JP5499281B2 - Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material - Google Patents

Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material Download PDF

Info

Publication number
JP5499281B2
JP5499281B2 JP2009261903A JP2009261903A JP5499281B2 JP 5499281 B2 JP5499281 B2 JP 5499281B2 JP 2009261903 A JP2009261903 A JP 2009261903A JP 2009261903 A JP2009261903 A JP 2009261903A JP 5499281 B2 JP5499281 B2 JP 5499281B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
sulfur
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009261903A
Other languages
Japanese (ja)
Other versions
JP2011108478A (en
Inventor
英紀 栗原
吉裕 斎田
将史 稲本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITAMA PREFECTURE
Original Assignee
SAITAMA PREFECTURE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITAMA PREFECTURE filed Critical SAITAMA PREFECTURE
Priority to JP2009261903A priority Critical patent/JP5499281B2/en
Publication of JP2011108478A publication Critical patent/JP2011108478A/en
Application granted granted Critical
Publication of JP5499281B2 publication Critical patent/JP5499281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質、マグネシウム二次電池および正極活物質の製造方法に関する。   The present invention relates to a positive electrode active material, a magnesium secondary battery, and a method for producing a positive electrode active material.

従来、二次電池の正極活物質として金属酸化物と硫黄との混合物が知られている(たとえば、特許文献1〜4参照)。特許文献1記載の複合電極は、有機ジスルフィド化合物を2−ピロリドン誘導体に溶解し、さらにポリアニリンを添加して均一な液体とし、その液体から2−ピロリドン誘導体の全部または一部を除去して有機ジスルフィド化合物とポリアニリンの均一に混合されたものである。   Conventionally, a mixture of a metal oxide and sulfur is known as a positive electrode active material of a secondary battery (see, for example, Patent Documents 1 to 4). In the composite electrode described in Patent Document 1, an organic disulfide compound is dissolved in a 2-pyrrolidone derivative, and polyaniline is further added to make a uniform liquid. It is a uniform mixture of a compound and polyaniline.

特許文献2記載の複合カソードは、酸化状態において式−Sm−のポリスルフィド部分を含む電気活性な硫黄含有カソード物質および電気活性な遷移金属カルコゲニド組成物を含む。特許文献3記載のリチウム−硫黄電池用正極は、無機硫黄(S)、硫黄系列化合物およびこれらの混合物からなる正極活物質を含む。特許文献4記載のリチウム電池用正極材料は、酸化バナジウム等の遷移金属酸化物とその表面上に配置された、カルコゲニド複合化合物またはそれらの酸化物を含んでなる吸着質層とを有し、遷移金属酸化物と吸着質層はいずれも電気化学的に活性である。 The composite cathode described in U.S. Patent No. 6,057,031 includes an electroactive sulfur-containing cathode material that includes a polysulfide moiety of formula -Sm- in the oxidized state and an electroactive transition metal chalcogenide composition. The positive electrode for a lithium-sulfur battery described in Patent Document 3 includes a positive electrode active material made of inorganic sulfur (S 8 ), a sulfur series compound, and a mixture thereof. The positive electrode material for a lithium battery described in Patent Document 4 has a transition metal oxide such as vanadium oxide and a chalcogenide composite compound or an adsorbate layer including the oxide disposed on the surface of the transition metal oxide. Both the metal oxide and the adsorbate layer are electrochemically active.

一方、マグネシウムまたはその合金を負極活物質とする電池が知られている(たとえば、特許文献5、6および非特許文献1、2参照)。これらの電池では、マグネシウム化合物等を含有させた正極活物質が使用されている。   On the other hand, batteries using magnesium or an alloy thereof as a negative electrode active material are known (see, for example, Patent Documents 5 and 6 and Non-Patent Documents 1 and 2). In these batteries, a positive electrode active material containing a magnesium compound or the like is used.

特開平7−211310号公報Japanese Patent Application Laid-Open No. 7-211310 特開2000−511342号公報JP 2000-511342 A 特開2004−179160号公報JP 2004-179160 A 国際公開第2003/103078号パンフレットInternational Publication No. 2003/103078 Pamphlet 特開2001−76720号公報JP 2001-76720 A 特開2002−25555号公報JP 2002-25555 A

P. Novak and J. Desilvestro, J. Electrochem. Soc. 1993, 140, 140.P. Novak and J. Desilvestro, J. Electrochem. Soc. 1993, 140, 140. Y. Long, X. Zhang, J. Colloid Int. Sci. 2004, 278, 160.Y. Long, X. Zhang, J. Colloid Int. Sci. 2004, 278, 160.

上記のように、二次電池の正極活物質として、金属酸化物と硫黄との混合物が使われているが、硫化物は硫黄化合物として電解液中に溶解しやすく、構造が不安定である。一方、酸化物は構造が安定しているが、陽イオンと酸素との結合が強いため、放電後の金属酸化物と陽イオンの結合体から陽イオンを脱離することが困難で充電し難い。これを無理に高電圧で充電すると、結晶構造が崩れかねない。このような作用が生じる結果、二次電池のサイクル特性は低くなる。また、特にマグネシウム二次電池で、金属酸化物と硫黄との混合物を正極活物質としたときには、Mg−Sの結合が強く、硫黄化合物として電解液中に溶解しやすい。その結果、サイクル特性が著しく低下する。   As described above, a mixture of a metal oxide and sulfur is used as the positive electrode active material of the secondary battery. However, the sulfide is easily dissolved in the electrolytic solution as a sulfur compound, and the structure is unstable. On the other hand, the structure of oxide is stable, but since the bond between cation and oxygen is strong, it is difficult to desorb the cation from the combined metal oxide and cation after discharge and it is difficult to charge. . If this is forcibly charged at a high voltage, the crystal structure may be destroyed. As a result of this action, the cycle characteristics of the secondary battery are lowered. In particular, in a magnesium secondary battery, when a mixture of a metal oxide and sulfur is used as a positive electrode active material, the Mg—S bond is strong and the sulfur compound is easily dissolved in the electrolytic solution. As a result, the cycle characteristics are significantly deteriorated.

一方で、正極活物質を構成する金属酸化物は、還元しやすく、硫黄は酸化、揮発しやすい。いずれも還元または酸化すると電気化学的活性を失う。したがって、硫黄の溶解を抑制するには、金属酸化物が還元せず、硫黄が酸化しないようにすることが重要であり、焼成が必要である。しかし、低温で酸素濃度を高度に制御して焼成する方法では、硫黄が酸化または金属酸化物が還元してしまう。このように、二次電池のサイクル特性を高めるのは容易ではない。   On the other hand, the metal oxide constituting the positive electrode active material is easily reduced, and sulfur is easily oxidized and volatilized. All of them lose electrochemical activity when reduced or oxidized. Therefore, in order to suppress the dissolution of sulfur, it is important that the metal oxide is not reduced and the sulfur is not oxidized, and firing is necessary. However, in the method of firing by controlling the oxygen concentration at a low temperature, sulfur is oxidized or the metal oxide is reduced. Thus, it is not easy to improve the cycle characteristics of the secondary battery.

本発明は、このような事情に鑑みてなされたものであり、二次電池のサイクル特性を向上させる正極活物質、マグネシウム二次電池および正極活物質の製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the manufacturing method of the positive electrode active material which improves the cycling characteristics of a secondary battery, a magnesium secondary battery, and a positive electrode active material.

(1)上記の目的を達成するため、本発明に係る正極活物質は、二次電池用の正極活物質であって、粒子状の金属酸化物とその表面に分布した粒子状の硫黄とからなることを特徴としている。これにより、金属酸化物の表面に分布した硫黄が、陽イオンの酸素への接触を妨げ、放電時に陽イオンと酸素との強固な結合を阻害できる。その結果、陽イオンの離脱による充電を容易にし、二次電池のサイクル特性を向上させることができる。   (1) In order to achieve the above object, a positive electrode active material according to the present invention is a positive electrode active material for a secondary battery, and includes a particulate metal oxide and particulate sulfur distributed on the surface thereof. It is characterized by becoming. Thereby, sulfur distributed on the surface of the metal oxide prevents the cation from coming into contact with oxygen, and can inhibit the strong bond between the cation and oxygen during discharge. As a result, charging by detachment of cations can be facilitated, and the cycle characteristics of the secondary battery can be improved.

(2)また、本発明に係る正極活物質は、前記金属酸化物およびその表面に分布した硫黄が、いずれも電気化学的に活性であることを特徴としている。これにより、金属酸化物と硫黄とが電気化学的に化学反応するため、二次電池の放電、充電が容易になる。なお、電気化学的に活性とは、電子の受け渡しを伴う化学反応をすることをいう。   (2) Further, the positive electrode active material according to the present invention is characterized in that both the metal oxide and sulfur distributed on the surface thereof are electrochemically active. Thereby, since a metal oxide and sulfur chemically react chemically, discharge and charge of a secondary battery become easy. Note that electrochemically active means a chemical reaction that involves the delivery of electrons.

(3)また、本発明に係る正極活物質は、金属酸化物と硫黄との混合物に水を添加し、焼成することにより生成されることを特徴としている。これにより、焼成時に温度が上がりすぎず、酸化と還元が水の沸騰された状態により制御されるため、金属酸化物の表面に硫黄を分布させた正極活物質が形成される。   (3) Moreover, the positive electrode active material which concerns on this invention is produced | generated by adding water to the mixture of a metal oxide and sulfur, and baking it. As a result, the temperature does not rise too much during firing, and oxidation and reduction are controlled by the boiling state of water, so that a positive electrode active material in which sulfur is distributed on the surface of the metal oxide is formed.

(4)また、本発明に係るマグネシウム二次電池は、上記の正極活物質を用いたことを特徴としている。特にマグネシウム二次電池では、硫黄がマグネシウムと結合しやすく、マグネシウムの脱離が容易になり、そのサイクル特性が向上する。   (4) A magnesium secondary battery according to the present invention is characterized by using the positive electrode active material. In particular, in a magnesium secondary battery, sulfur is easily bonded to magnesium, magnesium is easily detached, and the cycle characteristics are improved.

(5)また、本発明に係る正極活物質の製造方法は、二次電池に用いられる正極活物質の製造方法であって、金属酸化物と硫黄とを混合するステップと、前記金属酸化物と硫黄との混合物に水を添加するステップと、前記水を添加した混合物を焼成するステップとを含むことを特徴としている。このように、金属酸化物と硫黄との混合物に水を添加することで、焼成時に温度が上がりすぎず、酸化と還元が水の沸騰された状態により制御されるため、金属酸化物の表面に硫黄を分布させた正極活物質が形成される。   (5) Moreover, the manufacturing method of the positive electrode active material which concerns on this invention is a manufacturing method of the positive electrode active material used for a secondary battery, Comprising: The step which mixes a metal oxide and sulfur, The said metal oxide, The method includes the steps of adding water to the mixture with sulfur and firing the mixture to which the water has been added. Thus, by adding water to the mixture of metal oxide and sulfur, the temperature does not rise too much during firing, and oxidation and reduction are controlled by the boiling state of water, so that the surface of the metal oxide A positive electrode active material in which sulfur is distributed is formed.

(6)また、本発明に係る正極活物質の製造方法は、前記焼成が、マイクロ波で水を加熱することにより行うことを特徴としている。このように、マイクロ波による内部加熱で粒子を均等に加熱することができ、短時間で簡易にサイクル特性の優れた正極活物質を形成することができる。   (6) Moreover, the manufacturing method of the positive electrode active material which concerns on this invention is characterized by performing the said baking by heating water with a microwave. As described above, the particles can be uniformly heated by the internal heating by the microwave, and the positive electrode active material having excellent cycle characteristics can be easily formed in a short time.

(7)また、本発明に係る正極活物質の製造方法は、前記焼成が、水プラズマにより行うことを特徴としている。このように、水プラズマで混合物を焼成するため、硫黄の酸化および金属酸化物の還元をさらに抑制することができ、短時間でサイクル特性の優れた正極活物質を形成することができる。   (7) Moreover, the manufacturing method of the positive electrode active material which concerns on this invention is characterized by performing the said baking by water plasma. Thus, since the mixture is fired with water plasma, sulfur oxidation and metal oxide reduction can be further suppressed, and a positive electrode active material having excellent cycle characteristics can be formed in a short time.

(8)また、本発明に係る正極活物質の製造方法は、前記水プラズマが、減圧下でのカーボンフェルトピース間に保持された水をマイクロ波放電させて生成することを特徴としている。これにより、均等に水分子を分布させることができ、均等な焼成を行うことができる。   (8) Moreover, the method for producing a positive electrode active material according to the present invention is characterized in that the water plasma is generated by microwave discharge of water held between carbon felt pieces under reduced pressure. Thereby, water molecules can be evenly distributed and uniform baking can be performed.

本発明によれば、金属酸化物の表面に分布した硫黄が、陽イオンによる酸素への接触を妨げ、放電時に陽イオンと酸素との強固な結合を阻害できる。その結果、陽イオンの離脱による充電を容易にし、二次電池のサイクル特性を向上させることができる。   According to the present invention, sulfur distributed on the surface of the metal oxide prevents cations from contacting oxygen and can inhibit the strong binding between cations and oxygen during discharge. As a result, charging by detachment of cations can be facilitated, and the cycle characteristics of the secondary battery can be improved.

本発明の二次電池の構成を示す模式図である。It is a schematic diagram which shows the structure of the secondary battery of this invention. 水プラズマを生じさせるための装置を示す斜視図である。It is a perspective view which shows the apparatus for producing water plasma. マイクロ波照射時の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum at the time of microwave irradiation. 処理前の金属酸化物のXRDプロファイルである。It is a XRD profile of the metal oxide before a process. 作製された正極活物質のXRDプロファイルである。It is an XRD profile of the produced positive electrode active material. 比較例の二次電池の放電曲線を示す図である。It is a figure which shows the discharge curve of the secondary battery of a comparative example. 実施例の二次電池の放電曲線を示す図である。It is a figure which shows the discharge curve of the secondary battery of an Example. 比較例の二次電池の放電曲線を示す図である。It is a figure which shows the discharge curve of the secondary battery of a comparative example. 実施例の二次電池の放電曲線を示す図である。It is a figure which shows the discharge curve of the secondary battery of an Example. 比較例の二次電池の充電曲線および放電曲線を示す図である。It is a figure which shows the charge curve and discharge curve of the secondary battery of a comparative example. 実施例の二次電池の充電曲線および放電曲線を示す図である。It is a figure which shows the charge curve and discharge curve of the secondary battery of an Example. 硫黄の添加量に対する二次電池の容量を示すグラフである。It is a graph which shows the capacity | capacitance of a secondary battery with respect to the addition amount of sulfur. マイクロ波照射により作製した二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery produced by microwave irradiation. 電気炉による水の加熱により作製した二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery produced by the heating of the water with an electric furnace. 焼成しない場合の放電曲線を示す図である。It is a figure which shows the discharge curve when not baking. 200℃で焼成する場合の放電曲線を示す図である。It is a figure which shows the discharge curve in the case of baking at 200 degreeC.

次に、本発明の実施の形態について、図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

(二次電池の構成)
図1は、本発明の二次電池100の構成を示す模式図である。図1に示すように、本発明の二次電池100は、正極110、セパレータ120および負極130を備えている。
正極110は、正極集電体(図示せず)および正極活物質115を有している。正極集電体は、正極活物質とともに正極を構成し、放電時に正極活物質に電子を供与する。正極活物質115は、粒子状の金属酸化物とその表面に分布した粒子状の硫黄とからなる。
(Configuration of secondary battery)
FIG. 1 is a schematic diagram showing a configuration of a secondary battery 100 of the present invention. As shown in FIG. 1, the secondary battery 100 of the present invention includes a positive electrode 110, a separator 120, and a negative electrode 130.
The positive electrode 110 includes a positive electrode current collector (not shown) and a positive electrode active material 115. The positive electrode current collector constitutes a positive electrode together with the positive electrode active material, and donates electrons to the positive electrode active material during discharge. The positive electrode active material 115 includes a particulate metal oxide and particulate sulfur distributed on the surface thereof.

正極活物質115を構成する金属酸化物と硫黄とは、いずれも電気化学的に活性である。これにより、金属酸化物と硫黄とが電気化学的に化学反応するため、二次電池の放電、充電が容易になる。その結果、正極活物質115は、放電時に電解液中の陽イオンにより還元される。放電時に正極活物質115を還元し電解液125中の陽イオンが金属酸化物と陽イオンの結合体となることで電化バランスがとられる。   The metal oxide and sulfur constituting the positive electrode active material 115 are both electrochemically active. Thereby, since a metal oxide and sulfur chemically react chemically, discharge and charge of a secondary battery become easy. As a result, the positive electrode active material 115 is reduced by cations in the electrolyte during discharge. When the discharge is performed, the positive electrode active material 115 is reduced, and the cation in the electrolyte solution 125 becomes a combination of a metal oxide and a cation.

その際には、正極活物質115の表面の硫黄の存在により陽イオンと酸素の直接の接触が妨げられ、陽イオンと酸素の結合が阻害される。そして、充電時には正極活物質115から陽イオンを離脱でき、充電が容易となる。その結果、二次電池のサイクル特性を向上させることができる。これは、金属酸化物の表面に配置されている硫黄により、硫黄が邪魔して陽イオンが酸素と結合できず、整った結晶構造を形成するまで陽イオンが金属酸化物の表面に近寄れない構造が形成されているためと推測できる。   At that time, the presence of sulfur on the surface of the positive electrode active material 115 prevents direct contact between the cation and oxygen, thereby inhibiting the binding between the cation and oxygen. Further, at the time of charging, cations can be detached from the positive electrode active material 115, and charging becomes easy. As a result, the cycle characteristics of the secondary battery can be improved. This is because the sulfur placed on the surface of the metal oxide prevents the cation from coming close to the surface of the metal oxide until the sulfur interferes with it and the cation cannot bind to oxygen to form an ordered crystal structure. It can be inferred that this is formed.

金属酸化物は、V,MnO、MoO等であることが好ましい。金属酸化物の表面に分布する硫黄は、主にS等のS−S結合を有する電気活性な状態で存在し、SO、SOは少ないことが好ましい。したがって、正極活物質115の作製時には硫黄の酸化が抑制されることが必要である。 The metal oxide is preferably V 2 O 5 , MnO 2 , MoO 3 or the like. It is preferable that sulfur distributed on the surface of the metal oxide exists mainly in an electroactive state having an S—S bond such as S 8 and that SO 2 and SO 4 are small. Therefore, it is necessary to suppress sulfur oxidation when the positive electrode active material 115 is manufactured.

正極活物質115を構成する金属酸化物と硫黄の比率は、モル比で5:1〜3:2の範囲にあることが好ましい。この範囲よりも硫黄の比率が小さい場合には、硫黄で金属酸化物の表面を覆いきれないため、サイクル特性が低下する。一方、この範囲よりも硫黄の比率が大きい場合には、硫黄が過剰となり、二次電池の電気抵抗が高くなる。そして、二次電池は、電気化学的に不活性になるのでサイクル特性が低下する。   The ratio of the metal oxide and sulfur constituting the positive electrode active material 115 is preferably in the range of 5: 1 to 3: 2 in molar ratio. When the ratio of sulfur is smaller than this range, since the surface of the metal oxide cannot be covered with sulfur, the cycle characteristics deteriorate. On the other hand, when the ratio of sulfur is larger than this range, the sulfur becomes excessive and the electric resistance of the secondary battery increases. And since a secondary battery becomes electrochemically inactive, cycling characteristics fall.

セパレータ120は、正極110と負極130とを隔離し、かつ電解液125を保持して正極110と負極130との間のイオン伝導性を維持する。セパレータ120は、保液能力を有しており、電解液125を保持している。電解液125は、陽イオンを含んでいる。電解液中で酸化還元反応が進むことにより充放電可能となっている。陽イオンには、マグネシウムイオンやリチウムイオンが挙げられる。   The separator 120 separates the positive electrode 110 and the negative electrode 130 and holds the electrolytic solution 125 to maintain ionic conductivity between the positive electrode 110 and the negative electrode 130. The separator 120 has a liquid holding ability and holds the electrolytic solution 125. The electrolytic solution 125 contains cations. Charging / discharging is possible as the oxidation-reduction reaction proceeds in the electrolytic solution. Examples of the cation include magnesium ion and lithium ion.

電解液125には、ほとんどの水系電池または非水系電池に一般に用いられている溶液を用いることができる。負極130は、放電時に酸化反応を生じさせる。負極130には、たとえばマグネシウムやリチウムを用いることができる。負極130は、正極活物質115の機能を妨げないものであれば特に限定されないが、マグネシウムで構成されることが好ましい。特にマグネシウム二次電池では、硫黄がマグネシウムと結合しやすく、マグネシウムの脱離が容易となり、サイクル特性が向上する。   As the electrolytic solution 125, a solution generally used in most aqueous batteries or non-aqueous batteries can be used. The negative electrode 130 causes an oxidation reaction during discharge. For the negative electrode 130, for example, magnesium or lithium can be used. The negative electrode 130 is not particularly limited as long as it does not interfere with the function of the positive electrode active material 115, but is preferably composed of magnesium. In particular, in a magnesium secondary battery, sulfur is easily bonded to magnesium, magnesium is easily detached, and cycle characteristics are improved.

(二次電池の製造方法)
次に、二次電池の製造方法を説明する。まず、正極活物質を作製する。金属酸化物と硫黄とを5:1〜3:2の範囲の所定のモル比で混合し、混合物に水を添加する。水の添加量は、焼成時間の間に蒸発して焼失する量以上であればよく、焼成終了時に混合物の粉が湿っている程度が好適である。水が完全に消失すると、金属酸化物の還元、硫黄の揮発が生じるためである。2gの正極活物質を作製するために、1g入れる程度が目安である。
(Method for manufacturing secondary battery)
Next, a method for manufacturing a secondary battery will be described. First, a positive electrode active material is prepared. Metal oxide and sulfur are mixed at a predetermined molar ratio in the range of 5: 1 to 3: 2, and water is added to the mixture. The amount of water to be added is not less than the amount that evaporates and burns out during the firing time, and is preferably such that the powder of the mixture is moist at the end of firing. This is because when water disappears completely, reduction of metal oxides and volatilization of sulfur occur. In order to produce 2 g of the positive electrode active material, a standard of 1 g is used.

次に、水を添加した混合物を焼成する。焼成方法には、(1)電気や燃焼により水を加熱する方法、(2)マイクロ波で水を加熱する方法、(3)水プラズマにより行う方法が挙げられる。水の添加により、焼成時に温度が上がりすぎず、酸化と還元が水の沸騰された状態により制御されるため、金属酸化物の表面に硫黄を分布させた正極活物質が形成される。   Next, the mixture to which water has been added is fired. Examples of the firing method include (1) a method of heating water by electricity or combustion, (2) a method of heating water by microwaves, and (3) a method of performing water plasma. By adding water, the temperature does not rise too much during firing, and oxidation and reduction are controlled by the boiling state of water, so that a positive electrode active material in which sulfur is distributed on the surface of the metal oxide is formed.

(1)電気や燃焼により水を加熱する方法は、炉による通常焼成により実施可能である。金属酸化物と硫黄の混合物に水を添加したものを100℃以上で1時間以上加熱することで、金属酸化物の表面を賦活させ、硫黄を焼成する。   (1) The method of heating water by electricity or combustion can be performed by normal firing in a furnace. By heating a mixture of a metal oxide and sulfur to which water has been added at 100 ° C. or more for 1 hour or more, the surface of the metal oxide is activated and sulfur is fired.

(2)マイクロ波で水を加熱する方法では、マイクロ波により100℃以上に加熱し、数分間水を沸騰させる。マイクロ波による内部加熱で粒子を均等に加熱することができ、短時間で簡易にサイクル特性の優れた正極活物質を形成することができる。このように、水を加熱する場合には、大気圧下では100℃以上とすることが好ましい。   (2) In the method of heating water with microwaves, the water is heated to 100 ° C. or higher with microwaves, and water is boiled for several minutes. Particles can be heated uniformly by internal heating using microwaves, and a positive electrode active material having excellent cycle characteristics can be easily formed in a short time. Thus, when heating water, it is preferable to set it as 100 degreeC or more under atmospheric pressure.

(3)水プラズマで行う方法では、たとえば、減圧下でのカーボンフェルトピース間に保持された水をマイクロ波放電させて、水プラズマを生成することができる。水の沸騰が必要になるが、減圧する分低温で行うことができる。数分間で処理を行うことができ、低温なので、硫黄の酸化や金属酸化物の還元を抑制することができる。   (3) In the method using water plasma, for example, water held between carbon felt pieces under reduced pressure can be subjected to microwave discharge to generate water plasma. Although boiling of water is required, it can be performed at a low temperature by reducing the pressure. The treatment can be performed in a few minutes, and since the temperature is low, oxidation of sulfur and reduction of metal oxide can be suppressed.

図2は、カーボンフェルトピース215間に水プラズマを生じさせるための装置を示す斜視図である。図2に示すように、マイクロ波照射室210内に真空室220を設け、その中に2枚のカーボンフェルトピース215に原料218を挟んだものを設置する。これにより、均等に水分子を分布させることができ、均等な焼成を行うことができる。原料218は、金属酸化物と硫黄とを混合し、適量の水を加えたものである。なお、図2では、マイクロ波照射室210を破線で、真空室220を実線で描き、その中のカーボンフェルトピース215および原料218を透視可能に記載している。   FIG. 2 is a perspective view showing an apparatus for generating water plasma between the carbon felt pieces 215. As shown in FIG. 2, a vacuum chamber 220 is provided in a microwave irradiation chamber 210, and a material in which a raw material 218 is sandwiched between two carbon felt pieces 215 is installed. Thereby, water molecules can be evenly distributed and uniform baking can be performed. The raw material 218 is obtained by mixing a metal oxide and sulfur and adding an appropriate amount of water. In FIG. 2, the microwave irradiation chamber 210 is drawn with a broken line and the vacuum chamber 220 is drawn with a solid line, and the carbon felt piece 215 and the raw material 218 therein are shown to be transparent.

このような装置構成で、真空室220内を0.01MPa以下に減圧し、原料218にマイクロ波を照射して放電させ、水プラズマを生じさせることで、正極活物質115を作製することができる。このように、水プラズマで焼成するため、硫黄の酸化および金属酸化物の還元をさらに抑制することができ、短時間でサイクル特性の優れた正極活物質を形成することができる。   With such an apparatus configuration, the inside of the vacuum chamber 220 is depressurized to 0.01 MPa or less, and the raw material 218 is irradiated with microwaves to be discharged to generate water plasma, whereby the positive electrode active material 115 can be manufactured. . Thus, since it bakes with water plasma, the oxidation of sulfur and the reduction | restoration of a metal oxide can be suppressed further, and the positive electrode active material excellent in cycling characteristics can be formed in a short time.

このようにして、得られた正極活物質115を正極集電体に接触させて正極110を作製する。次に、Mg金属等を用いて負極130を用意し、電解液125として水系または非水系の溶液を用いて二次電池を作製する。   In this way, the positive electrode active material 115 obtained is brought into contact with the positive electrode current collector to produce the positive electrode 110. Next, the negative electrode 130 is prepared using Mg metal or the like, and a secondary battery is manufactured using an aqueous or non-aqueous solution as the electrolytic solution 125.

以下に、正極活物質の作製およびこれを用いた二次電池の充放電の実験について説明する。   Below, preparation of a positive electrode active material and the charge / discharge experiment of a secondary battery using the same will be described.

(S−MnOの作製)
MnOとSとを5:1〜3:2の範囲の所定のモル比で混合し、混合物に水を添加して焼成した。焼成は、混合物をカーボンフェルトピースに挟み500Wの電子レンジで行った。水プラズマにより行った。水プラズマは、0.001MPaまで真空室を減圧し、その減圧下でカーボンフェルトピース間に保持された混合物にマイクロ波放電させて生成した。マイクロ波照射は40秒間、2回行った。
(Production of S-MnO 2 )
MnO 2 and S were mixed at a predetermined molar ratio in the range of 5: 1 to 3: 2, and water was added to the mixture for firing. Firing was performed in a 500 W microwave oven with the mixture sandwiched between carbon felt pieces. Performed with water plasma. Water plasma was generated by depressurizing the vacuum chamber to 0.001 MPa, and microwave-discharging the mixture held between the carbon felt pieces under the reduced pressure. Microwave irradiation was performed twice for 40 seconds.

図3は、マイクロ波照射時の発光スペクトルを示すグラフである。図3に示すように、OH、HOおよびHのピークが表れており、水プラズマが生成されていることが分かった。このようにして作製された正極活物質について、銅Kα線を用いてX線回折測定(XRD)を行った。 FIG. 3 is a graph showing an emission spectrum during microwave irradiation. As shown in FIG. 3, OH, H 2 O and H peaks appear, and it was found that water plasma was generated. The positive electrode active material thus produced was subjected to X-ray diffraction measurement (XRD) using copper Kα rays.

図4Aは、処理前の金属酸化物のXRDプロファイルである。図4Bは、作製された正極活物質のXRDプロファイルである。図4Bおよび図4AのいずれにもMnOのプロファイルは現れているが、図4Bに、図4Aには無い硫黄のピークが現れており、作製された正極活物質が硫黄を含んでいることが確認された。 FIG. 4A is an XRD profile of the metal oxide before processing. FIG. 4B is an XRD profile of the produced positive electrode active material. Although the profile of MnO 2 appears in both FIG. 4B and FIG. 4A, the peak of sulfur that does not exist in FIG. 4A appears in FIG. 4B, and the produced positive electrode active material contains sulfur. confirmed.

(S−MnOのサイクル特性)
上記で作製されたS−MnOの正極活物質を用いて正極を構成し、実施例としてMgを負極とする二次電池を作製した。また、比較例としてMnOを正極活物質としMgを負極とした二次電池を作製した。そして、比較例および実施例の各二次電池100について、充放電を繰り返し、サイクル特性を測定した。図5Aは、比較例の二次電池の放電曲線を示す図、図5Bは、実施例の二次電池の放電曲線を示す図である。図中の中抜きの矢印は、充放電回数の増加に対するおよその充放電曲線の遷移方向を示している(以下、同様)。
(Cycle characteristics of S-MnO 2 )
A positive electrode was constructed using the positive electrode active material of S-MnO 2 produced above, and a secondary battery having Mg as the negative electrode was produced as an example. Further, as a comparative example, a secondary battery having MnO 2 as a positive electrode active material and Mg as a negative electrode was produced. And about each secondary battery 100 of a comparative example and an Example, charging / discharging was repeated and cycling characteristics were measured. FIG. 5A is a diagram showing a discharge curve of a secondary battery of a comparative example, and FIG. 5B is a diagram showing a discharge curve of the secondary battery of an example. A hollow arrow in the figure indicates a transition direction of an approximate charge / discharge curve with respect to an increase in the number of charge / discharge cycles (the same applies hereinafter).

図5Aに示すように、比較例では最初の放電時には80mAhg−1の容量まで起電力が維持されたが、第5回の放電時には、容量が20mAhg−1を超える範囲では、電圧が著しく低下し、容量が40mAhg−1の付近では、ほぼ0Vとなった。また、図5Bに示すように、実施例では容量が140mAhg−1より小さい範囲で約1Vの電圧が維持され、特に容量が70mAhg−1より小さい範囲では約1.6Vが維持された。また、繰り返しで放電しても、高い電圧が維持されることが分かった。このように、硫黄のドープにより放電容量が増大し、二次電池のサイクル特性が向上した。なお、上記の約1Vの電圧が維持されている範囲では、主に硫黄が活物質として作用しており、約1.6Vが維持されている範囲では、主にMnOが活物質として作用していると考えられる。 As shown in FIG. 5A, in the comparative example, the electromotive force was maintained up to a capacity of 80 mAhg −1 at the time of the first discharge, but at the time of the fifth discharge, the voltage significantly decreased in the range where the capacity exceeded 20 mAhg −1. In the vicinity of 40 mAhg −1 , the capacity was almost 0V. Further, as shown in FIG. 5B, the capacity in the embodiment is maintained a voltage of approximately 1V at 140MAhg -1 lesser extent, particularly capacity is maintained approximately 1.6V at 70MAhg -1 lesser extent. It was also found that a high voltage was maintained even after repeated discharge. Thus, the sulfur discharge increased the discharge capacity and improved the cycle characteristics of the secondary battery. In the range where the voltage of about 1 V is maintained, sulfur mainly acts as an active material, and in the range where about 1.6 V is maintained, mainly MnO 2 acts as an active material. It is thought that.

(S−MoOのサイクル特性)
上記のMnOおよびS−MnOの各正極活物質と同様に、MoOおよびS−MoOの正極活物質を作製し、実施例としてMgを負極とする二次電池を作製した。また、比較例としてMoOを正極活物質としMgを負極とした二次電池を作製した。そして、比較例および実施例の各二次電池について、充放電を繰り返し、サイクル特性を測定した。図6Aは、比較例の二次電池の放電曲線を示す図、図6Bは、実施例の二次電池の放電曲線を示す図である。
(Cycle characteristics of S-MoO 3 )
Similarly to the positive electrode active materials of MnO 2 and S—MnO 2 described above, positive electrode active materials of MoO 3 and S—MoO 3 were prepared, and secondary batteries using Mg as a negative electrode were prepared as examples. Further, as a comparative example, a secondary battery having MoO 3 as a positive electrode active material and Mg as a negative electrode was produced. And charge / discharge was repeated about each secondary battery of the comparative example and the Example, and cycling characteristics were measured. 6A is a diagram illustrating a discharge curve of a secondary battery of a comparative example, and FIG. 6B is a diagram illustrating a discharge curve of the secondary battery of an example.

図6Aに示すように、比較例では第1回または第2回の放電時には150mAhg−1の容量まで起電力が維持されたが、第4〜6回の放電時には、0mAhg−1の容量から電圧が著しく低下し、容量が40mAhg−1の付近では、ほぼ0Vとなった。また、図6Bに示すように、実施例では容量が100mAhg−1より小さい範囲で高い電圧が維持され、特に容量が50mAhg−1より小さい範囲では1V以上が維持された。また、繰り返しで放電しても、高い電圧が維持されることが分かった。このように、硫黄のドープにより放電容量が最大で300mAhg−1に至るまで増大し、二次電池のサイクル特性が向上した。 As shown in FIG. 6A, in the comparative example, the electromotive force was maintained up to the capacity of 150 mAhg −1 at the first or second discharge, but the voltage from the capacity of 0 mAhg −1 at the fourth to sixth discharges. Was significantly reduced, and became approximately 0 V in the vicinity of 40 mAhg −1 . Further, as shown in FIG. 6B, the capacitance in the embodiment is maintained high voltage 100MAhg -1 lesser extent, than 1V was maintained, especially capacity 50MAhg -1 smaller range. It was also found that a high voltage was maintained even after repeated discharge. Thus, the doping capacity of sulfur increased the discharge capacity up to 300 mAhg −1 and improved the cycle characteristics of the secondary battery.

(S−Vのサイクル特性)
上記のMnOおよびS−MnOの各正極活物質と同様に、VおよびS−Vの正極活物質を作製し、実施例としてMgを負極とする二次電池を作製した。また、比較例としてVを正極活物質としMgを負極とした二次電池を作製した。そして、比較例および実施例の各二次電池について、充放電を繰り返し、サイクル特性を測定した。図7Aは、比較例の二次電池の充電曲線および放電曲線を示す図、図7Bは、実施例の二次電池の充電曲線および放電曲線を示す図である。
(Cycle characteristics of S-V 2 O 5 )
Similarly to each of the positive electrode active materials of MnO 2 and S—MnO 2 described above, a positive electrode active material of V 2 O 5 and S—V 2 O 5 was prepared, and a secondary battery using Mg as a negative electrode as an example was prepared. did. Further, to prepare a secondary battery with a negative electrode of the V 2 O 5 as a comparative example as the positive electrode active material Mg. And charge / discharge was repeated about each secondary battery of the comparative example and the Example, and cycling characteristics were measured. FIG. 7A is a diagram showing a charge curve and a discharge curve of a secondary battery of a comparative example, and FIG. 7B is a diagram showing a charge curve and a discharge curve of the secondary battery of an example.

図7Aに示すように、比較例では第1回の放電時には100mAhg−1の容量まで起電力が維持されたが、第2〜6回の放電時には、50mAhg−1の容量から電圧が著しく低下し、容量が70mAhg−1の付近では、ほぼ0Vとなった。また、第2〜6回の充電時は、十分な容量を充電できなかった。一方、図7Bに示すように、実施例では容量が100mAhg−1より小さい範囲で、1.3V程度の高い電圧が維持された。また、繰り返しで充放電しても、十分な容量の充放電が可能であり、高い電圧での放電が維持されることが分かった。このように、硫黄のドープにより放電容量が200mAhg−1に至るまで増大し、二次電池のサイクル特性が向上した。 As shown in FIG. 7A, in the comparative example, the electromotive force was maintained up to a capacity of 100 mAhg −1 at the first discharge, but the voltage was significantly reduced from the capacity of 50 mAhg −1 at the second to sixth discharges. In the vicinity of 70 mAhg −1 , the capacity was almost 0V. In addition, a sufficient capacity could not be charged during the second to sixth charging. On the other hand, as shown in FIG. 7B, in the example, a high voltage of about 1.3 V was maintained in a range where the capacity was smaller than 100 mAhg −1 . Moreover, even if it charged / discharged repeatedly, it turned out that charging / discharging of sufficient capacity | capacitance is possible, and the discharge by a high voltage is maintained. Thus, the dope of sulfur increased the discharge capacity up to 200 mAhg −1 and improved the cycle characteristics of the secondary battery.

(硫黄添加量との関係)
硫黄の添加量に対するS−Vの正極活物質の特性について実験を行った。硫黄の添加量を変えたS−Vを正極活物質とする二次電池を作製し、5回充放電を繰り返したときの平均容量を測定した。図8は、硫黄の添加量に対する二次電池の容量を示すグラフである。図8に示すように、Vに対する硫黄の添加量が、20mol%以上66mol%以下の範囲で5回充放電を繰り返したときの平均容量が150mAhg−1を超えており、サイクル特性が高いことが示された。なお、硫黄を添加しない場合には、平均容量が100mAhg−1より低くなり、サイクル特性が低下していることが分かった。この実験では、金属酸化物としてVを用いているが、他の金属酸化物についても硫黄が陽イオンと酸素との結合を阻害するメカニズムは同様なので、他の金属酸化物についても上記の範囲で効果がある。
(Relationship with sulfur addition)
Experiments were performed on the characteristics of the positive electrode active material of S—V 2 O 5 with respect to the amount of sulfur added. A secondary battery having S—V 2 O 5 with a different amount of sulfur added as a positive electrode active material was prepared, and the average capacity when charging and discharging were repeated five times was measured. FIG. 8 is a graph showing the capacity of the secondary battery with respect to the amount of sulfur added. As shown in FIG. 8, the average capacity when the amount of sulfur added to V 2 O 5 is repeatedly charged and discharged five times in the range of 20 mol% or more and 66 mol% or less exceeds 150 mAhg −1 , and the cycle characteristics are It was shown to be expensive. In addition, when not adding sulfur, an average capacity | capacitance became lower than 100 mAhg -1 and it turned out that cycling characteristics are falling. In this experiment, V 2 O 5 is used as the metal oxide, but the mechanism for inhibiting the binding between cation and oxygen is the same for other metal oxides. Effective in the range of.

(正極活物質の製造方法による相違)
上記で実験に用いたS−Vの正極活物質は、水プラズマにより混合物を焼成して作製したが、マイクロ波照射や電気炉で焼成したものであっても同様の効果が得られる。図9Aは、マイクロ波照射により作製したS−Vを正極活物質とした二次電池の充放電曲線を示す図である。図9Bは、電気炉による水の加熱により作製したS−Vを正極活物質とした二次電池の充放電曲線を示す図である。図9Aおよび図9Bに示すように、いずれの方法で作製した正極活物質を用いた二次電池に対して繰り返し充放電を行っても容量が大きく変化しないことが実証された。
(Differences due to the manufacturing method of the positive electrode active material)
The S—V 2 O 5 positive electrode active material used in the above experiment was prepared by firing the mixture with water plasma, but the same effect can be obtained even if the mixture is fired with microwave irradiation or an electric furnace. . FIG. 9A is a diagram showing a charge / discharge curve of a secondary battery using S—V 2 O 5 produced by microwave irradiation as a positive electrode active material. FIG. 9B is a diagram showing a charge / discharge curve of a secondary battery in which S—V 2 O 5 produced by heating water with an electric furnace is used as a positive electrode active material. As shown in FIGS. 9A and 9B, it has been demonstrated that the capacity does not change greatly even when the secondary battery using the positive electrode active material produced by any method is repeatedly charged and discharged.

(正極活物質の製造方法による相違)
上記の実験では、焼成方法の違いによるサイクル特性への影響を実験したが、焼成条件によってもサイクル特性は変化する。単に硫黄とVとを混合しただけで、焼成せずに作製した正極活物質を用いた二次電池について、容量に対する電圧を計測した。図10は、焼成しない場合の放電曲線を示す図である。その結果、最初の放電の際には、容量の変化に対して電圧を維持できることが確認されたが、第2回、第3回の放電の際には、高い電圧を維持できず、十分なサイクル特性を得られなかった。
(Differences due to the manufacturing method of the positive electrode active material)
In the above experiment, the influence on the cycle characteristics due to the difference in the firing method was tested, but the cycle characteristics also change depending on the firing conditions. Simply by mixing the sulfur and V 2 O 3, the secondary battery using the positive electrode active material prepared without calcination was measured voltage against capacity. FIG. 10 is a diagram showing a discharge curve when not firing. As a result, it was confirmed that the voltage could be maintained with respect to the change in capacity during the first discharge, but the high voltage could not be maintained during the second and third discharges. Cycle characteristics could not be obtained.

また、硫黄とVとを混合し、200℃で焼成して作製した正極活物質を用いて、容量に対する電圧を計測した。図11は、200℃で焼成する場合の放電曲線を示す図である。この場合には、図10に示すような焼成しない場合に比べれば、比較的に発生電圧は高く維持されているものの、第3〜6回の電圧は小さくなった。このように、焼成しない場合や200℃以上の高温で焼成した場合には、硫黄を混合した正極活物質であっても、サイクル特性が低下することが実証された。 Further, mixing the sulfur and V 2 O 3, with the positive electrode active material prepared by baking at 200 ° C., it was measured voltage against capacity. FIG. 11 is a diagram showing a discharge curve when firing at 200 ° C. FIG. In this case, compared with the case of not firing as shown in FIG. 10, the generated voltage was kept relatively high, but the third to sixth voltages were reduced. As described above, it was proved that, when not calcinated or when calcinated at a high temperature of 200 ° C. or higher, the cycle characteristics are deteriorated even with a positive electrode active material mixed with sulfur.

100 二次電池
110 正極
115 正極活物質
120 セパレータ
125 電解液
130 負極
210 マイクロ波照射室
215 カーボンフェルトピース
218 原料
220 真空室
100 Secondary battery 110 Positive electrode 115 Positive electrode active material 120 Separator 125 Electrolytic solution 130 Negative electrode 210 Microwave irradiation chamber 215 Carbon felt piece 218 Raw material 220 Vacuum chamber

Claims (6)

二次電池用の正極活物質であって、
五酸化二バナジウム、二酸化マンガンまたは三酸化モリブデンからなる金属酸化物と硫黄とが混合され、焼成時間の間に蒸発して焼失する量以上の水を添加して焼成されることで形成され、粒子状の金属酸化物とその表面に分布した硫黄とからなることを特徴とする正極活物質。
A positive electrode active material for a secondary battery,
Particles formed by mixing a metal oxide consisting of divanadium pentoxide, manganese dioxide, or molybdenum trioxide and sulfur, and adding and firing more than the amount of water that evaporates and burns off during the firing time. A positive electrode active material comprising a metal oxide and sulfur distributed on the surface thereof.
前記金属酸化物およびその表面に分布した硫黄は、いずれも電気化学的に活性であることを特徴とする請求項1記載の正極活物質。   The positive electrode active material according to claim 1, wherein both the metal oxide and sulfur distributed on the surface thereof are electrochemically active. 請求項1または請求項2記載の正極活物質を用いたことを特徴とするマグネシウム二次電池。 A magnesium secondary battery using the positive electrode active material according to claim 1 . 二次電池に用いられる正極活物質の製造方法であって、
五酸化二バナジウム、二酸化マンガンまたは三酸化モリブデンからなる金属酸化物と硫黄とを混合するステップと、
前記金属酸化物と硫黄との混合物に、焼成時間の間に蒸発して焼失する量以上の水を添加するステップと、
前記水を添加した混合物を焼成するステップとを含むことを特徴とする正極活物質の製造方法。
A method for producing a positive electrode active material used in a secondary battery,
Mixing a metal oxide comprising divanadium pentoxide, manganese dioxide or molybdenum trioxide with sulfur;
Adding to the mixture of metal oxide and sulfur more water than the amount that evaporates and burns during the firing time ;
Firing the mixture to which the water has been added, and a method for producing a positive electrode active material.
前記焼成は、マイクロ波で水を加熱することにより行うことを特徴とする請求項4記載の正極活物質の製造方法。 The said baking is performed by heating water with a microwave, The manufacturing method of the positive electrode active material of Claim 4 characterized by the above-mentioned. 前記焼成は、前記水を添加した混合物をカーボンフェルトに挟み、減圧下でマイクロ波を照射することにより行うことを特徴とする請求項4記載の正極活物質の製造方法。
5. The method for producing a positive electrode active material according to claim 4 , wherein the firing is performed by sandwiching the mixture to which water has been added between carbon felts and irradiating microwaves under reduced pressure .
JP2009261903A 2009-11-17 2009-11-17 Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material Active JP5499281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261903A JP5499281B2 (en) 2009-11-17 2009-11-17 Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261903A JP5499281B2 (en) 2009-11-17 2009-11-17 Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material

Publications (2)

Publication Number Publication Date
JP2011108478A JP2011108478A (en) 2011-06-02
JP5499281B2 true JP5499281B2 (en) 2014-05-21

Family

ID=44231740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261903A Active JP5499281B2 (en) 2009-11-17 2009-11-17 Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material

Country Status (1)

Country Link
JP (1) JP5499281B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104269A (en) * 2010-11-08 2012-05-31 Saitama Prefecture Cathode active material, magnesium secondary battery, and cathode active material manufacturing method
KR20150011170A (en) * 2013-07-22 2015-01-30 재단법인대구경북과학기술원 Cathode active material for Magnesium secondary battery and Magnesium secondary battery including the same
CN111342163A (en) * 2020-04-08 2020-06-26 江西省科学院应用物理研究所 Method for recovering positive active material of waste lithium battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919587A (en) * 1996-05-22 1999-07-06 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
US6916579B2 (en) * 2002-05-30 2005-07-12 Enerl Battery Company Cathode material for lithium battery
JP2004259650A (en) * 2003-02-27 2004-09-16 Kanegafuchi Chem Ind Co Ltd Magnesium secondary battery
JP2004265675A (en) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2011108478A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP4736943B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
WO2016039157A1 (en) Electrode material, and electrode layer, battery and electrochromic element each of which uses same
JP6039258B2 (en) High voltage rechargeable magnesium battery
JP6438249B2 (en) Electrode material, electrode layer using the same, battery, and electrochromic device
KR20170064562A (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
JP2016146301A (en) Positive electrode material for lithium secondary battery and manufacturing method of the same
JP5378038B2 (en) Lithium air battery
WO2013018638A1 (en) Negative electrode material for lithium ion batteries containing surface-fluorinated b-type titanium oxide powder, method for producing same, and lithium ion battery using same
JP2015118939A (en) Electrode material for lithium cell
JP2013187032A (en) Positive electrode material for lithium secondary battery, and lithium secondary battery
Jeong et al. Rational design of oxide/carbon composites to achieve superior rate-capability via enhanced lithium-ion transport across carbon to oxide
JP5499281B2 (en) Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material
JP6068247B2 (en) Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material
JP6531886B2 (en) Positive electrode composite material and all solid lithium-sulfur battery
KR102590571B1 (en) Manufacturing methods of composite cathode material for lithium secondary batteries and composite cathode material manufactured by the method
JP5904543B2 (en) Active material for lithium secondary battery that charges and discharges by conversion reaction, lithium secondary battery using the active material
WO2009113460A1 (en) Composite of metal sulfide and metal oxide and process for producing the composite
JP2019021421A (en) Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP5932691B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2020189778A (en) Method for producing non-graphitizable carbon material
JP5750086B2 (en) Lithium iron phosphate particles for lithium ion secondary battery positive electrode material, method for producing the same, and lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
JP6819982B2 (en) Carbon catalyst for redox flow battery electrodes
JP6310413B2 (en) Lithium air secondary battery, method for producing catalyst for air electrode, and method for producing lithium air secondary battery
JP7031296B2 (en) Manufacturing method of nickel composite oxide and positive electrode active material
JP6845782B2 (en) Predoping agent for lithium ion capacitor, positive electrode and lithium ion capacitor for lithium ion capacitor using the predoping agent for lithium ion capacitor, manufacturing method of lithium ion capacitor and predoping method of lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140207

R150 Certificate of patent or registration of utility model

Ref document number: 5499281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250