JP5497222B2 - 静電容量型センサシート及び静電容量型センサシートの製造方法 - Google Patents

静電容量型センサシート及び静電容量型センサシートの製造方法 Download PDF

Info

Publication number
JP5497222B2
JP5497222B2 JP2013076221A JP2013076221A JP5497222B2 JP 5497222 B2 JP5497222 B2 JP 5497222B2 JP 2013076221 A JP2013076221 A JP 2013076221A JP 2013076221 A JP2013076221 A JP 2013076221A JP 5497222 B2 JP5497222 B2 JP 5497222B2
Authority
JP
Japan
Prior art keywords
electrode layer
sensor sheet
dielectric layer
capacitive sensor
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013076221A
Other languages
English (en)
Other versions
JP2014081355A (ja
Inventor
秀夫 大高
秀之 加藤
英樹 則定
貴行 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013076221A priority Critical patent/JP5497222B2/ja
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to CN201380050906.8A priority patent/CN104685316B/zh
Priority to KR1020157007584A priority patent/KR102029094B1/ko
Priority to US14/431,282 priority patent/US9658120B2/en
Priority to PCT/JP2013/068143 priority patent/WO2014050245A1/ja
Priority to EP13840686.3A priority patent/EP2905574B1/en
Priority to TW102127115A priority patent/TWI491862B/zh
Publication of JP2014081355A publication Critical patent/JP2014081355A/ja
Application granted granted Critical
Publication of JP5497222B2 publication Critical patent/JP5497222B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、伸縮変形歪み量及び/又は伸縮変形歪み分布を計測するために用いられる静電容量型センサシート及びこの静電容量型センサシートの製造方法に関する。
静電容量型センサシートは、一対の電極層間の静電容量変化から測定対象物の凸凹形状等を検出することができ、面圧分布センサや歪みゲージ等のセンサに用いることができる。一般に静電容量型センサにおける静電容量(キャパシタンス)は、以下の式(1)で表される。
C=εεS/d・・・(1)
ここで、Cはキャパシタンス、εは自由空間の誘電率、εは誘電層の比誘電率、Sは電極層面積、dは電極間距離である。
従来、上記センサシートとしては、誘電層を、導電性フィラーを配合したエラストマーを含む一対の電極層で挟んだ構造のものが知られている(特開2010−43881号公報参照)。上記センサシートにおいては、誘電層がエラストマーなので、静電容量の変化が大きい。
しかしながら、面圧分布センサに用いられる静電容量型センサシートには、測定対象物の変形や動きに対し優れた追従性を有することが要求されるところ、上記文献記載の静電容量型センサシートでは、この特性を十分満足することはできない。加えて、伸縮変形歪み量及び/又は伸縮変形歪み分布センサに用いられる静電容量型センサシートには、センサシートが大きな伸縮変形や繰り返し変形を受けても、電極層と誘電層とが層間剥離しにくいこと、電極層の導電性の低下(電気抵抗の増加)が少ないこと等耐久性に優れることも要求されている。
特開2010−43881号公報
従来の面圧分布センサに用いられる静電容量型センサシートでは、測定対象物の荷重分布を計測できるが、荷重による変形量を知ることはできない。例えば、センサシートをクッションのような柔軟物に取り付け、センサシートに荷重を加えた場合、クッションがどのように変形したかを計測することはできない。
本発明は、このような事情に鑑みてなされたものであり、その目的は、伸長度が大きく柔軟な測定対象物の変形や動作に追従することが可能で、かつ伸縮変形や繰り返し変形に対する耐久性に優れる伸縮変形歪み量及び/又は伸縮変形歪み分布を計測するために用いられる静電容量型センサシート及び静電容量型センサシートの製造方法を提供することである。
上記課題を解決するためになされた発明は、
エラストマー製の誘電層と、
上記誘電層の表面に積層される表側電極層と、
上記誘電層の裏面に積層される裏側電極層と
を備え、
上記表側電極層及び裏側電極層がカーボンナノチューブを含み、
上記表側電極層及び裏側電極層の平均厚みがそれぞれ0.1μm以上10μm以下であり、伸縮変形歪み量及び伸縮変形歪み分布を計測するために用いられる静電容量型センサシートである。
当該静電容量型センサシートは、上記構成を有することで、伸長度が大きく柔軟な測定対象物の変形や動作に追従することが可能で、かつセンサシートの伸縮変形や繰り返し変形に対する耐久性に優れる。当該静電容量型センサシートが上記構成を有することで、上記効果を奏する理由としては、表側電極層及び裏側電極層(以下、「一対の電極層」ともいう)がカーボンナノチューブを含み、かつ、その平均厚みを上記範囲のように比較的薄くすることで、一対の電極層が誘電層の変形に対し優れた追従性を発揮すること、また、上述のように一対の電極層の平均厚みを比較的薄くすることで、一対の電極層と誘電層との層間剥離が抑制されること等が考えられる。
上記表側電極層及び裏側電極層は、カーボンナノチューブを含む塗布液の塗布により形成されていることが好ましい。これにより、上記表側電極層及び裏側電極層と誘電層との密着性をより向上することができ、センサシートが大きな伸縮変形や繰り返し変形を受けても、一対の電極層と誘電層との層間剥離をより抑制することができる。
上記カーボンナノチューブの平均長さとしては、100μm以上が好ましい。一対の電極層がこのような超長尺のカーボンナノチューブを含むことで、当該静電容量型センサシートは、伸長度をより大きくすることができ、また柔軟な測定対象物の変形や動作に対しより優れた追従性を発揮することができる。
上記表側電極層及び裏側電極層はそれぞれ複数の帯状体からなり、この表側電極層と裏側電極層とは表裏方向から見て略直角で交差するように配置されていることが好ましい。上記構成とすることで、当該静電容量型センサシートは、測定対象物の変形の位置及び大きさを測定するに際し、各電極配線を外部の切替回路で切り替えながら静電容量を測定することが可能となり、電極層の配置数及び電極配線数をより少なくすることができるとともに、当該静電容量型センサシートの歪み量及び歪みの位置情報を検知することができる。
当該静電容量型センサシートの1軸方向の伸長率としては、30%以上が好ましい。当該静電容量型センサシートの伸長率を30%以上とすることで、柔軟な測定対象物の変形や動作に対し、優れた追従性を効果的に発揮することができる。
上記表側電極層及び上記裏側電極層の全固形成分に対する上記カーボンナノチューブの含有量としては、50質量%以上が好ましい。このような含有割合とすることで、繰り返し変形を受けても表側電極層01A〜16Aの導電性低下(電気抵抗の増加)をより抑制することができ、耐久性により優れるものとすることができる。
上記表側電極層及び裏側電極層は、実質的にカーボンナノチューブのみからなることが好ましい。このような構成とすることで、繰り返し変形を受けても表側電極層01A〜16Aの導電性低下(電気抵抗の増加)をさらに抑制することができ、耐久性にさらに優れるものとすることができる。
上記カーボンナノチューブとしては単層カーボンナノチューブが好ましい。このような構成とすることで、上記表側電極層及び裏側電極層は、より優れた伸縮性を発揮し上記誘電層に対する追従性をより向上させることができる。
本発明の静電容量型センサシートの製造方法は、
エラストマー材料により誘電層を形成する工程、及び
カーボンナノチューブを含む塗布液の塗布により、上記誘電層の
表面及び裏面に平均厚みがそれぞれ0.1μm以上10μm以下の電極層を積層する工程
を有する。
当該静電容量型センサシートの製造方法によれば、伸長度が大きく柔軟な測定対象物の変形や動作に追従することが可能で、かつ伸縮変形や繰り返し変形に対する耐久性に優れる静電容量型センサシートを効率的に製造することができる。
本発明の伸縮変形歪み量及び/又は伸縮変形歪み分布を計測するために用いられるセンサは、
当該静電容量型センサシートと、
上記静電容量型センサシートの表側電極層及び裏側電極層に接続される検出回路と
を備える。
当該センサは、本発明の静電容量型センサシートを用いているので、伸長度が大きく柔軟な測定対象物の変形や動作に追従することが可能で、かつ伸縮変形や繰り返し変形に対する耐久性に優れている。
以上説明したように、本発明の伸縮変形歪み量及び/又は伸縮変形歪み分布を計測するために用いられる静電容量型センサシートは、伸長度が大きく柔軟な測定対象物の変形や動作に追従することが可能で、かつ伸縮変形や繰り返し変形に対する耐久性に優れる。
図1は、本発明の第1実施形態の静電容量型センサシート1の上面透過図である。 図2は、実施例の<センサシートの変形に対する静電容量の変化の測定>に用いたセンサシートを説明するための模式図である。 図3は、実施例1の静電容量型センサシートを用いて[繰り返し変形に対する電気抵抗の変化の測定]を行った測定結果を表す。 図4は、実施例2の静電容量型センサシートを用いて[繰り返し変形に対する電気抵抗の変化の測定]を行った測定結果を表す。 図5は、実施例3の静電容量型センサシートを用いて[繰り返し変形に対する電気抵抗の変化の測定]を行った測定結果を表す。 図6は、実施例4の静電容量型センサシートを用いて[繰り返し変形に対する電気抵抗の変化の測定]を行った測定結果を表す。 図7は、比較例1の静電容量型センサシートを用いて、[繰り返し変形に対する電気抵抗の変化の測定]を行った測定結果を表す。 図8は、実施例1の静電容量型センサシートを用いて、[センサシートの変形に対する静電容量の変化の測定]を行った測定結果を表す。 図9は、実施例3の静電容量型センサシートを用いて、[センサシートの変形に対する静電容量の変化の測定]を行った測定結果を表す。 図10は、実施例1の静電容量型センサシートを用いて、[繰り返し変形を経たセンサシートの変形に対する静電容量の変化(繰り返し精度)の測定]を行った測定結果を表す。 図11は、実施例3の静電容量型センサシートを用いて、[繰り返し変形を経たセンサシートの変形に対する静電容量の変化(繰り返し精度)の測定]を行った測定結果を表す。 図12は、本発明の静電容量型センサシートの製造方法の「誘電層形成工程」において、誘電層を構成するエラストマーとしてウレタンゴムを用いる場合における誘電層の成膜装置の模式図である。
以下、本発明の実施の形態について、図面を参酌しつつ説明する。
[第1実施形態]
<静電容量型センサシート1>
図1の静電容量型センサシート1は、シート状の誘電層2と、上記誘電層2の表面に積層される帯状体の表側電極層01A〜16Aと、上記誘電層2の裏面に積層される帯状体の裏側電極層01B〜16Bと、表側配線01a〜16aと、裏側配線01b〜16bとを備える。上記表側電極層と裏側電極層とが表裏(上下)方向に交差する部分が検出部(以下、「画素」ともいう)C0101〜C1616となる。なお、検出部(画素)の符号「C○○△△」中、上2桁の「○○」は、表側電極層01A〜16Aに対応している。下2桁の「△△」は、裏側電極層01B〜16Bに対応する。
当該静電容量型センサシート1の平均厚み、幅及び長さは、用いられる静電容量型センサシート1の用途によって適宜設計変更可能である。
<誘電層2>
誘電層2は、弾性変形可能な層である。誘電層2は、シート状を呈しており、X方向及びY方向を各辺とする平面視長方形状を有する。この誘電層2は主としてエラストマーから構成され、例えば天然ゴム、イソプレンゴム、ニトリルゴム(NBR)、エチレンプロピレンゴム(EPDM)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、シリコーンゴム、フッ素ゴム、アクリルゴム、水素添加ニトリルゴム、ウレタンゴム等から構成することが可能である。誘電層2を構成するエラストマーとしては、高い伸び性を有し、繰り返し変形での耐性に優れ、永久歪み性が小さいシリコーンゴム、ウレタンゴムが好ましいが、測定対象物や計測目的に応じて材料を選択することができ、配合の改良を施すことが可能である。
また、誘電層2は、上記エラストマー以外に架橋剤、可塑剤、加硫促進剤、老化防止剤等の添加剤を含有してもよい。
また、誘電層2は、上記エラストマー以外に、チタン酸バリウムなどの誘電フィラーを含有することができる。誘電フィラーを含有することで、静電容量Cを大きくして検出感度を高めることができる。
この誘電層2の平均厚み(T1)としては、静電容量Cを大きくして検出感度の向上を図る観点、及び測定対象物への追従性の向上を図る観点から、10μm以上1,000μm以下が好ましく、30μm以上200μm以下がより好ましい。
また、誘電層2の常温における比誘電率としては、2以上が好ましく、5以上がより好ましい。誘電層2の比誘電率が上記下限値未満であると、静電容量が小さくなり、センサとして利用した際に十分な感度が得られないおそれがある。
さらに、誘電層2のヤング率としては、0.01MPa以上5MPa以下が好ましく、0.1MPa以上1MPa以下がより好ましい。ヤング率が上記下限値未満であると、誘電層2が軟らかすぎ、高品質な加工が難しく、十分な測定精度が得られない恐れがある。一方、ヤング率が上記上限値を超えると、誘電層2が硬すぎ、測定対象物の変形荷重が小さい場合に測定対象物の変形動作を阻害してしまい、計測目的に対して計測結果がそぐわない恐れがある。
<表側電極層01A〜16A>
表側電極層01A〜16Aは、それぞれ帯状を呈しており、誘電層2の表面に合計16本積層されている。表側電極層01A〜16Aは、それぞれX方向(左右方向)に延在している。表側電極層01A〜16Aは、それぞれY方向(前後方向)に所定間隔ごとに離間して、互いに略平行となるようにそれぞれ配置されている。表側電極層01A〜16Aの左端には、それぞれ表側接続部01A1〜16A1が配置されている。
表側電極層01A〜16Aは、それぞれカーボンナノチューブを含む。また、表側電極層01A〜16Aは、カーボンナノチューブ以外にも、エラストマー等のつなぎ材料を含んでもよい。このようなつなぎ材料を含むことで、形成される電極層と上記誘電層との接着強度の向上、電極層の膜強度の向上等を図ることができ、さらにカーボンナノチューブを含む塗布液の塗工時の環境安全性(カーボンナノチューブの毒性やアスベスト類似の問題)の確保に寄与する。但し、電極層の全固形成分に対する上記つなぎ材料の含有量は少ない方が好ましい。上記つなぎ材料の含有量を少なくすることで、繰り返し変形に対する電気抵抗の変化が少なく耐久性に優れるとともに、測定対象物の変形の阻害を抑制することができる。
上記カーボンナノチューブとしては、例えば単層カーボンナノチューブ、多層カーボンナノチューブを用いることができる。これらのうち、直径がより小さくアスペクト比がより大きい単層カーボンナノチューブが好ましい。上記カーボンナノチューブの平均長さは、100μm以上が好ましく、300μm以上がより好ましく、600μm以上がさらに好ましい。また、上記カーボンナノチューブのアスペクト比としては、1,000以上が好ましく、10,000以上がより好ましく、30,000以上が特に好ましい。このような超長尺のカーボンナノチューブを用いることで、表側電極層01A〜16Aは、優れた伸縮性を発揮し、誘電層2の変形に対する追従性を向上させることができる。また、単層カーボンナノチューブが好ましい理由としては、以下のように推察される。すなわち、直径がより小さい単層カーボンナノチューブは柔軟性に富む一方、直径がより大きい多層カーボンナノチューブは剛直であるため、単層カーボンナノチューブを用いることで、変形が加えられた際にカーボンナノチューブがバネのように伸び、高い追従性等を発揮するものと考えられる。
上記エラストマー材料としては、例えば天然ゴム、イソプレンゴム、ニトリルゴム(NBR)、エチレンプロピレンゴム(EPDM)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、シリコーンゴム、フッ素ゴム、アクリルゴム、水素添加ニトリルゴム、ウレタンゴム等が挙げられる。これらのうち、フッ素ゴムが好ましい。
上記つなぎ材料としては、生ゴム(天然ゴム及び合成ゴムの加硫させていない状態のもの)も好ましい。このように比較的弾性の弱い材料を用いることで、誘電層2の変形に対する表側電極層01A〜16Aの追従性を高めることができる。
また、表側電極層01A〜16Aは、上記カーボンナノチューブ及びエラストマー材料以外にも、各種添加剤を含有してもよい。上記添加剤としては、例えばカーボンナノチューブの分散のための分散剤、バインダーのための架橋剤、加硫促進剤、加硫助剤、老化防止剤、可塑剤、軟化剤、着色剤等が挙げられる。電極層の導電性を向上させる目的で、ドーパントとして電荷移動材料やイオン液体等の低分子材料をコーティング剤又は添加剤として用いる手法も考えられるが、電極層に高アスペクト比のカーボンナノチューブを用いることで、特段処理をしなくても、十分な導電性を確保することができる。また、上記低分子材料を用いると、誘電層のエラストマー又は誘電層のエラストマー中の可塑剤に上記低分子材料が移行することに起因すると考えられる誘電層の絶縁性の低下(体積抵抗率の低下)や、当該センサシートの繰り返し変形に対する耐久性の低下、計測値の信頼性の低下を招来する可能性がある。従って、上記低分子材料を含まないことが好ましい。
表側電極層01A〜16Aにおけるカーボンナノチューブの含有量としては、表側電極層01A〜16Aに含有される全固形成分に対し50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が特に好ましい。また、表側電極層01A〜16Aは、上記エラストマー材料を含まない構成とすることが好ましい。このように導電性材料であるカーボンナノチューブ以外の含有割合を少なくすることで、繰り返し変形を受けても表側電極層01A〜16Aの導電性低下(電気抵抗の増加)を抑制することができ、耐久性に優れるものとすることができる。
また、表側電極層01A〜16Aの平均厚みは、それぞれ0.1μm以上10μm以下である。表側電極層01A〜16Aの平均厚みを上記範囲とすることで、表側電極層01A〜16Aは誘電層2の変形に対し優れた追従性を発揮することができる。平均厚みが0.1μm未満では導電性が不足し測定精度が低下するおそれがある。一方、平均厚みが10μmを超えるとカーボンナノチューブの補強効果によりセンサシートが硬くなり、測定対象物への追従性が低下して変形を阻害するおそれがある。なお、本明細書において、「電極層の平均厚み」は、レーザー顕微鏡(VK−9510 キーエンス製)を用いて測定した。具体的な方法として、誘電層の表面に積層された電極層の厚み方向を0.01μm刻みでスキャンし、その3D形状を計測した後、誘電層の表面に電極層が積層されている領域及び積層されていない領域において、それぞれ縦200μm×横200μmの矩形領域の平均高さを計測し、その平均高さの段差を電極層の平均厚みとした。
また、平均厚みが0.1μm以上10μm以下で積層された上記表側電極層は黒色半透明であり、可視光線透過率は0%〜70%である。
<裏側電極層01B〜16B>
裏側電極層01B〜16Bは、それぞれ帯状を呈しており、誘電層2の裏面に合計16本積層されている。裏側電極層01B〜16Bは、それぞれ表側電極層01A〜16Aと表裏方向から見て略直角で交差するように配置されている。すなわち、裏側電極層01B〜16Bは、それぞれY方向に延在している。また、裏側電極層01B〜16Bは、X方向に所定間隔ごとに離間して、互いに略平行となるようにそれぞれ配置されている。裏側電極層01B〜16Bの前端には、それぞれ裏側接続部01B1〜16B1が配置されている。
裏側電極層01B〜16Bの構成は、上述の表側電極層01A〜16Aと略同一であるので、ここでは説明を省略する。
<表側配線01a〜16a>
表側配線01a〜16aは、線状を呈しており、それぞれ上記表側接続部01A1〜16A1と検出回路とを接続する。表側配線01a〜16aを構成する材料としては、特に限定されず、従来公知の材料を用いることができるが、上述した表側電極層01A〜16Aと同様の構成のものとすることで表側配線01a〜16aも伸縮変形でき、測定対象物によるセンサシートの変形を阻害しないため好ましい。即ち、導電性材料であるカーボンナノチューブ以外の含有割合を少なくすることが好ましく、エラストマー材料を含まない構成とすることがより好ましい。
<裏側配線01b〜16b>
裏側配線01b〜16bは、線状を呈しており、それぞれ上記裏側接続部01B1〜16B1と検出回路とを接続する。表側配線01a〜16aを構成する材料については、上記表側配線01a〜16aと略同様であるのでここでは説明を省略する。
<検出部(画素)C0101〜C1616>
検出部(画素)C0101〜C1616は、図1にハッチングで示すように、表側電極層01A〜16Aと、裏側電極層01B〜16Bとが上下方向に交差する部分(重複する部分)に配置されている。検出部(画素)C0101〜C1616は、合計256個(=16個×16個)配置されており、256画素となる。各画素から一対の電極層を取り出す場合、256×2極で512本の配線が必要となるが、本実施形態のように帯状電極を交差させることで、必要な配線数を16本+16本の32本とすることができる。これは、各16本の配線を外部の切替回路で切り替えることで、256画素を1画素ずつ切り替えながら静電容量を測定することによって可能となる。その結果、各画素の歪み量及びセンサシートの歪みの位置情報を検知することができる。検出部C0101〜C1616は、静電容量型センサシート1の略全面に亘って、略等間隔に配置されている。検出部C0101〜C1616は、それぞれ表側電極層01A〜16Aの一部と、裏側電極層01B〜16Bの一部と、誘電層2の一部とを備えている。
<利点>
本発明の静電容量型センサシート1は、測定対象物載置前の静電容量Cと測定対象物載置後の静電容量Cから静電容量の変化量ΔCを検出し、伸縮変形歪み分布を求めることができる。本発明の静電容量型センサシート1は伸長度が大きく、1軸方向に100%まで繰り返し伸長させることが可能であり、また、300%まで伸長させてもシートが破壊されない。加えて、柔軟な測定対象物の変形や動作に追従することが可能で、かつ伸縮変形や繰り返し変形に対する耐久性に優れ、例えば測定対象物の形をトレースしたり、測定対象物の動きを直接的に検知すること等ができる。
<静電容量型センサシート1の製造方法>
次に、静電容量型センサシート1の製造方法について説明する。静電容量型センサシート1の製造方法は、
エラストマー材料により誘電層を形成する工程(以下、「誘電層形成工程」ともいう)、及び
カーボンナノチューブを含む塗布液の塗布により、上記誘電層の
表面及び裏面に平均厚みがそれぞれ0.1μm以上10μm以下の電極層を積層する工程(以下、「電極層積層工程」ともいう)
を有する。
[誘電層形成工程]
本工程では、エラストマー材料により誘電層2を形成する。まず、エラストマーに必要に応じて、誘電フィラー、架橋剤、加硫促進剤、老化防止剤等を添加したエラストマー材料を調製する。エラストマー材料及び誘電層の形成方法は特に限定されず、従来公知の材料及び方法を用いることができるが、誘電層2を構成するエラストマーとして例えばウレタンゴムを用いる場合の誘電層2の製造工程の例を以下に述べる。ひまし油変性ポリオール(商品名「2T−5008S OHv=13.6」、豊国製油社製)、トリス(2−エチルヘキシル)トリメリット酸エステル可塑剤(商品名「TOTM」、大八化学社製)、酸化防止剤(商品名「Irganox 1010」、チバスペシャリティケミカルズ社製を計量し、80℃の減圧下において、95rpmで60分間撹拌混合する。次に、混合液を計量し、100℃に調整後、触媒(商品名「Ucat 2030」、サンアプロ社製)を添加し、アジターで1分間撹拌する。その後、所定量のイソシアネート(商品名「ミリオネートMT」、日本ポリウレタン工業社製)を添加し、アジターで90秒間撹拌後、即座に混合液を図12に示す成形装置に注入し、保護フィルムでサンドイッチ状にして搬送しつつ架橋硬化させ、保護フィルム付きの所定厚みのロール巻シートを得る。さらに、100℃に調節した炉で10〜60分間架橋反応させることで、誘電層2を製造することができる。誘電層2は、通常10μm以上1000μm以下、好ましくは50μm以上500μm以下の平均厚みで形成される。
[電極層積層工程]
本工程では、カーボンナノチューブを含む塗布液の塗布により、上記誘電層2の表面及び裏面に平均厚みがそれぞれ0.1μm以上10μm以下の電極層を積層する。
まず、カーボンナノチューブをメチルイソブチルケトン(MIBK)等の有機溶媒に添加する。有機溶媒には、さらに必要に応じてフッ素ゴム等のエラストマーや分散剤を添加してもよい。上記得られた溶媒を、湿式分散機を用いて分散させる。例えば、超音波分散機、ジェットミル、ビーズミルなど既存の分散機を用いて分散させ、カーボンナノチューブを含む塗布液(以下、「電極材料の塗布液」ともいう)が調製される。
続いて、エアブラシ等を用い、上記誘電層2の表面に上記調製した電極材料の塗布液を帯状に塗布して乾燥させる。上記誘電層2を構成するエラストマーがシリコンゴム以外の、ウレタンゴム、EPDM等の場合、上記塗布液により得られる塗工膜と上記エラストマー表面との接着力に優れるため、上記エラストマー表面へ接着性を向上させるための特別な処理が不要であるというメリットがある。帯状電極は、例えば幅は1mm〜20mm程度、長さは50mm〜500mm程度であり、1mm〜5mm程度の間隔で離間して、互いに略平行となるように形成される。
<利点>
本発明の静電容量型センサシートの製造方法によれば、上記表側電極層及び裏側電極層と誘電層との密着性をより向上することができ、センサシートが大きな伸縮変形や繰り返し変形を受けても、一対の電極層と誘電層との層間剥離をより抑制することができる。
<センサ>
本発明の伸縮変形歪み量及び/又は伸縮変形歪み分布を計測するために用いられるセンサは、
当該静電容量型センサシートと、
上記静電容量型センサシートの表側電極層及び裏側電極層に接続される検出回路と
を備える。
当該センサは、本発明の静電容量型センサシートを用いているので、伸長度が大きく柔軟な測定対象物の変形や動作に追従することが可能で、かつ伸縮変形や繰り返し変形に対する耐久性に優れている。
上記表側電極層及び裏側電極層接続される検出回路としては、上記表側電極層と裏側電極層の間の静電容量の変化を検出する検出回路を適宜採用することができる。検出回路は、例えば、画素の切替回路、静電容量を計測する回路(LCRメータ等)、コンピュータ等へ出力するための回路、回路の駆動のための電源回路、出力値を適切に演算する演算部等を備える。
<他の実施形態>
なお、本発明は上記実施態様の他、種々の変更、改良を施した形態で実施することができる。
つまり、上記実施形態における表側電極層01A〜16A及び裏側電極層01B〜16Bの配置数を16個としているが、この配置数は特に限定しない。また、上記実施形態における表側電極層01A〜16Aと裏側電極層01B〜16Bの交差角度も特に限定しない。
また、上記実施形態における誘電層2の上方にシート状の表側保護層を配置し、この表側保護層は、誘電層2、表側電極層01A〜16A及び表側配線01a〜16aを上方から覆う構成とすることが好ましい。さらに、上記実施形態における誘電層2の下方にさらにシート状の裏側保護層を配置し、この裏側保護層は、誘電層2、裏側電極層01B〜16B及び裏側配線01b〜16bを下方から覆う構成とすることが好ましい。このような構成とすることで、表側電極層01A〜16A、表側配線01a〜16a、裏側電極層01B〜16B及び裏側配線01b〜16bと、静電容量型センサシート1の外部の部材とが導通するのを抑制することができる。上記表側保護層及び裏側保護層は、誘電層2と略同じベースポリマーを含んで形成されていることが好ましい。これにより誘電層2との高い接着性が得られる。
なお、上記実施形態では、当該静電容量型センサシートが表側電極層及び裏側電極層に加え配線を備えているが、表側電極層及び裏側電極層を備えていれば、配線がなくてもよい。
以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<誘電層の作製>
EPDM(エスプレン600F、住友化学製)100質量部に、パーオキサイド架橋剤としてのパークミルD(日本油脂製)を1.1質量部添加し、ロール混練した生ゴムを得た。この生ゴムを160℃で20分間プレス成型して架橋させ、膜厚100μmの誘電層を作製した。
<電極材料の作製>
[調製例1]
カーボンナノチューブとしてVGCF−X(長さ3μm、アスペクト比約200、登録商標、昭和電工製)30質量部をメチルイソブチルケトン(MIBK)56,070質量部に添加し、ジェットミル分散処理を施して塗布液(A−1)を得た。
[調製例2]
上記得られた塗布液(A−1)に、ゴム材料としてのフッ素ゴム(ダイエルTMG−912、ダイキン工業製)を2,113質量部さらに添加し、塗布液(A−2)を得た。
[調製例3]
調製例1において、カーボンナノチューブとして、上記VGCF−Xの代わりにスーパーグロースCNT(以下、「SGCNT」とも表記する)(繊維径の中央値が約3nm、成長長さ500μm〜700μm、アスペクト比約100,000、炭素純度99.9%、産業技術総合研究所提供)を用いた以外は調製例1と同様に操作して、塗布液(A−3)を得た。
[調製例4]
カーボンナノチューブとして上記SGCNT30質量部をメチルイソブチルケトン(MIBK)56,070質量部に添加し、ジェットミル分散処理を施した塗布液に、ゴム材料としてのフッ素ゴム(ダイエルTMG−912、ダイキン工業製)を2,113質量部さらに添加し、塗布液(A−4)を得た。
[比較調製例1]
EPDM(エスプレン600F、住友化学製)429質量部に対して、カーボンナノチューブとして上記VGCF−Xを30質量部、可塑剤として絶縁油(トランスフォーマーオイルG、出光興産製)607質量部、並びに硫黄架橋剤としての亜鉛華(ハクスイテック製)10.7質量部、ステアリン酸(花王ケミカル製)2.1質量部、セイミOT(日本乾溜工業製)3.6質量部、促進EM−2(三新化学工業製)6.0質量部及び促進MSA(大内新興化学工業製)2.6質量部を添加してロール混練し分散させ、プレス成型架橋して膜厚40μmの電極シート(a−1)を作製した。
<静電容量型センサシートの作製>
[実施例1〜4]
上記作製した誘電層の表面に、上記得られた各塗布液(A−1)〜(A−4)をエアブラシで帯状に塗布して乾燥させた。帯状電極は平均厚みが約1μm、幅が10mm、長さが100mmのものを、5mm間隔で5本形成した。続いて、上記誘電層の裏面に、上記各塗布液を表面の帯状電極と直交するように塗布し同じ要領で形成させた。この帯状電極の両端を0.1mm厚の銅箔で補強し、外部配線のリード線をネジ止めして接続した。
[比較例1]
また、上記電極シート(a−1)を帯状に裁断し、これを上記作製した誘電層の表面及び裏面に、表面の帯状電極と裏面の帯状電極が直交するように貼り合わせ、比較例1の静電容量型センサシートを作製した。各帯状電極層はそれぞれ平均厚みが40μm、幅が10mm、長さが100mmとなるように形成した。
<評価>
上記作製した各静電容量型センサシートを用い、以下の評価を実施した。
[繰り返し変形に対する電気抵抗の変化の測定]
1軸方向に100%まで伸長させる伸長変形を繰り返し行い、帯状電極の両端の電気抵抗を測定した。帯状電極は20mm幅で長さ50mmとした。まず、伸長を1軸方向に100%まで1回行い、変形履歴を加えた後、これを繰り返し行い、上記電気抵抗の変化を測定した。実施例1〜4の結果をそれぞれ図3〜図6に、比較例1の結果を図7に示す。電気抵抗の増加が小さいほど、導電性が低下せず繰り返し変形に対する耐久性が良好であると評価できる。ここで、図3〜図7中、各図の一番下の線が、1回目の1軸方向に100%まで伸長する際(往路の際)の電気抵抗の変化を表し、その伸長率100%時の電気抵抗値を表す点から伸びる他方の線(より上方の線)が、1回目の伸長率100%から伸長率0%に戻る際(復路の際)の電気抵抗の変化を表す。この往路と復路を合わせて繰り返し数1回とした。同様にして、100%伸長時の抵抗値が下から2番目の点から伸びる二つの線が繰り返し数2回目の電気抵抗の変化を表し、これらのうち、下方の線が繰り返し数2回目の往路の際の、上方の線が繰り返し数2回目の復路の際の電気抵抗の変化を表す。同様にして、繰り返し数3回目以降の電気抵抗の変化を図3〜図7に示す。
図3〜図7の結果から、実施例1〜4のセンサシートは、100%伸長の1回目で電気抵抗が増加するが、その後は安定に近づくことが分かった。これに対し、比較例1のセンサシートは、100%伸長の1回目で大きく電気抵抗が増加してしまい、数回で計測不能なほど導電性を失ってしまった。また、比較例1では電極シートの一部が誘電層から剥離してしまうことが分かった。実施例1〜4の中でも、電極層のカーボンナノチューブとしてアスペクト比の高いSGCNTを用いた実施例3及び4が、伸長が100回を超えてもより電気抵抗の変化が小さく、耐久性に優れることが分かった。これは、カーボンナノチューブの形状の違いに起因するものと推察され、繊維径の大きい多層カーボンナノチューブより、繊維径の小さな単層カーボンナノチューブが優れ、繊維径が100μmを超えるような長尺の高アスペクト比のカーボンナノチューブがより優れることが分かった。さらに、電極層にゴム成分を含有しない実施例3のセンサシートが、伸長が100回を超えても特に電気抵抗の変化が小さく、耐久性に特に優れることが分かった。
なお、図3〜図7で上述したように、100%伸長の1回目の計測のみ電気抵抗が増加し、その後は電気抵抗が安定する。より性能の安定したセンサを提供するため、電極層を塗工後にあらかじめ変形履歴を加えることもできる。しかしながら本発明のセンサとしての検知方式が静電容量変化であるため、変形状態でも十分な導電性を有し電極層の電気抵抗値は計測値に影響しない。従って、本発明の静電容量型センサシートによれば、あらかじめ変更履歴を加える工程を有さずとも、繰り返し耐久性に優れるセンサを提供することができる。
[センサシートの変形に対する静電容量の変化の測定]
センサシートの変形に対する静電容量の変化を評価するために、実施例1〜実施例4のセンサシートを図2のように2辺を樹脂フレームで拘束し、フレーム間を1軸方向に100%まで伸長させ静電容量の変化を測定した。静電容量の測定には、LCRメータ(日置電機製 LCRハイテスタ 3522−50)を用いた。25カ所の検出部の平均の静電容量を、1軸伸長の伸長率に対してプロットした。実施例1のセンサシートについては図8に、実施例3のセンサシートについては、図9に測定結果を示す。電極層エラストマーを含む実施例2及び実施例4については、それぞれ図8及び図9と略同じ結果が得られた。なお、比較例1のセンサシートについては、伸長率50%までは測定可能であったが、100%伸長では測定不能となった。
図8及び図9の結果から、実施例1〜実施例4のセンサシートは、ともに変形率に対してほぼ直線的に静電容量が増加していることから、伸縮変形量及び/又は伸縮変形歪み分布センサに好適に用いられることが分かった。
[繰り返し変形を経たセンサシートの変形に対する静電容量の変化(繰り返し精度)の測定]
実施例1〜実施例4のセンサシートについて、上述した1軸伸長を繰り返した時の静電容量の変化を測定し、繰り返し精度として評価した。この結果、実施例3>実施例4>実施例1>実施例2の順に繰り返し精度が優れることが分かった。実施例1のセンサシートについては図10に、実施例3のセンサシートについては図11に結果を示す。なお、比較例1のセンサシートは、1回の100%伸張履歴により導電性が失われたため、繰り返し精度を測定することができなかった。
図10及び図11から、実施例のセンサシートは比較例のものに比べ、繰り返し変形を経た後の静電容量の測定値のばらつきが少なく、繰り返し精度に優れることが分かった。また、電極層にゴム成分が含有されていない実施例1及び実施例3のセンサシートは、それぞれ電極層にゴム成分を含有する実施例2及び実施例4のセンサシートに比べ、繰り返し精度により優れていることが分かった。また、電極層にアスペクト比の高いカーボンナノチューブを用いた実施例3のセンサシートが、繰り返し精度に特に優れることが分かった。これは、アスペクト比の高い長尺のカーボンナノチューブを用いることで、カーボンナノチューブがバネのように伸びて追従することができ、センサシートに変形が加えられても導電パスが切断されにくいため、その効果が顕著に発現されたものと推察される。
本発明の伸縮変形歪み量及び/又は伸縮変形歪み分布を計測するために用いられる静電容量型センサシートは、伸長度が大きく柔軟な測定対象物の変形や動作に追従することが可能で、かつ伸縮変形や繰り返し変形に対する耐久性に優れる。
1 静電容量型センサシート
2 誘電層
3 検出回路
01A1〜16A1 表側接続部
01A〜16A 表側電極層
01a〜16a 表側配線
01B1〜16B1 裏側接続部
01B〜16B 裏側電極層
01b〜16b 裏側配線
C0101〜C1616 検出部
21 静電容量型センサシート
22 誘電層
23 樹脂フレーム
01A’〜05A’ 表側電極層
01A’1〜05A’1 表側接続部
01B’〜05B’ 裏側電極層
01B’1〜05B’1 裏側接続部
C’0101〜C’0505 検出部
31 誘電層
32、32’ 保護フィルム
33 ポリウレタン用混合液
34 架橋炉
35 巻取り機

Claims (10)

  1. エラストマー製の誘電層と、
    上記誘電層の表面に積層される表側電極層と、
    上記誘電層の裏面に積層される裏側電極層と
    を備え、
    上記表側電極層及び裏側電極層がカーボンナノチューブを含み、
    上記表側電極層及び裏側電極層の平均厚みがそれぞれ0.1μm以上10μm以下であり、伸縮変形歪み量及び/又は伸縮変形歪み分布を計測するために用いられる静電容量型センサシート。
  2. 上記表側電極層及び裏側電極層が、カーボンナノチューブを含む塗布液の塗布により形成されている請求項1に記載の静電容量型センサシート。
  3. 上記カーボンナノチューブの平均長さが100μm以上である請求項1又は請求項2に記載の静電容量型センサシート。
  4. 上記表側電極層及び裏側電極層がそれぞれ複数の帯状体からなり、この表側電極層と裏側電極層とが表裏方向から見て略直角で交差するように配置されている請求項1、請求項2又は請求項3に記載の静電容量型センサシート。
  5. 1軸方向の伸長率が30%以上である請求項1から請求項4のいずれか1項に記載の静電容量型センサシート。
  6. 上記表側電極層及び上記裏側電極層の全固形成分に対する上記カーボンナノチューブの含有量が50質量%以上である請求項1から請求項5のいずれか1項に記載の静電容量型センサシート。
  7. 上記表側電極層及び裏側電極層が、実質的にカーボンナノチューブのみからなる請求項1から請求項5のいずれか1項に記載の静電容量型センサシート。
  8. 上記カーボンナノチューブが単層カーボンナノチューブである請求項1から請求項7のいずれか1項に記載の静電容量型センサシート。
  9. エラストマー材料により誘電層を形成する工程、及び
    カーボンナノチューブを含む塗布液の塗布により、上記誘電層の表面及び裏面に平均厚みがそれぞれ0.1μm以上10μm以下の電極層を積層する工程
    を有する静電容量型センサシートの製造方法。
  10. 請求項1から請求項8のいずれか1項に記載の静電容量型センサシートと、
    上記静電容量型センサシートの表側電極層及び裏側電極層に接続される検出回路と
    を備える伸縮変形歪み量及び/又は伸縮変形歪み分布を計測するために用いられるセンサ。
JP2013076221A 2012-09-28 2013-04-01 静電容量型センサシート及び静電容量型センサシートの製造方法 Active JP5497222B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013076221A JP5497222B2 (ja) 2012-09-28 2013-04-01 静電容量型センサシート及び静電容量型センサシートの製造方法
KR1020157007584A KR102029094B1 (ko) 2012-09-28 2013-07-02 정전 용량형 센서 시트, 정전 용량형 센서 시트의 제조 방법 및 센서
US14/431,282 US9658120B2 (en) 2012-09-28 2013-07-02 Capacitance-type sensor sheet, method for manufacturing capacitance-type sensor sheet, and sensor
PCT/JP2013/068143 WO2014050245A1 (ja) 2012-09-28 2013-07-02 静電容量型センサシート、静電容量型センサシートの製造方法及びセンサ
CN201380050906.8A CN104685316B (zh) 2012-09-28 2013-07-02 电容量型传感器片、电容量型传感器片的制造方法及传感器
EP13840686.3A EP2905574B1 (en) 2012-09-28 2013-07-02 Capacitance-type sensor sheet, method for manufacturing capacitance-type sensor sheet, and sensor
TW102127115A TWI491862B (zh) 2012-09-28 2013-07-29 Electrostatic Capacitive Sensing Sheet, Electrostatic Capacitive Sensing Sheet Manufacturing Method and Sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012218707 2012-09-28
JP2012218707 2012-09-28
JP2013076221A JP5497222B2 (ja) 2012-09-28 2013-04-01 静電容量型センサシート及び静電容量型センサシートの製造方法

Publications (2)

Publication Number Publication Date
JP2014081355A JP2014081355A (ja) 2014-05-08
JP5497222B2 true JP5497222B2 (ja) 2014-05-21

Family

ID=50387662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076221A Active JP5497222B2 (ja) 2012-09-28 2013-04-01 静電容量型センサシート及び静電容量型センサシートの製造方法

Country Status (7)

Country Link
US (1) US9658120B2 (ja)
EP (1) EP2905574B1 (ja)
JP (1) JP5497222B2 (ja)
KR (1) KR102029094B1 (ja)
CN (1) CN104685316B (ja)
TW (1) TWI491862B (ja)
WO (1) WO2014050245A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211273A (ja) * 2018-06-01 2019-12-12 住友理工株式会社 手術台用の体圧分布センサシート

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816800B2 (en) * 2013-10-10 2017-11-14 Stretchsense Limited Method of fabrication of laminates of elastic material suitable for dielectric elastomer sensing
CN109990926A (zh) * 2013-11-28 2019-07-09 阪东化学株式会社 感测片及静电电容式传感器
EP3130287B1 (en) * 2014-04-09 2022-05-11 Bando Chemical Industries, Ltd. Sensor device
JP6313100B2 (ja) * 2014-04-09 2018-04-18 バンドー化学株式会社 静電容量型センサシート及び静電容量型センサ
WO2016030752A1 (en) * 2014-08-25 2016-03-03 Bainisha Cvba Elastic sensor
WO2016063783A1 (ja) * 2014-10-22 2016-04-28 バンドー化学株式会社 静電容量型センサ
JP6554657B2 (ja) * 2014-11-07 2019-08-07 バンドー化学株式会社 静電容量型センサ、及び、回転角度の測定方法
JP2016153729A (ja) * 2015-02-20 2016-08-25 住友理工株式会社 変形量測定構造体
JP6325482B2 (ja) * 2015-04-06 2018-05-16 バンドー化学株式会社 静電容量型センサシート及びセンサ装置
KR101742240B1 (ko) * 2015-08-31 2017-06-01 숭실대학교산학협력단 커패시터형 촉각센서 및 그 제조방법
US9733062B2 (en) * 2015-11-20 2017-08-15 General Electric Company Systems and methods for monitoring component strain
CN105606265B (zh) * 2016-01-15 2018-07-17 浙江大学 一种基于液压力传导的柔性触觉传感器
FI127245B (en) * 2016-07-11 2018-02-15 Forciot Oy Power and / or pressure sensors
CN108253998B (zh) * 2016-12-29 2020-07-14 台湾艾华电子工业股份有限公司 拉伸传感器
TWI623732B (zh) * 2016-12-29 2018-05-11 台灣艾華電子工業股份有限公司 分層異向位移型拉伸感測器
WO2018126326A1 (en) 2017-01-06 2018-07-12 Direct-C Limited Polymeric nanocomposite based sensor and coating systems and their applications
JP6505164B2 (ja) * 2017-07-10 2019-04-24 バンドー化学株式会社 静電容量型センサシート及びセンサ装置
KR101876438B1 (ko) * 2017-08-10 2018-07-10 숭실대학교산학협력단 점유탄성 탄성중합체 기반 커패시터형 촉각센서
CN108209900A (zh) * 2017-12-29 2018-06-29 中国科学院电子学研究所 颅内压力传感器、检测设备及制备方法
US10746014B2 (en) 2018-02-09 2020-08-18 Schlumberger Technology Corporation Method and system for monitoring a condition of an elastic element used in a downhole tool
EP3759448A1 (en) * 2018-03-01 2021-01-06 Universität Basel Vizerektorat Forschung Dielectric elastomer transducer and corresponding fabrication process
WO2019200488A1 (en) * 2018-04-20 2019-10-24 Direct-C Limited Wide area sensors
US11421974B2 (en) * 2018-07-20 2022-08-23 Teijin Limited Sensor device with improved stability
JP2020046387A (ja) * 2018-09-21 2020-03-26 Nissha株式会社 圧力センサーシート
WO2020194931A1 (ja) * 2019-03-27 2020-10-01 住友理工株式会社 静電容量結合方式センサ
CN110095211B (zh) * 2019-05-24 2023-12-19 清华大学深圳研究生院 一种可拉伸触觉传感器阵列及其制备方法
CN112014003B (zh) * 2019-05-28 2022-03-18 华中科技大学 一种用于人体肌肉变形测量的柔性传感器及其制备方法
CN113795740A (zh) * 2019-06-26 2021-12-14 百医医材科技股份有限公司 压力感应系统及压力感应设定方法
KR102259977B1 (ko) * 2019-10-11 2021-06-02 한국생산기술연구원 신축감지 정전용량센서 및 이를 포함하는 보행분석 센싱 구조체 및 신축감지 정전용량센서의 제조방법
CN111184532B (zh) * 2020-04-09 2020-07-31 上海尽星生物科技有限责任公司 一种接触式柔性适形超声探头的超声系统及方法
WO2022094767A1 (zh) * 2020-11-03 2022-05-12 智能容电(北京)科技有限公司 一种柔性可变电容器及其制备方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278925A (ja) * 1988-09-16 1990-03-19 Yokohama Syst Kenkyusho:Kk 静電容量型圧力センサ
JP2003075277A (ja) * 2001-09-05 2003-03-12 Omron Corp 面状圧力センサ
JP4963159B2 (ja) 2004-11-19 2012-06-27 日本碍子株式会社 圧電/電歪デバイス
JP4743520B2 (ja) * 2006-03-02 2011-08-10 三洋電機株式会社 カーボンナノチューブ電極及びその製造方法
EP1991723A2 (en) 2006-03-03 2008-11-19 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
JP2008113544A (ja) * 2006-10-04 2008-05-15 Tokai Rubber Ind Ltd アクチュエータ
CN100420626C (zh) * 2006-11-27 2008-09-24 西南交通大学 纯碳纳米管薄膜的制备方法
JP4911702B2 (ja) * 2007-01-31 2012-04-04 日本リニアックス株式会社 圧力センサ
JP5530585B2 (ja) * 2007-01-31 2014-06-25 東海ゴム工業株式会社 電歪型アクチュエータ用誘電体エラストマー膜の製造方法
JP4771971B2 (ja) * 2007-02-09 2011-09-14 東海ゴム工業株式会社 柔軟電極およびそれを用いた電子機器
JP2008252958A (ja) * 2007-03-29 2008-10-16 Kuraray Co Ltd アクチュエータ及びそれに使用する電極
JP2009189747A (ja) * 2008-02-18 2009-08-27 Goto Ikueikai 歪センサ
CN101672660B (zh) * 2008-04-10 2013-01-02 爱特梅尔公司 电容性位置传感器
WO2009128546A1 (ja) * 2008-04-18 2009-10-22 日本碍子株式会社 圧電/電歪デバイスの検査方法及び検査装置、並びに圧電/電歪デバイスの調整方法
WO2009145080A1 (ja) * 2008-05-24 2009-12-03 株式会社クラレ タッチパネル
US7958789B2 (en) * 2008-08-08 2011-06-14 Tokai Rubber Industries, Ltd. Capacitive sensor
JP4565359B2 (ja) 2008-08-08 2010-10-20 東海ゴム工業株式会社 静電容量型面圧分布センサ
JP5474331B2 (ja) * 2008-10-30 2014-04-16 東海ゴム工業株式会社 誘電膜、およびそれを用いたアクチュエータ、センサ、トランスデューサ
JP2010244772A (ja) 2009-04-03 2010-10-28 Sony Corp 静電容量式タッチ部材及びその製造方法、並びに静電容量式タッチ検出装置
JP4383505B1 (ja) * 2009-05-15 2009-12-16 株式会社Hyper Drive 発電効率及び耐久性が改善された電場応答性高分子
JP2011017626A (ja) * 2009-07-09 2011-01-27 Sony Corp 力学量検知部材及び力学量検知装置
EP2284933A1 (de) * 2009-07-22 2011-02-16 Bayer MaterialScience AG Verfahren zur Herstellung von dehnbaren Elektroden
WO2011013256A1 (ja) * 2009-07-28 2011-02-03 東京エレクトロン株式会社 アクチュエータ素子及びアクチュエータ素子の製造方法
JP5477624B2 (ja) * 2009-09-02 2014-04-23 学校法人 名城大学 二層カーボンナノチューブを主体とする炭素質材料の製造方法
KR101115419B1 (ko) * 2009-09-08 2012-02-15 한국표준과학연구원 열접착 테이프를 이용한 정전용량형 힘 센서 제작방법
JP5486258B2 (ja) * 2009-09-29 2014-05-07 東海ゴム工業株式会社 静電容量型センサ
JP5432207B2 (ja) * 2011-04-19 2014-03-05 東海ゴム工業株式会社 静電容量型センサ装置
JP4837794B1 (ja) * 2011-05-30 2011-12-14 美紀夫 和氣 駆動性能及び耐久性が改善されたトランスデューサー用電場応答性高分子
JP5757521B2 (ja) * 2011-07-06 2015-07-29 国立研究開発法人産業技術総合研究所 油脂或いは撥水剤を含むアクチュエータ素子
JP5831926B2 (ja) * 2011-07-06 2015-12-09 アルプス電気株式会社 高分子アクチュエータ素子及びその製造方法
US9411472B2 (en) * 2011-12-08 2016-08-09 Atmel Corporation Touch sensor with adaptive touch detection thresholding
JP3182167U (ja) * 2012-11-01 2013-03-14 スペースリンク株式会社 コイン型カーボンナノチューブフィルムキャパシタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211273A (ja) * 2018-06-01 2019-12-12 住友理工株式会社 手術台用の体圧分布センサシート
JP7009309B2 (ja) 2018-06-01 2022-01-25 住友理工株式会社 手術台用の体圧分布センサシート

Also Published As

Publication number Publication date
EP2905574B1 (en) 2018-09-26
US20150268106A1 (en) 2015-09-24
KR102029094B1 (ko) 2019-10-07
TWI491862B (zh) 2015-07-11
TW201418686A (zh) 2014-05-16
CN104685316B (zh) 2017-11-03
WO2014050245A1 (ja) 2014-04-03
CN104685316A (zh) 2015-06-03
JP2014081355A (ja) 2014-05-08
EP2905574A1 (en) 2015-08-12
KR20150058256A (ko) 2015-05-28
EP2905574A4 (en) 2016-06-22
US9658120B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
JP5497222B2 (ja) 静電容量型センサシート及び静電容量型センサシートの製造方法
WO2015029955A1 (ja) 静電容量型センサシート及び静電容量型センサ
JP6726781B2 (ja) 伸縮性電極、センサシート及び静電容量型センサ
US10365171B2 (en) Capacitive sensor sheet and capacitive sensor for measuring elastic deformation
TWI668409B (zh) 靜電電容型感測器
JP6168912B2 (ja) 伸縮性電極及びセンサシート
JP5448423B2 (ja) 触覚センサおよびその製造方法
JP5622405B2 (ja) 静電容量型感圧センサおよびその製造方法
JP6313100B2 (ja) 静電容量型センサシート及び静電容量型センサ
JP2010153821A (ja) 導電膜、およびそれを備えたトランスデューサ、フレキシブル配線板
JP2015059845A (ja) 静電容量型センサ、及び伸縮変形歪み量、伸縮変形歪み分布又は面圧分布の計測方法
JP2014219263A (ja) 静電容量型センサシート及び静電容量型センサ
JP2015197382A (ja) 静電容量型センサ、及び歪み計測装置
JP2018091875A (ja) シート状物、静電容量型センサシート、及び、衣服
JP2014219214A (ja) 静電容量型センサシート及び静電容量型センサ
JP6574831B2 (ja) 静電容量型センサシート及び静電容量型センサ
JP2015200501A (ja) 歪み計測装置、歪み量及び歪み方向計測方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5497222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02