JP5397291B2 - Start control device for turbocharged engine - Google Patents

Start control device for turbocharged engine Download PDF

Info

Publication number
JP5397291B2
JP5397291B2 JP2010080414A JP2010080414A JP5397291B2 JP 5397291 B2 JP5397291 B2 JP 5397291B2 JP 2010080414 A JP2010080414 A JP 2010080414A JP 2010080414 A JP2010080414 A JP 2010080414A JP 5397291 B2 JP5397291 B2 JP 5397291B2
Authority
JP
Japan
Prior art keywords
engine
valve
satisfied
turbine
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010080414A
Other languages
Japanese (ja)
Other versions
JP2011214419A (en
Inventor
匡宏 名越
雅之 鐵野
耕太 前川
崇 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2010080414A priority Critical patent/JP5397291B2/en
Publication of JP2011214419A publication Critical patent/JP2011214419A/en
Application granted granted Critical
Publication of JP5397291B2 publication Critical patent/JP5397291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

ここに開示する技術は、ターボ過給機付きエンジンの始動制御装置に関し、特に自動停止したエンジンの始動時の制御に係る。   The technology disclosed herein relates to a start control device for an engine with a turbocharger, and particularly relates to control at the time of starting an automatically stopped engine.

例えば特許文献1には、ターボ過給機付きエンジンの制御装置が記載されている。この制御装置は、車両の発進時に、過給機の回転上昇遅れに起因してエンジンの背圧が高まり、エンジンのポンピングロスが大きくなる結果、車両の発進性が悪化してしまうことを解消すべく、エンジンの排気通路上のタービンをバイパスするバイパス路上に介設したウエストゲートバルブを、車両の発進時に、所定期間だけ全開にしている。つまり、この制御装置では、エンジンの低回転域では排気抵抗となり得るタービンをバイパスすることによってエンジンの背圧を低下させ、それによってエンジンのポンピングロスの低減及びそれに伴う車両の発進性の向上を図るようにしている。   For example, Patent Document 1 describes a control device for an engine with a turbocharger. This control device eliminates the deterioration of the startability of the vehicle as a result of an increase in engine back pressure and an increase in engine pumping loss due to a delay in the increase in rotation of the turbocharger when the vehicle starts. Therefore, the wastegate valve interposed on the bypass passage that bypasses the turbine on the exhaust passage of the engine is fully opened for a predetermined period when the vehicle starts. In other words, in this control device, the back pressure of the engine is reduced by bypassing the turbine that can become exhaust resistance in the low engine speed range, thereby reducing the pumping loss of the engine and improving the startability of the vehicle accordingly. I am doing so.

また、ターボ過給機の構成として、高出力化を図る観点から、相対的に小型のターボ過給機と相対的に大型のターボ過給機との2個のターボ過給機を直列に配置する構成(いわゆる、2ステージターボ構成)が知られている。この2ステージターボ構成では、エンジンの排気通路上に大小2つのタービンが直列に配設されることになると共に、その各々のタービンをバイパスするように2つのバイパス路が設けられて、各々のバイパス路上にレギュレートバルブ(小型タービンのバイパス路上)及びウエストゲートバルブ(大型タービンのバイパス路上)が介設されることになる。   In addition, the turbocharger is configured in series with two turbochargers, a relatively small turbocharger and a relatively large turbocharger, in order to increase output. A configuration (so-called two-stage turbo configuration) is known. In this two-stage turbo configuration, two large and small turbines are arranged in series on the exhaust passage of the engine, and two bypass passages are provided so as to bypass each turbine. A regulation valve (on the bypass path of the small turbine) and a waste gate valve (on the bypass path of the large turbine) are interposed on the road.

特開平8−170541号公報JP-A-8-170541

ところで、燃費の低減やCOの排出抑制等を目的として、例えば車両の一時停止中に所定の停止条件が成立すればエンジンを自動停止させると共に、所定の始動条件が成立すればエンジンを再始動させる、いわゆるアイドルストップシステムが知られている。そこで、前述したターボ過給機付きエンジンに、こうしたアイドルストップシステムを適用することが考えられる。 By the way, for the purpose of reducing fuel consumption and CO 2 emission, for example, the engine is automatically stopped if a predetermined stop condition is satisfied during a temporary stop of the vehicle, and the engine is restarted if a predetermined start condition is satisfied. A so-called idle stop system is known. Therefore, it is conceivable to apply such an idle stop system to the aforementioned turbocharged engine.

ここで、エンジンの始動条件としては、例えば運転者がアクセル操作等をすることにより成立する、車両の発進要求を伴った始動条件と、例えばバッテリの充電状態(SOC:State Of Charge)が低下したり、空調装置のコンプレッサの作動が必要になった等の、発進要求はないものの車両側の要求によって成立する、発進要求を伴わない始動条件と、の大別して2種類が存在する。   Here, as the engine start condition, for example, a start condition accompanied by a vehicle start request, which is established when the driver performs an accelerator operation, and a state of charge (SOC) of the battery, for example, decreases. There are two types of starting conditions that are established by a request on the vehicle side but not accompanied by a start request, such as the necessity of starting the compressor of the air conditioner.

この内、車両の発進要求を伴わない始動条件が成立した場合は、エンジンの始動を短時間で完了させた上で、その始動完了後に、運転者のアクセル操作等に起因する発進要求が行われることに備えて待機しておくことが望ましい。これに対し、発進要求を伴った始動条件が成立した場合は、エンジンの始動を短時間で完了させることは勿論のこと、その始動完了後、即座に車両の発進及び加速を行わなければならないが、その際の発進加速性能を高める観点からはターボ過給が早期に開始されることが望ましい。このように始動条件の成立時にエンジンの始動を行う際には、発進要求の有無に応じて要求が異なるのである。   Among these, when a start condition not accompanied by a vehicle start request is satisfied, the start of the engine is completed in a short time, and after the start is completed, a start request due to the driver's accelerator operation or the like is made. It is desirable to wait in preparation. On the other hand, when the start condition accompanied by the start request is satisfied, the start of the vehicle must be started and accelerated immediately after the start is completed as well as the start of the engine is completed in a short time. From the viewpoint of improving the start acceleration performance at that time, it is desirable that the turbocharging is started early. Thus, when starting the engine when the start condition is satisfied, the request differs depending on whether or not a start request is made.

ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、ターボ過給機付きエンジンの再始動制御に関し、始動条件の成立時に、発進要求の有無に応じて始動制御を最適化することにある。   The technology disclosed herein has been made in view of such a point, and the purpose thereof is related to restart control of an engine with a turbocharger, depending on whether or not a start request is made when a start condition is satisfied. The goal is to optimize the starting control.

ここに開示する技術は、排気通路上に直列に配置された第1及び第2タービンを含む第1及び第2のターボ過給機を備えた、いわゆる2ステージターボ構成のターボ過給機付きエンジンの始動制御装置を前提として、発進要求を伴う始動条件の成立時と、発進要求を伴わない始動条件の成立時とで、前記第1及び第2タービンをバイパスする第1及び第2のバイパス路のバルブ制御を異ならせることにした。   The technology disclosed herein is a turbocharged engine having a so-called two-stage turbo configuration, including first and second turbochargers including first and second turbines arranged in series on an exhaust passage. First and second bypass passages for bypassing the first and second turbines when a start condition with a start request is satisfied and when a start condition without a start request is satisfied We decided to make the valve control different.

つまり、車両の発進要求を伴う始動条件が成立したときには、エンジンの始動完了後にはターボ過給を早期に開始して発進加速性能を向上させる観点から、排気通路上の相対的に上流側に配置された第1タービンの背圧を下げてその前後の差圧を大きくし、それによって、第1及び第2タービンの内、第1タービンの回転数を0(ゼロ)回転から速やかに上昇させる。そのために、エンジンの始動条件の成立後に第1タービンをバイパスする第1バイパス路上の第1バルブは閉じる一方で、第2タービンをバイパスする第2バイパス路上の第2バルブは開けておくバルブ制御を実行する。   In other words, when the start condition with the start request of the vehicle is satisfied, after the engine start is completed, the turbocharger is started at an early stage to improve the start acceleration performance, so that it is disposed relatively upstream on the exhaust passage. The back pressure of the first turbine is reduced to increase the differential pressure before and after the first turbine, thereby quickly increasing the rotational speed of the first turbine from the 0 (zero) rotation among the first and second turbines. For this purpose, valve control is performed in which the first valve on the first bypass path that bypasses the first turbine is closed after the engine start condition is satisfied, while the second valve on the second bypass path that bypasses the second turbine is opened. Run.

一方、車両の発進要求を伴わない始動条件が成立したときには、ターボ過給を早期に開始したいという要求はない一方で、エンジン始動完了後に発進が要求されたときに速やかに対応する必要があることから、第1及び第2タービンの双方を回転させた状態で待機しておく。そのために、エンジンの始動条件の成立後に第1及び第2バルブを共に閉じるバルブ制御を実行する。   On the other hand, when start conditions that do not require a vehicle start request are satisfied, there is no request to start turbocharging early, but it is necessary to respond promptly when a start is requested after engine start is completed Therefore, the system waits in a state where both the first and second turbines are rotated. For this purpose, valve control is performed to close both the first and second valves after the engine start condition is satisfied.

具体的に、ここに開示するターボ過給機付きエンジンの始動制御装置は、車両に搭載されたエンジンと、前記エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、前記エンジンの排気通路上の、相対的に上流側に配置された第1タービンを含む第1のターボ過給機と、相対的に下流側に配置された第2タービンを含む第2のターボ過給機と、前記第1タービンをバイパスする第1バイパス路上に介設された、ノーマルオープンの第1バルブと、前記第2タービンをバイパスする第2バイパス路上に介設された、ノーマルオープンの第2バルブと、所定の停止条件が成立したときに前記エンジンを停止すると共に、所定の始動条件が成立したときには、前記燃料噴射弁を通じて前記燃焼室内に供給した燃料を燃焼させる所定の始動制御を実行して前記エンジンを始動させる始動制御手段と、を備える。   Specifically, an engine start control device for a turbocharged engine disclosed herein includes an engine mounted on a vehicle, a fuel injection valve that injects fuel into a combustion chamber of the engine, and an exhaust passage of the engine. A first turbocharger including a first turbine disposed relatively upstream, a second turbocharger including a second turbine disposed relatively downstream, and the first A normally open first valve provided on a first bypass path that bypasses the turbine, a normally open second valve provided on a second bypass path that bypasses the second turbine, and a predetermined stop When the condition is satisfied, the engine is stopped, and when a predetermined start condition is satisfied, predetermined start control is performed to burn the fuel supplied into the combustion chamber through the fuel injection valve. And a start control means for starting the engine.

そして、前記始動制御手段は、前記車両の発進要求を伴う始動条件が成立したときには、前記始動制御の実行と共に、前記始動条件の成立後に前記第1バルブを閉じると共に、前記エンジンの始動が完了して所定時間が経過した時点で前記第2バルブを閉じる第1のバルブ制御を実行する一方、前記車両の発進要求を伴わない始動条件が成立したときには、前記始動制御の実行と共に、前記始動条件の成立後に前記第1及び第2バルブを共に閉じる第2のバルブ制御を実行する。   The start control means closes the first valve after the start condition is satisfied and executes the start control when the start condition with the vehicle start request is satisfied, and completes the start of the engine. The first valve control for closing the second valve is executed when a predetermined time elapses. On the other hand, when a start condition that does not require a start of the vehicle is satisfied, the start condition is After the establishment, the second valve control for closing both the first and second valves is executed.

ここで、第1バルブ及び第2バルブはそれぞれ、その開度を調整可能なバルブとすればよく、ここでいう「バルブを閉じる」ことには、バルブを全閉にすることの他、バルブの開度を、閉じ側の所定開度にすることを含み得る。   Here, each of the first valve and the second valve may be a valve whose opening degree can be adjusted. In this case, “closing the valve” includes not only fully closing the valve, The opening may include a predetermined opening on the closing side.

この構成によると、車両の発進要求を伴った始動条件の成立時には、エンジンの燃焼室内に燃料を供給しかつ燃焼させることでエンジンを始動させる始動制御を実行する。そして、この始動制御と共に、エンジンの排気通路上の相対的に上流側に配置された第1タービンをバイパスする第1バイパス路上の第1バルブを閉じる。第1バルブは、エンジンの始動制御の開始時に閉じる、又は、エンジンの始動完了後に閉じるようにしてもよい。一方で、相対的下流側に配置された第2タービンをバイパスする第2バイパス路上の第2バルブは、エンジンの始動が完了して所定時間が経過した時点で閉じる。つまり、始動条件の成立後、エンジンの始動が完了して所定時間が経過するまでの過渡期間においては、第1バルブが閉じかつ第2バルブが開いた状態になり得る。この状態は、第1タービン下流側の第2タービンをバイパスし得る状態であるから、第1タービンの背圧を低下させ、第1タービンの前後差圧を大きくする。このことは、エンジンの始動に伴い第1タービンの回転数を0回転から速やかに上昇させ、エンジンの始動完了後においては、第1のターボ過給機による過給を早期に開始する上で有利になる。つまり、発進加速性能を高め得る。   According to this configuration, when the start condition with the start request of the vehicle is satisfied, the start control for starting the engine by supplying the fuel into the combustion chamber of the engine and burning it is executed. And with this start control, the 1st valve on the 1st bypass way which bypasses the 1st turbine arranged on the relatively upstream side on the exhaust passage of an engine is closed. The first valve may be closed at the start of engine start control, or may be closed after completion of engine start. On the other hand, the second valve on the second bypass passage that bypasses the second turbine disposed on the relatively downstream side is closed when a predetermined time elapses after the start of the engine is completed. That is, after the start condition is satisfied, the first valve can be closed and the second valve can be opened in a transitional period from when the engine start is completed until a predetermined time elapses. Since this state can bypass the second turbine downstream of the first turbine, the back pressure of the first turbine is reduced and the differential pressure across the first turbine is increased. This is advantageous in that the number of revolutions of the first turbine is quickly increased from zero with the start of the engine, and after the start of the engine is completed, supercharging by the first turbocharger is started early. become. That is, the start acceleration performance can be improved.

一方、車両の発進要求を伴わない始動条件の成立時には、前記の始動制御の実行と共に、第1バイパス路上の第1バルブ及び第2バイパス路上の第2バルブをそれぞれ閉じる。ここで、第1及び第2バルブを閉じるタイミングは、前記始動条件の成立後において適宜設定すればよく、例えば始動条件の成立直後(つまり、エンジンの始動制御の開始時)としてもよいし、エンジンの始動完了の直後としてもよい。第1及び第2バルブを閉じることによって、停止していた第1及び第2タービンのそれぞれが、エンジンの始動に伴い回転を開始し得るようになるから、エンジンの始動完了後には、第1及び第2タービンのそれぞれを回転している状態で待機させ得る。このことは、エンジンの始動完了後に発進要求がなされたときに、その発進要求に速やかに対応する上で有利になる。   On the other hand, when a start condition that does not require a vehicle start request is established, the first valve on the first bypass path and the second valve on the second bypass path are closed together with the execution of the start control. Here, the timing of closing the first and second valves may be set as appropriate after the start condition is satisfied, for example, immediately after the start condition is satisfied (that is, at the start of engine start control) Immediately after the start-up is completed. By closing the first and second valves, each of the stopped first and second turbines can start rotating as the engine is started. Each of the second turbines can be put on standby in a rotating state. This is advantageous in quickly responding to a start request when a start request is made after completion of engine start.

前記第1バルブは、前記エンジンが低回転域のときに閉じる一方、それ以外の領域では開けるように構成されている、としてもよい。ここで、「バルブを開ける」には、バルブを全開にすることの他、バルブの開度を開き側の所定開度にすることを含む。   The first valve may be configured to be closed when the engine is in a low rotation range, and to be opened in other regions. Here, “opening the valve” includes opening the valve to a predetermined opening on the opening side in addition to fully opening the valve.

つまり第1のターボ過給機は、主にエンジンが低回転域のときに過給を行う、相対的に小型のターボ過給機としてもよい。つまり、エンジンの低回転域では第1バルブを閉じて、小型のターボ過給機を駆動させることで立ち上がり特性を良好にする一方で、エンジンが中回転乃至高回転域にあるときには第1バルブを開けて第1タービンをバイパスすることにより、排気抵抗を低減し得る。この構成はまた、第1タービンが小型かつ低イナーシャになり得ることから、前述したように、発進要求を伴うエンジンの始動条件成立時に第1タービンの回転数を0回転から速やかに高める上でより一層有利になる。   That is, the first turbocharger may be a relatively small turbocharger that performs supercharging mainly when the engine is in a low rotation range. In other words, the first valve is closed in the low engine speed range and the small turbocharger is driven to improve the start-up characteristic, while the first valve is operated when the engine is in the middle or high engine speed range. By opening and bypassing the first turbine, the exhaust resistance can be reduced. This configuration also allows the first turbine to be small and low-inertia, so that, as described above, when the engine start condition that requires a start request is satisfied, the first turbine can be quickly increased from 0 rpm. It becomes even more advantageous.

前記エンジンはディーゼルエンジンであり、前記始動制御手段は、前記車両の発進要求を伴う始動条件が成立したときには、圧縮上死点付近で燃料を噴射する主噴射に続いて、膨張行程時に燃料を噴射する後噴射を行うポスト噴射制御をさらに実行する、としてもよい。   The engine is a diesel engine, and the start control means injects fuel during an expansion stroke following main injection that injects fuel in the vicinity of compression top dead center when a start condition involving a start request of the vehicle is satisfied. The post injection control for performing the post injection may be further executed.

膨張行程時に後噴射を行うことは、排気エネルギを増大させて第1タービンの回転数を速やかに高める上で有利になり得る。つまり車両の発進要求を伴う始動条件の成立時には、前述した第1バルブ制御に、ポスト噴射制御を組み合わせることによって、第1のターボ過給機による過給を早期に開始すると共に、十分な過給圧を確保して、発進加速性能をより一層高め得る。   Performing post-injection during the expansion stroke can be advantageous in increasing exhaust energy and quickly increasing the rotational speed of the first turbine. In other words, when the start condition with the vehicle start request is established, the first valve control described above is combined with the post-injection control, so that supercharging by the first turbocharger can be started early and sufficient supercharging can be performed. The start acceleration performance can be further enhanced by securing the pressure.

以上説明したように、前記のターボ過給機付きエンジンの始動制御装置によると、車両の発進要求を伴った始動条件の成立時には、エンジンの始動制御と共に、始動条件の成立後、エンジンの始動が完了して所定時間が経過するまでの過渡期間において、第1バルブを閉じかつ第2バルブを開いた状態にすることで、第1タービンの前後差圧を大きくして、第1タービンの回転数を0回転から速やかに高め得る。その結果、第1のターボ過給機による過給を早期に開始して、エンジンの始動完了直後の発進加速性能を高め得る。一方、車両の発進要求を伴わない始動条件の成立時には、エンジンの始動制御の実行と共に、第1及び第2バルブを共に閉じることで、エンジンの始動完了後に、第1及び第2タービンの双方を回転している状態で待機させ得るため、エンジンの始動完了後になされる発進要求に速やかに対応する上で有利になる。   As described above, according to the start control device for an engine with a turbocharger, when the start condition with the vehicle start request is satisfied, the engine start control is performed together with the engine start control, and then the engine start is performed. During the transition period until the predetermined time elapses, the first valve is closed and the second valve is opened, thereby increasing the differential pressure across the first turbine and increasing the rotational speed of the first turbine. Can be quickly increased from 0 rotation. As a result, the supercharging by the first turbocharger can be started at an early stage, and the start acceleration performance immediately after completion of the engine start can be improved. On the other hand, when the start condition without the vehicle start request is established, both the first and second turbines are turned on after the start of the engine is completed by closing both the first and second valves together with the execution of the engine start control. Since it can be made to stand by in the state where it is rotating, it is advantageous in promptly responding to a start request made after completion of engine start.

ターボ過給機付きディーゼルエンジンの構成を示す概略図である。It is the schematic which shows the structure of the diesel engine with a turbocharger. ディーゼルエンジンの制御装置に係るブロック図である。It is a block diagram concerning a control device of a diesel engine. 小型及び大型ターボ過給機の作動マップの一例である。It is an example of the operation | movement map of a small and a large sized turbocharger. PCMが実行するエンジンの始動制御に係るフローチャートである。It is a flowchart which concerns on the engine start control which PCM performs. 一実施形態に係る、(A)発進要求再始動実行フラグ、(B)エンジン回転数、(C)完爆フラグ、(D)ポスト噴射実行フラグ、(E)レギュレートバルブ開度、(F)ウエストゲートバルブ開度、(G)小型タービン回転数、及び(H)大型タービン回転数の変化の一例を示すタイムチャートである。(A) Start request restart execution flag, (B) Engine speed, (C) Complete explosion flag, (D) Post injection execution flag, (E) Regulate valve opening, (F) according to one embodiment It is a time chart which shows an example of a change of a waste gate valve opening degree, (G) small turbine rotational speed, and (H) large turbine rotational speed.

以下、ターボ過給機付きエンジンの始動制御装置を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。図1,2は、実施形態に係る制御装置を採用したエンジン1の概略構成を示す。このエンジン1は、車両に搭載されたディーゼルエンジンであって、複数の気筒11a(1つのみ図示)が設けられたシリンダブロック11と、このシリンダブロック11上に配設されたシリンダヘッド12と、シリンダブロック11の下側に配設され、潤滑油が貯溜されたオイルパン13とを有している。このエンジン1の各気筒11a内には、ピストン14が往復動可能にそれぞれ嵌挿されていて、このピストン14の頂面には深皿形燃焼室14aを区画するキャビティが形成されている。このピストン14は、コンロッド14bを介してクランクシャフト15と連結されている。シリンダブロック11には、エンジン冷却水の温度を検出する水温センサSW1が配設されている。   Hereinafter, a start control device for an engine with a turbocharger will be described with reference to the drawings. The following description of the preferred embodiment is merely exemplary in nature. 1 and 2 show a schematic configuration of an engine 1 that employs a control device according to an embodiment. The engine 1 is a diesel engine mounted on a vehicle, and includes a cylinder block 11 provided with a plurality of cylinders 11a (only one is shown), a cylinder head 12 disposed on the cylinder block 11, An oil pan 13 is disposed below the cylinder block 11 and stores lubricating oil. In each cylinder 11a of the engine 1, a piston 14 is fitted and removably fitted. A top surface of the piston 14 is formed with a cavity that defines a deep dish combustion chamber 14a. The piston 14 is connected to the crankshaft 15 via a connecting rod 14b. The cylinder block 11 is provided with a water temperature sensor SW1 that detects the temperature of engine cooling water.

前記シリンダヘッド12には、各気筒11a毎に吸気ポート16及び排気ポート17が形成されているとともに、これら吸気ポート16及び排気ポート17の燃焼室14a側の開口を開閉する吸気弁21及び排気弁22がそれぞれ配設されている。これら吸排気弁21,22をそれぞれ駆動する動弁系において、排気弁側には、当該排気弁22の作動モードを通常モードと特殊モードとに切り替える油圧作動式の可変機構(図2参照。以下、VVM(Variable Valve Motion)と称する)が設けられている。このVVM71は、その構成の詳細な図示は省略するが、カム山を1つ有する第1カムとカム山を2つ有する第2カムとの、カムプロファイルの異なる2種類のカム、及び、その第1及び第2カムのいずれか一方のカムの作動状態を選択的に排気弁に伝達するロストモーション機構を含んで構成されており、第1カムの作動状態を排気弁22に伝達しているときには、排気弁22は、排気行程中において一度だけ開弁される通常モードで作動するのに対し、第2カムの作動状態を排気弁22に伝達しているときには、排気弁22が、排気行程中において開弁すると共に、吸気行程中においても開弁するような、いわゆる排気の二度開きを行う特殊モードで作動する。VVM71の通常モードと特殊モードとの切り替えは、エンジン駆動の油圧ポンプ(図示省略)から供給される油圧によって行われ、特殊モードは、内部EGRに係る制御の際に利用され得る。尚、こうした通常モードと特殊モードとの切り替えを可能にする上で、排気弁22を電磁アクチュエータによって駆動する電磁駆動式の動弁系を採用してもよい。   In the cylinder head 12, an intake port 16 and an exhaust port 17 are formed for each cylinder 11a, and an intake valve 21 and an exhaust valve that open and close the opening of the intake port 16 and the exhaust port 17 on the combustion chamber 14a side. 22 are arranged respectively. In the valve systems that drive these intake and exhaust valves 21 and 22, respectively, a hydraulically operated variable mechanism that switches the operation mode of the exhaust valve 22 between a normal mode and a special mode on the exhaust valve side (see FIG. 2 below). VVM (Variable Valve Motion). Although detailed illustration of the configuration of the VVM 71 is omitted, two types of cams having different cam profiles, a first cam having one cam peak and a second cam having two cam peaks, and the first cam When a lost motion mechanism that selectively transmits the operating state of one of the first and second cams to the exhaust valve is included, and the operating state of the first cam is transmitted to the exhaust valve 22 The exhaust valve 22 operates in a normal mode in which the valve is opened only once during the exhaust stroke, whereas when the operating state of the second cam is transmitted to the exhaust valve 22, the exhaust valve 22 is in the exhaust stroke. In addition, the valve operates in a special mode in which the exhaust is opened twice so that the valve is opened during the intake stroke. Switching between the normal mode and the special mode of the VVM 71 is performed by hydraulic pressure supplied from an engine-driven hydraulic pump (not shown), and the special mode can be used in the control related to the internal EGR. In order to enable switching between the normal mode and the special mode, an electromagnetically driven valve system that drives the exhaust valve 22 by an electromagnetic actuator may be employed.

また、前記シリンダヘッド12には、燃料を噴射するインジェクタ18と、エンジン1の冷間時に吸入空気を暖めて燃料の着火性を高めるためのグロープラグ19とが設けられている。前記インジェクタ18は、その燃料噴射口が燃焼室14aの天井面から該燃焼室14aに臨むように配設されていて、圧縮行程上死点付近で燃焼室14aに燃料を直接噴射供給するようになっている。   The cylinder head 12 is provided with an injector 18 for injecting fuel and a glow plug 19 for warming intake air and improving fuel ignitability when the engine 1 is cold. The injector 18 is disposed so that its fuel injection port faces the combustion chamber 14a from the ceiling surface of the combustion chamber 14a, and is configured to directly inject and supply fuel to the combustion chamber 14a near the top dead center of the compression stroke. It has become.

前記エンジン1の一側面には、各気筒11aの吸気ポート16に連通するように吸気通路30が接続されている。一方、前記エンジン1の他側面には、各気筒11aの燃焼室14aからの既燃ガス(排気ガス)を排出する排気通路40が接続されている。これら吸気通路30及び排気通路40には、吸入空気の過給を行う大型ターボ過給機61と小型ターボ過給機62とが配設されている。   An intake passage 30 is connected to one side of the engine 1 so as to communicate with the intake port 16 of each cylinder 11a. On the other hand, an exhaust passage 40 for discharging burned gas (exhaust gas) from the combustion chamber 14a of each cylinder 11a is connected to the other side of the engine 1. The intake passage 30 and the exhaust passage 40 are provided with a large turbocharger 61 and a small turbocharger 62 that supercharge intake air.

吸気通路30の上流端部には、吸入空気を濾過するエアクリーナ31が配設されている。一方、吸気通路30における下流端近傍には、サージタンク33が配設されている。このサージタンク33よりも下流側の吸気通路30は、各気筒11a毎に分岐する独立通路とされ、これら各独立通路の下流端が各気筒11aの吸気ポート16にそれぞれ接続されている。また、サージタンク33には、燃焼室14aに供給される空気の圧力を検出する過給圧センサSW2が配設されている。   An air cleaner 31 that filters intake air is disposed at the upstream end of the intake passage 30. On the other hand, a surge tank 33 is disposed near the downstream end of the intake passage 30. The intake passage 30 downstream of the surge tank 33 is an independent passage branched for each cylinder 11a, and the downstream end of each independent passage is connected to the intake port 16 of each cylinder 11a. The surge tank 33 is provided with a supercharging pressure sensor SW2 that detects the pressure of air supplied to the combustion chamber 14a.

吸気通路30におけるエアクリーナ31とサージタンク33との間には、上流側から順に、吸入空気の温度を検出する吸気温度センサSW3と、詳しくは後述する大型及び小型ターボ過給機61,62のコンプレッサ61a,62aと、該コンプレッサ61a,62aにより圧縮された空気の温度を検出する過給空気温度センサSW4と、該コンプレッサ61a,62aにより圧縮された空気を冷却するインタークーラ35と、前記各気筒11aの燃焼室14aへの吸入空気量を調節するスロットル弁36とが配設されている。このスロットル弁36は、基本的には全開状態とされるが、エンジン1の停止時には、ショックが生じないように全閉状態とされる。   Between the air cleaner 31 and the surge tank 33 in the intake passage 30, an intake air temperature sensor SW 3 that detects the temperature of the intake air in order from the upstream side, and compressors of large and small turbochargers 61 and 62 described later in detail. 61a, 62a, a supercharged air temperature sensor SW4 for detecting the temperature of the air compressed by the compressors 61a, 62a, an intercooler 35 for cooling the air compressed by the compressors 61a, 62a, and the cylinders 11a. And a throttle valve 36 for adjusting the amount of intake air into the combustion chamber 14a. The throttle valve 36 is basically fully opened, but is fully closed when the engine 1 is stopped so that no shock is generated.

前記排気通路40の上流側の部分は、各気筒11a毎に分岐して排気ポート17の外側端に接続された独立通路と該各独立通路が集合する集合部とを有する排気マニホールドによって構成されている。   The upstream portion of the exhaust passage 40 is constituted by an exhaust manifold having an independent passage branched for each cylinder 11a and connected to the outer end of the exhaust port 17 and a collecting portion where the independent passages gather. Yes.

この排気通路40における排気マニホールドよりも下流側には、上流側から順に、小型ターボ過給機62のタービン62b、大型ターボ過給機61のタービン61bと、排気ガス中の有害成分を浄化する排気浄化装置41と、サイレンサ42とが配設されている。   On the downstream side of the exhaust manifold in the exhaust passage 40, the turbine 62b of the small turbocharger 62, the turbine 61b of the large turbocharger 61, and exhaust for purifying harmful components in the exhaust gas in order from the upstream side. A purification device 41 and a silencer 42 are provided.

この排気浄化装置41は、酸化触媒41aと、ディーゼルパティキュレートフィルタ(以下、フィルタという)41bとを有しており、上流側から、この順に並んでいる。酸化触媒41a及びフィルタ41bは1つのケース内に収容されている。前記酸化触媒41aは、白金又は白金にパラジウムを加えたもの等を担持した酸化触媒を有していて、排気ガス中のCO及びHCが酸化されてCO及びHOが生成する反応を促すものである。この酸化触媒41aが触媒を構成する。また、前記フィルタ41bは、エンジン1の排気ガス中に含まれる煤等の微粒子を捕集するものである。尚、フィルタ41bに酸化触媒をコーティングしてもよい。また、酸化触媒41aとフィルタ41bの間には、酸化触媒41aを通過した排気ガスの温度を検出する排気温センサSW5が配設されている。 The exhaust purification device 41 includes an oxidation catalyst 41a and a diesel particulate filter (hereinafter referred to as a filter) 41b, which are arranged in this order from the upstream side. The oxidation catalyst 41a and the filter 41b are accommodated in one case. The oxidation catalyst 41a has an oxidation catalyst carrying platinum or platinum added with palladium or the like, and promotes a reaction in which CO and HC in the exhaust gas are oxidized to produce CO 2 and H 2 O. Is. The oxidation catalyst 41a constitutes a catalyst. The filter 41b collects particulates such as soot contained in the exhaust gas of the engine 1. The filter 41b may be coated with an oxidation catalyst. Further, an exhaust temperature sensor SW5 that detects the temperature of the exhaust gas that has passed through the oxidation catalyst 41a is disposed between the oxidation catalyst 41a and the filter 41b.

前記吸気通路30における前記サージタンク33とスロットル弁36との間の部分(つまり小型ターボ過給機62の小型コンプレッサ62aよりも下流側部分)と、前記排気通路40における前記排気マニホールドと小型ターボ過給機62の小型タービン62bとの間の部分(つまり小型ターボ過給機62の小型タービン62bよりも上流側部分)とは、排気ガスの一部を吸気通路30に還流するための排気ガス還流通路50によって接続されている。この排気ガス還流通路50は、排気ガスの吸気通路30への還流量を調整するための排気ガス還流弁51a及び排気ガスをエンジン冷却水によって冷却するためのEGRクーラ52とが配設された主通路51と、EGRクーラ52をバイパスするためのクーラバイパス通路53と、を含んで構成されている。このクーラバイパス通路53には、クーラバイパス通路53を流通する排気ガスの流量を調整するためのクーラバイパス弁53aが配設されている。   A portion of the intake passage 30 between the surge tank 33 and the throttle valve 36 (that is, a portion on the downstream side of the small compressor 62a of the small turbocharger 62), the exhaust manifold and the small turbocharger in the exhaust passage 40. The portion between the turbocharger 62 and the small turbine 62 b (that is, the upstream portion of the small turbocharger 62 from the small turbine 62 b) is an exhaust gas recirculation for recirculating a part of the exhaust gas to the intake passage 30. They are connected by a passage 50. The exhaust gas recirculation passage 50 is provided with an exhaust gas recirculation valve 51a for adjusting the recirculation amount of the exhaust gas to the intake passage 30 and an EGR cooler 52 for cooling the exhaust gas with engine cooling water. It includes a passage 51 and a cooler bypass passage 53 for bypassing the EGR cooler 52. The cooler bypass passage 53 is provided with a cooler bypass valve 53 a for adjusting the flow rate of the exhaust gas flowing through the cooler bypass passage 53.

さらに、図2に示すように、エンジン1には、クランクシャフト15の回転角を検出する2つのクランク角センサSW6,SW7が設けられている。一方のクランク角センサSW6から出力される検出信号に基づいてエンジン回転数(回転速度)が検出されると共に、両クランク角センサSW6,SW7から出力される位相のずれた検出信号に基づいてクランク角位置が検出されるようになっている。また、エンジン1には、車両のアクセルペダル(図示省略)の操作量に対応したアクセル開度を検出するアクセル開度センサSW8と、車両のブレーキペダル(図示省略)の操作を検出するブレーキペダルセンサSW9と、車両のクラッチペダル(図示省略)の操作を検出するクラッチペダルセンサSW10及び車両のシフトレバー(図示省略)の操作を検出するシフトレバーセンサSW11(手動変速機の場合)と、車両の速度を検出する車速センサSW12とが設けられている。   Further, as shown in FIG. 2, the engine 1 is provided with two crank angle sensors SW6 and SW7 for detecting the rotation angle of the crankshaft 15. The engine speed (rotation speed) is detected based on the detection signal output from one crank angle sensor SW6, and the crank angle is detected based on the detection signal out of phase output from both crank angle sensors SW6 and SW7. The position is detected. The engine 1 includes an accelerator opening sensor SW8 that detects an accelerator opening corresponding to an operation amount of an accelerator pedal (not shown) of the vehicle, and a brake pedal sensor that detects an operation of a brake pedal (not shown) of the vehicle. SW9, clutch pedal sensor SW10 for detecting the operation of the vehicle clutch pedal (not shown), shift lever sensor SW11 for detecting the operation of the vehicle shift lever (not shown), and the speed of the vehicle Is provided with a vehicle speed sensor SW12 for detecting.

ここで、大型ターボ過給機61及び小型ターボ過給機62の構成について詳しく説明する。   Here, the configuration of the large turbocharger 61 and the small turbocharger 62 will be described in detail.

大型ターボ過給機61は、吸気通路30に配設された大型コンプレッサ61aと、排気通路40に配設された大型タービン61bとを有している。大型コンプレッサ61aは、吸気通路30におけるエアクリーナ31とインタークーラ35との間(詳しくは、吸気温度センサSW3と過給空気温度センサSW4との間)に配設されている。一方、大型タービン61bは、排気通路40における排気マニホールドと酸化触媒41aとの間に配設されている。   The large turbocharger 61 has a large compressor 61 a disposed in the intake passage 30 and a large turbine 61 b disposed in the exhaust passage 40. The large compressor 61a is disposed between the air cleaner 31 and the intercooler 35 in the intake passage 30 (specifically, between the intake air temperature sensor SW3 and the supercharged air temperature sensor SW4). On the other hand, the large turbine 61b is disposed between the exhaust manifold and the oxidation catalyst 41a in the exhaust passage 40.

小型ターボ過給機62は、吸気通路30に配設された小型コンプレッサ62aと、排気通路40に配設された小型タービン62bとを有している。小型コンプレッサ62aは、吸気通路30における大型コンプレッサ61aの下流側に配設されている。一方、小型タービン62bは、排気通路40における大型タービン61bの上流側に配設されている。   The small turbocharger 62 has a small compressor 62 a disposed in the intake passage 30 and a small turbine 62 b disposed in the exhaust passage 40. The small compressor 62 a is disposed on the downstream side of the large compressor 61 a in the intake passage 30. On the other hand, the small turbine 62 b is disposed on the upstream side of the large turbine 61 b in the exhaust passage 40.

すなわち、吸気通路30においては、上流側から順に大型コンプレッサ61aと小型コンプレッサ62aとが直列に配設され、排気通路40においては、上流側から順に小型タービン62bと大型タービン61bとが直列に配設されている。これら大型及び小型タービン61b,62bが排気ガス流により回転し、これら大型及び小型タービン61b,62bの回転により、該大型及び小型タービン61b,62bとそれぞれ連結された前記大型及び小型コンプレッサ61a,62aがそれぞれ作動する。尚、吸気通路30における大型コンプレッサ61aと小型コンプレッサ62aとの間には、大型コンプレッサ61aで過給された吸気の圧力を検出する中間圧センサSW13が設けられている。   That is, in the intake passage 30, a large compressor 61a and a small compressor 62a are arranged in series from the upstream side, and in the exhaust passage 40, a small turbine 62b and a large turbine 61b are arranged in series from the upstream side. Has been. The large and small turbines 61b and 62b are rotated by the exhaust gas flow, and the large and small turbines 61a and 62a connected to the large and small turbines 61b and 62b are rotated by the rotation of the large and small turbines 61b and 62b, respectively. Each operates. An intermediate pressure sensor SW13 for detecting the pressure of intake air supercharged by the large compressor 61a is provided between the large compressor 61a and the small compressor 62a in the intake passage 30.

小型ターボ過給機62は、相対的に小型のものであり、大型ターボ過給機61は、相対的に大型のものである。すなわち、大型ターボ過給機61の大型タービン61bの方が小型ターボ過給機62の小型タービン62bよりもイナーシャが大きい。   The small turbocharger 62 is relatively small, and the large turbocharger 61 is relatively large. That is, the large turbine 61 b of the large turbocharger 61 has a larger inertia than the small turbine 62 b of the small turbocharger 62.

そして、吸気通路30には、小型コンプレッサ62aをバイパスする小型吸気バイパス通路63が接続されている。この小型吸気バイパス通路63には、該小型吸気バイパス通路63へ流れる空気量を調整するための小型吸気バイパス弁63aが配設されている。この小型吸気バイパス弁63aは、無通電時には全閉状態(ノーマルクローズ)となるように構成されている。   The intake passage 30 is connected to a small intake bypass passage 63 that bypasses the small compressor 62a. The small intake bypass passage 63 is provided with a small intake bypass valve 63 a for adjusting the amount of air flowing to the small intake bypass passage 63. The small intake bypass valve 63a is configured to be in a fully closed state (normally closed) when no power is supplied.

一方、排気通路40には、小型タービン62bをバイパスする小型排気バイパス通路64と、大型タービン61bをバイパスする大型排気バイパス通路65とが接続されている。小型排気バイパス通路64には、該小型排気バイパス通路64へ流れる排気量を調整するためのレギュレートバルブ64aが配設され、大型排気バイパス通路65には、該大型排気バイパス通路65へ流れる排気量を調整するためのウエストゲートバルブ65aが配設されている。レギュレートバルブ64a及びウエストゲートバルブ65aは共に、無通電時には全開状態(ノーマルオープン)となるように構成されている。   On the other hand, the exhaust passage 40 is connected to a small exhaust bypass passage 64 that bypasses the small turbine 62b and a large exhaust bypass passage 65 that bypasses the large turbine 61b. The small exhaust bypass passage 64 is provided with a regulating valve 64a for adjusting the exhaust amount flowing to the small exhaust bypass passage 64, and the large exhaust bypass passage 65 has an exhaust amount flowing to the large exhaust bypass passage 65. A wastegate valve 65a for adjusting the pressure is provided. Both the regulating valve 64a and the waste gate valve 65a are configured to be in a fully open state (normally open) when no power is supplied.

小型ターボ過給機62が第1のターボ過給機を、大型ターボ過給機61が第2のターボ過給機を、小型排気バイパス通路64が第1バイパス路を、大型排気バイパス通路65が第2バイパス路を、レギュレートバルブ64aが第1バルブを、ウエストゲートバルブ65aが第2バルブを、それぞれ構成する。   The small turbocharger 62 is the first turbocharger, the large turbocharger 61 is the second turbocharger, the small exhaust bypass passage 64 is the first bypass passage, and the large exhaust bypass passage 65 is In the second bypass path, the regulating valve 64a constitutes the first valve, and the wastegate valve 65a constitutes the second valve.

これら大型ターボ過給機61と小型ターボ過給機62は、それらが配設された吸気通路30及び排気通路40の部分も含めて、一体的にユニット化されて、過給機ユニット60を構成している。この過給機ユニット60は、エンジン1に取り付けられている。そして、過給機ユニット60の吸気通路30の出口は、インタークーラ35の上流端と、ゴムホース30aを介して接続されている。つまり、インタークーラ35は、車体に取り付けられており、エンジン1に取り付けられた過給機ユニット60とは異なる振動が生じる。そこで、過給機ユニット60とインタークーラ35との異なる振動が互いに影響し合わないように、それぞれの振動をゴムホース30aで吸収するようにしている。同様の理由から、インタークーラ35の下流端と、吸気通路30のスロットル弁36の上流部分とも、ゴムホース30bを介して接続されている。   The large turbocharger 61 and the small turbocharger 62 are integrated into a single unit including the intake passage 30 and the exhaust passage 40 in which the large turbocharger 61 and the small turbocharger 62 are arranged, thereby forming a supercharger unit 60. doing. The supercharger unit 60 is attached to the engine 1. The outlet of the intake passage 30 of the supercharger unit 60 is connected to the upstream end of the intercooler 35 via a rubber hose 30a. That is, the intercooler 35 is attached to the vehicle body, and vibration different from that of the supercharger unit 60 attached to the engine 1 occurs. Therefore, the vibrations of the supercharger unit 60 and the intercooler 35 are absorbed by the rubber hose 30a so that they do not affect each other. For the same reason, the downstream end of the intercooler 35 and the upstream portion of the throttle valve 36 of the intake passage 30 are also connected via a rubber hose 30b.

このように構成されたターボ過給機付きのエンジン1は、パワートレイン・コントロール・モジュール(以下、PCMという)10によって制御される。PCM10は、CPU、メモリ、カウンタタイマ群、インターフェース及びこれらのユニットを接続するパスを有するマイクロプロセッサで構成されている。このPCM10が制御装置を構成する。PCM10は、図2に示すように、前記センサSW1〜SW13の検出信号が入力され、これらの検出信号に基づいて種々の演算を行うことによってエンジン1や車両の状態を判定し、これに応じてインジェクタ18、動弁系のVVM71、各種の弁のアクチュエータへ制御信号を出力する。また、PCM10は、エンジン1の始動時に、インジェクタ18やスタータモータ72へ制御信号を出力すると共に、必要に応じてグロープラグ19へも制御信号を出力する。さらに、PCM10は、タイミングベルト等によりクランクシャフト15に連結されたオルタネータに内蔵されたレギュレータ回路73に制御信号を出力することによって、車両の電気負荷及び車両バッテリの電圧等に対応した発電量の制御を実行する。   The turbocharged engine 1 configured as described above is controlled by a powertrain control module (hereinafter referred to as PCM) 10. The PCM 10 includes a microprocessor having a CPU, a memory, a counter timer group, an interface, and a path connecting these units. The PCM 10 constitutes a control device. As shown in FIG. 2, the PCM 10 receives detection signals from the sensors SW1 to SW13, performs various calculations based on these detection signals, determines the state of the engine 1 and the vehicle, and responds accordingly. Control signals are output to the injector 18, the valve-operated VVM 71, and actuators of various valves. The PCM 10 outputs a control signal to the injector 18 and the starter motor 72 when the engine 1 is started, and also outputs a control signal to the glow plug 19 as necessary. Further, the PCM 10 outputs a control signal to a regulator circuit 73 built in an alternator connected to the crankshaft 15 by a timing belt or the like, thereby controlling the amount of power generation corresponding to the electric load of the vehicle and the voltage of the vehicle battery. Execute.

また、PCM10は、エンジンの運転状態において大型及び小型ターボ過給機61,62の動作を制御している。具体的には、PCM10は、小型吸気バイパス弁63a、レギュレートバルブ64a及びウエストゲートバルブ65aの各開度をエンジン1の運転状態に応じて設定した開度にそれぞれ制御する。   The PCM 10 controls the operations of the large and small turbochargers 61 and 62 when the engine is operating. Specifically, the PCM 10 controls the openings of the small intake bypass valve 63a, the regulator valve 64a, and the wastegate valve 65a to the openings set according to the operating state of the engine 1, respectively.

詳しくは、PCM10は、図3に示す、エンジン回転数とエンジン負荷とをパラメータとするマップにおける低負荷かつ低回転側の領域A(エンジン負荷が所定負荷(エンジン回転数が大きいほど小さくなる)以下の領域)では、小型吸気バイパス弁63a及びレギュレートバルブ64aを全開以外の開度とし、ウエストゲートバルブ65aを全閉状態とすることによって、大型及び小型ターボ過給機61,62の両方を作動させる。一方、高負荷かつ高回転側の領域B(エンジン負荷が前記所定負荷よりも大きい領域)では、小型ターボ過給機62が排気抵抗になるため、小型吸気バイパス弁63a及びレギュレートバルブ64aを全開状態とし、ウエストゲートバルブ65aを全閉状態に近い開度にすることによって、小型ターボ過給機62をバイパスさせて大型ターボ過給機61のみを作動させる。尚、ウエストゲートバルブ65a、過回転を防止するために少し開き気味に設定している。   Specifically, the PCM 10 has a low load and low rotation side region A (engine load is smaller than a predetermined load (smaller as the engine speed increases)) in the map having the engine speed and the engine load as parameters shown in FIG. ), Both the large and small turbochargers 61 and 62 are operated by setting the small intake bypass valve 63a and the regulating valve 64a to an opening other than fully open and the wastegate valve 65a to be fully closed. Let On the other hand, in the high load and high rotation side region B (region where the engine load is larger than the predetermined load), the small turbocharger 62 becomes exhaust resistance, so the small intake bypass valve 63a and the regulating valve 64a are fully opened. The small turbocharger 62 is bypassed and only the large turbocharger 61 is operated by setting the waste gate valve 65a to an opening close to the fully closed state. The waste gate valve 65a is slightly opened to prevent over-rotation.

本実施形態では、PCM10は、燃費の低減やCOの排出抑制等を目的として、所定の自動停止条件が成立したときにエンジン1を自動停止させると共に、その後、所定の再始動条件が成立したときにエンジン1を再始動させるように、いわゆるアイドルストップ制御を行う。 In the present embodiment, the PCM 10 automatically stops the engine 1 when a predetermined automatic stop condition is satisfied for the purpose of reducing fuel consumption, suppressing CO 2 emission, and the like, and then the predetermined restart condition is satisfied. So-called idle stop control is performed so that the engine 1 is sometimes restarted.

具体的には、PCM10は、自動停止条件が成立すると、インジェクタ18による燃料の噴射を停止させる。例えば、水温センサSW1によって検出されるエンジン冷却水の温度が所定温度以上でありかつ、ブレーキペダルセンサSW9の検出信号に基づいて判定されるブレーキペダルの踏み込み操作が所定時間継続すると共に、車速センサSW12の検出信号に基づいて判定される車速が予め設定した微低速(例えば、時速2〜5km)以下となって車両が実質、停止していることを、自動停止条件とすることができる。この自動停止の際には、スロットル弁36の開閉制御、及び、レギュレータ回路73を通じたオルタネータ制御を併せて行うことにより、エンジン1の再始動に適したピストン位置でエンジン1を停止させるようにする。   Specifically, the PCM 10 stops the fuel injection by the injector 18 when the automatic stop condition is satisfied. For example, the temperature of the engine coolant detected by the water temperature sensor SW1 is equal to or higher than a predetermined temperature, and the depression operation of the brake pedal determined based on the detection signal of the brake pedal sensor SW9 continues for a predetermined time, and the vehicle speed sensor SW12 It can be set as an automatic stop condition that the vehicle speed determined based on the detection signal is equal to or lower than a preset very low speed (for example, 2 to 5 km / h) and the vehicle is substantially stopped. At the time of this automatic stop, the engine 1 is stopped at a piston position suitable for restarting the engine 1 by performing both opening / closing control of the throttle valve 36 and alternator control through the regulator circuit 73. .

その後、再始動条件が成立すると、PCM10は、各気筒11aへの燃料供給を開始すると共に、スタータモータ72の駆動によりエンジン1にアシストトルクを付与して、前記燃焼によりエンジン1を再始動させる(始動制御手段)。このように、このエンジン1は、アシストトルクを付与するものの、基本的には燃焼によって再始動を行うため再始動時間が極めて短いという特徴がある。例えば、車両バッテリの残容量が少なくなって充電が必要になったこと、空調装置のコンプレッサの作動が必要になったこと、又はアクセル開度センサSW8若しくはクラッチペダルセンサSW10からの検出信号に基づいて乗員によるアクセル操作若しくはクラッチ操作が検出されたこと等を、再始動条件とすることができる。この内、車両バッテリの残容量が少なくなって充電が必要になったことや、空調装置のコンプレッサの作動が必要になったことは、発進要求を伴わない始動条件ということができ、逆に、アクセル操作若しくはクラッチ操作が検出されたことは、発進要求を伴う始動条件ということができる。   Thereafter, when the restart condition is satisfied, the PCM 10 starts supplying fuel to each cylinder 11a, applies assist torque to the engine 1 by driving the starter motor 72, and restarts the engine 1 by the combustion ( Starting control means). As described above, the engine 1 is characterized in that although the assist torque is applied, the restart time is extremely short because the restart is basically performed by combustion. For example, based on the detection signal from the accelerator opening sensor SW8 or the clutch pedal sensor SW10 that the remaining capacity of the vehicle battery is reduced and charging is necessary, the operation of the compressor of the air conditioner is required. The restart condition may be that an accelerator operation or a clutch operation is detected by a passenger. Among these, the fact that the remaining capacity of the vehicle battery has decreased and charging has become necessary, and that the operation of the compressor of the air conditioner has been required can be said to be a start condition without a start request, conversely, The detection of the accelerator operation or the clutch operation can be regarded as a start condition accompanied by a start request.

このエンジン1の再始動に際し、PCM10は、発進要求を伴う始動条件の成立時と、発進要求を伴わない始動条件の成立時とで、前述したレギュレートバルブ64a及びウエストゲートバルブ65aのバルブ制御を異ならせている。以下に、PCM10による、エンジン1の再始動に係る制御について、図4のフローチャート及び図5のタイムチャートを参照しながら説明する。ここで、図4のフロー中の各ステップの順番は、説明の便宜上のものであり、その順番を適宜入れ替えたり、また、各ステップの実行を時間的に並列に行ったりすることは勿論可能である。   When the engine 1 is restarted, the PCM 10 performs the valve control of the regulating valve 64a and the wastegate valve 65a described above when the start condition with the start request is satisfied and when the start condition without the start request is satisfied. It is different. Below, the control which concerns on restart of the engine 1 by PCM10 is demonstrated, referring the flowchart of FIG. 4, and the time chart of FIG. Here, the order of each step in the flow of FIG. 4 is for convenience of explanation, and it is of course possible to change the order as appropriate or to execute the steps in parallel in time. is there.

まず、図4のフローのステップST1において、エンジン1の再始動条件が成立したか否かを判定する。再始動条件としては、前述したように、発進要求を伴う再始動条件と、発進要求を伴わない再始動条件と、が含まれる。ステップST1で再始動条件が成立していないとき(NOのとき)には、このステップST1を繰り返し、再始動条件が成立したとき(YESのとき)には、ステップST2に移行する。   First, in step ST1 of the flow of FIG. 4, it is determined whether or not a restart condition for the engine 1 is satisfied. As described above, the restart condition includes a restart condition with a start request and a restart condition without a start request. If the restart condition is not satisfied in step ST1 (NO), step ST1 is repeated, and if the restart condition is satisfied (YES), the process proceeds to step ST2.

ステップST2では、再始動制御の実行を開始する。つまり、各気筒11aへの燃料供給を開始する。この燃焼始動によって、図5(B)に示すように、エンジン回転数は、変動しながら次第に高まることになる。続くステップST3では、発進要求が有るか否かを判定し、発進要求が有るとき(YESのとき)にはステップST4に移行する一方、発進要求がないとき(NOのとき)にはステップST9に移行する。ここで、図5(A)に示すように、発進要求が有るときには発進要求再始動実行フラグがONになる(実線参照)。   In step ST2, execution of restart control is started. That is, fuel supply to each cylinder 11a is started. With this combustion start, as shown in FIG. 5B, the engine speed gradually increases while fluctuating. In the following step ST3, it is determined whether or not there is a start request. When there is a start request (YES), the process proceeds to step ST4. When there is no start request (NO), the process proceeds to step ST9. Transition. Here, as shown in FIG. 5A, when there is a start request, the start request restart execution flag is turned ON (see the solid line).

発進要求が有るときのステップST4では、圧縮上死点付近で燃料を噴射する主噴射に続いて、膨張行程時に燃料を噴射する後噴射を行うポスト噴射制御を実行する(図5(D)の図の実線も参照)。従って、ポスト噴射制御は、エンジン1の始動条件が成立し、エンジン1の始動制御の開始と共に、開始されることになる。ポスト噴射制御によって、エンジン回転数を高めることなく、後述するように排気エネルギを高める。続くステップST5では、レギュレートバルブ64aに通電して、これを閉じる(図5(E)の図の実線を参照)。これによって、レギュレートバルブ64aは、始動条件の成立直後に閉じられるが、このタイミングはスタータモータ72の駆動中であることを考慮して、レギュレートバルブ64aを、例えば、後述するエンジン1の始動完了後に閉じるようにしてもよい。ここで、レギュレートバルブ64aは全閉乃至閉じ側の所定開度にすればよい。一方、ウエストゲートバルブ65aには通電を行わず、全開の状態のまま(ノーマルオープン)にする(図5(F)の実線を参照)。こうしてレギュレートバルブ64aを閉じかつ、ウエストゲートバルブ65aを開く第1のバルブ制御の実施によって、大型タービン61bがバイパスされ得るため、小型タービン62bの背圧が低下し、この小型タービン62bの背圧の前後差圧が大きくなる。このことは、図5(G)に実線で例示するように、小型タービン62bの回転数を0回転から速やかに高めることになる。尚、図5(G)の破線は、後述するように、第1のバルブ制御を実施しない場合の、小型タービン62bの回転数の変化の一例である。一方、前述のように、大型タービン61bは、バイパスされ得るため、図5(H)に示すように、大型タービン61bの回転数の上昇は緩慢になる。   In step ST4 when there is a start request, post-injection control for performing post-injection for injecting fuel during the expansion stroke is executed following main injection for injecting fuel near the compression top dead center (FIG. 5D). (See also solid line in figure). Therefore, the post-injection control is started when the start condition of the engine 1 is established and the start control of the engine 1 is started. The post-injection control increases the exhaust energy as will be described later without increasing the engine speed. In subsequent step ST5, the regulating valve 64a is energized and closed (see the solid line in FIG. 5E). As a result, the regulator valve 64a is closed immediately after the start condition is satisfied. However, considering that the starter motor 72 is being driven at this timing, the regulator valve 64a is operated, for example, for starting the engine 1 described later. It may be closed after completion. Here, the regulating valve 64a may be set to a predetermined opening degree on the fully closed or closed side. On the other hand, the wastegate valve 65a is not energized and remains fully open (normally open) (see the solid line in FIG. 5F). Thus, since the large turbine 61b can be bypassed by performing the first valve control that closes the regulating valve 64a and opens the wastegate valve 65a, the back pressure of the small turbine 62b is reduced, and the back pressure of the small turbine 62b is reduced. The differential pressure before and after increases. This quickly increases the rotation speed of the small turbine 62b from 0 rotation, as exemplified by the solid line in FIG. In addition, the broken line of FIG.5 (G) is an example of the change of the rotation speed of the small turbine 62b when not implementing 1st valve | bulb control so that it may mention later. On the other hand, since the large turbine 61b can be bypassed as described above, the increase in the rotational speed of the large turbine 61b becomes slow as shown in FIG.

そうして、ステップST6でエンジン1の再始動の完了後(換言すれば完爆後)、所定時間が経過したか否かを判定する。尚、完爆判定は、例えばエンジン回転数に基づいて行ってもよく、エンジン1の完爆後は、完爆フラグがONになる(図5(C)参照)一方、発進要求再始動フラグがOFFになる(図5(A)参照)。   Then, after completion of restart of the engine 1 (in other words, after complete explosion) in step ST6, it is determined whether or not a predetermined time has elapsed. The complete explosion determination may be performed based on, for example, the engine speed. After the complete explosion of the engine 1, the complete explosion flag is turned on (see FIG. 5C), while the start request restart flag is set. It is turned off (see FIG. 5A).

完爆後、所定時間が経過していないとき(NOのとき)には、ステップST6を繰り返す。一方、所定時間が経過したとき(YESのとき)には、ステップST7に移行する。ここでステップST6は、エンジン1の完爆後で、小型タービン62bの回転数が所定回転数以上となって小型タービン62bの回転が安定状態になったかを判定するためステップである。そのため、前記の「所定時間」は、小型タービン62bの回転が安定状態となり得る程度の時間として、例えば実験等を通じて予め設定しておけばよい。尚、ここでは完爆後の経過時間に基づいて、小型タービン62bの回転安定を判定しているが、小型タービン62bの回転安定を判定し得るパラメータであれば、時間に限定されず、適宜のパラメータを採用し得る。   If the predetermined time has not elapsed after the complete explosion (NO), step ST6 is repeated. On the other hand, when the predetermined time has elapsed (YES), the process proceeds to step ST7. Here, step ST6 is a step for determining whether or not the rotation speed of the small turbine 62b is equal to or higher than the predetermined rotation speed and the rotation of the small turbine 62b is in a stable state after the complete explosion of the engine 1. For this reason, the “predetermined time” may be set in advance through experiments or the like, for example, as a time that allows the rotation of the small turbine 62b to be in a stable state. Here, the rotational stability of the small turbine 62b is determined based on the elapsed time after the complete explosion. However, the parameters are not limited to the time as long as the parameters can determine the rotational stability of the small turbine 62b. Parameters can be employed.

完爆後、所定時間が経過して、小型タービン62bの回転が安定したステップST7では、ポスト噴射制御を終了する(図5(D)の実線を参照)と共に、続くステップST8で、ウエストゲートバルブ65aに通電をして、これを閉じる(つまり、全閉乃至閉じ側の所定開度にする。図5(F)の実線も参照)。こうして、発進要求を伴う始動条件が成立した場合の、エンジン1の始動制御が全て完了する。この場合は、図5(G)に実線で示すように、小型タービン62bの回転数が早期に高まることから小型ターボ過給機62による過給が、エンジン1の始動完了後の発進加速に際し早期に開始される。それと共に、小型タービン62bの回転が安定するまで、前記のポスト噴射等を継続することによって、十分な過給圧を確保して、エンジン1の再始動後の発進加速性能が高まり得る。   In step ST7 where the predetermined time has elapsed after the complete explosion and the rotation of the small turbine 62b has been stabilized, the post-injection control is terminated (see the solid line in FIG. 5D), and in the subsequent step ST8, the waste gate valve The power supply 65a is energized and closed (that is, a predetermined opening on the fully closed or closed side, see also the solid line in FIG. 5F). Thus, all the start control of the engine 1 when the start condition with the start request is satisfied is completed. In this case, as indicated by a solid line in FIG. 5 (G), since the rotational speed of the small turbine 62b is increased early, supercharging by the small turbocharger 62 is early in starting acceleration after the start of the engine 1 is completed. To begin. At the same time, by continuing the post-injection or the like until the rotation of the small turbine 62b is stabilized, a sufficient boost pressure can be secured and the start acceleration performance after the restart of the engine 1 can be enhanced.

一方、前記ステップST3で、発進要求がないとして移行したステップST9では、前述したステップST4のポスト噴射制御を行わない(図5(D)の破線参照)。また、ステップST5のレギュレートバルブ64aの閉じ制御も行わない(図5(E)の破線参照)。そうしてエンジン1の再始動が完了した後に、レギュレートバルブ64a及びウエストゲートバルブ65aをそれぞれ閉じる第2のバルブ制御を実行する。この閉じタイミングには、エンジン1の始動制御の開始から完爆までの間のスタータモータ72の駆動に伴う突入電流の発生時には、それ以外の制御を極力行わないという意味がある。尚、前述したように、このエンジン1は、再始動は基本的に燃焼によって行われ、スタータモータ72は補助的に用いられるのみであるから、エンジン1の再始動条件が成立した直後にレギュレートバルブ64a及びウエストゲートバルブ65aをそれぞれ閉じてもよい。また、レギュレートバルブ64a及びウエストゲートバルブ65aはそれぞれ全閉乃至閉じ側の所定開度にする(図5(E)及び(F)の破線参照)。   On the other hand, in step ST9 which has shifted to step ST3 because there is no start request, the post injection control in step ST4 described above is not performed (see the broken line in FIG. 5D). Further, the closing control of the regulating valve 64a in step ST5 is not performed (see the broken line in FIG. 5E). Then, after the restart of the engine 1 is completed, the second valve control for closing the regulating valve 64a and the waste gate valve 65a is executed. This closing timing means that when the inrush current is generated due to the drive of the starter motor 72 from the start of the start control of the engine 1 to the complete explosion, the other control is not performed as much as possible. As described above, the engine 1 is basically restarted by combustion, and the starter motor 72 is only used supplementarily. Therefore, the engine 1 is regulated immediately after the restart condition of the engine 1 is established. Each of the valve 64a and the wastegate valve 65a may be closed. In addition, the regulating valve 64a and the waste gate valve 65a are respectively set to a predetermined opening degree on the fully closed or closed side (see broken lines in FIGS. 5E and 5F).

こうして、発進要求を伴わないエンジン1の再始動時には、図5(G)及び(H)に破線で示すように、小型タービン62b及び大型タービン61bの回転数が共に、徐々に上昇するようになり、エンジン1の完爆後には所定の回転状態となって、その後に起こり得る発進要求に備えることが可能になる。   Thus, when the engine 1 is restarted without a start request, the rotational speeds of both the small turbine 62b and the large turbine 61b gradually increase as shown by the broken lines in FIGS. 5 (G) and (H). After the complete explosion of the engine 1, it becomes a predetermined rotational state, and it becomes possible to prepare for a start request that can occur thereafter.

このように前記の構成では、発進要求を伴うエンジン1の始動条件が成立したときには、そのエンジン1の始動制御の開始から、完爆後所定時間が経過するまでの過渡期間において、レギュレートバルブ64aを閉じる一方で、ウエストゲートバルブ65aを開ける状態にすることで、この過渡期間中の小型タービン62bの前後差圧を大きくし得る。このことは、図5(G)に実線で示すように、小型タービン62bの回転数を、0回転から速やかに上昇させることを可能にする。その結果、小型ターボ過給機62による過給を、エンジン1の始動完了後に早期に開始することが可能になり、発進要求を伴う始動条件の成立時のように、エンジン1の始動完了後、即座に発進及び加速を行う状況において、その発進加速性能が向上し得る。この場合において、小型タービン62bは、相対的にイナーシャが小さいため0回転から回転数を上昇させる上では有利である。   As described above, in the above configuration, when the start condition of the engine 1 accompanied by the start request is satisfied, the regulating valve 64a is in a transition period from the start of the start control of the engine 1 until a predetermined time elapses after the complete explosion. On the other hand, by opening the wastegate valve 65a, the differential pressure across the small turbine 62b during this transition period can be increased. This makes it possible to quickly increase the rotation speed of the small turbine 62b from 0 rotation, as indicated by a solid line in FIG. As a result, the supercharging by the small turbocharger 62 can be started early after the start of the engine 1 is completed, and after the start of the engine 1 is completed as when the start condition with the start request is satisfied, In a situation where the vehicle starts and accelerates immediately, the start acceleration performance can be improved. In this case, since the small turbine 62b has relatively small inertia, it is advantageous in increasing the rotational speed from zero rotation.

またその際に、ポスト噴射制御を組み合わせることによって、排気エネルギの増大により、小型タービン62bの回転数をより一層速やかに高め得る。   Further, at that time, by combining the post injection control, the rotational speed of the small turbine 62b can be increased more rapidly by increasing the exhaust energy.

また、ウエストゲートバルブ65aを、エンジン1の完爆後、所定時間が経過するまで開けた状態にすると共に、前記のポスト噴射制御もまた、エンジン1の完爆後、所定時間が経過するまで継続することによって、小型タービン62bの回転数を安定回転にまで早期に到達させることが可能になり、エンジン1の始動完了後の発進加速時には、十分な過給圧を確保して発進加速性のより一層の向上が図られ得る。   Further, the waste gate valve 65a is opened until a predetermined time elapses after the engine 1 is completely exploded, and the post injection control is also continued until a predetermined time elapses after the engine 1 is completely exploded. By doing so, it becomes possible to reach the rotational speed of the small turbine 62b to a stable rotation at an early stage, and at the time of start acceleration after the start of the engine 1 is completed, a sufficient supercharging pressure is secured and the start acceleration performance is improved. Further improvement can be achieved.

一方、発進要求を伴わないエンジン1の始動条件が成立したときには、前記とは異なり、ターボ過給機による過給の早期開始という要求がないことから、前述したような小型タービン62bの回転数を速やかに高める必要がない。一方で、この場合は、エンジン1の始動が完了した後に運転者の発進要求が行われることに備えて、小型タービン62b及び大型タービン61bの双方を、所定の回転数まで回転させた状態にしておくことが好ましい。従って、発進要求を伴わないエンジン1の始動条件が成立したときには、レギュレートバルブ64a及びウエストゲートバルブ65aを共に閉じることによって、エンジン1の始動完了後には、小型タービン62b及び大型タービン61bの双方を所定の回転数まで回転させた状態にし得る。また、この場合はポスト噴射は不要であり、そうした不要なポスト噴射を実行しないことで、燃費性能の点で有利になる。   On the other hand, when the start condition of the engine 1 without a start request is satisfied, unlike the above, there is no request for early start of supercharging by the turbocharger. There is no need to increase it quickly. On the other hand, in this case, both the small turbine 62b and the large turbine 61b are rotated to a predetermined rotational speed in preparation for the driver's start request being made after the start of the engine 1 is completed. It is preferable to keep it. Therefore, when the start condition of the engine 1 without a start request is established, the regulator valve 64a and the wastegate valve 65a are both closed, and after the start of the engine 1 is completed, both the small turbine 62b and the large turbine 61b are It can be in the state rotated to the predetermined rotation speed. In this case, post-injection is unnecessary, and it is advantageous in terms of fuel efficiency by not performing such unnecessary post-injection.

尚、前記のレギュレートバルブ64a及びウエストゲートバルブ65aの制御については、この実施形態のようにディーゼルエンジンへの適用に限定されず、ターボ過給機付きガソリンエンジンのアイドルストップ制御にも適用可能である。   The control of the regulating valve 64a and the wastegate valve 65a is not limited to application to a diesel engine as in this embodiment, but can also be applied to idle stop control of a gasoline engine with a turbocharger. is there.

1 エンジン
10 PCM(始動制御手段)
14a 燃焼室
18 インジェクタ(燃料噴射弁)
40 排気通路
61 大型ターボ過給機(第2のターボ過給機)
61b 大型タービン(第2タービン)
62 小型ターボ過給機(第1のターボ過給機)
62b 小型タービン(第1タービン)
64 小型排気バイパス通路(第1バイパス路)
64a レギュレートバルブ(第1バルブ)
65 大型排気バイパス通路(第2バイパス路)
65a ウエストゲートバルブ(第2バルブ)
1 engine 10 PCM (starting control means)
14a Combustion chamber 18 Injector (fuel injection valve)
40 Exhaust passage 61 Large turbocharger (second turbocharger)
61b Large turbine (second turbine)
62 Small turbocharger (first turbocharger)
62b Small turbine (first turbine)
64 Small exhaust bypass passage (first bypass passage)
64a Regulating valve (first valve)
65 Large exhaust bypass passage (second bypass passage)
65a Wastegate valve (second valve)

Claims (3)

車両に搭載されたエンジンと、
前記エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、
前記エンジンの排気通路上の、相対的に上流側に配置された第1タービンを含む第1のターボ過給機と、相対的に下流側に配置された第2タービンを含む第2のターボ過給機と、
前記第1タービンをバイパスする第1バイパス路上に介設された、ノーマルオープンの第1バルブと、
前記第2タービンをバイパスする第2バイパス路上に介設された、ノーマルオープンの第2バルブと、
所定の停止条件が成立したときに前記エンジンを停止すると共に、所定の始動条件が成立したときには、前記燃料噴射弁を通じて前記燃焼室内に供給した燃料を燃焼させる所定の始動制御を実行して前記エンジンを始動させる始動制御手段と、を備え、
前記始動制御手段は、
前記車両の発進要求を伴う始動条件が成立したときには、前記始動制御の実行と共に、前記始動条件の成立後に前記第1バルブを閉じると共に、前記エンジンの始動が完了して所定時間が経過した時点で前記第2バルブを閉じる第1のバルブ制御を実行する一方、
前記車両の発進要求を伴わない始動条件が成立したときには、前記始動制御の実行と共に、前記始動条件の成立後に前記第1及び第2バルブを共に閉じる第2のバルブ制御を実行するターボ過給機付きエンジンの始動制御装置。
An engine mounted on the vehicle,
A fuel injection valve for injecting fuel into the combustion chamber of the engine;
A first turbocharger including a first turbine disposed relatively upstream on the exhaust passage of the engine and a second turbocharger including a second turbine disposed relatively downstream. A machine,
A normally open first valve interposed on a first bypass path that bypasses the first turbine;
A normally open second valve interposed on a second bypass path bypassing the second turbine;
The engine is stopped when a predetermined stop condition is satisfied, and when the predetermined start condition is satisfied, a predetermined start control is performed to burn the fuel supplied into the combustion chamber through the fuel injection valve. Starting control means for starting
The start control means includes
When the start condition with the vehicle start request is satisfied, the start control is executed, the first valve is closed after the start condition is satisfied, and a predetermined time has elapsed after the start of the engine is completed. While performing a first valve control to close the second valve,
A turbocharger that executes a second valve control that closes both the first and second valves after the start condition is satisfied, together with the execution of the start control, when a start condition that does not accompany the vehicle start request is satisfied Engine start control device.
請求項1に記載のエンジンの始動制御装置において、
前記第1バルブは、前記エンジンが低回転域のときに閉じる一方、それ以外の領域では開けるように構成されているターボ過給機付きエンジンの始動制御装置。
The engine start control device according to claim 1,
The first valve is a start control device for an engine with a turbocharger that is configured to be closed when the engine is in a low rotation range and open in other regions.
請求項1又は2に記載のエンジンの始動制御装置において、
前記エンジンはディーゼルエンジンであり、
前記始動制御手段は、前記車両の発進要求を伴う始動条件が成立したときには、圧縮上死点付近で燃料を噴射する主噴射に続いて、膨張行程時に燃料を噴射する後噴射を行うポスト噴射制御をさらに実行するターボ過給機付きエンジンの始動制御装置。
The engine start control device according to claim 1 or 2,
The engine is a diesel engine;
The start control means performs post-injection control for performing post-injection for injecting fuel during an expansion stroke following main injection for injecting fuel in the vicinity of compression top dead center when a start condition with a start request for the vehicle is satisfied. An engine start control device for a turbocharger that further executes
JP2010080414A 2010-03-31 2010-03-31 Start control device for turbocharged engine Expired - Fee Related JP5397291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080414A JP5397291B2 (en) 2010-03-31 2010-03-31 Start control device for turbocharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080414A JP5397291B2 (en) 2010-03-31 2010-03-31 Start control device for turbocharged engine

Publications (2)

Publication Number Publication Date
JP2011214419A JP2011214419A (en) 2011-10-27
JP5397291B2 true JP5397291B2 (en) 2014-01-22

Family

ID=44944425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080414A Expired - Fee Related JP5397291B2 (en) 2010-03-31 2010-03-31 Start control device for turbocharged engine

Country Status (1)

Country Link
JP (1) JP5397291B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5906725B2 (en) * 2011-12-27 2016-04-20 マツダ株式会社 Control device for turbocharged engine
JP6137995B2 (en) * 2013-02-08 2017-05-31 大阪瓦斯株式会社 Turbocharged engine and method for loading the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316130A (en) * 1986-07-07 1988-01-23 Nissan Motor Co Ltd Exhaust turbo supercharger for internal combustion engine
JP2570403B2 (en) * 1988-10-21 1997-01-08 トヨタ自動車株式会社 Supercharging pressure control device for twin turbo engine
JPH0294332U (en) * 1989-01-17 1990-07-26
JPH08170541A (en) * 1994-12-16 1996-07-02 Hino Motors Ltd Waste gate valve control device for engine equipped with supercharger
JP2006177171A (en) * 2004-12-20 2006-07-06 Toyota Motor Corp Control device for supercharger with electric motor and automobile provided with the control device

Also Published As

Publication number Publication date
JP2011214419A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5370243B2 (en) Control device for diesel engine with turbocharger
JP5589941B2 (en) Control device and control method for turbocharged diesel engine
JP5293236B2 (en) Diesel engine starting method and apparatus
JP5211997B2 (en) Method and apparatus for controlling direct injection engine with turbocharger
RU2719118C2 (en) Method (versions) and exhaust gas discharge system
JP2009209809A (en) Supercharging device for engine
EP2634410B1 (en) Engine system
JP2019090378A (en) Engine with supercharger
JP4736969B2 (en) Diesel engine control device
JP6641206B2 (en) Engine control device
JP5906726B2 (en) Control device for turbocharged engine
JP5397291B2 (en) Start control device for turbocharged engine
JP5381867B2 (en) Automatic stop device for diesel engine
JP2011214417A (en) Starting control device for diesel engine
JP6535246B2 (en) Engine control unit
WO2017110189A1 (en) Engine control device
JP5948864B2 (en) Automotive engine control device
JP6763488B2 (en) Control method and control device for internal combustion engine for vehicles
JP6521022B2 (en) Control device and control method for turbocharged engine
JP5251558B2 (en) Engine starting method and its starting device
JP5338736B2 (en) Engine supercharger
JP5880028B2 (en) Control device for compression self-ignition engine with turbocharger
JP5521707B2 (en) Engine supercharger
JP2009203856A (en) Intake-air controller of internal combustion engine
CN111479992B (en) Engine with supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5397291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees