JP5532286B2 - Fluid processing equipment - Google Patents

Fluid processing equipment Download PDF

Info

Publication number
JP5532286B2
JP5532286B2 JP2008320314A JP2008320314A JP5532286B2 JP 5532286 B2 JP5532286 B2 JP 5532286B2 JP 2008320314 A JP2008320314 A JP 2008320314A JP 2008320314 A JP2008320314 A JP 2008320314A JP 5532286 B2 JP5532286 B2 JP 5532286B2
Authority
JP
Japan
Prior art keywords
fluid
ray
processing apparatus
radiator
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008320314A
Other languages
Japanese (ja)
Other versions
JP2010142698A (en
Inventor
徹 古谷
Original Assignee
徹 古谷
大見砕石 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徹 古谷, 大見砕石 株式会社 filed Critical 徹 古谷
Priority to JP2008320314A priority Critical patent/JP5532286B2/en
Priority to CN2009801012041A priority patent/CN101952028A/en
Priority to PCT/SG2009/000475 priority patent/WO2010071606A2/en
Priority to EP09833761A priority patent/EP2373409A4/en
Publication of JP2010142698A publication Critical patent/JP2010142698A/en
Application granted granted Critical
Publication of JP5532286B2 publication Critical patent/JP5532286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M27/045Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/06Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by rays, e.g. infrared and ultraviolet
    • F02M27/065Radioactive radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M29/00Apparatus for re-atomising condensed fuel or homogenising fuel-air mixture
    • F02M29/02Apparatus for re-atomising condensed fuel or homogenising fuel-air mixture having rotary parts, e.g. fan wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/484Treatment of water, waste water, or sewage with magnetic or electric fields using electromagnets
    • C02F1/485Treatment of water, waste water, or sewage with magnetic or electric fields using electromagnets located on the outer wall of the treatment device, i.e. not in contact with the liquid to be treated, e.g. detachable
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Water Treatments (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

本発明は、α粒子線の電離作用を利用して水,空気,ガス,燃料用油等流体の殺菌,脱臭,低分子化,活性化,劣化防止等の流体処理を行う流体処理装置に関する。   The present invention relates to a fluid processing apparatus that performs fluid processing such as sterilization, deodorization, low molecular weight, activation, and deterioration prevention of fluids such as water, air, gas, and fuel oil by utilizing the ionizing action of α particle beam.

従来、α粒子線(ヘリウム原子)を放射するα線放射材を有するα線放射体を、内部空間を流入口から送出口に向けて流体の流路とする枠体の内側に設け、流体にα粒子線(以下単にα線と言う)を照射して電離させることにより流体処理を行なう流体処理装置は、特許文献1及び特許文献2で示される構成のものが既に公知である。
上記特許文献1のα線放射体は、麦飯石粉末を主体に水晶粉末や酸化チタン粉末、珪酸アルミ化合物粉末等をバインダと混合し、粒径5mm程度に造粒し焼成することにより圧電気現象を示す硬質粒状体となし、この粒状体の表面に酸化トリウムを付着させてα線粒状放射体となし、複数のα線粒状放射体をネット状の保持部材に流通隣接間隔を有して配設した構成にしている。
また特許文献2によるα線放射体は、流体の流通を可能とする保持芯材に固着層を介し、酸化トリウムからなるα線放射材をα線放射セラミック化することにより、照射作用効率の高い構成にしている。
Conventionally, an α-ray emitter having an α-ray emitting material that emits α-particle beams (helium atoms) is provided inside a frame body that uses an internal space as a fluid flow path from an inlet to an outlet. As a fluid processing apparatus that performs fluid processing by irradiating and ionizing an α particle beam (hereinafter simply referred to as an α ray), those having configurations shown in Patent Document 1 and Patent Document 2 are already known.
The α-ray radiator of the above-mentioned Patent Document 1 is a piezoelectric phenomenon in which barleystone powder is mainly mixed with crystal powder, titanium oxide powder, aluminum silicate compound powder, etc. with a binder, granulated to a particle size of about 5 mm and fired. A hard granular material showing an α-ray granular radiator by attaching thorium oxide to the surface of the granular body, and a plurality of α-ray granular radiators are arranged on a net-like holding member with a spacing adjacent to each other. The configuration is set.
In addition, the α-ray radiator according to Patent Document 2 has a high irradiation action efficiency by converting an α-ray radiation material made of thorium oxide into an α-ray radiation ceramic through a fixing layer on a holding core material that enables fluid flow. It has a configuration.

上記α線放射体はいずれもα線のもつ大きな電離作用によって、流体分子のイオン化並びに核の人工変換等を生じさせて空気,ガス,油,水等の分子構造を変化させる。即ち、水にあっては強力イオン化し、効率のよい水の殺菌,脱臭,脱色等が行なわれる。同様に空気に対しては例えばラザフォードの理論による次式で示される空気分子の核の人工変換を等を発生させ、燃焼効率の改善,脱臭,浮遊菌の殺菌等が行われる。また油類についてはイオン活性化,劣化防止等を行なうことができ、燃料油においては炭素分子結合の切断による小分子化及びラジカル化による燃焼効率を改善することができる。 All of the above α-ray emitters change the molecular structure of air, gas, oil, water, etc. by causing ionization of fluid molecules and artificial conversion of nuclei by the large ionization action of α-rays. That, in the water strongly turned into ions, sterilization of efficient water, deodorization, decoloration or the like is performed. Similarly, for the air, for example, artificial conversion of the nuclei of air molecules represented by the following equation based on Rutherford's theory is generated, and combustion efficiency is improved, deodorization, sterilization of airborne bacteria, and the like are performed. In addition, ion activation, deterioration prevention, and the like can be performed for oils, and in fuel oil, combustion efficiency can be improved by making small molecules by breaking carbon molecular bonds and radicalization.

Figure 0005532286
Figure 0005532286

上記特許文献1,2による流体処理装置は、α線に衝突した流体の分子を電離作用によってイオン化し種々改質し所期の効果を奏する特徴を有しているが、α線放射材が放射するα線の線量と放射有効距離に制約があるため、枠体内で流通方向の上流側から下流側に流れる流体分子にα線を効率よく照射し得ない問題がある。そのためα線放射材を保持芯材や粒状体等の保持部材に多量にコーティングすることが試みられるが、この場合には大量のα線放射材を必要とするので、装置価格がコスト高になると共に、α線放射材を保持部材に厚くコーティングすることは困難である等の製造上の課題を生ずる。   The fluid processing apparatuses according to Patent Documents 1 and 2 are characterized by ionizing the fluid molecules that collide with the α-rays by ionization and various modifications to achieve the desired effect. Since there is a restriction on the dose of α rays and the effective radiation distance, there is a problem that α molecules cannot be efficiently irradiated to fluid molecules flowing from the upstream side to the downstream side in the flow direction in the frame. For this reason, it is attempted to coat a large amount of α-ray radiation material on a holding member such as a holding core material or a granular material. In this case, however, a large amount of α-ray radiation material is required, which increases the cost of the apparatus. At the same time, there arises a manufacturing problem such that it is difficult to coat the holding member with the α-ray radiation material thickly.

一方、表面積を大きくした保持部材や、小さな網目にしたネット状の保持部材にα線放射材をコーティングした場合には、α線放射材を薄くコーティングしてもα線量を確保することができるが、枠体内で流通方向に交差する方向に設置するα線放射体の流通抵抗が大きくなる等の問題がある。
この発明は上記課題を解決するため、枠体内で流通する流体の分子運動を活性化させることにより、α線放射体によるα線の照射効率を向上させることができる流体処理装置を提供するものである。
On the other hand, when the α-ray emitting material is coated on a holding member with a large surface area or a net-like holding member with a small mesh, the α dose can be secured even if the α-ray emitting material is thinly coated. There is a problem that the flow resistance of the α-ray radiator installed in the direction intersecting the flow direction in the frame is increased.
In order to solve the above-mentioned problems, the present invention provides a fluid processing apparatus capable of improving the irradiation efficiency of α rays by an α ray emitter by activating the molecular motion of the fluid circulating in the frame. is there.

上記課題を解決するための流体処理装置は、第1に、内部空間を流入口14から送出口16に向けて流体の流路とする枠体4の内側に、α線を放射するα線放射材を備えたα線放射体2を設け、流体にα線を照射して電離させることにより流体処理をする流体処理装置1において、前記枠体4に流体の分子運動を活性化させる分子運動促進部3を設け、該分子運動促進部3により分子運動活性化をした流体にα線を照射し流体処理を行なう構成にし、α線放射体2を枠体4内に設けるフィルタ17の上流側又は下流側に近接させて設け、流体処理装置1が燃焼装置35の排気路に設置され、流体処理装置1として上記排気路内に設置される上流側流体処理装置1aと上記排気路に接続される下流側流体処理装置1bを設け、上流側流体処理装置1aの送出口16を下流側流体処理装置1bの枠体4に接続し、上流側流体処理装置1aによって流体処理した処理流体を下流側流体処理装置1bの枠体4を流通する流体に供給すると共に、下流側流体処理装置1bに前記処理流体が供給される供給部の上流側に、高温エネルギを前記排気路内に供給するバーナ装置36を設けたことを特徴としている。 In the fluid processing apparatus for solving the above-mentioned problems, first, α-ray radiation that emits α-rays is formed inside the frame 4 that uses the internal space as a fluid flow path from the inlet 14 toward the outlet 16. In the fluid processing apparatus 1 that performs the fluid processing by providing the α-ray radiator 2 provided with the material and ionizing the fluid by irradiating the fluid with α-rays, the frame body 4 activates the molecular motion of the fluid. The unit 3 is provided, and the fluid subjected to the molecular motion activation by the molecular motion promoting unit 3 is irradiated with α-rays to perform fluid treatment, and the α-ray radiator 2 is provided upstream of the filter 17 provided in the frame 4 or Provided close to the downstream side , the fluid treatment device 1 is installed in the exhaust passage of the combustion device 35, and is connected to the upstream side fluid treatment device 1a installed in the exhaust passage as the fluid treatment device 1 and the exhaust passage. A downstream fluid treatment device 1b is provided, and an upstream fluid treatment device 1 is provided. The outlet 16 is connected to the frame 4 of the downstream fluid processing apparatus 1b, and the processing fluid processed by the upstream fluid processing apparatus 1a is supplied to the fluid flowing through the frame 4 of the downstream fluid processing apparatus 1b. A burner device 36 for supplying high-temperature energy into the exhaust passage is provided upstream of a supply portion to which the processing fluid is supplied to the downstream fluid processing device 1b .

第2に、α線放射体2を、α線放射材をコーティングした粒状体からなるα線粒状放射体2aとし、多数のα線粒状放射体2aを枠体4内に移動及び流体の流通を可能に充填する構成としたことを特徴としている。   Secondly, the α-ray radiator 2 is an α-ray granular radiator 2a made of a granular material coated with an α-ray radiation material, and a large number of α-ray granular radiators 2a are moved into the frame 4 and fluid flows. It is characterized by being configured to be filled as possible.

第3に、α線放射体2を枠体4内で回転可能に支持することを特徴としている。 Thirdly, the α-ray radiator 2 is supported in a rotatable manner within the frame body 4.

第4に、分子運動促進部3を、α線放射体2に向けて超音波を発生させる超音波発生部7にすることを特徴としている。   Fourth, the molecular motion promoting unit 3 is characterized by being an ultrasonic wave generating unit 7 that generates ultrasonic waves toward the α-ray emitter 2.

第5に、分子運動促進部3を、α線放射体2に向けて磁力線を発生させる磁気発生部6にしたことを特徴としている。   Fifth, the molecular motion promoting unit 3 is characterized by being a magnetic generating unit 6 that generates magnetic lines of force toward the α-ray radiator 2.

第6に、枠体4に、内部を流通する流体に対し別の流体を供給する流体供給ノズル31を設けたことを特徴としている。   Sixth, the present invention is characterized in that the frame 4 is provided with a fluid supply nozzle 31 for supplying another fluid to the fluid flowing inside.

第7に、枠体4に、内部を流通する流体に対しα線放射体2の上流側又は下流側でミストを供給するミスト供給管23を設けたことを特徴としている。   Seventh, the frame 4 is characterized in that a mist supply pipe 23 is provided for supplying mist to the fluid flowing through the inside on the upstream side or the downstream side of the α-ray radiator 2.

上記のように構成した流体処理装置は次のような効果を奏することができる。請求項1の発明により、分子運動促進部が生ずる分子運動活性エネルギによって流体の分子運動を活性化及び分子をイオン化させると共に、この励起状態となした流体にα線放射体が放射するα線を照射することにより、照射効率を高めより多くの流体分子及び原子核をα線に接触させ、電離作用を促進し流体処理を能率よく行うことができる。
これにより、空気やガス,水,油類等の浄化,品質機能の改善,劣化防止,活性化、或いは燃料の燃焼効率の向上等の効果をもたらすと共に、流体処理装置を簡潔で廉価な構成にすることができる。また、α線放射体をフィルタの上流側又は下流側に近接させることにより、α線放射体をフィルタ又はフィルタの取付け構造を利用して簡単に設置することができる。
また、送出口を下流側流体処理装置の枠体に接続し、上流側流体処理装置によって流体処理した処理流体を下流側流体処理装置の枠体を流通する流体に供給すると共に、上記上流側流体処理装置1aによって流体処理された処理流体の供給部の上流側に高温エネルギを、各種燃料を燃焼させる燃焼装置35の煙突内に供給するバーナ装置36を設けることにより、上記下流側流体処理装置の枠体の上流側でバーナ装置が供給する高温エネルギによって、例えば煙突内を流れる排ガス中のタール分を燃やして予め除去したのち、上流側流体処理装置による排ガス処理を効率よく行なわせることができる。
The fluid processing apparatus configured as described above can achieve the following effects. According to the first aspect of the present invention, the molecular motion activation energy generated by the molecular motion promoting portion activates the molecular motion of the fluid and ionizes the molecule, and the α-ray emitted from the α-ray emitter is emitted to the excited fluid. By irradiating, it is possible to increase the irradiation efficiency, bring more fluid molecules and nuclei into contact with α-rays, promote ionization, and efficiently perform fluid treatment.
This brings about effects such as purification of air, gas, water, and oil, improvement of quality function, prevention of deterioration, activation, and improvement of fuel combustion efficiency, and a simple and inexpensive configuration of the fluid treatment device. can do. Further, by bringing the α-ray radiator close to the upstream side or the downstream side of the filter, the α-ray radiator can be easily installed using the filter or the filter mounting structure.
In addition, the outlet is connected to the frame of the downstream fluid processing apparatus, and the processing fluid processed by the upstream fluid processing apparatus is supplied to the fluid flowing through the frame of the downstream fluid processing apparatus, and the upstream fluid By providing a burner device 36 for supplying high temperature energy into the chimney of the combustion device 35 for burning various fuels upstream of the supply portion of the processing fluid processed by the processing device 1a, the downstream fluid processing device The high-temperature energy supplied by the burner device upstream of the frame body allows, for example, the tar content in the exhaust gas flowing in the chimney to be burned and removed in advance, and then the exhaust gas treatment by the upstream fluid treatment device can be performed efficiently.

請求項2の発明により、各α線粒状放射体は枠体内で移動し流通可能に積層した状態になり、流体分子を粒状体の表面に繰り返し接触させて流体を流通させるので、α線による流体処理を促進することができる。   According to the second aspect of the present invention, each α-ray granular radiator is moved and distributed in the frame and is in a state of being laminated so that fluid molecules are repeatedly brought into contact with the surface of the granular material to circulate the fluid. Processing can be facilitated.

請求項3の発明により、枠体内でα線放射体を作動させることにより、流通する流体の分子に対しα線放射体から放射されるα線を効率よく接触させ、流体処理を促進することができる。   According to the invention of claim 3, by operating the α-ray emitter in the frame body, the α-rays radiated from the α-ray emitter can be efficiently brought into contact with the circulating fluid molecules, and fluid processing can be promoted. it can.

請求項4の発明により、超音波発生部は超音波をα線放射体側に向けて発生させるので、流体分子を運動活性化しα線による照射効率を高め流体処理を能率よく行うことができる。また超音波発生部は枠体の適正位置に省スペースで設置することができると共に、エアークリーナ等の利用装置に対する後付け作業も容易にすることができる。 According to the invention of claim 4, since the ultrasonic wave generation unit generates the ultrasonic wave toward the α-ray emitter side, the fluid treatment can be efficiently performed by activating the fluid molecules to increase the irradiation efficiency by the α-rays. In addition, the ultrasonic generator can be installed at an appropriate position of the frame body in a space-saving manner, and can be easily retrofitted to a utilization device such as an air cleaner.

請求項5の発明により、磁気発生部はα線放射体側に向けて磁力線を発生し磁気エネルギによって流体分子を運動活性化させるので、α線による照射効率を高め流体処理を能率よく行うことを可能にする。また磁気発生部は枠体の適正位置に簡単に設置することができる。
また磁気発生部は交流電気により磁力線を発生する交流型にすると、向きを変える磁界エネルギによって流体分子をより運動活性化させるので、α線による照射効率をより高めた流体処理を促進することができる。
According to the invention of claim 5, the magnetism generating section generates magnetic lines of force toward the α-ray emitter side and activates fluid molecules by activating the magnetic energy, so that it is possible to increase the irradiation efficiency by α-rays and efficiently perform fluid processing. To. Further, the magnetism generator can be easily installed at an appropriate position of the frame.
In addition, when the magnetism generating unit is an AC type that generates magnetic force lines by AC electricity, fluid molecules are more activated by the magnetic field energy that changes the direction, so that it is possible to promote fluid processing with higher irradiation efficiency by α rays. .

請求項6の発明により、流体供給ノズルから枠体内の流体に別の流体を簡単に供給することができると共に、複数の流体を混合させた流体処理を行うことができる。
これにより枠体内に供給される別の流体は、α線放射体が放射するα線によって電離させイオン化したものを、枠体内の処理流体と混合させることもでき、混合処理流体をエンジンや燃焼炉,化学合成装置等の各種利用装置に供給することができる。
According to the sixth aspect of the present invention, it is possible to easily supply another fluid from the fluid supply nozzle to the fluid in the frame, and to perform fluid processing in which a plurality of fluids are mixed.
As a result, another fluid supplied into the frame can be ionized by ionizing with α rays emitted from the α-ray radiator and mixed with the processing fluid in the frame, and the mixed processing fluid can be mixed with the engine or combustion furnace. , And can be supplied to various utilization devices such as chemical synthesis devices.

請求項7の発明により、ミスト供給管から枠体内の流体にミストを簡単に供給することができると共に、ミストを流体に混合させた流体処理を行うことができる。これにより枠体内に供給されるミストを、α線放射体が放射するα線によって電離する場合には、イオン化したミストと流体処理された処理流体とを簡単に混合させることもできる。 According to the seventh aspect of the present invention, it is possible to easily supply the mist from the mist supply pipe to the fluid in the frame body, and it is possible to perform the fluid processing in which the mist is mixed with the fluid. As a result, when the mist supplied into the frame is ionized by α rays emitted from the α ray emitter, the ionized mist and the processed fluid can be easily mixed.

本発明の一実施形態を図面に基づいて説明する。図1〜図10において符号1はα線放射体2と分子運動促進部3とを、流体の処理流路(処理室)を形成する枠体4に設けて流体処理をする流体処理装置である。この実施形態で用いるα線放射体2は、前記特許文献1,2で示される技術に基づき酸化トリウムによる放射エネルギを、4・01〜10MeV程度のα粒子線を放射するようにしている。これによりα線放射体2は、放射するα線を空気や水及び油等の流体を被処理物として照射するとき、公知の作用によって流体を構成する分子又は原子核にα線を衝突(接触)させて電離(イオン活性化)し流体処理(改質)することができる。   An embodiment of the present invention will be described with reference to the drawings. 1 to 10, reference numeral 1 denotes a fluid processing apparatus that performs fluid processing by providing an α-ray radiator 2 and a molecular motion promoting unit 3 in a frame 4 that forms a fluid processing channel (processing chamber). . The α-ray radiator 2 used in this embodiment is configured to radiate radiant energy of thorium oxide based on the techniques disclosed in Patent Documents 1 and 2 with an α particle beam of about 4.01 to 10 MeV. As a result, the α-ray emitter 2 collides (contacts) the α-rays with the molecules or nuclei constituting the fluid by a known action when the α-rays to be emitted are irradiated with a fluid such as air, water, or oil as a workpiece. It is possible to perform ionization (ion activation) and fluid treatment (modification).

また空気にα線を照射した場合には、α線によって空気分子の電離作用を強化促進
するので、空気中の79.7%程度を占める窒素(N)を原子核人工変換作用によって水素(H)と酸素(O)とに変化させ、また空気中の水分(H2O)を水素イオン(H+)と水酸基(OH-)とに変化させる。これにより空気は人工的に可燃物に変えられ、当該空気を燃料油と共に内燃機関や各種の燃焼装置等に供給して燃焼させるとき完全燃焼運転が可能になる。従って、燃料供給バルブを絞り気味にしても所期の燃焼エネルギを十分に得ることができ、燃料油の消費量を簡単に低減することができる。また排ガスに対し有害成分を低減することができ、また各種ガスに対してもα線はガスが有する成分を改質する。
When air is irradiated with alpha rays, the ionization action of air molecules is enhanced and promoted by alpha rays, so that nitrogen (N), which occupies about 79.7% in the air, is converted into hydrogen (H) by an artificial nuclear conversion action. And water (H 2 O) in the air are changed to hydrogen ions (H + ) and hydroxyl groups (OH ). As a result, the air is artificially changed into a combustible material, and complete combustion operation becomes possible when the air is supplied to the internal combustion engine and various combustion devices together with the fuel oil for combustion. Therefore, even if the fuel supply valve is squeezed, the desired combustion energy can be sufficiently obtained, and the amount of fuel oil consumption can be reduced easily. Moreover, harmful components can be reduced with respect to the exhaust gas, and α rays modify the components of the gas for various gases.

また油にα線を照射した場合には、油中の炭素(C)結合を切断し分子量をより小さくし気化し易い油を得ることができて燃焼促進をすることができる。
また水にα線を照射した場合には、水(H2O)を水素イオン(H+)と水酸基(OH-)とに変化させると同時に、溶存酸素の量により過酸化水素(H22)を発生させることができる。これにより水はα線による流体処理によって、殺菌力を有した機能水に改質することができる。
In addition, when the oil is irradiated with α-rays, the carbon (C) bond in the oil is cleaved to reduce the molecular weight, and an oil that is easy to vaporize can be obtained and combustion can be promoted.
In addition, when water is irradiated with α rays, water (H 2 O) is changed into hydrogen ions (H + ) and hydroxyl groups (OH ), and at the same time, hydrogen peroxide (H 2 O depending on the amount of dissolved oxygen). 2 ) can be generated. Thereby, water can be modified into functional water having sterilizing power by fluid treatment with α rays.

一方、分子運動促進部3は、流体を流通方向(処理方向)上流側から下流側に向けて流通案内させる枠体4に、後述するような磁気発生部6又は超音波発生部7或いは図示しない高周波発生体等のいずれか又はこれ等を組み合わせて設けることによって構成することができる。
そして、分子運動促進部3が発生する分子運動活性エネルギ(以下単に運動エネルギと言う)は、枠体4内を流通する流体の分子運動の活性化及び分子のイオン化等(以下単に分子運動活性と言う)を促進し励起状態にする。
On the other hand, the molecular motion promoting unit 3 is connected to a frame 4 that guides fluid from the upstream side to the downstream side in the flow direction (processing direction). It can be configured by providing any of the high-frequency generators or the like in combination.
The molecular motion activation energy generated by the molecular motion promoting unit 3 (hereinafter simply referred to as kinetic energy) is the activation of molecular motion of the fluid flowing through the frame 4 and the ionization of molecules (hereinafter simply referred to as molecular motion activity and To the excited state.

即ち、流体の分子は流れ方向(Y方向)及び側方(X方向)並びに合成方向の分子運動を活性化されるので、運動活性した流体分子とα線放射材から定性的に放射されるα線は、互いに接触(衝突)することができる照射率が格段に高められる。これにより一定方向に流れる流体であっても、その分子に対する電離の促進並びに核の人工変換等をより生じさせることができる。
従って、α線放射体2及び放射されるα線に向けて一定方向に流通移動している流体に対し、その分子を側方への揺らぎ運動(分子運動活性)を付与するように分散加速させながらα線と強力に接触させることができるため、α線による流体分子の電離を促進し流体処理を効率よく行なわせることができる。
That is, since the fluid molecules are activated in the flow direction (Y direction), the lateral direction (X direction), and the molecular motion in the synthesis direction, α is emitted qualitatively from the motion-activated fluid molecules and the α-ray emitting material. The irradiation rate at which the lines can contact (collision) with each other is greatly increased. As a result, even if the fluid flows in a certain direction, it is possible to further promote ionization of the molecules and artificial conversion of nuclei.
Accordingly, the molecules are dispersed and accelerated so as to impart lateral movement (molecular movement activity) to the α-ray radiator 2 and the fluid flowing in a certain direction toward the emitted α-rays. However, since the α-rays can be brought into strong contact with each other, ionization of fluid molecules by the α-rays can be promoted and fluid treatment can be performed efficiently.

次に図1〜図3を参照し、上記α線放射体2と分子運動促進部3を備えた第1,第2,第3実施形態に関わる流体処理装置1及びその使用態様について説明する。先ず図2で示す第1実施形態の流体処理装置1は、自動車11のエンジン12が備える気化器12aの上流側に設けられるエアークリーナ13のクリーナケースを枠体(処理筒)4となしている。そして、上記処理筒4内にその両端に形成される流入口14と送出口16の間で、α線放射体2と分子運動促進部3とを設けることにより装置を構成している。   Next, with reference to FIGS. 1-3, the fluid processing apparatus 1 concerning the 1st, 2nd, 3rd embodiment provided with the said alpha ray radiator 2 and the molecular motion promotion part 3 and its usage condition are demonstrated. First, in the fluid processing apparatus 1 according to the first embodiment shown in FIG. 2, the cleaner case of the air cleaner 13 provided on the upstream side of the vaporizer 12 a included in the engine 12 of the automobile 11 is a frame (processing cylinder) 4. . And the apparatus is comprised by providing the alpha ray radiator 2 and the molecular motion promotion part 3 in the said process cylinder 4 between the inflow port 14 and the sending / outlet port 16 which are formed in the both ends.

図示例の流体処理装置1は、ネット型のα線放射体2を処理筒4内に着脱自在に取付けられる、エアーフィルタ17の上流側と下流側の両フィルタ面に対面させた状態で着脱自在に設けている。分子運動促進部3は超音波を発振する超音波発生部7となし、エアークリーナ13の上流側に設置されるα線放射体2に向けて超音波を発振するように設けている。尚、上記超音波発生部7は、十分な分子運動活性を有し且つ市販され採用し易い仕様として、20,000〜250,000Hzレベルの超音波を発射するものであることが望ましい。   The fluid processing apparatus 1 in the illustrated example is detachable in a state where the net-type α-ray radiator 2 is detachably mounted in the processing cylinder 4 and faces both the upstream and downstream filter surfaces of the air filter 17. Provided. The molecular motion promoting unit 3 is formed as an ultrasonic wave generating unit 7 that oscillates ultrasonic waves, and is provided so as to oscillate ultrasonic waves toward the α-ray radiator 2 installed on the upstream side of the air cleaner 13. The ultrasonic generator 7 preferably emits ultrasonic waves at a level of 20,000 to 250,000 Hz as a specification that has sufficient molecular motion activity and is commercially available and easy to adopt.

また超音波発生部7は、α線放射体2に対する距離又は向きを調節できるように、処理筒4の下壁に設けた取付部7aに発振頭部を位置調節自在に取付け、自動車11に搭載されるバッテリ(電源)18に、メインスイッチ19と超音波発生器21を設けて接続している。尚、実施形態においてメインスイッチ19は、自動車11の操縦部に設置される図示しないスタータスイッチと連携して作動させるようにしている。   In addition, the ultrasonic wave generation unit 7 is mounted on the automobile 11 so that the position of the oscillation head can be adjusted to the mounting unit 7a provided on the lower wall of the processing cylinder 4 so that the distance or orientation with respect to the α-ray radiator 2 can be adjusted. A main switch 19 and an ultrasonic generator 21 are provided and connected to a battery (power source) 18 to be connected. In the embodiment, the main switch 19 is operated in cooperation with a starter switch (not shown) installed in the control unit of the automobile 11.

図示例の超音波発生部7は、フィルタ(エアーフィルタ)17のフィルタ面を略覆う大きさと形状のα線放射体2に対し、処理筒4に流入口14側を側方に向けて屈曲形成した下壁の略中心位置に設け、α線放射体2の上流側における空気に発射する超音波を略均一に付与させることができる。これにより超音波発生部7はエアーフィルタ17の上流側で空気を超音波によって分子運動を活性化し、空気分子がα線放射体2を通過するときα線との接触を促進する。尚、超音波発生部7は必要により側方に向けて屈曲させた上壁や、処理筒4の側壁(周壁)に必要数設けることができる。   The ultrasonic generator 7 in the illustrated example is bent with respect to the α-ray radiator 2 having a size and shape that substantially covers the filter surface of the filter (air filter) 17 with the inlet 14 side facing the side. The ultrasonic wave emitted to the air on the upstream side of the α-ray radiator 2 can be provided substantially uniformly. As a result, the ultrasonic wave generation unit 7 activates the molecular motion of the air by ultrasonic waves on the upstream side of the air filter 17, and promotes contact with the α rays when the air molecules pass through the α ray emitter 2. Note that the necessary number of ultrasonic generators 7 can be provided on the upper wall bent sideward if necessary, or on the side wall (peripheral wall) of the processing tube 4.

この構成により自動車11のエンジン12は、流体処理装置1の流入口14から吸入した外気(空気)を、超音波発生部7と第1のα線放射体2とエアーフィルタ17と第2のα線放射体2を通過させ燃焼室に供給して運転される。
このとき空気は、α線放射体2の上流側で超音波発生部7による超音波エネルギが付与されるので、分子運動が活性化され且つ分子がイオン化され、より多くの窒素原子核にα線が衝突し易くなり多くの核の人工変換を起こして、多量の水素及び酸素等を生成することになる。
With this configuration, the engine 12 of the automobile 11 converts the outside air (air) sucked from the inlet 14 of the fluid processing apparatus 1 into the ultrasonic generator 7, the first α-ray radiator 2, the air filter 17, and the second α. It is operated by passing the line radiator 2 and supplying it to the combustion chamber.
At this time, since the ultrasonic energy is applied to the air upstream of the α-ray radiator 2 by the ultrasonic generator 7, the molecular motion is activated and the molecules are ionized, and α-rays are generated in more nitrogen nuclei. Collisions are likely to occur, causing many artificial transformations of nuclei, producing a large amount of hydrogen, oxygen, and the like.

このように流体処理された処理空気は、気化器12aで燃料油と混合して完全燃焼化を促進し燃焼効率を向上させることができる。
また空気中の水分も同様にα線と接触し水素と水酸基に分離するので、燃焼効率をより高めて燃料油の消費量を低減すると共に、排ガス中の有害成分を低減させてクリーンな排ガスとして排出することができる。
The treated air thus fluid-treated can be mixed with fuel oil in the vaporizer 12a to promote complete combustion and improve combustion efficiency.
Also as they may release minute contact hydrogen and hydroxyl and water likewise α line in the air, while reducing the consumption of fuel oil to enhance more the combustion efficiency, clean by reducing the harmful components in the exhaust gas exhaust Can be discharged as.

そして、図示例の流体処理装置1は、上記のように1次流体処理をしたのちエアーフィルタ17を通過させて濾過した空気を、エアーフィルタ17の下流側に設置するα線放射体2を通過させ、燃焼室の直前でα線の照射をさらに行うことができる。従って、前記1次流体処理に併せて流体処理をより促進させた空気を燃焼室に送るため、エンジン12の燃焼効率をより高め完全燃焼化の促進と、燃料消費量の低減並びに排ガスの浄化をより効果的にすることができる等の特徴がある。   And the fluid processing apparatus 1 of the example of illustration passes the alpha ray radiator 2 installed in the downstream of the air filter 17 after filtering the air which passed the air filter 17 after having processed the primary fluid as mentioned above. Then, irradiation with α rays can be further performed immediately before the combustion chamber. Therefore, in order to send the air whose fluid treatment is further promoted in conjunction with the primary fluid treatment to the combustion chamber, the combustion efficiency of the engine 12 is further enhanced, complete combustion is promoted, fuel consumption is reduced, and exhaust gas is purified. There is a feature that it can be made more effective.

尚、エアーフィルタ17はエンジン毎にその能力及び形状が定められているので、α線放射体2をエアークリーナ13の構造を利用して設置する場合には、該α線放射体2の設置数並びに形状や大きさは、当該エアークリーナ13の形状や流入量に対応して設置される。また図示例の流体処理装置1は、2枚の通風可能な網状のα線放射体2を、エアの流通方向と交差し上流側と下流側を仕切るようにエアーフィルタ17側に保持させて設置したが、このα線放射体2は内部のエア流通抵抗を少なくするために1枚にすることもでき、エアーフィルタ17の上流側又は下流側のいずれかに設置することもできる。   In addition, since the capability and shape of the air filter 17 are determined for each engine, when the α-ray radiator 2 is installed using the structure of the air cleaner 13, the number of the α-ray radiator 2 is installed. The shape and size of the air cleaner 13 are set according to the shape and the inflow amount of the air cleaner 13. Further, the fluid processing apparatus 1 in the illustrated example is installed by holding two air-permeable mesh-like α-ray radiators 2 on the air filter 17 side so as to intersect the air flow direction and partition the upstream side and the downstream side. However, the α-ray radiator 2 can be provided as a single sheet in order to reduce the internal air flow resistance, and can be installed either upstream or downstream of the air filter 17.

次に図3を参照し、第2実施形態に関わる流体処理装置1とその使用例について説明する。尚、以下各実施形態において前記した実施形態のものと同様な構成及び作用については説明を省略する。図示例のエアークリーナ13は、第1実施形態と同様にα線放射体2をエアーフィルタ17に対面させており、分子運動促進部3を交流電気によって磁気を発生させる交流型の磁気発生部6にしている。この磁気発生部6はα線放射体2の外周を囲むように所定幅を有して処理筒4に装着し、電源18にメインスイッチ19及び交流変調磁場発生装置21aを介して接続している。また磁気発生部6は処理筒4に沿って位置調節可能に設け、且つ交流変調磁場発生装置21aにより発生磁力を調節可能にしている。   Next, with reference to FIG. 3, the fluid processing apparatus 1 in connection with 2nd Embodiment and its usage example are demonstrated. In the following embodiments, descriptions of the same configurations and operations as those of the above-described embodiments will be omitted. The air cleaner 13 in the illustrated example has the α-ray radiator 2 facing the air filter 17 in the same manner as in the first embodiment, and the AC motion generator 6 generates magnetism by AC electricity in the molecular motion promoting unit 3. I have to. This magnetism generator 6 is attached to the processing cylinder 4 with a predetermined width so as to surround the outer periphery of the α-ray radiator 2 and is connected to the power source 18 via the main switch 19 and the AC modulation magnetic field generator 21a. . The magnetism generator 6 is provided along the processing cylinder 4 so that the position thereof can be adjusted, and the generated magnetic force can be adjusted by the AC modulation magnetic field generator 21a.

上記構成による流体処理装置1は、メインスイッチ19がON状態でスタータスイッチをONにするとエンジン12が始動され、磁気発生部6が通電により磁気を発生し、処理筒4の外周から流路内に向けて交流磁界を形成する。これによりα線放射体2を磁界内に置くことができ、α線放射体2に至る空気は磁気エネルギによって空気分子の運動が活性化し、α線の照射による流体処理が促進される。   In the fluid processing apparatus 1 configured as described above, when the main switch 19 is in the ON state and the starter switch is turned on, the engine 12 is started, the magnetism generating unit 6 generates magnetism when energized, and enters the flow path from the outer periphery of the processing cylinder 4. An alternating magnetic field is formed. As a result, the α-ray radiator 2 can be placed in the magnetic field, and movement of air molecules is activated by the magnetic energy in the air that reaches the α-ray radiator 2, and fluid processing by α-ray irradiation is promoted.

このとき磁気発生部6は交流電気により磁界の向きを瞬時的に変えるので、磁場の状態を激しく変える磁力によって、空気分子は分子運動をより活性化させた励起状態にすることができる。これにより例えば永久磁石を使用する場合よりも、α線による空気の電離作用効率を上げることができる。
さらに磁気発生部6は超音波発生部7のように作動部分を有しないので、装置の耐久性を高めることができ、メンテナンス作業を省力化することができる。また磁気発生部6は処理筒4に対しその外側に簡単に設けることができるので、既存の自動車等のエンジン12に対しても流体処理装置1の後付け作業を容易にすることができる。また磁気発生部6は処理筒4内を流れる空気(流体)に直接接触しないので、流体による汚損や早期の損耗等を防止し耐久性を向上させることができる。
At this time, since the magnetism generator 6 instantaneously changes the direction of the magnetic field by AC electricity, the air molecules can be brought into an excited state in which the molecular motion is more activated by the magnetic force that changes the state of the magnetic field violently. Thereby, the ionization efficiency of air by α rays can be increased as compared with the case of using a permanent magnet, for example.
Further, since the magnetism generator 6 does not have an operating part like the ultrasound generator 7, the durability of the apparatus can be increased, and maintenance work can be saved. Moreover, since the magnetism generating unit 6 can be easily provided outside the processing cylinder 4, the retrofitting operation of the fluid processing apparatus 1 can be facilitated even for an engine 12 such as an existing automobile. Further, since the magnetism generating unit 6 does not directly contact the air (fluid) flowing in the processing cylinder 4, it is possible to prevent the fluid from being contaminated or to be worn early and to improve the durability.

尚、処理筒4には前記交流型の磁気発生部6に限ることなく、永久磁石型の磁気発生部6を設けることもできる。また点線で示すように処理筒4内に、複数の永久磁石を流通間隔を有し流通方向に交差させて設けることもできる。この場合は隣接する永久磁石は同極を互いに対向させて設けると、反発磁力によって分子運動活性をより強くすることができる。   Note that the processing cylinder 4 is not limited to the AC-type magnetism generating section 6 but may be provided with a permanent magnet-type magnetism generating section 6. Further, as indicated by a dotted line, a plurality of permanent magnets can be provided in the processing cylinder 4 so as to intersect the flow direction with a flow interval. In this case, if the adjacent permanent magnets are provided with the same poles facing each other, the molecular motion activity can be further enhanced by the repulsive magnetic force.

また上記交流型の磁気発生部6と永久磁石型の磁気発生部6とを併設した構成にすることもでき、この場合には交流型の磁気発生部6による磁界に制約があるとき、制約部分を永久磁石型の磁気発生部6によって簡単に補うことができる。さらに超音波発生部7も処理筒4に簡単に設置することができるので、必要とする箇所の分子運動活性を容易に補填することができ、大型エンジンや各種燃焼装置に適応した流体処理装置1にすることができる。 The AC-type magnetic generator 6 and the permanent-magnet-type magnet generator 6 may be provided side by side. In this case, when the magnetic field generated by the AC-type magnet generator 6 is restricted, the restriction portion Can be easily supplemented by the magnet generator 6 of the permanent magnet type. Furthermore, since the ultrasonic generator 7 can also be easily installed in the processing cylinder 4, it is possible to easily compensate for the molecular motion activity at a required location, and the fluid processing device 1 adapted to a large engine or various combustion devices. Can be.

次に図4を参照し、第3実施形態に関わる流体処理装置1とその使用例について説明する。この例では第2実施形態と同様なα線放射体2と磁気発生部6及びエアーフィルタ17を有するエアークリーナ13において、該エアーフィルタ17の下流側で処理筒4の一部に、ミスト発生装置22のミスト供給管23を設けた流体処理装置1にしている。
上記ミスト発生装置22は、ミスト発生部24と該ミスト発生部24内にミスト材を供給する供給部26とからなり、ミスト発生部24で発生するミストを断熱部材で覆ったミスト供給管23から、処理筒4内に供給しエンジン12に供給することができる。
Next, with reference to FIG. 4, the fluid processing apparatus 1 in connection with 3rd Embodiment and its usage example are demonstrated. In this example, in the air cleaner 13 having the same α-ray radiator 2, the magnetic generator 6 and the air filter 17 as in the second embodiment, a mist generator is provided on a part of the processing cylinder 4 on the downstream side of the air filter 17. The fluid processing apparatus 1 is provided with 22 mist supply pipes 23.
The mist generating device 22 includes a mist generating section 24 and a supply section 26 that supplies a mist material into the mist generating section 24. From the mist supply pipe 23 that covers the mist generated in the mist generating section 24 with a heat insulating member. , Can be supplied into the processing cylinder 4 and supplied to the engine 12.

図示例のミスト発生装置22は、ミスト発生部24をミスト供給管23の基部を上部に設けるタンクとし、該タンクの底部をエンジン12の排気管25に取付けている。これにより供給部26から水を滴下状に供給し、高温になる排気管25による伝熱により蒸発させて、発生する水蒸気(ミスト)をミスト供給管23を介し処理筒4に供給することができる。
上記構成からなるミスト発生装置22を備えた流体処理装置1は、ミスト供給管23から供給されるミストを、上流側で前記実施形態と同様に処理された処理空気に合流し、混合させたミスト混合空気をエンジン12に供給することができる。
In the mist generator 22 of the illustrated example, the mist generator 24 is a tank in which the base of the mist supply pipe 23 is provided at the top, and the bottom of the tank is attached to the exhaust pipe 25 of the engine 12. As a result, water is supplied dropwise from the supply unit 26, evaporated by heat transfer through the exhaust pipe 25 that becomes high temperature, and the generated water vapor (mist) can be supplied to the processing cylinder 4 through the mist supply pipe 23. .
The fluid processing apparatus 1 including the mist generating device 22 having the above-described configuration is configured such that the mist supplied from the mist supply pipe 23 is merged with the processing air processed in the same manner as the above embodiment on the upstream side and mixed. Mixed air can be supplied to the engine 12.

このときα線が照射されるミストの水分子は、処理空気或いはα線の照射によって電離が起こり、水素(H)と酸素(O)になり可燃物に変化するため、燃焼増量材として燃料になり油と混合し燃焼を促進する。従って、ミスト発生装置22を備える流体処理装置1は、燃料の完全燃焼化を促進することができエンジンの燃料消費量を格段に低減させ、且つクリーンな排ガスにすることができる。この際ミストを供給方向規制手段或いは供給ガイド構造によってトルネード(渦流)状にして供給すると、ミスト混合空気を加速させて燃焼効率をより向上させることができる。   At this time, the water molecules of the mist irradiated with α-rays are ionized by irradiation with the processing air or α-rays and become hydrogen (H) and oxygen (O) and change into combustibles. Mix with garlic oil to promote combustion. Therefore, the fluid processing apparatus 1 including the mist generating device 22 can promote complete combustion of the fuel, can significantly reduce the fuel consumption of the engine, and can produce clean exhaust gas. At this time, if the mist is supplied in the form of a tornado (vortex) by the supply direction restricting means or the supply guide structure, the mist mixed air can be accelerated to further improve the combustion efficiency.

またα線放射体2は点線で示すように、ミスト供給管23の供給口の下流側に設けることができる。この場合にはミストに、α線を直接的に照射することができるので、水分子の電離をより促進させることができる。この際にネット状のα線放射体2は、処理筒4内の形状に合わせて空気の流通方向と交差させ、上流側と下流側を仕切るように内挿して設置すると、拡散する各ミスト粒に対しα線を効率よく照射することができる。
尚、ミスト供給管23をエアーフィルタ17の下流側に設けるものでは、大粒ミストによりエアーフィルタ17を濡らさない等の利点がある。
Further, the α-ray radiator 2 can be provided downstream of the supply port of the mist supply pipe 23 as indicated by a dotted line. In this case, since the mist can be directly irradiated with α rays, the ionization of water molecules can be further promoted. At this time, the net-like α-ray radiator 2 crosses the air flow direction according to the shape in the processing cylinder 4 and is installed so as to partition the upstream side and the downstream side. Can be efficiently irradiated with α rays.
The provision of the mist supply pipe 23 on the downstream side of the air filter 17 has an advantage that the air filter 17 is not wetted by the large mist.

また図示例のエンジン12は空気処理用の流体処理装置1に併せて、図9で後述するような燃料処理用の流体処理装置1を設けることにより、燃料油を予め流体処理することによって改質された処理燃料油をエンジン12に供給するようにしている。これによれば空気と燃料油を共に流体処理し改質するので、燃焼効率及び燃料消費量等の改善を相乗効果を有して改善することができる。   In addition, the engine 12 in the illustrated example is reformed by preliminarily treating the fuel oil by providing a fluid treatment device 1 for fuel treatment as will be described later with reference to FIG. 9 in addition to the fluid treatment device 1 for air treatment. The treated fuel oil is supplied to the engine 12. According to this, both air and fuel oil are fluid-processed and reformed, so that improvement in combustion efficiency, fuel consumption, and the like can be improved with a synergistic effect.

尚、上記ミスト発生装置22は、排気管25に限定することなくエンジン12で加熱される任意箇所に設けることができる。またミストの発生供給手段は、水蒸気発生型の他に例えば超音波発生素子を利用して液体をミスト化させる手段にすることもできる。
また上記のような流体処理装置1を、例えば排ガス処理や化学プラント等でガスや液体の処理に用いる場合には、ミスト発生装置22は水に限ることなく油や薬液をミスト化して供給することもできる。
The mist generating device 22 is not limited to the exhaust pipe 25 and can be provided at an arbitrary location heated by the engine 12. In addition to the water vapor generating type, the mist generating / supplying means may be a means for misting the liquid using, for example, an ultrasonic wave generating element.
Further, when the fluid processing apparatus 1 as described above is used for gas or liquid processing in, for example, exhaust gas processing or chemical plants, the mist generating device 22 supplies not only water but also mist or chemical liquid. You can also.

また流体処理装置1をトラックや船舶等大型エンジンのエアークリーナ13に使用する場合は、当該エアークリーナ13は一般に円筒ドラム状の処理筒4内に円筒状に形成されたエアーフィルタ17が内装されているところ、この構造を利用して例えばエアーフィルタ17と処理筒4との間に形成される空間部内に、ネット状のα線放射体2をエアーフィルタ17に巻き付けるように装着し、且つ処理筒4の外周に分子運動促進部3を設けることが望ましい。この際エアーフィルタ17はエンジン毎にその能力及び形状が定められているため、α線放射体2の設置数並びに形状や大きさは、エアークリーナ13の形状や濾過能力等に対応して設ける。   When the fluid processing apparatus 1 is used for an air cleaner 13 of a large engine such as a truck or a ship, the air cleaner 13 is generally provided with an air filter 17 formed in a cylindrical shape inside a cylindrical drum-shaped processing cylinder 4. However, using this structure, for example, a net-like α-ray radiator 2 is attached to be wound around the air filter 17 in a space formed between the air filter 17 and the processing cylinder 4, and the processing cylinder is used. It is desirable to provide the molecular motion promoting portion 3 on the outer periphery of 4. At this time, since the capacity and shape of the air filter 17 are determined for each engine, the number, shape, and size of the α-ray radiator 2 are provided corresponding to the shape of the air cleaner 13, the filtering ability, and the like.

次に図5,図6を参照し、第4実施形態に関わる流体処理装置1及びその使用例について説明する。この流体処理装置1は円筒状の処理筒4の内部に、上流側からエアーフィルタ17と永久磁石型の磁気発生部6と回転型のα線放射体2と永久磁石型の磁気発生部6とネット型のα線放射体2と保護用ネット24を順次配設している。
処理筒4は外周に所定の間隔を有する空間部(流体供給室)25を気密に形成する外部カバー26を設け、且つ流入口14側に流入管27を接続すると共に、流出口16側に流出管28を接続している。尚、エアーフィルタ17は、点線で示すように流入口14側に設置することもでき、また不要の場合は除去することができる。
Next, with reference to FIG. 5 and FIG. 6, a fluid processing apparatus 1 and an example of use thereof according to the fourth embodiment will be described. The fluid processing apparatus 1 includes an air filter 17, a permanent magnet type magnetic generator 6, a rotary α-ray radiator 2, and a permanent magnet type magnetic generator 6 from the upstream side inside a cylindrical processing cylinder 4. A net-type α-ray radiator 2 and a protective net 24 are sequentially arranged.
The processing cylinder 4 is provided with an outer cover 26 that hermetically forms a space (fluid supply chamber) 25 having a predetermined interval on the outer periphery, and an inflow pipe 27 is connected to the inflow port 14 side, and the outflow to the outflow port 16 side. A tube 28 is connected. The air filter 17 can also be installed on the inlet 14 side as indicated by the dotted line, and can be removed if unnecessary.

上記処理筒4には、α線放射体2が位置する外周に交流型の磁気発生部6を設置し、必要により超音波発生部7を所望箇所に設置し、また前記のものと同様なミスト発生装置22のミスト供給管23を設け、且つ複数の流体供給ノズル31を設けている。
流体供給室25は、外部に配置される流体供給装置30から送られる空気やガス又は各種の液体を、各流体供給ノズル31から処理筒4内の適所に供給することができる。
流体供給装置30は前記実施形態或いは本実施形態のものと同様な流体処理装置1と同様な構成を備え、当該流体処理装置1で処理した空気を処理筒4内に供給する。
In the processing cylinder 4, an AC type magnetic generator 6 is installed on the outer periphery where the α-ray radiator 2 is located, and an ultrasonic generator 7 is installed at a desired location if necessary. A mist supply pipe 23 of the generator 22 is provided, and a plurality of fluid supply nozzles 31 are provided.
The fluid supply chamber 25 can supply air, gas, or various liquids sent from the fluid supply device 30 disposed outside to an appropriate place in the processing cylinder 4 from each fluid supply nozzle 31.
The fluid supply device 30 has the same configuration as the fluid processing device 1 similar to that of the above-described embodiment or this embodiment, and supplies the air processed by the fluid processing device 1 into the processing cylinder 4.

α線放射体2は処理筒4内で流体の流通方向と交差する方向に作動させることにより、α線と空気分子との接触を促進する。即ち、実施形態のα線放射体2は図5,図6(B)に示すように複数のプロペラ形状をなすネット型の羽根体2aとしており、各羽根体2aは処理筒4の中心に沿って支持される回転軸32に放射方向に突設する構成にしている。 図示例の回転軸32は両端を、処理筒4内に横断方向に平行状に並べて固定される、複数の棒状永久磁石型の磁気発生部6に設けた軸支部33に回転可能に軸支している。   The α-ray radiator 2 is operated in a direction intersecting with the fluid flow direction in the processing cylinder 4 to promote contact between α-rays and air molecules. That is, the α-ray radiator 2 of the embodiment is a net-type blade body 2 a having a plurality of propeller shapes as shown in FIGS. 5 and 6B, and each blade body 2 a is along the center of the processing cylinder 4. The rotating shaft 32 supported in this manner is projected in the radial direction. The rotating shaft 32 in the illustrated example is rotatably supported by a shaft supporting portion 33 provided in a plurality of rod-shaped permanent magnet type magnetism generating portions 6 fixed in parallel in the transverse direction in the processing cylinder 4. ing.

また複数の羽根体2aは、回転軸32の軸心方向に所定間隔を有し且つ軸心回りに各羽根体2aの位相を変えて立設することにより、処理筒4の断面の全面に流通方向視で各羽根体2aを臨ませ、各α線放射体2に空気を効率よく接触させるようにしている。
従って、上記構成されるα線放射体2は、プロペラ形状の各羽根体2aが空気の流通力(風圧)を受ける合成力によって回転軸32を中心に回転するので、α線と空気分子との接触をより促進した流体処理をすることができ、且つ流通抵抗を大きくしないため羽根体2aの数を多くし流体処理能力を増大させることができる。
Further, the plurality of blade bodies 2a have a predetermined interval in the axial center direction of the rotating shaft 32 and are erected while changing the phase of each blade body 2a around the shaft center, whereby the plurality of blade bodies 2a are distributed over the entire cross section of the processing cylinder 4. Each blade body 2a is faced in a direction view so that air is efficiently brought into contact with each α-ray radiator 2.
Therefore, the α-ray radiator 2 configured as described above rotates around the rotation shaft 32 by the combined force of each propeller-shaped blade body 2a receiving the air flow force (wind pressure). It is possible to perform fluid treatment that promotes contact, and to increase the number of blades 2a and increase fluid treatment capacity because flow resistance is not increased.

尚、羽根体2aはネット状のものに限ることなく、捻り板状のプロペラ体にα線放射材をコーティングしたものにすることができる。また羽根体2aからなるα線放射体2は、回転軸32を回転駆動装置によって強制的に回転させると、流体を攪拌しながら流通方向に加速させるので、流通抵抗を軽減した流体処理をすることができる。また回転するα線放射体2は、付着しようとする塵埃や水滴等を遠心力によって付着防止するので、α線の照射作用を長期保持し清掃等煩雑なメンテナンス作業を省力化することができる。   The blade body 2a is not limited to a net-like one, but can be a twisted plate-like propeller body coated with an α-ray radiation material. Further, the α-ray radiator 2 composed of the blades 2a accelerates the fluid in the flow direction while stirring the fluid when the rotary shaft 32 is forcibly rotated by the rotation drive device, so that the fluid treatment with reduced flow resistance is performed. Can do. Further, the rotating α-ray radiator 2 prevents adhesion of dust or water droplets to be attached by centrifugal force, so that the irradiation action of α-rays can be maintained for a long time and laborious maintenance work such as cleaning can be saved.

またα線放射体2は前記羽根体2aの形状に限定することなく、例えばα線放射材を備えた螺旋形状にすることもでき、この場合には空気を流通させる間に螺旋面に沿って案内するので、α線と空気分子との接触をより促進すると共に空気に渦流を生じさせて流通することができる。また螺旋体からなるα線放射体2を回転駆動する場合には、固定支持した場合より流通抵抗を低減できると共に、下流側に向け渦流の発生を付勢し流通加速させることができる。また回転軸32は磁気発生部6の構成部材にすることができる。さらにα線放射体2は上記のような回転作動に限ることなく、処理筒4内で任意方向に往復作動や振動させる手段によっても、α線を流体分子に効率よく接触させて流体処理をすることができる。 In addition, the α-ray radiator 2 is not limited to the shape of the blade body 2a, but may be a spiral shape provided with, for example, an α-ray radiator, and in this case, along the spiral surface while air is circulated. Since the guide is used, the contact between the α-rays and the air molecules can be further promoted, and the air can be circulated by generating a vortex. Further, when the α-ray radiator 2 formed of a helical body is rotationally driven, the flow resistance can be reduced as compared with the case where the α-ray radiator 2 is fixedly supported, and the generation of vortex can be urged toward the downstream side to accelerate the flow. The rotating shaft 32 can be a constituent member of the magnetism generator 6. Further, the α-ray radiator 2 is not limited to the rotational operation as described above, and the fluid treatment is performed by efficiently contacting the α-rays with the fluid molecules by means of reciprocating operation or vibration in an arbitrary direction within the processing cylinder 4. be able to.

以上のように構成される流体処理装置1は、流出口16側からエアーフィルタ17を介して供給される空気を、最上流側の永久磁石型の磁気発生部6が分子運動を活性化させ、これを回転するα線放射体2から放射されるα線に接触させて一次流体処理する。次いで一次流体処理された空気は、交流型の磁気発生部6による磁界及び超音波発生部7による超音波を受けて、前記した分子運動活性環境下で二次流体処理され、さらに最下流側に設置されるネット状のα線放射体2を通過するとき三次流体処理され、流出口16から流出管28へ移送される。またミスト供給管23から必要により供給されるミストも、空気と混合しながら同様に効率よく流体処理される。   In the fluid processing apparatus 1 configured as described above, air supplied from the outlet 16 side via the air filter 17 is activated by the permanent magnet type magnetism generating unit 6 on the most upstream side, and the molecular motion is activated. This is brought into contact with the α-rays emitted from the rotating α-ray radiator 2 to perform the primary fluid treatment. Next, the air subjected to the primary fluid treatment is subjected to the secondary fluid treatment in the above-described molecular motion active environment by receiving the magnetic field from the AC type magnetic generator 6 and the ultrasonic waves from the ultrasonic generator 7, and further to the most downstream side. When passing through the installed net-like α-ray radiator 2, the tertiary fluid is processed and transferred from the outlet 16 to the outlet pipe 28. The mist supplied from the mist supply pipe 23 as needed is also efficiently fluid-treated while being mixed with air.

これにより空気とミストは、同一の処理筒4内で共に能率よく流体処理することができ、均質な混合状態で図示しないエンジンや燃焼炉,化学合成装置等の各種利用装置に供給することができる。
また実施形態の流体処理装置1は処理筒4内の適所に、流体供給ノズル31を介して空気を補給したり、流体供給装置30で流体処理された処理空気やガスを簡単に補充することができる。従って、上記各種利用装置で必要とするガスや液体を、処理筒4に同時的に供給し空気処理に併せて能率よく流体処理することができる。
As a result, both the air and the mist can be efficiently processed in the same processing cylinder 4 and supplied to various utilization devices such as an engine, a combustion furnace, and a chemical synthesis device (not shown) in a homogeneous mixed state. .
In addition, the fluid processing apparatus 1 of the embodiment can replenish air at a proper position in the processing cylinder 4 via the fluid supply nozzle 31 or easily replenish the processing air or gas processed by the fluid supply apparatus 30. it can. Therefore, the gas and liquid required by the various utilization devices can be simultaneously supplied to the processing cylinder 4 to efficiently perform the fluid processing together with the air processing.

また流体処理装置1は、各種の流体を複合的に供給可能として同時的に混合し流体処理をするので、処理流体を燃焼用に限ることなく、空気浄化装置や排ガス処理装置並びに、α線により複数分子を個別分子に電離して行なう化学合成プラント等の製造装置や、その前処理用装置等として用途を拡大することができる等の特徴がある。尚、上記のような各種利用装置において流体処理装置1は、流体を加熱する過熱部や流体を冷却する冷却部を必要により所望箇所に簡単に付設できるため、多様な流体処理を高性能且つ廉価に行うことができる。 In addition, since the fluid processing apparatus 1 performs fluid processing by simultaneously mixing various fluids so that a variety of fluids can be supplied, the processing fluid is not limited to combustion, but can be obtained by using an air purification device, an exhaust gas processing device, and alpha rays. There is a feature that the use can be expanded as a manufacturing apparatus such as a chemical synthesis plant that performs ionization of a plurality of molecules into individual molecules, a pretreatment apparatus, and the like. In the various utilization devices as described above, the fluid processing apparatus 1 can easily attach a superheated part for heating the fluid and a cooling part for cooling the fluid to a desired place if necessary, so that various fluid treatments can be performed with high performance and low cost. Can be done.

次に図7,図8を参照し、第5実施形態に関わる流体処理装置1及びその使用例について説明する。この実施形態に関わる流体処理装置1は、例えば油,石炭,木材等の各種燃料を燃焼させる燃焼装置35において、その排ガスを排出する排気路(煙突等)に設置する例を示す。この例によれば、排ガスをα線放射体2によって流体処理し、有害成分の無害化又は低無害化を可能にすることができると共に、高性能且つ廉価に構成することができる。   Next, with reference to FIG. 7, FIG. 8, the fluid processing apparatus 1 concerning 5th Embodiment and its usage example are demonstrated. The fluid processing apparatus 1 according to this embodiment shows an example in which the combustion apparatus 35 that burns various fuels such as oil, coal, and wood is installed in an exhaust path (such as a chimney) that discharges the exhaust gas. According to this example, the exhaust gas can be fluid-processed by the α-ray radiator 2 to make harmful components harmless or to be harmless, and it can be configured with high performance and low cost.

図示例の排ガス処理装置1は煙突の中途に排ガスの流通方向の上流側から、バーナ装置36で発生させた高温エネルギ(火焔や高温空気等)を煙突内に供給する燃焼管37と、前記のものと同様な流体供給装置30となる上流側流体処理装置1aの流体供給ノズル31とを煙突内に臨設し、これらの最下流側に下流側流体処理装置1bを設けている。また煙突の排ガス口には雨水の浸入を防止する笠状のカバー28aを設け、該カバー28aと排ガス口との間に筒状に形成したネット型のα線放射体2を付設している。   The exhaust gas treatment apparatus 1 in the illustrated example includes a combustion pipe 37 that supplies high-temperature energy (fire flame, high-temperature air, etc.) generated by the burner device 36 into the chimney from the upstream side in the flow direction of the exhaust gas in the middle of the chimney, A fluid supply nozzle 31 of an upstream fluid treatment device 1a, which is a fluid supply device 30 similar to the above, is provided in the chimney, and the downstream fluid treatment device 1b is provided on the most downstream side thereof. Further, a cap-shaped cover 28a for preventing rainwater from entering is provided at the exhaust port of the chimney, and a net-type α-ray radiator 2 formed in a cylindrical shape is attached between the cover 28a and the exhaust port.

この排ガス処理装置1のバーナ装置36は、バーナ部で発生させる火力を燃焼管37を介して煙突内に供給するため、排ガス中のタール分を燃やしてタール処理する排ガスの一次排ガス処理を行なう。これによりバーナ装置36は、下流側に設置される流体処理装置1bによる排ガス処理(流体処理)の処理負荷を軽減しつつタール処理を効率よく行なわせ、且つタール付着による装置の汚損や処理負荷の増大等を防止する。
この際に流入管27内に渦流案内壁38を形成し燃焼管37から供給する火焔を渦巻き状に案内させるようにすると、燃焼ガスを下流側に向けて竜巻状に発生させることができ、タールの燃焼をより促進しタール処理効率をより向上させて、排気をよりスムーズにすることができる。
The burner device 36 of the exhaust gas treatment device 1 performs a primary exhaust gas treatment of the exhaust gas that burns the tar content in the exhaust gas and performs the tar treatment in order to supply the thermal power generated in the burner portion into the chimney through the combustion pipe 37. As a result, the burner device 36 efficiently performs the tar treatment while reducing the treatment load of the exhaust gas treatment (fluid treatment) by the fluid treatment device 1b installed on the downstream side. Preventing an increase or the like.
At this time, if the vortex guide wall 38 is formed in the inflow pipe 27 and the flame supplied from the combustion pipe 37 is guided in a spiral shape, the combustion gas can be generated in a tornado shape toward the downstream side. The combustion can be further promoted, the tar treatment efficiency can be further improved, and the exhaust can be made smoother.

流体供給装置30は上流側流体処理装置1aによって、予めα線放射体2によって空気処理をした処理空気を、上記一次排ガス処理が行なわれた排ガスに対し、流体供給ノズル31から供給し二次排ガス処理を行なうようにしている。
即ち、上記流体供給装置30は、ブロア等で構成される空気供給器39によって供給される空気を、図8で示す構成の上流側流体処理装置1aによって前記実施形態のものと同様に流体処理し、イオン活性させた処理空気を煙突内の供給部で排ガスに供給し混合させることができる。
これにより排ガスは処理空気によって強力なイオン化作用を受けるので、イオン化している排ガス中の、例えば一酸化炭素(CO)に対してイオン化された酸素(O)がこれを強力に酸化し、二酸化炭素(CO 2 に変えて無害化する。また同様に他の有害成分も酸化又は還元されるため無害化されて下流側に送られる。
The fluid supply device 30 supplies the treated air that has been previously treated with the α-ray radiator 2 by the upstream fluid treatment device 1a from the fluid supply nozzle 31 to the exhaust gas that has been subjected to the above-described primary exhaust gas treatment. Processing is performed.
That is, the fluid supply device 30 processes the air supplied by the air supply device 39 constituted by a blower or the like by the upstream fluid treatment device 1a having the configuration shown in FIG. Then, the ion-activated process air can be supplied and mixed with the exhaust gas at the supply section in the chimney.
As a result, the exhaust gas is strongly ionized by the processing air, so that oxygen (O) ionized with respect to, for example, carbon monoxide (CO) in the ionized exhaust gas strongly oxidizes this, and carbon dioxide Change to (CO 2 ) and detoxify. Similarly, other harmful components are oxidized or reduced so that they are rendered harmless and sent downstream.

図示例の上流側流体処理装置1aは、ネット型のα線放射体2を縦筒状に形成し、処理筒4内でモータ41の回転軸42によって回転可能に支持される板状の回転部材43に着脱可能に取付け、且つ処理筒4の外周に交流型の磁気発生部6を設けた構成にしている。
これにより流体処理装置1は、回動するα線放射体2に流入口14から供給される空気を通過させて流出口16から送り出す際に、図5の第4実施形態で示したものと同様に処理筒4内を磁気発生部6によって空気分子の運動活性環境となし、この処理筒4内で筒状のα線放射体2を回転作動させるので、空気は攪拌されながらα線放射体2を複数段に横断通過することになり、空気分子とα線との接触が一層促進されて流体処理される。
The upstream side fluid processing apparatus 1a of the illustrated example is a plate-shaped rotating member in which a net-type α-ray radiator 2 is formed in a vertical cylinder shape and is rotatably supported by a rotating shaft 42 of a motor 41 in the processing cylinder 4. 43 is detachably attached to the outer periphery of the processing cylinder 4 and an AC type magnetism generating section 6 is provided.
Thereby, when the fluid processing apparatus 1 passes the air supplied from the inflow port 14 through the rotating α-ray radiator 2 and sends it out from the outflow port 16, it is the same as that shown in the fourth embodiment of FIG. Further, the inside of the processing cylinder 4 is made into a kinetic active environment for air molecules by the magnetism generator 6, and the cylindrical α-ray radiator 2 is rotated in the processing cylinder 4, so that the α-ray radiator 2 is stirred while air is being stirred. Are crossed in a plurality of stages, and the contact between the air molecules and the α-rays is further promoted and the fluid is processed.

また図8に点線で示すように、回転する筒状のα線放射体2内にネット型のα線放射体2を放射状に設けると、回転による空気の攪拌をより促進しながら空気分子とα線との接触が一層促進され処理漏れを防止した流体処理を行うことができる。
尚、この上流側流体処理装置1aには、側方に設置される洗浄用ノズル44から洗浄液を回転する筒状のα線放射体2に噴射させて自動的に洗浄すると共に、洗浄済みの洗浄液を排液口46から排出するメンテナンス構造を設けている。
Further, as shown by a dotted line in FIG. 8, when the net-type α-ray radiator 2 is provided radially in the rotating cylindrical α-ray radiator 2, air molecules and α It is possible to perform fluid processing that further promotes contact with the wire and prevents processing leakage.
The upstream fluid processing apparatus 1a automatically cleans the cleaning fluid by injecting the cleaning fluid from the cleaning nozzle 44 installed on the side to the rotating cylindrical α-ray radiator 2 and cleaning the cleaned fluid. A maintenance structure for discharging the liquid from the drainage port 46 is provided.

次に煙突の最下流側に設置されて排ガスの三次排ガス処理を行なう第5実施形態に関わる下流側流体処理装置1bについて説明する。この下流側流体処理装置1bは処理筒4を煙突の直径より大きなドラム状に形成しており、その流入口14側に下流側の煙突を形成する流入管27を接続し、流出口16側に上流側の煙突を形成する流出管28を接続している。そして、処理筒4は内央部に流入口14に対面させて下向き皿状に形成したネット型のα線放射体2を設け、このα線放射体2の中心部上方に超音波発生部7を下向きに設けている。また処理筒4の内周には、ドーナツ状に形成したネット型のα線放射体2を、上記皿状のα線放射体2の側方上方に迂回状の流通間隔を形成して設けている。また処理筒4の内周には、板状体にα線放射材をコーティングしたパネル型のα線放射体2を貼着している。   Next, the downstream side fluid treatment apparatus 1b according to the fifth embodiment that is installed on the most downstream side of the chimney and performs the tertiary exhaust gas treatment of the exhaust gas will be described. The downstream side fluid processing apparatus 1b is configured such that the processing cylinder 4 is formed in a drum shape larger than the diameter of the chimney, and an inflow pipe 27 that forms a downstream chimney is connected to the inlet 14 side, and the outlet 16 side is connected. An outflow pipe 28 forming an upstream chimney is connected. The processing cylinder 4 is provided with a net-type α-ray radiator 2 formed in a downward dish shape facing the inflow port 14 in the central portion, and the ultrasonic generator 7 above the central portion of the α-ray radiator 2. Is provided downward. Further, a net-shaped α-ray radiator 2 formed in a donut shape is provided on the inner periphery of the processing cylinder 4 so as to form a detour-like flow interval above the side of the dish-shaped α-ray radiator 2. Yes. Further, a panel type α-ray radiator 2 in which a plate-like body is coated with an α-ray radiation material is attached to the inner periphery of the processing cylinder 4.

また前記超音波発生部7とは別の分子運動促進部3としての交流型の磁気発生部6は、処理筒4の外周と流入管27の終端部の外周に設けている。さらに前記皿型のα線放射体2の下面には、永久磁石型のα線放射体2を必要により設置するようにしている。
上記構成による下流側流体処理装置1bは、流入口14から供給される排ガスを分子運動促進部3によって処理筒4内で分子運動を活性化させる。この分子運動を活性化させる環境下において、先ず下向き皿状のα線放射体2によって流体処理したのち、外周部分から流出する排ガスを上方のα線放射体2によって漏れなく流体処理し、パネル型のα線放射体2が処理筒内壁に沿う排ガスを処理するので、三次排ガス処理の完全化とスムーズな排出を行うことができる。
In addition, an alternating-current magnetism generating unit 6 as a molecular motion promoting unit 3 different from the ultrasonic wave generating unit 7 is provided on the outer periphery of the processing cylinder 4 and the outer periphery of the end portion of the inflow pipe 27. Further, a permanent magnet type α-ray radiator 2 is installed on the lower surface of the dish-type α-ray radiator 2 as necessary.
The downstream fluid processing apparatus 1b having the above configuration activates the molecular motion of the exhaust gas supplied from the inlet 14 in the processing cylinder 4 by the molecular motion promoting unit 3. In an environment in which this molecular motion is activated, first, a fluid treatment is performed by the downward dish-shaped α-ray radiator 2, and then exhaust gas flowing out from the outer peripheral portion is fluid-treated by the upper α-ray radiator 2 without leaking, and a panel type Since the α-ray radiator 2 processes the exhaust gas along the inner wall of the processing cylinder, it is possible to complete the tertiary exhaust gas treatment and perform smooth discharge.

以上のように構成される流体処理装置1は、タールを除去する一次排ガス処理と、α線放射体2により流体処理された処理空気を排ガスに供給混合する二次排ガス処理(排ガス処理空気改質処理)と、排ガスを処理筒4内のα線放射体2を通過させてα線を照射する三次排ガス処理等を、煙突内で順次一連に行なうことができるため、大量の排ガスであっても能率よく流体処理しクリーンに排出することができる。   The fluid treatment device 1 configured as described above includes a primary exhaust gas treatment for removing tar, and a secondary exhaust gas treatment (exhaust gas treatment air reforming) in which treated air fluid-treated by the α-ray radiator 2 is supplied to and mixed with the exhaust gas. Treatment) and tertiary exhaust gas treatment in which exhaust gas is passed through the α-ray radiator 2 in the processing cylinder 4 and irradiated with α-rays can be sequentially performed in the chimney. The fluid can be efficiently processed and discharged cleanly.

上記流体処理において上流側流体処理装置1aを備えた流体供給装置30は、下流側に設置される径大な処理筒4内に処理空気を強制的に供給するので、容量の大きい処理筒4内で排ガスと十分に混合させて排ガス処理をより確実に促進することができる。また処理筒4内のα線放射体2及び内壁等の汚損を抑制することができ、装置の簡潔化を図ることができると共にメンテナンス作業を省力化することができる。
この実施形態では上流側流体処理装置1aで流体処理した処理流体を、下流側流体処理装置1bの枠体4を流通する流体に供給しこの供給部で混合させて流体処理をするので、その処理筒4内へのα線放射体2の設置を不要にすることもでき、α線放射体2を汚損させることなく、装置の簡潔化とメンテナンス作業の省力化を図ることができる。
In the fluid processing, the fluid supply device 30 including the upstream fluid processing device 1a forcibly supplies the processing air into the large diameter processing tube 4 installed on the downstream side. Thus, exhaust gas treatment can be more reliably promoted by sufficiently mixing with exhaust gas. Further, the contamination of the α-ray radiator 2 and the inner wall in the processing cylinder 4 can be suppressed, the apparatus can be simplified and the maintenance work can be saved.
In this embodiment, the processing fluid processed by the upstream fluid processing device 1a is supplied to the fluid flowing through the frame 4 of the downstream fluid processing device 1b and mixed in this supply section to perform fluid processing. The installation of the α-ray radiator 2 in the cylinder 4 can be made unnecessary, and the apparatus can be simplified and the maintenance work can be saved without contaminating the α-ray radiator 2.

尚、処理筒4のα線放射体2及び磁気発生部6等は、流体供給装置30による排ガス処理が十分な場合には、その設置を省略することができる。
さらに排ガス処理装置1aは、必要によりミスト供給管23を設けると、前記実施形態のものと同様なミスト処理を付加的に行なうことができ、排ガスの状況に応じ清浄化をより促進することができる。また処理筒4に前記上流側流体処理装置1aのもの同様な洗浄装置を設け、図示しない洗浄用ノズルから洗浄液を噴射させるようにすると、メンテナンス作業を省力化することができる。
また上記流体処理装置1は排ガス処理の他、食材加工或いは畜舎や工場等の室内空気の脱臭や清浄化並びに酸素量の増大化を効果的に行うことができる。この場合にはバーナ装置36や下流側流体処理装置1bの設置を省略した筒部内に、室外の空気を取り入れて室内に供給すると共に、上流側流体処理装置1aに室内の空気を供給することが望ましい。
In addition, when the exhaust gas treatment by the fluid supply device 30 is sufficient, the α-ray radiator 2 and the magnetism generating unit 6 of the treatment cylinder 4 can be omitted.
Furthermore, when the exhaust gas treatment apparatus 1a is provided with a mist supply pipe 23 as necessary, it is possible to additionally perform a mist treatment similar to that of the above-described embodiment, and it is possible to further promote cleaning according to the situation of the exhaust gas. . If the processing cylinder 4 is provided with a cleaning device similar to that of the upstream fluid processing device 1a and the cleaning liquid is sprayed from a cleaning nozzle (not shown), maintenance work can be saved.
In addition to the exhaust gas treatment, the fluid treatment apparatus 1 can effectively perform deodorization and purification of indoor air such as food processing or livestock barns and factories, and increase in the amount of oxygen. In this case, outside air is taken in and supplied to the inside of the cylindrical portion in which the installation of the burner device 36 and the downstream fluid processing device 1b is omitted, and the indoor air is supplied to the upstream fluid processing device 1a. desirable.

次に図9,図10を参照し、第6実施形態に関わる流体処理装置1とその使用例について説明する。この流体処理装置1は図4で示す第3実施形態においてエンジン12の燃料配管系12bに前記したように設けると、燃料改質用の液体処理装置として利用することができる。この例では処理筒4を断面円形状のパイプとし、内装させるα線放射体2は前記特許文献1に示されるものと同様の、表面にα線放射材をコーティングした多数の粒状体(以下α線粒状放射体と言う)2aによって構成している。上記構成による流体処理装置1を通過する流体のうち、油類は多数のα線粒状放射体2aによって強力な電離作用を受けて活性化,劣化防止等を実現することができ、燃料油の場合は炭素分子結合の切断による小分子化及びラジカル化によって燃焼効率を改善することができ、また排ガスをクリーンにすることができる。   Next, with reference to FIG. 9, FIG. 10, the fluid processing apparatus 1 concerning 6th Embodiment and its usage example are demonstrated. When the fluid processing apparatus 1 is provided as described above in the fuel piping system 12b of the engine 12 in the third embodiment shown in FIG. 4, it can be used as a liquid processing apparatus for fuel reforming. In this example, the processing cylinder 4 is a pipe having a circular cross section, and the α-ray radiator 2 to be installed is the same as that shown in the above-mentioned Patent Document 1, with a large number of granular bodies (hereinafter referred to as α 2a). Among the fluids passing through the fluid processing apparatus 1 having the above-described configuration, oils can be activated and prevented from being deteriorated by receiving a strong ionization action by a large number of α-ray granular radiators 2a. Can improve combustion efficiency by making small molecules and radicals by breaking carbon molecular bonds, and can also clean exhaust gas.

図示例の流体処理装置1は、処理筒4内に前記α線粒状放射体2aと、処理筒4内で所定量のα線粒状放射体2aを仕切り保持する円盤ネット状のセパレータ47を挿入した状態で、流入口14と流出口16に複数の流通孔48aを有する蓋48を設けた構成にしている。また分子運動促進部3は、交流型の磁気発生部6を処理筒4の外周で少なくとも下流側位置に設けた構成にしている。
そして、右側の蓋48に継ぎ手49を介し燃料配管である流入管27を、また左側の蓋48に継ぎ手49を介し送出管28を接続し、図4で示す流体処理装置1を備えた燃料配管系を構成する。
In the illustrated fluid processing apparatus 1, the α-ray granular radiator 2 a and a disk net separator 47 that partitions and holds a predetermined amount of the α-ray granular radiator 2 a in the processing cylinder 4 are inserted into the processing cylinder 4. In the state, a lid 48 having a plurality of flow holes 48 a is provided at the inlet 14 and the outlet 16. In addition, the molecular motion promoting unit 3 has a configuration in which an AC type magnetism generating unit 6 is provided at least at a downstream position on the outer periphery of the processing cylinder 4.
The inflow pipe 27, which is a fuel pipe, is connected to the right lid 48 via a joint 49, and the delivery pipe 28 is connected to the left lid 48 via a joint 49. The fuel pipe including the fluid processing apparatus 1 shown in FIG. Configure the system.

上記構成において複数のセパレータ47は、棒状の芯材51に所定間隔を有して中心部を支持することにより、処理筒4内に複数の処理室を区画形成している。また各処理室内にはスペースに応じた所定数のα線粒状放射体2aを入れることにより、各α線粒状放射体2aが自由に移動する移動空間を形成し、目詰まりの発生を防止し流体抵抗の増大を抑制している。また燃料油が下流側に流動するとき、各処理室内のα線粒状放射体2aは、各セパレータ47に堰き止められて移動可能に集積し、且つ隣接する処理室側への移動を規制される。   In the above configuration, the plurality of separators 47 define a plurality of processing chambers in the processing cylinder 4 by supporting the central portion of the rod-shaped core material 51 with a predetermined interval. Further, by inserting a predetermined number of α-ray granular radiators 2a corresponding to the space in each processing chamber, a moving space in which each α-ray granular radiator 2a moves freely is formed, and clogging is prevented from occurring. Increase in resistance is suppressed. Further, when the fuel oil flows downstream, the α-ray granular radiators 2a in the processing chambers are dammed by the separators 47 and are movably accumulated, and are restricted from moving toward the adjacent processing chambers. .

そして、流体の流通に基づきα線粒状放射体2aを下流側に移動集積させた状態で、上流側のセパレータ47と蓋48との間に空間部(スペース)を確実に形成するので、処理筒4内にセパレータ47を設けないで多量のα線粒状放射体2aを入れた場合に比べ、燃料油の流通抵抗を低減することができる。従って、処理筒4を長大に形成しα線粒状放射体2aを多量に入れた場合でも、燃料油の流通を妨げることなく流体処理性能を向上させることができる。   Then, a space (space) is reliably formed between the upstream separator 47 and the lid 48 in a state where the α-ray granular radiator 2a is moved and accumulated on the downstream side based on the flow of the fluid. The flow resistance of the fuel oil can be reduced as compared with the case where a large amount of the α-ray granular radiator 2a is put in without providing the separator 47 in 4. Therefore, even when the processing cylinder 4 is formed long and a large amount of the α-ray granular radiator 2a is inserted, the fluid processing performance can be improved without hindering the flow of the fuel oil.

また各α線粒状放射体2aは各処理室内で燃料油の流れや振動による移動運動を自由にするので、流通する燃料油は各α線粒状放射体2aとの表面接触を十分となしα線による流体処理を促進する。さらに磁気発生部6による燃料油の分子運動を活性化させる環境下において、燃料油処理がより促進されるので、燃料油の燃焼効率を向上させると共に、排ガス中の有害物をより低減することができる。   Further, since each α-ray granular radiator 2a freely moves in each processing chamber due to the flow and vibration of the fuel oil, the circulating fuel oil has sufficient surface contact with each α-ray granular radiator 2a. Promote fluid treatment by Furthermore, since the fuel oil treatment is further promoted in an environment in which the molecular motion of the fuel oil by the magnetic generator 6 is activated, it is possible to improve the combustion efficiency of the fuel oil and further reduce harmful substances in the exhaust gas. it can.

また上記流体処理装置1には処理筒4の外周に、前記したものと同様の流体供給ノズル31を設け、処理筒4内の適所に空気等を簡単に供給することができる。この流体供給ノズル31は上流側のセパレータ47の下流側に近接させて設けることが望ましく、この場合には処理室の上流側に空気を供給することができるので、下流側に集積状態になるα線粒状放射体2aに支障されることなく、流体処理された処理空気を燃料油に混合することができる。   Further, the fluid processing apparatus 1 is provided with a fluid supply nozzle 31 similar to that described above on the outer periphery of the processing cylinder 4, so that air or the like can be easily supplied to an appropriate place in the processing cylinder 4. The fluid supply nozzle 31 is desirably provided close to the downstream side of the upstream separator 47. In this case, air can be supplied to the upstream side of the processing chamber, so that α is integrated on the downstream side. Without being hindered by the linear radiator 2a, it is possible to mix the treated air that has been fluid-treated with the fuel oil.

燃料油に処理空気を混合した空気混合燃料油は、下流側でα線放射体2が集積することによって形成される複雑に屈折した小隙間を通るとき、複数のα線粒状放射体2aに表面接触しつつα線照射による流体処理が繰り返されるため、より微細な気泡(ナノバブル)を含有する改質燃料油にすることができる。
このように処理された改質燃料油はエンジン12に供給すると、より燃焼効率を上げると共に、排ガス中の有害物の低減並びに燃料の消費量も低減することができる。
The air-mixed fuel oil in which the processing air is mixed with the fuel oil has a surface on the plurality of α-ray granular radiators 2a when passing through a complicatedly refracted small gap formed by accumulation of the α-ray radiators 2 on the downstream side. Since fluid treatment by α-ray irradiation is repeated while in contact, it is possible to obtain a reformed fuel oil containing finer bubbles (nanobubbles).
When the reformed fuel oil treated in this way is supplied to the engine 12, the combustion efficiency can be further increased, and harmful substances in the exhaust gas and fuel consumption can be reduced.

尚、前記芯材51は永久磁石型の磁気発生部6を兼用する構成にすることができ、この場合には処理筒4の中心部の磁力を簡単に補うことができるので、交流型の磁気発生部6の小型化を図ることができる。また交流型の磁気発生部6を用いない場合には、芯材51又はセパレータ47を永久磁石型の磁気発生部6にすると、より簡潔で廉価な構成によって流体処理をすることができる。またα線放射体2の下流側の中央部位には、例えば流通を部分的に規制する流通調節板52を芯材51に設けるか、セパレータ47の中央部分の流通孔48aを小径にすると、流体を局部的な流出を抑制しα線放射体2に均質的に接触させることができる。 The core material 51 can also be configured to be used as the permanent magnet type magnetism generator 6. In this case, the magnetic force at the center of the processing cylinder 4 can be easily supplemented. The generation unit 6 can be downsized. When the AC magnetic generator 6 is not used, if the core 51 or the separator 47 is the permanent magnet generator 6, fluid processing can be performed with a simpler and cheaper configuration. Further, in the central portion on the downstream side of the α-ray radiator 2, for example, when a flow regulating plate 52 that partially regulates the flow is provided in the core material 51 or the flow hole 48 a in the central portion of the separator 47 is made small in diameter, Can be made to contact the α-ray radiator 2 uniformly while suppressing local outflow.

また図示例の流体処理装置1は、α線放射体2を多数の粒状体からなるα線粒状放射体2aにしたが、図10で示すように前記した各実施形態で示されるものと同様のネット型又はシート型(板状体)のα線放射体2にすることができる。
即ち、図10(A)に示すα線放射体2は、表面にα線放射材を備えたシート型のものを渦巻状に丸めることにより、処理筒4の断面方向に所定の流通間隔を形成し挿入している。またα線放射体2はネット型のものを所定長さで大小複数の円筒状に形成し、処理筒4の断面方向に所定の流通間隔を有して互いに挿入保持させることもできる。
Further, in the fluid processing apparatus 1 of the illustrated example, the α-ray radiator 2 is an α-ray granular radiator 2a made up of a number of granular materials, but as shown in FIG. The net-type or sheet-type (plate-like) α-ray radiator 2 can be used.
That is, the α-ray radiator 2 shown in FIG. 10 (A) forms a predetermined distribution interval in the cross-sectional direction of the processing cylinder 4 by rolling a sheet-type one having an α-ray emitting material on the surface into a spiral shape. Inserted. Further, the α-ray radiator 2 may be a net-type having a predetermined length and formed into a plurality of large and small cylindrical shapes, and may be inserted and held together with a predetermined flow interval in the cross-sectional direction of the processing tube 4.

図10(B)に示すα線放射体2は、上記のものと同様のネット型又はシート型のものによって、流通方向に沿う所定長さの単位処理室を、断面方向に複数形成することにより流通方向視で蜂の巣状に設けている。これによれば径大な処理筒4内でも単位処理室毎に区画した状態で流体処理を能率よく行なうことができる。また単位処理室は板状体に流通方向の捻りや傾斜又は湾曲面を加えると、単位処理室内を流通する流体をα線放射材に直接的に接触させることができると共に、単位処理室長さを短くして装置の小型化並びにα線放射材の節約を図ることができる。   The α-ray radiator 2 shown in FIG. 10 (B) is formed by forming a plurality of unit processing chambers having a predetermined length along the flow direction in the cross-sectional direction by using the same net type or sheet type as described above. It is provided in a honeycomb shape when viewed from the distribution direction. According to this, fluid processing can be efficiently performed even in the large-diameter processing cylinder 4 in a state of being divided for each unit processing chamber. In addition, when the unit processing chamber is added to the plate-like body by twisting, tilting or curved surfaces in the flow direction, the fluid flowing through the unit processing chamber can be brought into direct contact with the α-ray radiation material, and the length of the unit processing chamber can be increased. By shortening, it is possible to reduce the size of the apparatus and save the α-ray radiation material.

さらに板状体に流通方向に交差する傾斜や捻りを有する各単位処理室を、流通方向に互いに逆向きに配設すると、最下流側から流体に渦流を形成し送り出すことができる。
また上記のように構成される処理筒4は、複数のものを図示しない連結管を介し簡単に連結することができると共に、流体を長い距離にわたり目的に応じた流体処理をすることができる。従って、各種利用装置が必要とする流体処理性能を生産性の高い構成によって廉価に製作することができる。また上記連結管には必要による前記ミスト供給管23や流体供給ノズル31,分子運動促進部3等の付加構造の設置を容易にすることができる。
Furthermore, if the unit processing chambers having inclinations and twists intersecting the flow direction in the plate-like body are arranged in the flow direction opposite to each other, a vortex can be formed and sent out from the most downstream side.
In addition, a plurality of processing cylinders 4 configured as described above can be easily connected via a connecting pipe (not shown), and a fluid can be processed according to the purpose over a long distance. Therefore, the fluid processing performance required by various utilization devices can be manufactured at a low cost with a highly productive configuration. In addition, it is possible to easily install additional structures such as the mist supply pipe 23, the fluid supply nozzle 31, the molecular motion promoting portion 3 and the like in the connection pipe.

さらに上記のように流体を長い距離にわたって処理する場合には、図示しない長いパイプ又はホースを処理筒4とし、その内部に既述のα線粒状放射体2a或いは各種のα線放射体2を入れて処理することができる。この場合には長い処理筒4はいか様な形状にも長さと径を選択し曲げ形成することができるので、各種の目的に応じた流体処理及び利用装置への設置を行ない易くすることができる。また処理筒4は例えば可撓性を有するホースにしてα線粒状放射体2aを入れると、円形断面又は任意形状断面の柱部材に対し螺旋状に巻き付けることが容易となり、流体を長い螺旋経路に沿って移動させるので各種の気体に対しても効率のよい流体処理を促進することができる。また流体処理装置1の構造を省スペースにできると共に、廉価に製作することができる等の利点がある。   Further, when the fluid is processed over a long distance as described above, a long pipe or hose (not shown) is used as the processing cylinder 4, and the aforementioned α-ray granular radiator 2a or various α-ray radiators 2 are placed therein. Can be processed. In this case, the long processing cylinder 4 can be bent by selecting the length and diameter in any shape, so that it is easy to perform fluid processing according to various purposes and installation in the utilization device. . Further, for example, if the processing tube 4 is made of a flexible hose and the α-ray granular radiator 2a is inserted, it becomes easy to spirally wind around a column member having a circular cross section or an arbitrary cross section, and the fluid is made into a long spiral path. Since it is moved along, efficient fluid treatment can be promoted for various gases. Further, there is an advantage that the structure of the fluid processing apparatus 1 can be saved in space and can be manufactured at low cost.

尚、上記実施形態の流体処理装置1は、燃料油に限らず汚れた油並びに廃油の浄化処理や食用油の改質等にも簡単且つ廉価に使用することができる。
上記構成による流体処理装置1によって水を流体処理する場合は、水分子は集合状態にある各α線粒状放射体2aを通過する間にα線の照射を幾重にも受けるので、処理水は過酸化水素(H22)の発生及びH++OH-イオンを効率よく生成する。
従って、改質された生成水は植物や庭木に散布等の手段によって供給すると、細菌や病原体に作用しH+又はOH-イオンの安定化反応によって殺菌するため、消毒剤を必要としないで病気の発生を抑制したり植物本来の治癒力を高めることができる
In addition, the fluid processing apparatus 1 of the said embodiment can be used simply and cheaply not only for fuel oil but also for dirty oil and waste oil purification treatment, edible oil reforming and the like.
When water is fluid-treated by the fluid treatment device 1 having the above-described configuration, water molecules are repeatedly irradiated with α rays while passing through each α-ray granular radiator 2a in an aggregated state, so that the treated water is excessive. Generation of hydrogen oxide (H 2 O 2 ) and H + + OH ions are efficiently generated.
Therefore, when the modified product water is supplied to plants and garden trees by means such as spraying, it acts on bacteria and pathogens and is sterilized by the stabilization reaction of H + or OH - ions, so there is no need for a disinfectant. Can be suppressed, and the natural healing power of plants can be increased .

即ち、この生成水によれば、消毒剤の使用を抑制した作物の栽培育成を合理的に行うことができると共に、手洗いや排泄物の洗浄、まな板等調理用品の洗浄やカビの発生予防等も行うことができる。また薬害のある消毒剤や洗剤に依存することなく、人体や環境に優しい殺菌洗浄等によって、ノロウイルス等の院内感染予防分野や食品加工施設或いは浄水施設等への設置も速やか且つ低コストに実現することができる。 That is, according to this generated water, it is possible to rationally grow and cultivate crops that suppress the use of disinfectants, as well as washing hands, excrement, cleaning cutting tools such as cutting boards, and preventing mold generation. It can be carried out. In addition, sterilization and washing that are friendly to the human body and the environment, without relying on harmful disinfectants and detergents, can be quickly and inexpensively installed in nosocomial infection prevention fields such as noroviruses, food processing facilities, or water purification facilities. be able to.

さらに、実施形態の構成の流体処理装置1は、上記α線粒状放射体2aに代えてα線のコーティングを省略したセラミックの粒状体(以下ハードボールと言う)を処理筒4内に多数充填して使用することもできる。即ち、この場合のハードボールは特許文献1で示される、内部層のセラミック原料が麦飯石粉末を主成分とし、圧電気現象を示す強誘電体として水晶粉末及び酸化チタン粉末と、バインダとしての珪酸アルミ化合物粉末等を添加混合して、所要の形状・サイズの粒状体に形成後焼成した硬質セラミック粒状体であることが望ましい。 Furthermore, the fluid processing apparatus 1 having the configuration of the embodiment is filled with a large number of ceramic granules (hereinafter referred to as hard balls) in which the α-ray coating is omitted in place of the α-ray granular radiator 2a. Can also be used. That is, the hard ball in this case is shown in Patent Document 1, in which the ceramic material of the inner layer is mainly composed of barley stone powder, quartz powder and titanium oxide powder as ferroelectrics showing piezoelectricity, and silicic acid as binder It is desirable to be a hard ceramic granule that is formed by adding and mixing aluminum compound powder or the like to form a granule having a required shape and size and then firing.

これにより圧電気現象を有するハードボールを多数収容した流体処理装置1は、水の流通により各ハードボールが互いに接触し合う衝突力や表面が水と接触する摩擦によってハードボール内に生じた電気の放電が無限的に繰り返される結果、水分子をH++OH-にイオン化する。また水道水中に含有する塩素等の発癌性のある有害物質を分解して無くしたよい水を簡単に生成することができる。
As a result, the fluid processing apparatus 1 containing a large number of hard balls having a piezoelectric phenomenon causes the electric force generated in the hard balls due to the collision force with which the hard balls contact each other due to the flow of water and the friction with which the surfaces contact with water. results discharge are repeated indefinitely, the water molecules H + + OH - that turn into ions. In addition, it is possible to easily produce good water that has been decomposed and eliminated carcinogenic harmful substances such as chlorine contained in tap water.

従って、水を流体処理する応用装置としてハードボールを内装した流体処理装置1は、前記α線粒状放射体2aのように過酸化水素を生じることなく、且つ水道水でも低コストに活性化処理することができるので、各家庭の水道や業務用水道,水処理用,温泉等に簡単に設置でき好適化することができる。また上記流体処理装置1は処理筒4を上下方向に向けて設置すると共に、下側から流体をハードボールの自重に抗して供給すると、ハードボールの機能をより発揮させて流体処理を促進する等の特徴がある。   Therefore, the fluid processing apparatus 1 having a hard ball as an application apparatus for fluid processing water does not generate hydrogen peroxide unlike the α-ray granular radiator 2a, and can be activated at low cost even with tap water. Therefore, it can be easily installed and optimized in each household water supply, commercial water supply, water treatment, hot spring, etc. The fluid processing apparatus 1 has the processing cylinder 4 installed in the vertical direction, and when the fluid is supplied against the dead weight of the hard ball from the lower side, the function of the hard ball is further exerted to promote the fluid processing. There are features such as.

また上記生成水は管路内にカルシウムイオンを付着させないので、スケールの付き難いボイラ用水として廉価に使用することができる。また上記流体処理装置1はボイラの所要箇所に簡単に組み込んで使用することもできる。
また処理筒4の中途で空気を供給混合することが容易で、微細気泡を含有したイオン活性の高い気泡含有活性水を簡単且つ廉価に生成することができる。これにより各種燃焼装置に対し、気泡含有活性水を燃料と共に供給させることを容易に可能とし、また界面活性を向上するため燃料との混合率が高まり乳化の完全化を行い燃焼し易くする。従って、完全燃焼化を図りつつ燃料の節約並びに排ガスの清浄化等も促進することができる。
Moreover, since the said produced water does not make calcium ion adhere in a pipe line, it can be used cheaply as boiler water which is hard to attach a scale. Further, the fluid processing apparatus 1 can be used by simply incorporating it in a required portion of the boiler.
Moreover, it is easy to supply and mix air in the middle of the treatment cylinder 4, and it is possible to easily and inexpensively produce bubble-containing active water having high ion activity and containing fine bubbles. As a result, it is possible to easily supply the bubble-containing active water together with the fuel to various combustion apparatuses, and to improve the interfacial activity, the mixing ratio with the fuel is increased, emulsification is completed, and combustion is facilitated. Accordingly, it is possible to promote fuel saving and exhaust gas purification while achieving complete combustion.

さらに前記各実施形態で示したようにα線放射体2或いはα線粒状放射体2aを有する流体処理装置1は、排ガス中のCOを低減させる装置はもとより、COを有効資源に利用する手段と方法をも容易に可能にするものである。即ち、流体処理装置1は排ガス中のCOに対しα線を接触させるので、COをO+COに簡単に分解することができる。そして、分解されたCOを触媒を用いて固定し、固定されたCOに再びα線を接触させることによってC+Oに分解し、Cを触媒を用いてCに安定化させて回収する。 Furthermore, as shown in the above embodiments, the fluid treatment apparatus 1 having the α-ray radiator 2 or the α-ray granular radiator 2a uses CO 2 as an effective resource as well as a device that reduces CO 2 in the exhaust gas. Means and methods are also readily available. That is, since the fluid treatment apparatus 1 makes α rays contact with CO 2 in the exhaust gas, CO 2 can be easily decomposed into O + CO. Then, the decomposed CO is fixed using a catalyst, and α-rays are again brought into contact with the fixed CO to be decomposed into C + O, and C is stabilized to C 2 using a catalyst and recovered.

次いで回収されたCにHを混合し、触媒内でα線を接触させて炭化水素系化合物を生成させる。以上のように流体処理装置1を利用して、COの低減又は回収を行うことにより、排ガスを燃料又は燃料増加剤に変えることができるので、簡単且つ経済的な手段によって地球温暖化防止に大きく貢献することができる等の特徴がある。
尚、流体処理装置1によるCO処理は、煙突や排気管等を流れる排ガスに限ることなく、各種のCO低減対策用途に装置の大型化を防止し簡単に利用することができる。
Next, H 2 is mixed with the recovered C 2 , and α-rays are brought into contact with each other in the catalyst to produce a hydrocarbon compound. As described above, by using the fluid treatment device 1 to reduce or recover CO 2 , the exhaust gas can be changed to fuel or a fuel increasing agent, so that global warming can be prevented by simple and economical means. There are features such as being able to contribute greatly.
The CO 2 treatment by the fluid treatment apparatus 1 is not limited to exhaust gas flowing through a chimney or an exhaust pipe, and can be easily used for various CO 2 reduction countermeasures by preventing the apparatus from becoming large.

本発明の流体処理装置を自動車エンジンに設けた構成を示す斜視図である。It is a perspective view which shows the structure which provided the fluid processing apparatus of this invention in the motor vehicle engine. 本発明の第1実施形態に関わる流体処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the fluid processing apparatus in connection with 1st Embodiment of this invention. 本発明の第2実施形態に関わる流体処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the fluid processing apparatus in connection with 2nd Embodiment of this invention. 本発明の第3実施形態に関わる流体処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the fluid processing apparatus in connection with 3rd Embodiment of this invention. 本発明の第4実施形態に関わる流体処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the fluid processing apparatus in connection with 4th Embodiment of this invention. (A)は図5のA−A線断面図である。(B)は図5のB−B線断面図である。(C)は図5のC−C線断面図である。(A) is the sectional view on the AA line of FIG. (B) is the BB sectional view taken on the line of FIG. (C) is CC sectional view taken on the line of FIG. 本発明の第5実施形態に関わる流体処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the fluid processing apparatus in connection with 5th Embodiment of this invention. 図5の流体供給装置の構成を示す平断面図である。FIG. 6 is a cross-sectional plan view showing the configuration of the fluid supply device in FIG. 5. 本発明の第6実施形態に関わる流体処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the fluid processing apparatus in connection with 6th Embodiment of this invention. 図9の処理筒内に設置されるα線放射体の別実施形態を示し(A)はネット型のα線放射体を丸めた状態を示す断面図である。(B)は蜂の巣状に形成したα線放射体の構成を示す断面図である。FIG. 9A is a cross-sectional view showing a state in which a net-type α-ray emitter is rounded, showing another embodiment of the α-ray emitter installed in the processing cylinder of FIG. 9. (B) is sectional drawing which shows the structure of the alpha ray emitter formed in the shape of a beehive.

1 流体処理装置
1a 別の流体処理装置
2 α線放射体
2a α線粒状放射体
3 分子運動促進部
4 枠体(処理筒)
7 超音波発生部
14 流入口
16 送出口
17 フィルタ
23 ミスト供給管
31 流体供給ノズル
36 バーナ装
DESCRIPTION OF SYMBOLS 1 Fluid processing apparatus 1a Another fluid processing apparatus 2 alpha ray radiator 2a alpha ray granular radiator 3 molecular motion promotion part 4 frame (processing cylinder)
7 Ultrasonic generator 14 Inlet 16 Outlet 17 Filter 23 Mist supply pipe 31 Fluid supply nozzle 36 Burner equipment

Claims (7)

内部空間を流入口(14)から送出口(16)に向けて流体の流路とする枠体(4)の内側に、α線を放射するα線放射材を備えたα線放射体(2)を設け、流体にα線を照射して電離させることにより流体処理をする流体処理装置(1)において、前記枠体(4)に流体の分子運動を活性化させる分子運動促進部(3)を設け、該分子運動促進部(3)により分子運動活性化をした流体にα線を照射し流体処理を行なう構成にし、α線放射体(2)を枠体(4)内に設けるフィルタ(17)の上流側又は下流側に近接させて設け、流体処理装置(1)が燃焼装置(35)の排気路に設置され、流体処理装置(1)として上記排気路内に設置される上流側流体処理装置(1a)と上記排気路に接続される下流側流体処理装置(1b)を設け、上流側流体処理装置(1a)の送出口(16)を下流側流体処理装置(1b)の枠体(4)に接続し、上流側流体処理装置(1a)によって流体処理した処理流体を下流側流体処理装置(1b)の枠体(4)を流通する流体に供給すると共に、下流側流体処理装置(1b)に前記処理流体が供給される供給部の上流側に、高温エネルギを前記排気路内に供給するバーナ装置(36)を設けた流体処理装置。 An α-ray emitter (2) provided with an α-ray emitting material that emits α-rays inside a frame (4) having an internal space as a fluid flow path from the inlet (14) toward the outlet (16) In the fluid processing apparatus (1) for performing fluid processing by irradiating the fluid with alpha rays and ionizing the fluid, the frame (4) activates the molecular motion of the fluid (3) A filter in which the fluid subjected to molecular motion activation by the molecular motion promoting portion (3) is irradiated with α-rays to perform fluid treatment, and the α-ray radiator (2) is provided in the frame (4) ( 17) provided upstream of or downstream of the fluid processing device (1), the fluid processing device (1) is installed in the exhaust passage of the combustion device (35), and the fluid processing device (1) is installed in the exhaust passage. Provided with a fluid treatment device (1a) and a downstream fluid treatment device (1b) connected to the exhaust passage, The delivery port (16) of the fluid treatment device (1a) is connected to the frame (4) of the downstream fluid treatment device (1b), and the treatment fluid subjected to fluid treatment by the upstream fluid treatment device (1a) is treated as downstream fluid treatment. While supplying the fluid flowing through the frame (4) of the apparatus (1b), high-temperature energy is introduced into the exhaust passage upstream of the supply section to which the processing fluid is supplied to the downstream fluid processing apparatus (1b). A fluid treatment device provided with a burner device (36) for supplying . α線放射体(2)を、α線放射材をコーティングした粒状体からなるα線粒状放射体(2a)とし、多数のα線粒状放射体(2a)を枠体(4)内に移動及び流体の流通を可能に充填する構成とした請求項1の流体処理装置。   The α-ray radiator (2) is an α-ray granular radiator (2a) made of a granular material coated with an α-ray radiation material, and a number of α-ray granular radiators (2a) are moved into the frame (4). The fluid processing apparatus according to claim 1, wherein the fluid processing apparatus is configured to be filled with fluid. α線放射体(2)を枠体(4)内で回転可能に支持する請求項1又は2の流体処理装置。   The fluid processing apparatus according to claim 1 or 2, wherein the α-ray radiator (2) is rotatably supported in the frame (4). 分子運動促進部(3)を、α線放射体(2)に向けて超音波を発生させる超音波発生部(7)にする請求項1又は2又は3の流体処理装置。   The fluid processing apparatus according to claim 1, 2 or 3, wherein the molecular motion promoting unit (3) is an ultrasonic wave generating unit (7) that generates ultrasonic waves toward the α-ray emitter (2). 分子運動促進部(3)を、α線放射体(2)に向けて磁力線を発生させる磁気発生部(6)にした請求項1又は2又は3又は4の流体処理装置。   The fluid processing apparatus according to claim 1, 2, 3, or 4, wherein the molecular motion promoting unit (3) is a magnetic generation unit (6) that generates magnetic field lines toward the α-ray emitter (2). 枠体(4)に、内部を流通する流体に対し別の流体を供給する流体供給ノズル(31)を設けた請求項1又は2又は3又は4又は5の流体処理装置。   The fluid processing apparatus according to claim 1, 2, 3, 4, or 5, wherein a fluid supply nozzle (31) that supplies another fluid to the fluid that circulates inside the frame body (4). 枠体(4)に、内部を流通する流体に対しα線放射体(2)の上流側又は下流側でミストを供給するミスト供給管(23)を設けた請求項1又は2又は3又は4又は5又は6の流体処理装置。   The mist supply pipe (23) for supplying mist to the frame (4) on the upstream side or the downstream side of the α-ray radiator (2) with respect to the fluid flowing inside the frame body (4). Or 5 or 6 fluid processing apparatus.
JP2008320314A 2008-12-16 2008-12-16 Fluid processing equipment Active JP5532286B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008320314A JP5532286B2 (en) 2008-12-16 2008-12-16 Fluid processing equipment
CN2009801012041A CN101952028A (en) 2008-12-16 2009-12-09 Fluid processing device
PCT/SG2009/000475 WO2010071606A2 (en) 2008-12-16 2009-12-09 Fluid processing device
EP09833761A EP2373409A4 (en) 2008-12-16 2009-12-09 Fluid processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320314A JP5532286B2 (en) 2008-12-16 2008-12-16 Fluid processing equipment

Publications (2)

Publication Number Publication Date
JP2010142698A JP2010142698A (en) 2010-07-01
JP5532286B2 true JP5532286B2 (en) 2014-06-25

Family

ID=42269269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320314A Active JP5532286B2 (en) 2008-12-16 2008-12-16 Fluid processing equipment

Country Status (4)

Country Link
EP (1) EP2373409A4 (en)
JP (1) JP5532286B2 (en)
CN (1) CN101952028A (en)
WO (1) WO2010071606A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503052A (en) * 2011-01-24 2014-02-06 ピー. ジェンキンス、ウォルター Apparatus, system, and method for vaporizing a fuel mixture
CN106057267B (en) * 2015-05-28 2018-11-30 官爱平 Energy supposition substance modification platform and its method of modifying
JP6549000B2 (en) * 2015-09-14 2019-07-24 芳信 林 Hydrogen ion production equipment
JP2017106412A (en) * 2015-12-11 2017-06-15 芳信 林 Combustion improving device
GB2553752A (en) * 2016-07-01 2018-03-21 Arcs Energy Ltd Fluid treatment apparatus and method
CN108623036A (en) * 2017-03-22 2018-10-09 嵊州市晟祥盈净水设备有限公司 A kind of purifier with sterilizing function
JP7121054B2 (en) * 2017-05-26 2022-08-17 アキューバ、テクノロジーズ、インコーポレーテッド Fluid sterilization apparatus and method
CN107088391B (en) * 2017-06-12 2023-07-25 深圳市厚和科技有限公司 Improved physical fuel additive treatment method and device
JP7109311B2 (en) * 2018-08-27 2022-07-29 国立大学法人埼玉大学 Combustion furnace for harmful exhaust gas treatment equipment using magnetic field generation
WO2021066205A1 (en) * 2019-09-30 2021-04-08 High Energy Technologies IP Holding GK Process for the decontamination of radioactively contaminated materials
FR3115708A1 (en) * 2020-10-29 2022-05-06 Marc Durand Device for purifying a fluid comprising particles in suspension
CN113663348B (en) * 2021-09-01 2022-05-06 西安交通大学 Device for strengthening salt spray dehydration by using air heat exchange tube and working method
IT202100025316A1 (en) * 2021-10-04 2023-04-04 Hyperion S R L S INTEGRATED SYSTEM FOR THE OPTIMIZATION OF THE COMBUSTION OF INTERNAL COMBUSTION ENGINES WITH MAGNETIZING EFFECT, IR, UV RADIATION AND ELECTROLYZER
IT202100025313A1 (en) * 2021-10-04 2023-04-04 Hyperion S R L S INTEGRATED SYSTEM FOR THE OPTIMIZATION OF THE COMBUSTION OF INTERNAL COMBUSTION ENGINES WITH MAGNETIZING EFFECT, IR, UV, MICROWAVE RADIATION AND ELECTROLYZER
CN113982790A (en) * 2021-11-10 2022-01-28 北京理工大学 Electromagnetic induction heating type air inlet preheating device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253750A (en) * 1985-09-02 1987-03-09 Konishi Makoto Ionizing filter
JPH0316636A (en) * 1989-03-01 1991-01-24 Masayuki Otsuki Method for changing molecular structure of water and controlling reaction rate without changing component contained in aqueous solution and water in gas
US5941219A (en) * 1996-08-15 1999-08-24 Takebe; Masayuki Method and apparatus for cleaning exhaust gas by alpha-decay
JP2001212452A (en) * 2000-02-02 2001-08-07 Aakutekku:Kk FLUID TREATING DEVICE USING MAGNETIC FIELD, alpha RAY AND FAR- INFRARED RAYS
JP2002116298A (en) * 2000-10-04 2002-04-19 Masayuki Takebe UTILIZATION METHOD AND APPARATUS FOR RADIATION ENERGY OF alpha-DECAY IN POWER GENERATION SYSTEM
JP2005009898A (en) * 2003-06-16 2005-01-13 Toru Furuya Alpha ray emitting ceramic for fluid treatment and holding structure therefor
US7051719B1 (en) * 2004-12-29 2006-05-30 Seiichi Sengoku Combustion enhancement device
JP2008031852A (en) * 2006-07-26 2008-02-14 Misako Sugiyama Device for improving fuel economy
JP2008110270A (en) * 2006-08-13 2008-05-15 Jiro Hayashi Fluid purification activity arrangement
JP4938508B2 (en) * 2007-03-08 2012-05-23 徹 古谷 Α-ray emitter and apparatus for fluid treatment
RU2323355C1 (en) * 2007-05-15 2008-04-27 Элина Леонидовна Ладыченко Method of and device for neutralization of harmful admixtures in exhaust gases of internal combustion engine (versions)

Also Published As

Publication number Publication date
WO2010071606A8 (en) 2013-05-10
EP2373409A4 (en) 2012-11-07
WO2010071606A2 (en) 2010-06-24
CN101952028A (en) 2011-01-19
EP2373409A2 (en) 2011-10-12
WO2010071606A3 (en) 2010-11-25
JP2010142698A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5532286B2 (en) Fluid processing equipment
JP4347012B2 (en) Air purifier
US10421060B2 (en) Device, system, and method for producing advanced oxidation products
KR101347405B1 (en) Electrical discharge unit for liquid treatment, humidity conditioning apparatus, and water heater
CN102552957B (en) Disinfectant steam disinfection equipment
JP2009145023A (en) Humidity controller
CN103623452A (en) Air circular purification device and method
CN1721778A (en) Embedded into ceiling or suspended on ceiling type air conditioner and air cleaning unit
EP2667903A1 (en) Cleansing system using ozone and nebulized fluids
JP2006334494A (en) Filter, air washing apparatus, refrigeration equipment, and water purification apparatus
JP2005192822A (en) Purifying method and purifying apparatus
WO2010053400A1 (en) System for purifying and revitalizing air (embodiments)
KR101404577B1 (en) Offensive odor treatment apparatus and the method
CN208928342U (en) A kind of MEDICAL WASTE TREATMENT equipment of high-efficiency environment friendly
KR102490581B1 (en) Quantum energy generator equipped with discharge function for gas, liquid and fluid treatment
JP2011104558A (en) Chemical processing apparatus for negative spread corona discharge plasma
KR20230155920A (en) Purification and sterilization apparatus for indoor use
CN211822895U (en) Air purifying device
KR100935624B1 (en) Humidifier
KR20010074599A (en) Uv and ozone producing aop chamber and water-cleaning apparatus using same
CN109210648B (en) Indoor air purifying wall
KR101689009B1 (en) System for purifying exhausted gas
JP2010035591A (en) Superheated steam sterilizer
JPH1085731A (en) Water treatment ceramic spherical body and water treatment device using ceramic spherical body
JP5573561B2 (en) Hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5532286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250