant after the depressurization is expanded in the expansion valve assembly portion 29. It flows into the left space 36 of the upper tank portion 22b of the second evaporator 22 as indicated by an arrow b9 through the valve-evaporator refrigerant flow path 29c.

この左側空間36の冷媒は第2蒸発器22の熱交換コア部22aの左側部の複数のチューブ23を矢印b10のように下降して第2蒸発器22の下側タンク部22c内の左側部に流入する。この下側タンク部22c内には仕切板が設けてないので、この下側タンク部22cの左側部から冷媒は矢印b11のように右側部へと移動する。   The refrigerant in the left space 36 descends the plurality of tubes 23 on the left side of the heat exchange core portion 22a of the second evaporator 22 as indicated by an arrow b10, and the left side portion in the lower tank portion 22c of the second evaporator 22. Flow into. Since no partition plate is provided in the lower tank portion 22c, the refrigerant moves from the left side portion of the lower tank portion 22c to the right side portion as indicated by an arrow b11.

この下側タンク部22cの右側部の冷媒は第2蒸発器22の熱交換コア部22aの右側部の複数のチューブ23を矢印b12のように上昇して上側タンク部22bの右側空間37に流入する。この右側空間37の冷媒は、矢印b13のようにエジェクタ組付部43の蒸発器−冷媒吸引口冷媒流路43cを経て冷媒吸引口40bからエジェクタ40内に吸引される。   The refrigerant on the right side of the lower tank portion 22c moves up the plurality of tubes 23 on the right side of the heat exchange core portion 22a of the second evaporator 22 as shown by the arrow b12 and flows into the right space 37 of the upper tank portion 22b. To do. The refrigerant in the right space 37 is sucked into the ejector 40 from the refrigerant suction port 40b through the evaporator-refrigerant suction port refrigerant channel 43c of the ejector assembly 43 as indicated by an arrow b13.

一体化ユニット41は以上のような冷媒流路構成を持つため、一体化ユニット41全体として冷媒入口25および冷媒出口26を1つずつ設けるだけでよい。   Since the integrated unit 41 has the above-described refrigerant flow path configuration, only one refrigerant inlet 25 and one refrigerant outlet 26 need be provided for the integrated unit 41 as a whole.

次に、第2実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の冷媒は放熱器12に流入する。放熱器12では高温の冷媒が外気により冷却されて凝縮する。放熱器12から流出した高圧冷媒は一体化ユニット20に設けられた1つの冷媒入口25に流入する。   Next, the operation of the second embodiment will be described. When the compressor 11 is driven by the vehicle engine, the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 11 flows into the radiator 12. In the radiator 12, the high-temperature refrigerant is cooled and condensed by the outside air. The high-pressure refrigerant flowing out of the radiator 12 flows into one refrigerant inlet 25 provided in the integrated unit 20.

冷媒入口25に流入した冷媒は内部熱交換器13の高圧側冷媒流路13aを通過して、この高圧側冷媒流路13aにて低圧側冷媒流路13bの低圧側冷媒と熱交換される。   The refrigerant flowing into the refrigerant inlet 25 passes through the high-pressure side refrigerant flow path 13a of the internal heat exchanger 13, and exchanges heat with the low-pressure side refrigerant in the low-pressure side refrigerant flow path 13b.

ここで、熱交換後の冷媒流れは、膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bを経て膨張弁14に向かう冷媒流れと、膨張弁組付部29およびエジェクタ組付部43の内部熱交換器−ノズル部冷媒流路29e、43b(図11の冷媒分岐通路42)を経てエジェクタ40に向かう冷媒流れとに分流する。   Here, the refrigerant flow after heat exchange is the refrigerant flow toward the expansion valve 14 via the internal heat exchanger-expansion valve refrigerant flow path 29b of the expansion valve assembly 29, and the expansion valve assembly 29 and the ejector assembly. The flow is divided into the refrigerant flow toward the ejector 40 through the internal heat exchanger-nozzle portion refrigerant flow paths 29e and 43b (refrigerant branch passage 42 in FIG. 11) of the section 43.

そして、エジェクタ40に流入した冷媒流れはノズル部40aで減圧され膨張する。従って、ノズル部40aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部40aの噴出口から冷媒は高速度となって噴出する。この際の冷媒圧力低下により、冷媒吸引口40bから第2蒸発器22通過後の冷媒(気相冷媒)を吸引する。   And the refrigerant | coolant flow which flowed into the ejector 40 is decompressed and expanded by the nozzle part 40a. Accordingly, the pressure energy of the refrigerant is converted into velocity energy at the nozzle portion 40a, and the refrigerant is ejected at a high velocity from the outlet of the nozzle portion 40a. Due to the refrigerant pressure drop at this time, the refrigerant (gas phase refrigerant) after passing through the second evaporator 22 is sucked from the refrigerant suction port 40b.

ノズル部40aから噴射された冷媒と冷媒吸引口40bに吸引された冷媒は、ノズル部40a下流側の混合部40cで混合してディフューザ部40dに流入する。このディフューザ部40dでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。   The refrigerant injected from the nozzle part 40a and the refrigerant sucked into the refrigerant suction port 40b are mixed in the mixing part 40c on the downstream side of the nozzle part 40a and flow into the diffuser part 40d. In the diffuser portion 40d, the passage area is enlarged, so that the speed (expansion) energy of the refrigerant is converted into pressure energy, so that the pressure of the refrigerant rises.

そして、エジェクタ40のディフューザ部40dから流出した冷媒は第1蒸発器21における図14、図15の矢印b3〜b6の冷媒流路にて冷媒が流れる。この間に、第1蒸発器21では、低温の低圧冷媒が矢印A1方向の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、内部熱交換器13の低圧側冷媒流路13bを通過して、この低圧側冷媒流路13b内にて高圧側冷媒流路13aを流れる低圧側冷媒と熱交換され、熱交換後の冷媒が、一体化ユニット20に設けられた1つの冷媒出口26から圧縮機11に吸入され、再び圧縮される。   And the refrigerant | coolant which flowed out from the diffuser part 40d of the ejector 40 flows into the refrigerant | coolant flow path of the arrow b3-b6 of FIG. 14, FIG. During this time, in the first evaporator 21, the low-temperature low-pressure refrigerant absorbs heat from the blown air in the direction of arrow A1 and evaporates. The vapor-phase refrigerant after evaporation passes through the low-pressure side refrigerant flow path 13b of the internal heat exchanger 13, and exchanges heat with the low-pressure side refrigerant flowing through the high-pressure side refrigerant flow path 13a in the low-pressure side refrigerant flow path 13b. Then, the refrigerant after the heat exchange is sucked into the compressor 11 from one refrigerant outlet 26 provided in the integrated unit 20 and compressed again.

一方、膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bから膨張弁14に流入した冷媒流れは、膨張弁14で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器22における図14、図15の矢印b9〜b12の冷媒流路にて冷媒が流れる。この間に、第2蒸発器22では、低温の低圧冷媒が第1蒸発器21通過後の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は冷媒吸引口40bからエジェクタ40内に吸引される。   On the other hand, the refrigerant flow that has flowed into the expansion valve 14 from the internal heat exchanger-expansion valve refrigerant flow path 29b of the expansion valve assembly 29 is decompressed by the expansion valve 14 to become low-pressure refrigerant, and this low-pressure refrigerant becomes the second evaporator. The refrigerant flows through the refrigerant flow paths indicated by arrows b9 to b12 in FIG. During this time, in the second evaporator 22, the low-temperature low-pressure refrigerant absorbs heat from the blown air after passing through the first evaporator 21 and evaporates. The vapor phase refrigerant after evaporation is sucked into the ejector 40 from the refrigerant suction port 40b.

以上のごとく、本実施形態によると、エジェクタ40のディフューザ部40dの下流側冷媒を第1蒸発器21に供給するととともに、膨張弁14の下流側の冷媒を第2蒸発器22にも供給できるので、第1、第2蒸発器21、22で同時に冷却作用を発揮できる。そのため、第1、第2蒸発器21、22の両方で冷却された冷風を冷却対象空間に吹き出して、冷却対象空間を冷房(冷却)できる。   As described above, according to the present embodiment, the refrigerant on the downstream side of the diffuser portion 40d of the ejector 40 can be supplied to the first evaporator 21, and the refrigerant on the downstream side of the expansion valve 14 can also be supplied to the second evaporator 22. The first and second evaporators 21 and 22 can exhibit a cooling action at the same time. Therefore, the cooling target space can be cooled (cooled) by blowing the cool air cooled by both the first and second evaporators 21 and 22 to the cooling target space.

その際に、第1蒸発器21の冷媒蒸発圧力はディフューザ部40dで昇圧した後の圧力であり、一方、第2蒸発器22の出口側はエジェクタ40の冷媒吸引口40bに接続されているから、ノズル部40aでの減圧直後の最も低い圧力を第2蒸発器22に作用させることができる。   At that time, the refrigerant evaporation pressure of the first evaporator 21 is the pressure after the pressure is increased by the diffuser portion 40d, while the outlet side of the second evaporator 22 is connected to the refrigerant suction port 40b of the ejector 40. The lowest pressure immediately after the pressure reduction at the nozzle portion 40a can be applied to the second evaporator 22.

これにより、第1蒸発器21の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器22の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。そして、送風空気の流れ方向A1に対して冷媒蒸発温度が高い第1蒸発器21を上流側に配置し、冷媒蒸発温度が低い第2蒸発器22を下流側に配置しているから、第1蒸発器21における冷媒蒸発温度と送風空気との温度差および第2蒸発器22における冷媒蒸発温度と送風空気との温度差を両方とも確保できる。   Thereby, the refrigerant evaporation pressure (refrigerant evaporation temperature) of the second evaporator 22 can be made lower than the refrigerant evaporation pressure (refrigerant evaporation temperature) of the first evaporator 21. And since the 1st evaporator 21 with a high refrigerant | coolant evaporation temperature is arrange | positioned in the upstream with respect to the flow direction A1 of blowing air, and the 2nd evaporator 22 with a low refrigerant | coolant evaporation temperature is arrange | positioned in the downstream, the 1st Both the temperature difference between the refrigerant evaporation temperature and the blown air in the evaporator 21 and the temperature difference between the refrigerant evaporation temperature and the blown air in the second evaporator 22 can be ensured.

このため、第1、第2蒸発器21、22の冷却性能を両方とも有効に発揮できる。従って、共通の冷却対象空間に対する冷却性能を第1、第2蒸発器21、22の組み合わせにて効果的に向上できる。また、ディフューザ部40dでの昇圧作用により圧縮機11の吸入圧を上昇して、圧縮機11の駆動動力を低減できる。   For this reason, both the cooling performance of the 1st, 2nd evaporators 21 and 22 can be exhibited effectively. Therefore, the cooling performance for the common space to be cooled can be effectively improved by the combination of the first and second evaporators 21 and 22. Further, the suction pressure of the compressor 11 can be increased by the pressure increasing action in the diffuser section 40d, and the driving power of the compressor 11 can be reduced.

さらに、本実施形態によると、内部熱交換器13、膨張弁14、第1、第2蒸発器21、22およびエジェクタ40を図13に示すように1つの構造体、すなわち一体化ユニット41として組み付け、それにより、一体化ユニット41全体として冷媒入口25および冷媒出口26をそれぞれ1つ設けるだけで済むようにしている。   Furthermore, according to this embodiment, the internal heat exchanger 13, the expansion valve 14, the first and second evaporators 21, 22 and the ejector 40 are assembled as one structure, that is, an integrated unit 41 as shown in FIG. Thereby, only one refrigerant inlet 25 and one refrigerant outlet 26 are provided for the integrated unit 41 as a whole.

その結果、エジェクタ40を備える冷凍サイクル40においても、上記第1実施形態と同様に、配管を簡素化して車両への搭載性を大幅に向上できるとともに、サイクル部品点数を減少してコスト低減を図ることができる。   As a result, also in the refrigeration cycle 40 including the ejector 40, the piping can be simplified and the mountability to the vehicle can be greatly improved, and the cost can be reduced by reducing the number of cycle parts, as in the first embodiment. be able to.

さらに、一体化ユニット41によると、上記各種部品13、14、21、22、40相互間の接続通路長さを短縮できるので、冷媒流路の圧損を低減できると同時に、低圧冷媒と周辺雰囲気との熱交換を効果的に縮小できる。これにより、エジェクタ40を備える冷凍サイクル40においても、上記第1実施形態と同様に、蒸発器21、22の冷却性能を向上できる。   Further, according to the integrated unit 41, the length of the connection passage between the various parts 13, 14, 21, 22, 40 can be shortened, so that the pressure loss of the refrigerant flow path can be reduced, and at the same time, the low pressure refrigerant and the surrounding atmosphere can be reduced. Heat exchange can be effectively reduced. Thereby, also in the refrigerating cycle 40 provided with the ejector 40, the cooling performance of the evaporators 21 and 22 can be improved similarly to the said 1st Embodiment.

特に、一体化ユニット41によると、第1、第2蒸発器21、22、内部熱交換器13、膨張弁組付部29およびエジェクタ組付部43の一体ろう付けを行った後に、膨張弁14を膨張弁組付部29に組み付けし、エジェクタ40をエジェクタ組付部43に組み付けするので、第1、第2蒸発器21、22のみの一体ろう付けを行った後に、膨張弁14、内部熱交換器13およびエジェクタ40を第1、第2蒸発器21、22に組み付けする場合と比較して、一体ろう付け後の接続箇所を低減できる。その結果、一体化ユニット41の組み付け工数を低減できるとともに、冷媒漏れに対するシール性を高めることができる。   In particular, according to the integrated unit 41, after the first and second evaporators 21 and 22, the internal heat exchanger 13, the expansion valve assembly portion 29 and the ejector assembly portion 43 are integrally brazed, the expansion valve 14. Is assembled to the expansion valve assembly portion 29, and the ejector 40 is assembled to the ejector assembly portion 43, so that only the first and second evaporators 21 and 22 are integrally brazed, and then the expansion valve 14 and the internal heat Compared with the case where the exchanger 13 and the ejector 40 are assembled to the first and second evaporators 21 and 22, the number of connection points after integral brazing can be reduced. As a result, the number of steps for assembling the integrated unit 41 can be reduced, and the sealing performance against refrigerant leakage can be improved.

しかも、一体ろう付け後に組み付けされる膨張弁14を膨張弁組付部29に金属シール接合し、同じく一体ろう付け後に組み付けされるエジェクタ40をエジェクタ組付部43に金属シール接合しているので、冷媒漏れに対するシール性をより高めることができる。   Moreover, since the expansion valve 14 assembled after integral brazing is metal-sealed to the expansion valve assembly 29, and the ejector 40 also assembled after integral brazing is metal-sealed to the ejector assembly 43, The sealing performance against refrigerant leakage can be further enhanced.

また、本実施形態によると、エジェクタ組付部43が上側タンク部21b、22bの一部を構成しているので、エジェクタ組付部43による一体化ユニット20の体格増大を抑制できる。   Moreover, according to this embodiment, since the ejector assembly part 43 comprises a part of upper tank parts 21b and 22b, the physique increase of the integrated unit 20 by the ejector assembly part 43 can be suppressed.

(他の実施形態)
なお、上記第1、第2実施形態では、内部熱交換器13の上端部に切欠部13gを形成することによって高圧側出口端部13eと低圧側入口端部13fとを分離しているが、図16に示すように内部熱交換器13の上端部に屈曲部13hや段付部13iを形成することによって高圧側出口端部13eと低圧側入口端部13fとを分離してもよい。
(Other embodiments)
In the first and second embodiments, the high pressure side outlet end portion 13e and the low pressure side inlet end portion 13f are separated by forming a notch portion 13g at the upper end portion of the internal heat exchanger 13, As shown in FIG. 16, the high pressure side outlet end portion 13 e and the low pressure side inlet end portion 13 f may be separated by forming a bent portion 13 h or a stepped portion 13 i at the upper end portion of the internal heat exchanger 13.

また、上記各実施形態では、冷媒として高圧圧力が臨界圧力を超えないフロン系、HC系等の冷媒を用いる蒸気圧縮式の亜臨界サイクルについて説明したが、冷媒として二酸化炭素(CO2 )のように高圧圧力が臨界圧力を超える冷媒を用いる蒸気圧縮式の超臨界サイクルに本発明を適用してもよい。 In each of the above embodiments, the vapor compression subcritical cycle using a refrigerant such as a chlorofluorocarbon or HC system in which the high pressure does not exceed the critical pressure has been described. However, the refrigerant is, for example, carbon dioxide (CO 2 ). The present invention may also be applied to a vapor compression supercritical cycle that uses a refrigerant whose high pressure exceeds the critical pressure.

但し、超臨界サイクルでは、圧縮機吐出冷媒が放熱器12にて超臨界状態のまま放熱するのみであり、凝縮しないので、高圧側に配置される受液器12aでは冷媒の気液分離作用および余剰液冷媒の貯留作用を発揮できない。そこで、超臨界サイクルでは、図17に示すように蒸発器15の出口側に低圧側気液分離器をなすアキュムレータ50を配置する構成を採用すればよい。   However, in the supercritical cycle, the refrigerant discharged from the compressor is only dissipated in the supercritical state in the radiator 12, and does not condense. Therefore, in the liquid receiver 12a disposed on the high pressure side, the refrigerant gas-liquid separation action and The storage effect of the excess liquid refrigerant cannot be exhibited. Therefore, in the supercritical cycle, a configuration may be adopted in which an accumulator 50 that forms a low-pressure side gas-liquid separator is disposed on the outlet side of the evaporator 15 as shown in FIG.

また、上記各実施形態では、内部熱交換器13をサイドプレート27と一体化しているが、内部熱交換器13をサイドプレート27と別体にしてもよい。   Further, in each of the above embodiments, the internal heat exchanger 13 is integrated with the side plate 27, but the internal heat exchanger 13 may be separated from the side plate 27.

また、上記各実施形態は、蒸発器の具体的構成の一例を示したものに過ぎず、これに限定されることなく、蒸発器の具体的構成を種々変形可能である。   Moreover, each said embodiment is only what showed an example of the specific structure of an evaporator, The specific structure of an evaporator can be variously deformed without being limited to this.

また、上記各実施形態では、蒸発器の冷却対象空間として、車室内空間である場合や、冷凍車の冷凍冷蔵庫内空間である場合について述べたが、本発明は、これらの車両用に限らず、定置用等の種々な用途の冷凍サイクルに対して広く適用可能である。   Further, in each of the above-described embodiments, the case where the space to be cooled by the evaporator is a vehicle interior space or the space inside the refrigerator-freezer of the refrigerator car has been described, but the present invention is not limited to these vehicles. It can be widely applied to refrigeration cycles for various uses such as stationary use.

13 内部熱交換器
13c 高圧側冷媒出口
13d 低圧側冷媒入口
14 膨張弁
14a 冷媒入口
14b 冷媒出口
15 蒸発器
21 第1蒸発器
22 第2蒸発器
29 膨張弁組付部
29a 膨張弁挿入穴
29b 内部熱交換器−膨張弁冷媒流路
29c 膨張弁−蒸発器冷媒流路
29d 蒸発器−内部熱交換器冷媒流路
13 Internal heat exchanger 13c High pressure side refrigerant outlet 13d Low pressure side refrigerant inlet 14 Expansion valve 14a Refrigerant inlet 14b Refrigerant outlet 15 Evaporator 21 First evaporator 22 Second evaporator 29 Expansion valve assembly part 29a Expansion valve insertion hole 29b Inside Heat exchanger-expansion valve refrigerant flow path 29c Expansion valve-evaporator refrigerant flow path 29d Evaporator-internal heat exchanger refrigerant flow path

Claims (7)

冷凍サイクルを構成する蒸発器(15)と、
前記冷凍サイクルの高圧側冷媒と低圧側冷媒とを熱交換させる内部熱交換器(13)と、
前記冷凍サイクルの膨張弁(14)が組み付けられる膨張弁組付部(29)とを備え、
前記膨張弁組付部(29)には、前記膨張弁(14)の冷媒入口(14a)に流入する冷媒が流れる入口側流路(29b)と、前記膨張弁(14)の冷媒出口(14b)から流出した冷媒が流れる出口側流路(29c)とが形成され、
前記蒸発器(15)、前記内部熱交換器(13)および前記膨張弁組付部(29)は、いずれも金属で形成され、かつ互いに一体ろう付けされており、
前記入口側流路(29b)は、前記内部熱交換器(13)の高圧側冷媒出口(13c)から前記膨張弁(14)の冷媒入口(14a)に至る内部熱交換器−膨張弁冷媒流路(29b)であり、
前記出口側流路(29c)は、前記膨張弁(14)の冷媒出口(14b)から前記蒸発器(15)に至る膨張弁−蒸発器冷媒流路(29c)であり、
前記膨張弁組付部(29)には、前記蒸発器(15)から前記内部熱交換器(13)のうち低圧側冷媒入口(13d)に至る蒸発器−内部熱交換器冷媒流路(29d)が形成されていることを特徴とする蒸発器ユニット。
An evaporator (15) constituting a refrigeration cycle;
An internal heat exchanger (13) for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the refrigeration cycle;
An expansion valve assembly (29) to which the expansion valve (14) of the refrigeration cycle is assembled,
The expansion valve assembly (29) includes an inlet-side flow path (29b) through which refrigerant flowing into the refrigerant inlet (14a) of the expansion valve (14) flows, and a refrigerant outlet (14b) of the expansion valve (14). ) And an outlet side flow path (29c) through which the refrigerant flowing out from
The evaporator (15), the internal heat exchanger (13), and the expansion valve assembly (29) are all formed of metal and integrally brazed to each other ,
The inlet-side flow path (29b) is an internal heat exchanger-expansion valve refrigerant flow from the high-pressure side refrigerant outlet (13c) of the internal heat exchanger (13) to the refrigerant inlet (14a) of the expansion valve (14). Road (29b)
The outlet side flow path (29c) is an expansion valve-evaporator refrigerant flow path (29c) from the refrigerant outlet (14b) of the expansion valve (14) to the evaporator (15),
The expansion valve assembly (29) includes an evaporator-internal heat exchanger refrigerant flow path (29d) from the evaporator (15) to the low-pressure side refrigerant inlet (13d) of the internal heat exchanger (13). ) Is formed, and an evaporator unit.
前記蒸発器(15)は、熱交換コア部(21a、22a)の冷媒流路を形成する複数のチューブ(23)を有し、
前記膨張弁−蒸発器冷媒流路(29c)および前記蒸発器−内部熱交換器冷媒流路(29d)には、前記複数のチューブ(23)のうち少なくとも一部のチューブの端部が挿入されていることを特徴とする請求項に記載の蒸発器ユニット。
The evaporator (15) has a plurality of tubes (23) that form refrigerant flow paths of the heat exchange core portions (21a, 22a),
End portions of at least some of the tubes (23) are inserted into the expansion valve-evaporator refrigerant flow path (29c) and the evaporator-internal heat exchanger refrigerant flow path (29d). The evaporator unit according to claim 1 , wherein the evaporator unit is provided.
前記膨張弁組付部(29)には、前記膨張弁(14)のうち前記冷媒入口(14a)および前記冷媒出口(14b)の形成部位が挿入される膨張弁挿入穴(29a)が形成され、
前記膨張弁挿入穴(29a)は、前記内部熱交換器−膨張弁冷媒流路(29b)および前記膨張弁−蒸発器冷媒流路(29c)に連通し、
前記膨張弁組付部(29)は、前記膨張弁挿入穴(29a)を形成する膨張弁挿入穴形成部材(30)と、前記複数のチューブ(23)のうち少なくとも一部のチューブの端部が挿入されるチューブ挿入部材(31)とに分割して形成されていることを特徴とする請求項に記載の蒸発器ユニット。
The expansion valve assembly portion (29) is formed with an expansion valve insertion hole (29a) into which the formation portion of the refrigerant inlet (14a) and the refrigerant outlet (14b) of the expansion valve (14) is inserted. ,
The expansion valve insertion hole (29a) communicates with the internal heat exchanger-expansion valve refrigerant flow path (29b) and the expansion valve-evaporator refrigerant flow path (29c),
The expansion valve assembly portion (29) includes an expansion valve insertion hole forming member (30) that forms the expansion valve insertion hole (29a), and an end portion of at least a part of the plurality of tubes (23). The evaporator unit according to claim 2 , wherein the evaporator unit is divided into a tube insertion member (31) into which the gas is inserted.
前記内部熱交換器(13)には、前記高圧側冷媒出口(13c)を形成する高圧側出口端部(13e)と、前記低圧側冷媒入口(13d)を形成する低圧側入口端部(13)とが互いに分離して形成され、
前記内部熱交換器−膨張弁冷媒流路(29b)の入口部には、前記高圧側出口端部(13e)が挿入され、
前記蒸発器−内部熱交換器冷媒流路(29d)の出口部には、前記低圧側入口端部(13)が挿入されていることを特徴とする請求項ないしのいずれか1つに記載の蒸発器ユニット。
The internal heat exchanger (13) includes a high-pressure side outlet end (13e) that forms the high-pressure side refrigerant outlet (13c) and a low-pressure side inlet end (13) that forms the low-pressure side refrigerant inlet (13d). f ) and are formed separately from each other,
The high pressure side outlet end (13e) is inserted into the inlet of the internal heat exchanger-expansion valve refrigerant flow path (29b),
The low pressure side inlet end (13 f ) is inserted into the outlet of the evaporator-internal heat exchanger refrigerant flow path (29d), according to any one of claims 1 to 3. The evaporator unit as described in.
ノズル部(40a)から噴射される高い速度の冷媒流により冷媒吸引口(40b)から冷媒を吸引し、前記ノズル部(40a)から噴射された冷媒と前記冷媒吸引口(40b)から吸引された冷媒とを混合して吐出するエジェクタ(40)が組み付けられるエジェクタ組付部(43)を備え、
前記蒸発器(15)は、前記エジェクタ(40)の出口側に接続されて前記エジェクタ(40)から吐出された冷媒を蒸発させる第1蒸発器(21)、および前記冷媒吸引口(40b)に接続されて前記エジェクタ(40)に吸引される冷媒を蒸発させる第2蒸発器(22)であり、
前記エジェクタ組付部(43)には、前記ノズル部(40a)の入口に流入する冷媒が流れるノズル部入口側流路(43b)と、前記冷媒吸引口(40b)に吸引される冷媒が流れる冷媒吸引口側流路(43c)と、前記エジェクタ(40)の出口から流出した冷媒が流れるエジェクタ出口側流路(43d)とが形成され、
前記エジェクタ組付部(43)は、金属で形成され、かつ前記第1、第2蒸発器(21、22)、前記内部熱交換器(13)および前記膨張弁組付部(29)と一体ろう付けされていることを特徴とする請求項ないしのいずれか1つに記載の蒸発器ユニット。
The refrigerant was sucked from the refrigerant suction port (40b) by the high-speed refrigerant flow ejected from the nozzle part (40a), and sucked from the refrigerant jetted from the nozzle part (40a) and the refrigerant suction port (40b). An ejector assembly (43) to which an ejector (40) for mixing and discharging the refrigerant is assembled;
The evaporator (15) is connected to the outlet side of the ejector (40) and is connected to a first evaporator (21) that evaporates the refrigerant discharged from the ejector (40), and the refrigerant suction port (40b). A second evaporator (22) connected and evaporating the refrigerant sucked into the ejector (40);
In the ejector assembly (43), the refrigerant sucked into the nozzle inlet side channel (43b) through which the refrigerant flowing into the inlet of the nozzle (40a) flows and the refrigerant suction port (40b) flows. A refrigerant suction port side channel (43c) and an ejector outlet side channel (43d) through which the refrigerant flowing out from the outlet of the ejector (40) flows are formed,
The ejector assembly (43) is made of metal and integrated with the first and second evaporators (21, 22), the internal heat exchanger (13), and the expansion valve assembly (29). evaporator unit according to any one of claims 1 to 4, characterized in being brazed.
前記膨張弁組付部(29)には、前記内部熱交換器(13)のうち前記高圧側冷媒の出口と前記ノズル部入口側流路(43b)とを連通する高圧冷媒流路(29e)が形成され、
前記高圧冷媒流路(29e)および前記ノズル部入口側流路(43b)は、前記内部熱交換器(13)の前記高圧側冷媒出口(13c)から前記ノズル部(40a)の入口に至る内部熱交換器−ノズル部冷媒流路を構成していることを特徴とする請求項に記載の蒸発器ユニット。
The expansion valve assembly part (29) has a high-pressure refrigerant flow path (29e) that communicates the outlet of the high-pressure side refrigerant and the nozzle part inlet-side flow path (43b) in the internal heat exchanger (13). Formed,
The high-pressure refrigerant flow path (29e) and the nozzle part inlet-side flow path (43b) are formed from the high-pressure refrigerant outlet (13c) of the internal heat exchanger (13) to the inlet of the nozzle part (40a). The evaporator unit according to claim 5 , wherein the heat exchanger-nozzle part refrigerant flow path is configured.
前記冷媒吸引口側流路(43c)は、前記第2蒸発器(22)から前記エジェクタ(40)の前記冷媒吸引口(40b)に至る蒸発器−冷媒吸引口冷媒流路(43c)であり、
前記エジェクタ出口側流路(43d)は、前記エジェクタ(40)の出口から前記第1蒸発器(21)に至るエジェクタ−蒸発器冷媒流路(43d)であることを特徴とする請求項またはに記載の蒸発器ユニット。
The refrigerant suction side channel (43c) is an evaporator-refrigerant suction port refrigerant channel (43c) from the second evaporator (22) to the refrigerant suction port (40b) of the ejector (40). ,
The ejector outlet passage (43d) is an ejector reaching the the outlet first evaporator (21) of the ejector (40) - characterized in that it is a evaporator refrigerant passage (43d) according to claim 5 or 7. The evaporator unit according to 6 .
JP2010072527A 2010-03-26 2010-03-26 Evaporator unit Expired - Fee Related JP5540816B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010072527A JP5540816B2 (en) 2010-03-26 2010-03-26 Evaporator unit
DE201110014410 DE102011014410A1 (en) 2010-03-26 2011-03-18 Vedampfereinheit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072527A JP5540816B2 (en) 2010-03-26 2010-03-26 Evaporator unit

Publications (2)

Publication Number Publication Date
JP2011202921A JP2011202921A (en) 2011-10-13
JP5540816B2 true JP5540816B2 (en) 2014-07-02

Family

ID=44879761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072527A Expired - Fee Related JP5540816B2 (en) 2010-03-26 2010-03-26 Evaporator unit

Country Status (2)

Country Link
JP (1) JP5540816B2 (en)
DE (1) DE102011014410A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618368B2 (en) * 2010-12-01 2014-11-05 シャープ株式会社 Heat exchanger and integrated air conditioner equipped with the same
DE102014208755A1 (en) 2013-05-09 2014-11-13 Behr Gmbh & Co. Kg Evaporation unit and air conditioning device for a motor vehicle
US20170234456A1 (en) * 2016-02-11 2017-08-17 Dunan Microstaq, Inc. Heat exchanger with expansion valve body formed on inlet header thereof
CN110749127A (en) * 2019-10-30 2020-02-04 博耐尔汽车电气系统有限公司 Outdoor heat exchanger of electric automobile

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301100B2 (en) * 1991-01-31 2002-07-15 株式会社デンソー Evaporator and refrigeration cycle equipment
JPH06288661A (en) * 1993-04-02 1994-10-18 Zexel Corp Heat exchanger
JPH0854159A (en) * 1994-08-10 1996-02-27 Zexel Corp Lamination type heat exchanger
JPH0886536A (en) * 1994-09-14 1996-04-02 Zexel Corp Expansion valve mounting member
JP3674058B2 (en) * 1994-10-11 2005-07-20 株式会社デンソー Manufacturing method of stacked heat exchanger
JP2001021234A (en) 1999-07-05 2001-01-26 Zexel Valeo Climate Control Corp Cooler
JP2006097911A (en) 2004-09-28 2006-04-13 Calsonic Kansei Corp Heat exchanger
JP4626531B2 (en) * 2005-04-01 2011-02-09 株式会社デンソー Ejector refrigeration cycle
JP2007218497A (en) * 2006-02-16 2007-08-30 Denso Corp Ejector type refrigeration cycle and refrigerant flow controller

Also Published As

Publication number Publication date
JP2011202921A (en) 2011-10-13
DE102011014410A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP4259531B2 (en) Ejector type refrigeration cycle unit
JP4770474B2 (en) Ejector type refrigeration cycle unit and method for manufacturing the same
US8099978B2 (en) Evaporator unit
JP4259478B2 (en) Evaporator structure and ejector cycle
JP4548350B2 (en) Ejector type refrigeration cycle unit
JP4692295B2 (en) Evaporator unit and ejector refrigeration cycle
JP5050563B2 (en) Ejector and ejector type refrigeration cycle unit
JP4645681B2 (en) Evaporator unit
US8365552B2 (en) Evaporator unit having tank provided with ejector nozzle
JP4978686B2 (en) Evaporator unit
JP5540816B2 (en) Evaporator unit
JP5509942B2 (en) Ejector unit, heat exchanger unit, and refrigerant short circuit detection method for ejector unit
JP5062066B2 (en) Ejector type refrigeration cycle evaporator unit
JP4770891B2 (en) Ejector type refrigeration cycle unit
JP2008138895A (en) Evaporator unit
WO2016125437A1 (en) Ejector-integrated heat exchanger
JP2008281338A (en) Ejector cycle
JP4910567B2 (en) Ejector refrigeration cycle
JP2009058179A (en) Ejector type refrigerating cycle unit
JP2008144979A (en) Unit for ejector type refrigerating cycle
JP5017925B2 (en) Ejector, evaporator unit and ejector refrigeration cycle
JP2018128192A (en) Heat exchanger
JP2005212538A (en) Condenser for vehicle and air conditioning device for vehicle equipped with the same
JP2008075904A (en) Evaporator unit and ejector type refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

LAPS Cancellation because of no payment of annual fees